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PREFACE

The 21-day training programme in Mathematics for the PGTs of NVS, 

At'u Delhi was held in HIE, Mysore from 2nd to 22nd June 2003.

The programme was arranged at the request of NVS, New1 Delhi. The mam 

objective of the programme was to enrich the content level of the teachers as per the 

revised curriculum.

The present volume contains a detailed report as well as some enrichment 

material other than the ones given in the training programme to be used in the 

classroom transactions. I am extremely happy to place on the record that all the 

participating teachers took great interest in teaming new' ideas and that thev were 

very punctual in their schedule of training.

/ am grateful to Prof J.S. Rajput, Director, NCERT, for having selected RIE, 

Mysore as the venue for the programme. My thanks are also to authorises NVS, 

New' Delhi for not only providing funds for the programme but also deputing 

Mr. Palaniappan, Principal, Nl S, Mandya as a liaison officer  from NVS.

I am indeed thankful to Prof. G. Ravindra. Principal, RIE, Mysore, for giving 

full cooperation and guidance to conduct the programme. / also w ish to thank all the 

resource persons and guest lecturers w ho have greatly contributed and shared their 

valuable experiences with the participants.



My thanks are also to my colleagues in Mathematics Department for their 

support, guidance and participation, both during planning and conduct of the 

programme. / wish to thank my colleagues in other sections and departments for their

cooperation.

Lastly, 1 express my thanks to the administrative and accounts staff for their

help in making the programme a grand success.

B.C. BASTI 
Academic ('oordinator



ABOUT THE TRAINING PROGRAMME

Need to upgrade periodically ihe professional competence of teachers at all

levels in general and senior secondary' teachers in particular cannot be

overemphasised. In order to improve the capabilities of the teachers in content and

pedagogy!, the NVS arranges inservice training of teachers at various levels in the

form of orientation and refresher courses. In recent times, introduction of career

advancement schemes have made it obligatory' for the plus two level teachers to 

undergo refreshers courses of three weeks duration. Hence there is a felt need for a 

training or enrichment package designed to cater to the special needs of plus two level 

teachers. The present programme was held at RIE, Mysore from 2nd to 22nd June 2003 

for PGTs in Mathematics of NVS. The programme was planned and implemented by 

the Mathematics section of DESM of RIE. In addition to the Mathematics faculty, 

faculty members from the Department of Education also worked as resource persons. 

Guest lectures and popular talks were arranged using the expertise of external 

resource persons of eminence.

The main objectives of the training programme was to

(i) enrich the content competency of teachers so that they can execute the revised

curriculum with greater confidence.

(ii) make the teachers aware of recent thrust areas in the field of education so as to

improve their professional competence and



(iii) make them familiar with certain skills and strategies required for effective 

teaching in the present day classrooms.

The programme consisted of four lecture sessions per day and compulsory 

reference work in the library at the end of each day. The topics for the lecture sessions 

were included after identification of difficult areas, identified in a special session on 

the very first day. The topics covered were as mentioned below:

(i) C alculus (Differential and Integral)

(ii) Differential Equations

(iii) Statics and Dynamics

(iv) 3D Geometry

(\T) Probability and Statistics

(vi) (Computers (with hands on experience)

(vii) Mathematical Logic

(viii) Boolean Algebra

(ix) Teaching of Concepts in Mathematics

(x) Evaluation in Mathematics

(xi) ( 'onic Sections and Advanced Level Problem Solving

(xii) Value Education

(xiii) Action Research

(xiv) Creativity in Teaching and Learning

(xv) ( ommeraal Mathematics



(xvi) Linear Programming

(xvii) Mathematical Modelling

(xviii) Mathematics Laboratory

Pre-test and Post-test were conducted for the teachers to study the impact of 

the training programme.

To sumup varieties of experiences were provided to the participants in order to 

enhance content enrichment and professional competence. It is hoped that the 

programme has sufficiently motivated the teachers which is also revealed by the 

Pre-test and Post-test conducted during the programme.

B.C. BAST/ 
Academic Coordinator



LIST OF RESOURCE PERSONS

I. RIE Faculty

Prof. G. Ravindra

Prof. K. Dorasami

Prof. N.M. Rao

Prof. D. Basavayya

Dr. B.S.P. Raju

Dr. B.S. Upadhyaya

Mr. B.C. Basti

Dr. N.N. Prahallada

Dr. C.G.V. Murthy

Dr. A.S.N. Rao Sindhe

Dr. (Mrs) Kalpana Venugopal

II. External Resource Persons

Dr. N.B. Badarinarayana

Mr. M.V. Gopalakrishna

Dr. G.T. Narayana Rao
-► (Popular Talks)

Dr. Shamanna



TABLE OF CONTENTS

Sets, Relations and Functions
Mr. B.C. Basti

Mathematical Induction
Mr. B.C. Basti

Limits, Continuity and Differentiation
Mr. B.C. Basti

Differential Equations
Dr. N.B. Badrinarayan

Linear Programming
Dr. G. Ravindra

Probability
Dr. D. Basavayya

Problems in Probability
Dr. D. Basavayya

Probability (Objective Type Questions)
Mr. B.C. Basti

Vectors
Dr. N.M. Rao

Mathematical Modelling
Dr. G. Ravindra



Teaching Mathematical Concepts
Prof. K. Dorasami

Action Research: A Conceptual Analysis
Dr. C.G.V. Murthy

Significance of Value Education
Dr. N.N. Prahallada

Three Dimensional Geometry
Dr. N.M. Rao

Projects in Mathematics
Dr. N.M. Rao

Business Mathematics
Dr. B.S.P. Raju

Use of Venn Diagrams in Teaching-Learning of Mathematics
Dr. G. Ravindra

Appendices

1. Session on Managerial Skills for Teachers
Prof. Shamanna

2. A Model Lesson Plan
Prof. K. Dorasami

3. Mathematics for Aesthetic Reasons
Compiled by Prof. G. Ravindra

4. Questionnaire to Test Creativity in Teaching and Learning
Dr. (Mrs.) Kalpana Venugopal

Pre-test and Post-test

Time Table

List of Participants



SETS, RELATIONS AfC FUNCTIONS 

BY
B.C. BASTX

Introduction : an overview.

In this write up (Instructional material) an 
attempt has been made to discuss the important con­
cepts of ‘sets relations and functions. Although these 
concepts are as old as man's history of civilization, 
formal introduction of these concepts into mathe­
matics has been very recent. Through the use of 
these concepts one gains an understanding of the 
structures and patterns that occur in Mathematics. 
Pedagogically it has been widely accepted that the 
concept of sets greatly helps unification of several 
branches of Mathematics at the school level.

Ihe topic of‘sets’ invariably finds a place in the 
school curriculum all over the world, As an introdu­
ction to modern or the so called new Mathematics 
and a» a “language”, its importance is accepted.

Sets —Preliminaries

The words, class ‘collection’ ‘assemblage’ 
are synoneraous because they convey the idea of a 
‘set'. Intuitively a set is a ‘collection’ of objects. 
The objects may be physical objects, numbers, any 
kind of symbols or even ideas.

In Mathematics, the term ‘set’ is used to mean a 
‘well-defined’ collection of objects. Why do we 
insert the adjective ‘well defined’ in the description of 
the term ‘set’ ? Let us study a few examples of 
‘collections’ of objects-



Ex- 1. All states in the Indian Union
Ex. 2- All rivers of Karnataka
Ex- 3- All multiples of the nnmber 7
Ft. 4, Some interesting books

Ex, 5. The, students of that class

Ex, 6. The collection of all circles having a given 
point as their centre

Ex.'7. The good films produced in Bombay in the 
year 1981

A scrutiny of the ‘collections’ given in the above 
list reveals that in the case of examples 1, 2, 3, 6, 
there is no difficulty in identifying the objects present 
in each collection. Whether an object is in the given 
set or not can be clearly.judged in these cases. But 
the collections in examples 4, 5 and 7 have been des­
cribed by the words like ‘interesting’ ‘that class’ and 
‘good films’. These descriptions render the sets 
‘ambiguous’. We are unable to identify clearly the 
objects of these collections.

Hence the collections in examples 1, 2, 3, 6 are 
‘well defined' /. they are examples of sets. Where as 
those in examples 4, 5, 7 are Not well defined collec­
tions.

A set is therefore a well defined collection. The 
following collections are well defined.

1. The set of all lines passing through a given 
point.

2. The set of all two legged animals.

3. The set of nil primes less than 14-
4 The set or’ «*. -c-f sii' W’r

2.



Each of the above is an example of a well defined 
collection because in these cases the basic require­
ment that “given any object what so ever and a set, it 
must be possible to determine whether or not the 
object is in the set in question"’ is satisfied.

Exercise :

which of the following collections are sets ?

a) Rational numbers.
b) The students studying this book.
c) The paintings in Salarjung Museum
d) The contents of little boys' pockets
e) The ripe oranges

Notation and representation of sets

It is customary to denote sets by capital letters, 
A, B, C etc. The objects in a set are called ‘members 
of the set’ or ‘elements of the set’, The ‘elements' of 
any set are usually denoted by small letters a, b, c etc.

If ‘a’ is an elemant of A then we write as A read 
as (a belongs to A). Tne notation a&A indicates 
that ‘a’ does not belong to A.

There are two ways of representing a set.

I. In the first method we make a list of all the 
members of the set, separating them by commas, and 
wc enclose them within ‘braces’ or flower brackets. 
This method is called roster method or tabular form.

3



Ex. 1. The set A of all numerals on the dial of a 
clock can be represented by roster method 
as .

J = (l ,2, 3, 4, 5, 6, 7, 8, 9, 10, II, 12)
Ex. 2. 'The solutions of the equation x?—5x-H4't=0 

nrc listed as the set ! tl, 4) using roster 
method-

Ex. 3. The set of all days of the week' by roster 
method of representation becomes

(Sunday, Monday. Tuesday, Wednesday, Thursday,
Friday, Saturday).11

II. Ihe second method of designating a'set is 
called ‘rule method’ or ‘set builder form'. In this 
method,1 a rule or . a common property of all the 
elements is stated.

For example, to represent a set B of a/Z even, 
numbers, we use the letter x (usually) to represent an 
arbitrary element and write

B = (x/x is even).
Which reads •

'B is a set of all x such that x is even’’.
If 5 is.the set of all elements x with the properly p 
by set builder method we write.

5= (x/x has the property p\
Here the property p is called the defining properly.
Ex. 1. 7V=(1, 2, 3, 4, 5...... )

in the set builder from N = (v/x is a natural 
number).



Ex? 2. C=set of' all' capital cities in Europe in the 
set builder form

C=[x/x is a capital city in Europe]

Exercise : Express the following sets in (1) roster 
form (2) set builder form.

a) All integers between—5 and +5
b) Solution of x1—3.x+2=0.
c) All equilateral triangles in a plane.
d) All plays written by Shakespeare.
e) All noble laureates from India.
At this stage we mention two important rules in 

the representation of sets.

1) ' The order iu which the elements are listed in 
a set is immaterial, since we are interested in the set 
as a whole.

for ex : A= [ 2, 5, 3, 6, 4 ] 
this set can as well be written as

A= [2, 3, 4, 5,6].
Similarly the set [ 2, 0, 1 ] is the same as the set 
[•, 1,2].

2) 1 Each element of a set is listed once only.
Example 1. Let the scores of five students in an 

examination be given by
57, 81, 81, 75, 44.

The set representing these scores is 
[57, 81, 75, 44]

S'



Note that in S the score 81 is , listed once only, 
even though if appears twice in the original list.

Ex. 2: [1, 1, 2-2, 5, 7] is the same set as
[1, 2, 5, 7].’ <

Q: Why should duplication or reptition be 
avoided while listing the elemenis in a set ? 
give reason.

finite sets, infinite set, Empty set.
Consider (1)

(2)
(3)
(4)

the set [5]—A
B = [a, e, i, o, «]
C= [%/x is an integer]
D= The set of all stars of first

magnitude

Let us examine each of these sets as to Vne number 
of elements it has.

The set A has a single clement in it. We call this 
set a ‘singleton’. This set has the least number of 
elements.

The set b has five elements in it. It’s elemets can 
be counted as 5.

The set though has a large number of dementi 
has only a finite number of elements.

The set C has infinitely many elements in ti]
meaning that, the process of listing its elements wil
never end. Another example of a set with infinitely 
many elements Is the ‘-e’ r»f a'l r>nt«fr <- - '»■>



It is clear that sets may be of any size in so far as 
the number of elements are concerned.

In the above examples, A, B, and D are finite sets 
while C is an infinite set.

Frequently we even find it convenient to consider 
a set containing no elements, such as, the set of all 
points at which two parallel lines intersect-

Ex. 2 The set of all common factors of 3 and 7,
Ex. 3. The set of even primes greater than 5 and less

than 20-

These set are all sets with no elements, in them. 
Such a set is referred to as empty or null- set. Null set 
is denoted by the symbol </> or { }.

Subsets and Equal sets ; Equivalent sets :

If every element of set A is also an element of 
the set B then /( is called the subset of B- A is a subset 
of B if and only if.

For all x, xe/lnxe //• We denote this 
relationship by A<z.B. We write ‘A is contained in B 
or BzjA (B contains A).

.'. A C-B —► for all x xe A<—B

Ex.l. T = [x/x is to Counting number] 
ie /t = {l, 2, 3,4.... 5....}

5-13,5,7 C’-=[5, 10. 15. 20......  1
D -T2. 4. 6, 8........ 1

7



Observe lhal B, C & D aie subsets of A. The sets 
B, C, D are constructed by selecting the elements from 
X.

For all x ie yx XiB-+xe ie BcA
yx xeCfi+xe A ie Cc/f. 
yx xeD-+xe A ie DcA

Ex. 2 : J = [l,2, 3, 10, 11]

B= [10, 111. Here BcA all the elements of
B are elements of A. But A has some elements that 
are not found in B

in this example B is called a proper subset of A.
Ex. 3. Let A — [5, 6, 7, 8, 10], fl = [5, 6, 7, 8] 

C=[7, 8, 9], Z) = [5], £=[1OJ.

Here B, C, D, E are all proper subsets of A 
Not all elements of A are in B or C or D or E. It

is important to note that

1) Every set is a subse't of itself
2) Null set is a subset of every set

Though these statements surprise us, they are 
the direct consequences of the definition of a subset 
for,

1) AcA -+for all x xeA-*xeA which is alwaj's 
true. Hence A cA, A is an Uniproper subset of A.

2) </>cA Every element of is also an ele­
ment of A- Trouble would arise if there is some 
element in <j> which fails to be in A. Since </> has no

S



elements at all the requirement of a subset is trivially

that <f> and the given set itself are the two improper 
subsets of any given set >.

Ex. A= [0, 1, 2]. Let us list all its subsets.
[0] [I] [2] [0, 1] [0, 2] [l, 2 ] are the proper sub­

sets of A and
[0, 1, 2] and <f> are its improper subsets.

Equal sets: Two sets are said to-be equal if 
they have idenitcally same elements-

A=[ 1, 2, 4] and B=[l, 2, 2‘] are equal sets
A = B.

Ex.2, A = [1,2,2, 1J and B = [1, 2J are iden­
tical sets or epual sets, A = B.
n ' ■ ■

Ex. 3. Let [I, 5, 6]= A - 

[6, 1, 5] = B
Here A = B

These are equal sets. Here every element of A 
is an element ofB. ie. AcB
and' every element of B is also an element of A 
ie. BcA.

From this example we note that,A = B if 
AcB^and B cA

A = B if AcB and BcA

7



A : I 2
t t
b I

B : j 6 1 2 •••• • • • • • 3 Z2 • • • • <•<•••••

3
t
I
9

Here. A and B are equivalent, because their ele­
ments can be matched or a one-one correspondence 
is possible between their elements,

Ex. 4: [P 2J 3’ 42.........]^A
1 I t •

[1\ 1\ 1\ P,.........]=B/ I
As in ex. 3 here also, A and B are eqivalent- In 

Ex. 3 & 4, A and B being infinite sets, we donot ask 
“Do they have same number of elements ? instead 
we set up a one-one Correspondence for the elements 
of A and B and decide that these sets are equivalent. 
Are all equal sets equivalent ? the answer is obviously 
‘Yes’. '

Cardinal numbers and Infinite sets :
The concept of‘counting numbers' or ‘natural 

numbers’ as a set, was developed because of man's 
desire to compare sets of various objects. Consider a 
set of ten books, a basket of ten apples, a pack of ten 
wolves-all these sets have 10 objects in them. This 
fact as we know, is arrived at, by the counting 
process.

9,J What is the principle underlying the process of 
counting ? Recall, that counting involves a ‘matching 
process’ or setting up a ‘one-to-one correspondence’



Equivalent sets :

Fig. 1

Ex. 1. A=[ Rama. Krishna, Christ ]
B = [ Seetha, Radha. Meera ]

Here, A and B are not equal sets but,
A and B have both three elements in them. We say
A and B are equivalent sets.
ie- the elements of these sets can be matched.

Ex. 2. A = The cricket team from England 
B=The Cricket team from India.

. Note that the players are different in each team 
but A and B have same number of players

A and B are equivalent sets.
Ex. 3. A=[l, 2, 3, 4...... ]

B = [3, 6, 9, 12...... ]
A and B are infiinte sets.

We can match the elements of A and B or set up 
a one-one Correspondence between the elements of 
and A B as shown here.

|o



between elements of the given set and the elements oi 
some standard counting set. The set of natural num­
bers *N’ is the standard counting set.

The set A= [n, Zz, c, d, e], has 5 elements in It 
because A is equivalent to the set.

7V5 = [ 1, 2, 3, 4, 5] which is.the subset of N- We 
say 5 is the cardinal number of this finite set A. Note 
that A is equivalent to Ah.

If A= [3,3’,3’..........3".]

We know that here A is equivalent to the finite
subset N„= [1,2,3...... zz] of N. So the cardial num'
ber of this finite set A is 'zz'. A is equivalent to zz„. 
If two finite sets are equivalent they have the same 
cordinal number.

It is now clear that the cardinal Number of any 
finite set is a specific natural number.

Infinite sets have a special property which makes 
them interesting to study.

We have seen that two finite sets are equivalent 
iff they contain same number of elements.

Ex. 1: Now let N=[ 1, 2, 3......... ] = [x/.veArJ
E= [2, 4, 6.......... ] = [x!x=2n, i

ne/V,
sets

N and E are equivalent sets- Note that E, hereI I
is a proper subset of N. ie. not all elements of N are



elements of E. We can still, set up a one- One 
correspondance between N & E

N :

E :

1, 2,
t- t 
4 I 
2 4

3 .......... n..........
4 t
4 4
6..........2n.........

/. N is equivalent to E

Clearly, the infinite set N is- equivalent to its 
proper subset E of even numbers.

Ex. 2-. .1 —[0, i 1, +2, i3.......... ]
P=[-l,-2, -3.......... ]
Q=[0. 1, 3, 5, 7.......... ]

Note that I is an infinite set and
Pc I P is a proper subset of I 
Qcl Q ' „ I
:. I is equivalent to P (its proper subset)

I is equivalent to Q (its proper subset)

This property of “a set being equivalent to a pro­
per subset of itself” is characteristic of 'Infinite sets'1. 
So we state.

<^A set is infinite, if it is equivalent to a proper 
subset of itself, otherwise it is finite^ ■i ■

The cardinal ftumber of the standard counting 
set N does not correspond to any finite natural 
number, as N is an infinite set. The cardinal number

(3



ofNis sometimes denoted by a (alpha null). All 
infinite sets which are equivalent to the set N have 
th«-same cardinal number a (alpha null).

The idea of cardial numbers was first developed 
by Georg Cantor in a remarkable series of articles 
published in 1S72. Prior to Cantor's study of in­
finite Msets, athematicians .used the symbol co indis­
criminately to indicate the ‘number’ of elements in all 
kinds of infinite sets. Cantor's work revolutionised 
the concept of ‘infinity’ in mathematics.

Exercise :

(1) How many elements are in [o, a, a, a, <7]
(2) Can there be unequal empty sets7 Explain-
(3) Extend the definitions of union and inter- 

setioh to-;) sets. «—finite+ve'integer).
(4) Find all subsets of [0, 1,2]. '

State whether each statement is correct ?
(a) [1,4, 3] = [4, 3, !]■
(b) [4]e [(4)]
(c) [4] c [f4)]
(d) [<f>] a subset of every set
(e) [1,2,3', 1,3, 2] c[l,2, 3],

(5) State'whether following sets are finite or 
infinite
(a) Set all lines parallel to X-ax is

(b) Set of all circles through the origin (.00)
(c) The set of all animals living on Earth



Venn diagrams and Universal set.

To understand the relationships among sets, 
as also properties of sets, we often use simple dia­
grams called Venn diagrams. .These are strictly 
schematic representations. Although they cannot 
be used to prove statements, they are excellent visual

diagrams sets are represented by circular areas-

Ex : The concept of AcB A£ B is shown in the 
venu diagram as

Fig 2
Ex. 2 :

Fig 3
This diagram illustrate the 1 — I correspondence 

between the sets
A = [I, 2, 3] and B = [a, b, c]

A is equivalent to B.

I?



Universal set : In any discussion on sets, all 
sets under investigation will very likely be subsets of 
a fixed set. We call this set ‘Universal set’ or 'Uni­
verse of discourse!; V/e denote this by set U.

ex : 1 Any study about population of human 
beings, will have the set of all human beings in this 
world.as the Universal set.

Ex : 2 : If A= the set of rectangles.
B= the set of all circles 
C= The set of all triangles

the Universal set for these sets is the set of all plane 
figures.

In a Venn diagram, Universal set U is usualy 
represented by a rectangle. All the subsets of the 
Universal set are shown as circles in this rectangle.
For Ex. 3 the venn diagram is shown heie.

Fig 4.

IZ



Exercise : Let Q= Lx/x is a quadrilateral]
H= [x/x is a rhombus]
R=[x/x is a rectangle]
S = [x/x is a square]

Decide which sets are the proper subsets of 
others. Draw Venn diagrams to illustrate their re­
lationships-

Exercise 2 : Draw Venu diagram to illustrate the 
sets,

A = The set of all boys in your state
B = Set of all boys in your school
C=The sot of all boys in your mathematics class

OPERATIONS ON SETS
In arithmetic we are taught how to add, sub­

tract and multiply numbers. What exactly in done in 
each of these processes '■ Recall that for each pair of 
numbers x and- y, We assign. aznumber x,+ y called 
the sum of x and y, a number x—y .called the 
difference of.x and y--and a number yy ^called the 
product of x and yy this process oLassignir^g (associ­
ating) a nunqber with a pain of numbers is nothing but 
‘binary operation' on numbers. In fact tlje funda­
mental operations on numbers are all 'binary oper­
ations’.

Let us extend the idea of ‘operation to sets. We 
wish to construct new sets from the given sets, while

17



(here are various ways of assigning a 'new set’ to a 
given pair of sets, we in this section, discuss three 
important ways of constructing new sets by devising 
binary operations called

1) Union 2) Intersection 3) difference of 
sets. We later see that these operations have certain 
properties similar to the usual operations of arith­
metic.

Union of sets

A

Fig 5.

Consider A— [1, 2, 5 ]
B = [ a, n, m, o J

Let us form the set C= [ 1, 2, 5, a, n, in, o ] 
Note that C is the set of all those elements 
which -are either in A or B or both, In other

words-

C= [x/xe A or x$ B ]
Note that we have used ‘or’ in the inclusive sense.



We refer to C as the ‘Union’ of A and B, and we 
write

C=A U B (A union B)

Refer to the Venn diagram Fig 6 
Shaded portion represents AUB

Ex. 2 : Let A= [ 1, 2, 3, 4, 5 ]
B= [ 1, 2, 3, 8, 6 ]

easily, C= JU5=[ 1, 2, 3, 4, 5,. 8, 6 ]
A U B = C satisfies the property

C—[ x/xe/1 or xeB ]

A B

Shaded portion in fig 6 
represents JU/?.
Ex. 3 : Let /! = [«, b, c ]

£=[*]
Here. zlU/t= [ a, b, c ] = A itsell

H



The shaded postion in 4U2? is fie 2.1 (c)

We now define /1U/7 the union of any sets A and B

AUB — {x/xe/1 or xzB }

If A = N (set of nat. numbers), B={ x/x = x2, xeN\ 
then AUB=A-

Union of sets as a binary operation on sets. To 
each pair of sets A and /?, a set called AUB is assign­
ed such that

/tUZ? =[ x/xe.4 or xeB]

Remarks: By the definition of‘union’ the following 
properties directly follow.

1) The set A I) B is identical with the set 7JUT
2) The set AUB contains lhc set A as well as B

ie. A c ?/U7?
B c A U ii



3) If A c D as we have already seen A[AB = B
itself

4) The union of any set with itsel is the given 
set itself ie. TUJ = /1

Exercise
1) What is A\1B if either A or B is an empty

set ?
2) Tor what choice of sets do we get AUB = </> ?
3) Give an example of a set A U B such that 

A T 8 is equivalent to A or B
4) Write the venn diagram to represent the set 

A U 8 U C for sets A, B, C

Intersection of sets.

Intersection of the sets is another binary opera­
tion on sets. To each pair of sets A and B, we 
assign a set called 'Intersection of the sets A and B, 
(denoted by A A B), according to the requirement 
that'

A n B={ x/x<rA and xeB}
je A n B Consists of all the elements that are of com­
mon to the sets A and B. The shaded portion in the 
following Venn diagram represents A A B in each 
case.

Z-l
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Fig 8.

seCc)

In fiig 2.2 (a) absence of common elemenls in 
A and B explains why there is no shaded portion to 
represent A n B. The sets A and B in this case do
not interscet.......A n B is a null set. We call such
sets A and B as disjoint sets. Note that the sets 
in 2. 2 (b) and 2.2 (c) are not disjoint sets.

Ex. 1 : Let A=[ 1, 2, 3, 4...... ]
B = [0, \

these are both infinite sets. They have no common 
elements between them.
Obviously A nB={x/xeA and xeB} =</>(empty set)

.-. A and B are disjoint sets.
Ex. 2, A = { x/x is a perfect square } 

B={ x/x is an even number }
A D B=[ x/x is a perfect square and x is an even

number ] Observe that A n B is not empty 
lome perpect squares like 4. 16 etc. eA U B

Note the following consequences of the defini­
tion of the set A A B

1) The set A n B is equal to the set B n A
2) A tl A isalways = A itself

ZJ-



3) A n B is a subset of A, ie A Q B C A 
A f) B is a subset of B, ie A D B C B

4) If A. C B then A n B = A it self
5) If A and B are disjoint,,, A FI B=</>,<£ is a

subset of every set and of A and B-'* ’ '
Exercise': ' 1) For any sets A, B and C Fiud using 
Venn diagrams the set (A f) B) q C and- the set 
A n (B U C)

2) Let A= [1, 2, 3, 4 ]
B = [2, 4,6,8]
C= [ 3, 4, 5, 6 ]

Find (a) A D B, (b) A nC (c) B D C 
/d} B f] B.

The difference of sets A and B :
The difference A —B of the set A and B is a set 

such that
7? = A—B = [ x/xc A but xeB] we could 

also sav
(read A minus B) A—B = [xeA andxeB]

In the Venn diagrams that follow A—B is given
by the shaded are. a

eo U

£-3 C<9 2. - 3 ( b) 2.3(C)

Ex. 1.

Fig 9.
A = [ 5, 6, 9, 16 ], B = [5,6]
A-B=[ 9. 16 ]



Ex. 2 ■ A = {x/x=2x, n<= N} = { 2, 4, 6, 8...... }
B=(x/x=3n ne=N } = { 3, 6. 9, 12,.......}
A—B = [ 2, 4, 8, 10, 14.......] = [ x/x = 2/i but

Xt^3//, ii f\ J
For any set A the difference set U—A is the 
difference1 of the universal set and A is called the 
complement of the set A in U ie complement of 
A=U-A.

We write A' = U—A

The shaded postion of the diagram (Fig. 11) re­
presents A1 the complement of A

Al+[x/xeU and xe A ]

Example : Let U = [ 1, 2, 3, 4... ...... ]
A = [ 2, 4, 6, 8........... ]

then A‘ = [ 1, 3, 5, 7....... ] = 11—A
Remark: 1) For any set A

A U A’ = U the universal set
2) LJ1 the complement of the universal set = </>
3) </d the complement of the empty set is the 

universal set U.



4) The set A and its complement A1 are always 
disjoint in A 0 A'=</>

We can use Venn diagrams to understand some 
simple relationships among the operations of union, 
intersection, difference of sets and complements.

1) ' A—B, A fl B and B—A are mutually dis­
joint.

the corresponding diagram are

from these diagrams we have
A—B, A n B and B—A are mutually disjoint

sets.

A-B (a) AflB* O) 

Fig 13.



I-. Shaded area in the diagram (ahis A—B Hon- 
zontaily shaded area in the diagram (b) is the set B • 
The double hatched (shaded) area in the figure (b) is 
the set A n B* Fiom fl-s and (b)’ We haVC

3) If A C B then B1 C A' 
horizontally shaded area in diagram (c) is the set B

>

Fig 15-



Yertically shaded postiou of flg (d) represents the 
the set A1.

From the two figures it is clear that Bl is contained 
in Alie the region of B1 is included in the region of A1
■Exercises : Verify by the drawing the Venn diagram* 
the following set theoretic relations.

1) (A n B) U (A—B)=A
2) (A-B) U B=A U B
3) (A—B) U B=<^
4) A—B-A—(A n B)

Use of Venn diagrams and knowledge of sets in 
solving some problems :

Venn diagrams illustrate the relationships that 
exist among given sets. Many verbal statements can 
be conveniently translated into statements about sets 
and represented in Venn diagrams.

Ex : This statement,

‘‘All men are intelligent” can be rewritten using 
language of sets as

■i ‘The set of all men is a subset of the set of all in tel li' 
gent beings’ we can now use Venn diagrams to re­
present this idea as in fig 2.4 (a)

‘2.7



All men

Intelligent beings

There are some problems which can be solved 
using the language of sets and Venn diagrams. In 
these problems, we restate the problem as a statement 
about sets, and study these sets using Venn diagrams. 

Example :

Problem: In a group of 40 students who drink 
tea or coffee or both, 26 drink tea of whom 16 drink 
tea but not coHee. How many drink coffee but not
tea ?

We recognize the different sets of students as
A= set of students who drink coffee
B= set of students who drink tea.

(B has ’6 elements).
then A U B the set of all student drink coffee or 
tea or both.

From the data A U B has 40 elements in it.
B—A is the set of students who drink tea but not 

• coffee.

It is given that B—A has 16 elements. xVe 'iave 
to find number of elements in A—B In fig (a) (AUB) 
is horizontally hatched area)



'(AUB)-B is the set of all those who are 
strictly coffee drinkers they are 40—26=14 in num­
ber. (A U B)—B is the double hatched area of fig (b^ 
The set (A U B)—B is the same as the set A—B ; the 
horizontally hatched area in fig c.

A—B. the set of all who drink coffee but 
not tea contains 14 elements.

From the diagrams (A U B)—B=A—B

Fig 16-

Tn the same problem if we want to find how 
many students drink both tea and coffee ie. we want 
the number of elements in the set A U B What is the 
answer ?

Exercises : Solve problems given in the exercise 3.4 
chapter 3, of the Text book of Maths. VI11 standard

xxx

Use of Venn diagrams & sets in testing the validity of 
arguments in Logic :

What is an argument ? An argument is an 
assertive statement- An argument, therefore, is true



or false but not both- Argument occurs in a reason­
ing process- Every argument contains two parts, First 
part is called premises. Permises is made up of a 
number of statements. Second part of argument is 
called conclusion. Conclusion is a single statement.

. An argument is of the form 

' *

Premises -

Conclusion .'. 5.

Which means that the statements Slt S....... S„ of
the premises lead to (he conclusion S. If the conclu­
sion 5 is arrived at logically from the ' premises, then 
the argument is said to be valid- If the conclusion 
does not logically follow from the premises, we say 
the argument is invalid.

. Consider the example of an argument :
Si : Some animals are clever 
S. : Man is an animal

S Man is clever

Here the statements S', and S2 are both true but 
the conclusion S’ does not logically follow from the
premises (5, and S'.). Therefore the argument is 
invalid.

Jo



Letus.use Venn diagrams to test this argument.
Let A : The set of all animals

B : The set of all clever animals we know 
that A and B are related by the statement of the 
argument.

By Si ,B is a proper subsect of A. By S, it is 
clear that the set of all men is a subset of the set of 
all animals. Refer to the diagram.

All animals

all clever 
animals Men

The conclusion of the argument is valid only 
when the “set of all men” iiueresects the “set of all 
clever animals.’’ But the diagram shows that the set 
of Men is disjoint with ‘‘the set of all clever animals" 

the argument is tested by Venn diagrams and it is
feund to be invalid.

Ex. 2 : Consider the argument

Premises
: No student 

'■ John is an artist
S3 Ail artists are lazy

Conclusion .’. John is not a student

When we display in a diagram the relationships



that occure among th; sits available in this argument 
we get the following Venn diagram.

lazy people Students
artist

From the diagram it is clear that ‘no artist is a 
student’. the conclusion of the argument is justi­
fied. Argument is valid

Exercises : Test the validity of the argument;

1. S, •' All lawyers are wealthy 
St : Poets are temperamental 

S3: Raghava is a lawyer.

S< : No temperamental person is wealthy

.-. Raghavan is not a poet.

2 Si : All students are lazy
St : No body who is wealthy is a student

.•. Lazy people are not wealthy.

3. Si : No college professor is wealthy 
S3 : Some poets are wealthy 

Some poets are colloge professors

2 2-



A comparison of set operations with number ope­
rations :

We recall the usefulness of Venn diagrams in 
visualising set relationships-

It will be instructive to verify the following pro­
perties of the binary operations ‘Union' and ‘Interse­
ction’ of sets by Venn diagrams. In the following, 
'addition' of numbers is compared with 'Union' of 
sets. 'Multiplication' and 'Intersection' are compared 
as operations.

Like number operations, ‘Union’ and ‘Intersec­
tion’ are both commutative and associative opera- 
vions, since

1. A n B = B U A 1. A n B = B n A

2. (A u B) u C=A u 2. A n B) n C=A n
(BUC) (BuC

For universal set U and the null set <f> we have.

1. A u = u a=A 3l UnA = AnU = A

Compare the roles of </> and U here with those of 
corresponding numbers O and 1. w.r.t. ‘addition’ and 
multiplication respectively. Recall;

a+oj=o+a=a\ numbers a, a x 1 = 1 Xc> R

4) AUA--A v -Sets A, 4l) AnA = A A sets A

Wc have no auologous property in number ope-

3 *



rations for, a-t-a=a need not be tureexcept when a=o 
a xa=a also is not generally true

This additional property in set operations is 
called ‘idempotence’.

5) <f> ft A = A Q for all sets

. This property of the set d> is comparable with 
that of the number O w.r.t. multiplication in our 
number-system.

axo —oxa for numbers a.
6) The operations of union and intersections 

distribute over each other, since

Ab(B ,qC) = (AUB) q (AqC) and (1)

a n (B n c) = (A n B) u (ApC) (2)

Whereas we have single distributive law for 
numbers. We know multiplication alone distributes 
over addition. The distributive law of number system 
compares with the distributive law (2) of sets ie.
I

a(b-\-c) = ab-\-ac y numbers a.b.c

,The reason for attempting to compare set opera­
tions with number operations is that all our new opera­
tions and new Mathematical systems find their inspira­
tion or motivation from the properties of number 
operations. Sets form a ‘mathematical system’ and 
hence we can study sets as a ‘Mathematical system 
in its own right-



Relations and Functions

Every one'is familiar with the idea of relations
jis aVorm of‘connection’ between two or more things- 
I# nop?j; 1/ •*> •’ .Relation is a concept which permeates everyday life - 
We commonly hear of such relations as 'the husband

is to the left of’, ‘is taller than’, ‘is the 
^a^p^^ue.as,’.‘is.f?etween’. .A quick scrutiny of ele- 
m^n^^yjVlathematics makes it evident to us that after 
all Mathematics is a study of a veriety of spatial and 
quantitative relationships. Elementary Geometry 
studies such relations as ‘is parallel to', ‘is collinear 
with’, is ‘congruent to’, ‘is similar to’. Where as 
'Arithmetic is dominated by the relations like ‘is equal 
to’ 'is a factor of’ ’is greater than’ ‘is a product of’.

.Mathematicians study the concept of ‘relation’ 
and'its properties in an abstract way.

In this section let us study ‘relation’ and the 
...qoiKept .: of ‘function’ . as Mathematical

concepts.

Ordered pairs, Product sets, Graphs.

In the study of.operations on sets, we were inte­
rested in construction of new sets and their proper­
ties. A more elaborate and useful way of construc­
ting a new set from a given pair of sets is by the 
‘ordered pairs’ of elements.

The concepts of ‘ordered pair’ and ‘ordered 
triple' are not new to us- Recall that points in a plane



are represented by ordered pairs of numbers- Th* 
ordered pair (5, 4) and the ordered pair (4, 5) repre­
sent two different points in the plane, idea, of 
‘ordered pairs’ is basic to Analytical Geometry* 
‘Ordered pairs' play vital role in the construction of 
Mathematical systems.

Intuitively, an orderdpair consists of two element! 
a and b where a is called first component and b is 
called the second component. We denote this ordered 
pair as (a, b).

Orderd pairs (a, b) and (b, a) are different.
2Example : The rational number y is represented by 

the ordered pair (2, 3).
3

(3, 2) represents the rational number —.

The ordered pairs (a, b)=<c, d) if 
a = c and b=d

We know* that ordered pairs can be plotted 
graphically.

) i



Ex. Sketch the graph of all ordered pairs 
(x, y) x, Z (Integers) & satisfying the property 
0 <x <5 and y < 4.

This graph shows all the orderd pairs (x, y) of
integers subject to the condition that 0<x<5 andy<4

The graph is made up of infinitely many discrete 
points.

' 7



Prouuci sets : (cartesian Krouuctsx

Ex : Let A = {1, 2, 3, 4,}
B={8, 6}.

The cartesian product AxB of these two sets 
is the set of ordered pairs
AxB= {(1,8), (2, 6), (3, 8), (3, 6), (1, 6), (2, 8), (4, 8) 

(4,6).}
We read A x B as ‘A cross B'

Ex. 2.' The product set AxB of the sets 
A = {i;.4j; ' B={3/t} is

Ax B--[(l, 3), (1, 2), (4, 3). (4,2)]
AxB is graphically shown as thes et of 4 (dots) discrete 
points.

LetU = [l,2, 3|
nniDraw the graph of UxU. UxU is a discrete 

set of’9 (dots)'points iu the carteisan plane.

2?



We define the cartesian product of. any two sets 
A and B :

A x B = [(a, b)/ae. A ahd btB],

In general AxB^BxBxA 
for -

B x A = {(i, a)/b e B and az A},

Every ordered pair of numbers (x- 7) belongs to 
thesetRxR, where R is the set of reals. To any 
ordered pair (x, y) of numbers, there corresponds 
a point in the cartesian plane. Therefore cartesian 
plane is nothing but the set-of all ordered pairs of 
RxR.

.Any set of ordered pairs of numbers or cartesian 
product of any two sets is always a subset of RxR. 

Exercise :

1. If A= [6, S], B= [5, 3] C= [3, 4],
Find (a) Ax(B|jC). (b) A x (B A C),

(c) (AxB) (J (AXC)
2. Graph S= [(x, }>)/2x—3j>=6]. xjeZ-
3. If the universal set

U= {(5,5), (4. 1), (1,2). (3, 3), (0,0)} 
Using U as given

a) Find [(x, j')/x>j]
b) Find [fx, v)/(x+jr) = 51



c) Find [(x, y)/x is even]
d) Find [(x, y)/x=4y]

Retatioa as a set ef Ordered Pairs :

Ex. 1 : Consider the sets of names of men and 
their respective native places.

A= [Rams, Rahim, Govinda, Srihari3 
B= [Mysore, Gulbarga, Hassan, Melkote ]

. A and B are connected by the relation ‘is a native 
of* this can be illustrated in a diagram.

Fig 22

We can express the relation between the elements 
of A and B as a set R of ordered pairs.

I

Ri“ (Rama, Mysore), (Rahim, Gulbarga)
(Govinda, Hassan), (Srihari, Melkote)

Jfhis set of ordered pairs R completely expresses 
the relation in question.

Et* 2: Consider .4= [1,2, 3]
B = [2, 4, 6]



Let the relation be ‘.‘is, the .double of’’. The ■ <’•: ' - r 7\i’f .7’] 'Mill « > .
related elements in these two sets1 are this relation 
1 & 2, 2 & 4, 3 & 6 is given* by •th1et'set of ’ordered 
pairs

R,= [(1,2), (2,4), (3, 6)1.

Ex. 3 : Write the set of all ordered, pairS/Of>r>ql9flieUlSl 
/1=[3,?U2,] ,
B=[4,'.1O, 2, 12]

Using the condition ‘is greater,than’. Ohyipu,s[y£
R3 = [ (3, 2), (9. 4), ( »,;2), (12, 4), 10),-(12,’ 2?}.' ‘

R the set of ottered pairs describes the /elation in 
each example given above. We ?. gengwrfia^
<a relation from a se,t A-to-a^set-fhis’a SeVo'Pimdered 
pairs >.

Refer to. the examples Jj.2, 3 in above. . .Relation
R from a set A to set B in each of tile, above examples 
consists of the ordered pairs of only related’” elements. 
In each case if we compute-A^x B then we realize that 
R has only some elements of A X B.

In Ex. 1 AxB has 16 elements in it.
R, =[ (R, M), (R. G), (Q„ H)„,(S., M)] is on ly «-. 
subsetie„ Rr C AxB ...

In Ex. 2 A x B= ( (1, 2), (I, 4), (I, 6) (2, 2) (2, 4)
I (2, 6)'(3, 1) (3; 4) (3,6)'

Where as
R2- [(1, 2), (2, 4),.(3,'6) ] 
X. R, C AXB



H ’w ol A jyi flurffti Ui/)eb°
In Ex^ 3 A xB consists of 12 ordered, uairs,
AXB-’P3^) (3, 10) (3, 2) (3, 12)-,^,..^ (9, 10) 
* L(?, 2) (9, 12) (12, 4) (12,1.0) (12 2) 12, 12)J

R&boia nflieslifc) »rb to jasniia k zi noilrb.-. <*■ 
where as the relation R3=F O» 2) (9, 4) (9,»2) (12, 4) 
«l«t owl wolovni ii) •fn.'Kio. IIA i-t J

,* ^(Brmetab (8A#

Example : Graph the relation R=p(wR^/y]R(iy'R^»'’

nTJie ^Vertical-.line .consists:, of sail point whose-x 
coordinate=2 and j^Boorhinate varies Over the set R

This vertical line 4s Sh<£ gfaph of the relation 
R = t(».yta=2Jt58n

\® Notegthdt relationtR) isJ,h<BUbset,df'R xTT' ' 
we have the generalization.

sftip) jtAjty relatidii ihvdvles ‘two' sets, say A"and B. 
Ifcncft itfW $fljlpx3 binary fflkitionlhfr.-.



t) Relation is from set A to set B.
3) ■ Relation is a set of ordered pairs of rehte#

elements.
4) Relation is a subset of the Cartesian product 

AXB
5) All. binary relations (it involuea two seta 

A & B) determine subsets of RXR

Graphs of relations {

1) Let A=[ 2, 3,4 1 B=[ 3,4. 5. 6]
Sketch the graph of the relation from A to B given

by R=[ (x, y)/ x divides y ]
We knew R G AxB and R=[ (2, 4) (2, 6) (3, j)

(3, 6) (4. 4) }

The five (dots) points constitute the graph of 
&e relation R.

The set of all points indicated by tj0Q
*

tha constitute the points in the set A x R.
k. ' t* • 4 ' *



Let R be the relation in the set of real numbers de­
fined by v <x-|-l. Graph of the relation R gives 
the set of all points in the shaded areas.

The line Y = .vT 1 is shown by dotted line to show 
that it does not belong to the graph. The graph of 
the relation R. ie.

The shaded nrea consists of the point below the 
line Y=x+ 1
Domain Range and Inverse relation :

Let R be a relation from the set A to set B. R 
is a binary relation (Why ?. Recall that R is a set of 
ordered pairs and that Rc A x B.

The inverse relotion R~‘ is also a set of ordered
pairs. ..

R-1= )(Z?,a)/(fl,Z?)eR},
The inverse relation R_l Consists of those ordered 

pairs obtained by reversing the elements of (compo­
nents of) ordered pairs of R.



- >h<; Ex: ' If A=[l, 2, 3] B=[o, 6] 
aid:R = [(l. a) (2, b) (3, a)] is a relation from [ to J 
then R~‘ = [(«,I), (6,2). (a,3)] is the inverse relation 
of JR. ,
Exercise :

1. Write the cartesian '.product of [1,2, 3] and 
[3, 4, 5L Display it graphically. .

2. Let R = [x,y)/xe/?, yzR, x’+^2 = 16]. Sketch 
this relation in a Graph.

3- Let R be a relation in the set of N drfined by 
2x+4j/=)5. Describe this set in the set builder form- 
Find R~‘ sketch the relrtion graphically.

Let R be a relation from A to B. The domain of 
the relation R is defined as the set of all first elements 
(first components) of the ordered pairs that belong 
to-'R-:

We know that R < A x B 
D = Domain of R = (a/(o, 6)eRJ.

..(The range E of the relation R is the set of all 
second components (second elements) of the ordered 
pairs that belong to R.
Range R = E = [b/(a, b)&R],
Example: Let relation

R=[(3,l), (4,5,) (6,7,) (10,11,) (8 13)1
The domain D of R has all the first components 

of the ordered pairs in R
D=[ 3, 4, 6. 10. 8 ]

Range E = | 1, 5, 7, 11, 13 ]
The inverse relation R-1=[ (1, 3) (5, 4) <7, 6) (11, 10) 

(B, 8) ]



Assignment ■

Sketch the following product set in a diagram 
byshading the appropriate once.

1) [-3,3] x [-1,2]
2) [-3, 1] X [-2, 2]
3) [2. 3] X [—3, 4]

Suppose ABC have 3, 4 and 5 elements respectively, 
how many elements are there in

-1) AxBxC (ii) BxAxC (iii)BxCxA'?

4) Let A = B f] C which, if any of the; follow­
ing is ture ?

1) AxA=(BxB) f] (CxC)
2) AXA = (BxC) n (CxB)

5) Verify whether the relation
(SxW) (S x V) = S x (W f| V) holds by 

taking S=[n, Z>] W=[l,2, 3,4,5] V = [3, 5, 7, 9]
6) IfSl=[fx,yJ I xsK, yeR, y> — x+lj 
and S,=[(x,y,) 1 xe/?, ye R, r+y' 25|I

Graph the relations Si and S2 the set S, pi S,.
7) if the Universal set U = [l, 2,-3, 4,- 5] list the 

order pairs of the following relations in U x U.

R| = [ (% jJ/xxy is even ]
R2=I (x,k>/x—j=6 ]
R3 = l (*, y)^ > 2 and J’=3 ]



8) Find the domain, range and the inverse relat­
ion for Rj R2 R3 in problem7.

Functions :

The word function was first introduced by Des­
cartes in 1637. He used this word to mean the 
positive integral power x" of a variable x- Leibnitz 
associated this term with curves. Bernoulli (1667- 
174X) regarded a function as made up of a varible 
and constants. Euler (1707-1783) regarded a function 
as an equation involving variables and constants. The 
Eulerian concept of a function was used until Fourier 
studied this concept in connection with Trigonometric 
series.

Function concept is refined by the use of set 
theory. Function is a special kind of relation bet­
ween two sets of elements.

Consider the two sets 
Ex. 1 : A= U, 2, 3, 4, 5, 6 J

7



B=[ 2, 4, 6,1,10. 12, 1, 3, 5, 7, 9, 11)

Let us define a relation R for A to B the relation
R —I (1. 2) (I, 5) <2, 8) (4,1) (5, 10) (7, 9)}

See fig 25

In this set R The are two ordered pairs (l,2j 
and {1, 6) in which the first component is thes amt

El. 2 f Let R= ((1,3) (2,3) (3, t) (4,5) (5,6) 
(6. <))

In this relation R, . no first component of any 
ordered "pair repeats more than once,, eve nt he ugh 
there are three ordered pairs

(4,6), (5, 6) (64 6) with same second 
component 6 
Refer; to fig 16

2>0MA/Af ft A NG E

big 26.
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3rt: rCpn^iderrt>be!fpla^i^i
RM (1,1)* (2,3)/(2;3),*(4,3),'(4,9),'(5,7)

noiwlei *rit a o) A ml>1 uoiJsb: s ^fbb
In this example ofiiR'.) *8 .M (4 <• 'T ,n |- S

Domain of R=[l, 2, 4, 5]
-i' • • :

|tui r»i«q bRange obR=db,'i9, 3,.7JM]l
. 4,’Bf tGe^dm^Mfsteofri-'

ponent) is related to 3 and 9 ie. -we.-’have 1^4*5^(4.9)i 
in RsimUrly.^fayf :i „J : . .,3
f/d.ii -(2* 9). (2. 3) in R
* and (5, 7). (5. 4) in R.

5-,<w'.as? mi#t
iff R. This is clear by diagr^pp^g(27j.,

Ar.nott

g-GHMN- ~-r£nge

Among'llte'tjiree examples given nojv. E^. 
. 3 have'draered pairs whose first components£x

/

1 and
lyepeats
Where as in Ex» 2 no two order pairs have the same

- M ' I

number for their first component.



Observe that the sets R in each of these example, 
forms a relation- But not all these relations are quali­
fied to be called functions.

Definition : Function F is a set of ordered pairs. 
The set of all components of the ordered pairs 
forms the domain D of F. The set of all second 
compments is called the range E of F or every aEzD 
there exists bs E such that

(c, b)eF
Each element of D appears exactly once as tile 

first element in the ordered pairs of F. t his condition 
rewritten becomes;

if (a b'sEand if (a c)sF then b=*c.
Let us apply this definition to the examples given 

in the beginning of this section Ex. 1 and Ex. 3 fail 
to satisfy the condition of the above definition. Hence 
they are not functions. Ex. 2 satisfies all the condi­
tions of the definition this set represents a function. 
Exercise :

Which of the relations below are functions ? 
a. Ri = l (4,3). (4,15), (6.3). (8,9) )

R2 = [ (4,9), (6,11). (8,3) )
R3 = I (4-1), (4,2). (4,3) J,

b- Fiud those relations below wich are not functions

Fig. 28



Fig 29
Recall the difFereuce between a function and a 
relation.

If/?=[(%, y) e NxN; y=2x] 
is a relation- Is it a function ? Yes it is a function 
because no two ordered piirs in R have the rarae first 
component. Every ordered pair in R is of the type] 
(zj, 2/j) where n e N. If 7?=[(w, y) e NxN ■ x > y 
Is this relation a function ?

It cannot be because R has ordered pairs like 
(5, 1), (5, 2), (5, 3), (5, 4) in it. This cannot happen 
in a function-

Faaction as rule, Correspondence-Notations
The function of/given by

/={(x.y) e/VXY: y = x/5} can also be deno­
ted by

f : zV->/V defined by /(%) —x+5
If we just write f:x^x+5 we know how the 

function is delined but we donot know how the 
domain is chosen.

riX



Recall that the function /associates (assigns) with 
each element x of its domain exactly one element r of 
its range, f ■ x-^y or /: x-yf (x) tells us that/Con­
sists of all ordered pairs (x,/(x). ) f (x) is calied tlie 
image of x under /

Assignment ; 1) Given S = [3, 4, 5] T= [x, v, z]
a) Is A— (3, x), (4, j’) (5,x) a relation in

SxT
b) Is A a function from S to 7?

2) List the elements of the relation R which is 
the inverse relation of

A = t(0, —4), (1,4), (2,2), (3, 4), (4, 4)] 
a) Is J a function ? b) Is R a function ?

3) Graph the function f ■ x—+y defined by r = x2 
with its domain the set [ x : —2 x 2 .ye A]

4) Given that the domain of the function f de­
fined by f (x) = Vx the set of reals ; 0 e x 2, find

and graph it.



Mathematical Induction
By 3.C. Bafcti

---------------------------------------------------------------------- 1------U-----------------------------------------
t SYLLABUS : Introduction, Principle of Mathematical induction proving different ryupes of 
problems of equality, inequality and divisibility by the method of principle of mathematical 
induction.

POINTS TO

1. Introduction : The word ‘Induction’ means 
the method of inferring a general statement from the 
validity of particular cases. We must be cautious here 
that in mathematics this kind of inference is not allowed, 
even when a huge list of particular cases have been 
verified. Mathematical induction is a principle by 
which rine can conclude a statement for all positive 
integers, after providing certain related propositions.

Let us see an example to explain the need for our 
caution.

We know that the numbers 13, 23, 43, 53, 73 etc. 
are prime numbers. And the numbers 33, 63, 93 etc. 
are composite. From these particular cases we 
formulate a general statement. A number of the form 
10n + 3 is prime. If n is not divisible by 3. Is this a 
true statement ?

Even if there are hundreds of particular cases where 
this is known to be true, we can not conclude that this 
general statement is true. , ?.

If fact this statement is not true, in general when the 
number 143 is of the form lO/i + 3 with n = 14. but it 
is not a prime.

We say that 143 is a counter example to the 
statement.

Even when we do not have a counter example, we 
can not conclude that a general statement is true simply 
because it has been found to be true in all its particular 
cases that have been verified. We can at the best say 
that it is a reasonable conjecture. ,

2. Preparation for Induction : A notation : 
consider the statements of the form

(/) n is divisible by 3.
(ii) The number I On + 3 is prime.

(iii) 2" > n.

REMEMBER
i

All these are statements concerning the natural
numbers n = 1,2, 3....... We use the notations P(n) or
P,(n) or P2(n) etc. to denote such statements. When we 
give values for n = 1, 2, ... •. We obtain particular 
statements. If in the statement P(n), we substitute n = 3, 
the particular statement so obtained, is denoted by P(3).

3. Peano’s Axioms : Let N be the set of natural 
numbers. Then the properties satisfied by N, known as 
the Peano’s axioms are :

Axiom 1. 1 e N, i.e., 1 is a natural number.
Axiom 2. For each n e N ; there exists a unique

natural number n* e N called the successor of n. 
Axiom 3. 1 *n*. Vne N, i.e., 1 is not the successor

of any natural number.
Axiom 4. V zn. n e N, zn* = n =3 zn = zi, i.e., each 

natural number, if it is a successor, it is the successor 
of a unique natural number.

Axiom 5. Principle of finite induction (P.F.I.). If 
S cN be such that

(i) 1 6 S and
(ii) m e S =» m* e S, then S = N.
Note : Axiom 1 assures us that N is not a null set,

i.e., N * <t> Axiom S is commonly known as the 
induction axiom or principle of mathematical 
induction.

4. Mathematical Induction : This principle of 
mathematical induction.

The principle of mathematical induction states :
Let P(zi) be a statement involving the natural 

number n.
{a) If P( 1) is true and
(b) If P(k + 1) is true whenever P(£) is true.
Then, we conclude that P(n) is true for V n e N.



5. .Working Rule : In order to prove that a 
statement P(n) is true for all natural numbers, we should 
verify

Step 1. P(l) is true.
Step 2. Verify that P(k + 1) is true, whenever P(£) 

is true. '
The method of induction is a powerful tool for 

proving theorems in mathematics, first we prove the 
result for n = 1. After that assuming the result to be 
true for rt = K, we prove it to be true for r = K + 1.

It should be kept in mind that both parts are 
absolutely necessary for the proof.

DEFINITION AND IMPORTANT RESULT ON 
CHAPTER 2

1. Mathematical Induction. The principle of 
mathematical induction states:

Let P(n) be a statement involving the natural 
number n. '

(a) If P(l) is true and
(b) If P(k + 1) is true whenever P(k} is true, 
then, we conclude that P(n) is true for V n e N.

2. Working Rule. In order to prove that a 
statement P(n) is true for all natural numbers, we 
should verify

Step I. P(l) is true.

Step II. Verify that P(k + 1) is true, whenever 
P(k} is true.

The method of induction is a powerful tool for 
proving theorems in mathematics.

TEXT BOOK EXERCISE 2.1 
TATE—I

(SOLVED EXAMPLES}

Example 1. If P(n) is the statement 
. "rt(n + 1) (n + 2) is divisible by 12”

Prove that P(3) and P(4) are true but P(5) is not 
true. (T.B.Q. /]

Sol. P(n) is n(n + 1) (n + 2) is divisible by 12. 
P(3) is 3(3 + 1) (3 + 2) is divisible by 12.

i.e., 60 is divisible by 12
It is true.
P(4) is 4(4 + 1) (4 + 2) is divisible by 12 

i.e., 120 is divisible by 12
It is true.

P(5) is 5(4 + 1) (5 + 2) is divisible by 12
i.e., 210 is divisible by 12

It is not true.

PRACTICE EXERCISE 2.1 (/)

1. If P(n) is the statement
"n(n + 1) (n + 2) is a multiple of 6" is it true ?

(A.l.C.B.S.E. 1978 ; D.B. 1984}
2. If P(n) is the statement

"n(n + 1) (2/> + 1) is divisible by 6" is it true ?
(C.B.S.E. 1980}

3. If P(n) is the statement "n3 + 2 is a multiple of 5", 
then show that P( 1) is not true.

4. Prove that n(n + 1) (n + 5) is divisible by 6 for 
aline N.

5. If P(n) is the statement "n(n + 1) is even" then 
what is P(4) ?

TEXT BOOK EXERCISE 2.1 
TYPE—II

(SOLVED EXAMPLES}

Example 1. If P(n) Is the statement "n1 > 100". 
Prove that whenever P(r) Is true, P(r + 1) is also

true. [T.B.Q. 2}
Sol. P(n) : 

P(n) :
n2> 100 
rS 100

Now P(r+ 1) : (r+ 1)2> 100
Wc know- that

r> > 100 I Prom P(r)j
Adding both sides 2r + 1

r* + 2r+ 1 > 100 + 2r+ 1
(r+ I)2 > (100 +2r+ 1) ...(0

Also 100 + 2r+ 1 > 100 as 2r + 1 is positive ...(h)
(r+ I)2 > 100 [From (i) and (if)J 

Hence P(r + 1) is true.
Example 2. If P(n) Ls the statement ”2" £ 3n" 

and if P(r) is true, prove that P(r + 1) is true.
[T.R{2. 3)

Sol. P(n) ; 2” £ 3n
P(r) is true. [Given]

2' £ 3r
P(r+ I);2'*’ £ 3(r+ 1)

Since 2' £ 3r [From P(r)I
Multiplying both sides by 2, wc get

2'*’ £ 6 ...(/)
r > 1 

3r > 3
=3 (3r + 3r) > (3 + 3r)
=> 6r > (3r + 3)

6r > 3(r + 1) ...(H)



From (j) and (») 2' *1 > 3(r + 1)
Hence P(r + 1) is true.
Example 3. If P(n) is the statement "2> - 1 Is an 

integral multiple of 7”, prove that P( 1), P(2) and P(3) 
are true. [7'.£.(Z 4]

Sol. P(n) ; 23x - 1 is an integral multiple of 7.
P(l);23xl-1 = 7, is an integral multiple of 7.

[It is true]
P(2); 23x2 - 1 = 63, is an integral multiple of 7.

[It is truc|
P(3); 23x3 - 1 = 511, is an integral multiple of 7. 

, [It is true.]
i <•

PRACTICE EXERCISE 2.1 (ii)

1. Use the principle of mathematical induction to 
prove the following statements for all n 6 N.
(0 I2* - 1 is divisible by 8.

(ii) 102""1 + 1 is divisible by 11 for n e N.
(iii) 3" > 2", for all n e N
(iv) 2" > n.
(v) + (23" -3) 3"’1 is divisible by 25, n e N

2. Prove by method of induction the following 
statements for all n e N.
(i) For each natural number n. 6"*2 + 72"*1 is 

divisible by 43.
(ii) Prove that zf > 2n V n 2 3, by using the 

principle of mathematical induction.
(iii) Prove by method of induction that - 1 is 

divisible by 48, where n is a positive integer.
3. Use the principle of mathematical induction to 

prove each of the following statements :
(0 10" + 3.4" *2 + 5 divisible by 9.

(ii) 52/1 - I is divisible by 24 for every natural 
number n.

(iii) n* < 10", where n is positive integer.
4. Use the principle of mathematical induction to 

prove each of the following statements :
(i) 2" < 3". n 6 N.

(ii) (1 + x)" > I + nx for n 2 2 and x > -1.
(iii) Let P(n) be the statement "3" > n". Is P(l) 

true ? What is P(n + 1) ?

TEXT BOOK EXERCISE 2.1 
TYPE—III

(SOLVED EXAMTLES)

Example 1. If P(n) is the statement "21" - 1 is an 
integral multiple of 7", and if P(r) is true, prove that 
P(r+ 1) Is true. [T.B.Q. 5]

Sol. P(n) : 23’ - 1 is an integral multiple of 7

P(r) is true. [Given]
.-. "21r - 1 is an integral multiple of 7".

P(r + 1): 2V' *11 - 1 is an integral multiple of 7.

Consider 2V, + I)- I = 21r + 3- 1 
= 23r. 2’ - I 
= 8(2lr) - 1 
= 8(23r) - 8 + 7 
= 8(23'- 1) + 7.

2' - 1 is nn integral multiple of 7, so 8(2’"-1) 
is an integral multiple of 7. Also 7 is a multiple of 7. 
Since sum of the two number which arc integral 
multiple of 7 is also an integral multiple of 7.

So 2*'*"- 1 is an integral multiple of 7.
Hence P(r + 1) is true.
Example 2. If P(n) Ls the statement that sum of 

the first n natural numbers is divisible by (n + 1), 
prove that if P(n) is true, then P(r + 2) is true.

(T.B.Q. 6]
Sol. P(n) : 1 + 2 + 3 + 4 + ... + n is divisible by 

(n+l).

=> is divisible by (n + 1)

P(r) is true.
1 + 2 + 3 + ... + r is divisible by (r + 1) 
r(r + 1) t

i.e., —~— is divisible by (r+I).

Now P(r + 2): 1 + 2 + 3 + ... + (r + 2) is divisible 
by(r+ 3)

Consider I + 2 + 3 ... + r + (r + 1) + (r + 2)
= (1 + 2 + 3 + ... + r) + (2r + 3)

= + (2r + 3) [Using P(r)J

r' + r+ 4r+6 
2

_ (r +2)(r +3)
2

which is divisible by (r + 3)
Hcncc P(r + 2) is true.

PRACTICE EXERCISE 2.1 (ii)

1. Use the principle of mathematical induction to 
prove that the following statements for all n e N.

3



7 7 - , n(ii + I) (lit + 11(u) I2 4- 2* 4- 3i 4- ... 4- zi2 =----------- ------------ -

(iii) 1'4- 2' 4- 3'4- ... 4- zi1 =
Zl(ZI 4- I)

2. Show that if the statement
P(/i): 2 + 4 + 6 + ... + 2zi = zi(zi 4 1)4-2 

is true for n = K. then it is true for zi = K + I can 
we conclude that P(n) is true for every natural 
number zi ?

3. Use the principle of mathematical induction to 
prove that the following statements for all n g N. 
(i) Prove that : I2 + 32 + 52 + ... + (2n - I)2

zi(2zt - 1) (2zi + 1)
3

zi g N

(it) Prove that: 1 + 4 + 7 + ... + (3zi - 2)
z.(3z.-I)- 

=------ ;----- ./igN

(iii) 1 + 3 + 5 + ... + (2zi - 1) = zi* V zi g N 
4. Use the principle of mathematical induction to

prove that the following statements for all z, g N. 
(i) a + (zi + d) + (a 4 2d} + ... + a + (zi - I) <7

= - 12n + (zi - I) <-/]

fl(fl + |) (f| 4 2)
(ii) 1.2 4 2.3 + 3.4 4 ... n(n + I) = "

(iii) 2 + 22 4 2* 4 ... 4 2" = 2(2" - I)
(iv) 2 + 6 + 10 4 ... 4 (4zi - 2) = 2zr.

II.

TEXT BOOK EXERCISE 2.1 
TYPE—IV

(SOLVED EXAMPLES)

Example 1. Given nn example of a statement P(n)
such that it is true for all zi. 

Sol. Consider

P(zi) ; I + 2 + 3 4 ... + z, =

\T.P.Q. 7)

Zl(zi 4- I )

I .c. sum ol first zi natural number is• I

P( 1): L.H.S. = I

Z1(Z! + |)

R.H.S. =
3(3 + I,

= 6 => P(3) is true

R.H.S. =
1(1 + 1)

- I P( I) is true

P(4) : L.H.S. = I 4 2 4 3 44 = 10 
4(4+ I)

R.H.S. = —— = 10

Similarly for any vaiue of zi g N. P(zi) is true 

Example 2. Given nn example of a statement
P(n) such that P(3) is true, but P(4) is not true.

17 ’.n .c #1
Sol. Consider p(zi) : "3zi: 4- n is divisible by 3" 

P(3) : 3 x ?2 4- 3 = 3 x 9 4-3
= 27 + 3 = 3Ois divisible by 3

It is true.
Again P(4) : 3 x (4)2 4- 4 = 48 4- 4 = 52 is divisible 

by 3. It is not true.

PRACTICE EXERCISE 2.1 (iv)

1. Verify that if (2.1 4- 1) 4 (2.2 4- 1) + ... (2zi + 1)
= zi* 4- 2zi 4- 1 1. zi g N 

is true lor zi = m then it is also true for zi = zn + 1 
can wc conclude that it is true for every zi g N '!

2. Apply the principal of mathematical induction to
prove that for all zi g N

, 7 - ; zi(zi -+ 1) (2n - I)
r 4 2 4- 3 4 ... 4- zi =----------- -------------

o

3. II P(zi) is the statement "zi(zi 4 1) is even’ then 
what is P(7) ?

4. If P(n) is the statement ”z,’ 4 zi is divisible by 3"
(i) Is the statement P(5) is true ?
(ii) Is the statement P(6) is true ? (imp. |

5. If P(zz) is the statement that the sum of first n 
natural numbers is divisible by (zi 4- 1), prove that 
if P( z) is true, then P(r 4 2) is Iruc.

6- If P(zi) be the statement "C(zi, r) < zi, for all 
I $ r < zi" is P(3) is true.

TEXT BOOK EXERCISE 2.2 
TYPE—1

(SOLVED EXAMPLES)

Example 1. Prove that the following by the 
principle of induction : the sum of the first n natural

, . «(w + 1)number is ----------- (T.B.Q. /)

P(2) i L.H.S. - 14-2 = 3

R.H.S
2(2+1)

“ 7 = 3 => P(2) is true

P(3): L.H.S. = 1 + 2 + 3 = 6

Sol. Let the given statement is P(zi)

1(P(n): I 4 2 4- 3 + ... + n =- zz (zz 4- I)

when zi = 1. L.H.S. = 1

/,



p.H.S. -i(l + l) = ix2=l

L.H.S. = R.H.S. => P(l) is true. 
Now assume that P(O is true

k(k + 1)
P(Jk): 1+2 + 3 + .. ,+k =

1P(i + 1): l+2 + 3 + ...+i+(it+ l) = -(Jt+ l)(^+2)

We wish to prove P(k + 1) is true whenever P(k) is 
true. Let us examine its L.H.S.
L.H.S. =1+2 + 3 + . .. + k +(k + i)

k(k + 1)
+ (k + 1), since P(Jfc) is true

= (i + 1) fk + 1 (t + 1) (* + 2) = R.H.S.

Thus P(k + 1) is true whenever P(k) is true.
By the principle of mathematical induction, P(n) is

true for rt e N.
Example 2. Prove the following by the principle 

of mathematical induction
n(3n -1)

1 + 4 + 7 + ... + (3zi - 2) =

Sol. Let the given statement be P(n) 

Now P(n) • 1+4 + 7 + ...+ (3n -2) =

[T.B.Q. 7]

n(3n - 1)

whenzt = 1, L.H.S. = 1

R.H,S. =122^=lx|=, 
2 2

L.H.S. = R.H.S. => P(l)ishue. 
Now assume that P(Jfc) is true 

' P(t): 1+ 4 + 7 +... + (3* - 2) = *■ 3*2~ 1 * ...(i)

Now we shall show that P(k + 1) is true 
1 + 4 + 7 + ... + (3A: - 2) + [30 + l)-2]

=«+I)3*+3-'

1 + 4 + 7 + ... + (3*-2) + [3O + l)-2J 
. k(3k - 1)= —-■ 7 + [3(* + l)-2) (From(i)J

k(3k - 1) (3k + 1) 
2 + I

3P-O + 6A+2 3*2 + 5* +2 
2 " 2

_3k2 + 3k + 2k +2 3k (k + 1) + 2(A: + 1)
" 2 ~ 2

(3* +2) (k + 1)
2

(A: + 1) (3(A: + 1) - 1]
2

Clearly, P(k + 1) is true.
Hence P(n) is true for all positive integers. 
Example 3. Prove that the following by principle

of induction 4 + 8 + 12 + ... + 4zt = 2n(n + 1).
[T.B.Q. 5]

Sol. Let P(zt): 4 + 8 + 12 + ... + 4zi = 2n(rt + 1) 
Forzi = l L.H.S. = 4,

R.H.S. = 2xl(l + l) = 2x2 = 4 
L.H.S. = R.H.S. => PO) is true.

Let P(k) be true, then
P(O:4 + 8 + 12+ ... + 4* = 2*0 + 1)
Now P(k + 1): 4 + 8 + 12 + ... + 4k + 4(k + 1)

= 20+1)0 + 2)
L.H.S. of P(* + l) = 4 + 8+12 + ... +4* + 4(*+ 1) 

= 2k(k + l) + 4(* + 1)
[Using P(O1 

= 2(k + l)x 0 + 2) = R.H.S.
.'. P(k + 1) is true.
Hence by principle of mathematics inductiort P(zt) 

is true V n e N.

PRACTICE EXERCISE 2.2 (/)

1. Let P(zt) be the statement "zt2 + n is even".
Then (a) P(l) is the statement "2 is even". It is 
true.
(b) If P(r) is true for some r, then to prove that 
P(r + I) is true.

2. Using the principle of mathematical induction 
prove that each of the following statements for 
every natural number n.
(i) 1 + 3 + 5 + 7 + ...+ (2n - l) = n2

1
(ii) 1 + 2 + 3 + ... + n = ~ n(n + 1)

(iii) 2 + 2J + 2’ + ... + 2" = 2(2" - I)
(iv) 1.3 + 3.5 + 5.7 + ... + (2zt - 1) (2zt + 1)

zt (4zt2 + 6zt - 1) rr , 
=--------- 7--------- [Imp J

[N.M.O.C. 1993 (Set B]] [A.J.S.S.E. 1985]



(v) 3.6 + 6.9 + 9.12 + ... + 3n (3n + 3)
= 3n (n + 1) (n + 2)

(vi) x + Ax + lx + lx + ... + (3n - 2) x
= |n(3n-l)x

[A.I.S.S.E. 1980] ‘
(vii) (2.1 + 1) + (2.2 + 1) + (2.3 + 1)... + (2n + 1)

= (,' +1)’ - 1.
3. Using the principle of mathematical induction 

prove that for every natural number n 

2.3’ + 2’.33 + 2’.34 + 24.35 +... + 2". 3" * ’
18

= —(6"-l). [Imp.]

TEXT BOOK EXERCISE 2.2 
TYPE—II

(SOLVED EXAMPLES]

Example 1. Prove the following by the principle 
of Induction : n(n + 1) (n + 2) is divisible by 6, where 
n is a natural number. [T.B.Q. 2]

[D.S.S.E. 1984, 1980] [A.I.S.S.E. 1978]
Sol. Let the given statement be P(n)

P(n): n(n + 1) (2zj + 1) is divisible by 6
Step l. P(l): 1(1 + l)(2x 1 + 1)= 1 x2x3=6 

which is divisible by 6.
.•. P(l)istrue.
Step 2. Let P(k] be true.

P(fc): k(k + 1) (2k + 1) is divisible by 6
P(k+1]: (k + \](k + 1 + l)(2A: + 2 + 1) •

= (*+!)(* +2) (2* + I + 2)
= (*+1)(* + 2)(2A+1) + 2(A:+I)(* + 2)
= (k + i] (2k+']] k + 2 (k 4 1] (2k + 1)

+ (k + l)(* + 2)2 
= k(k + \](2k + 1) + 2 lOt + l)(2t+ 1)

+ (*+ l)(* + 2)]
= k(k + l](2k + I)+ 2 1(1+ 1)

(2Jk + I +t + 2)]
= k(k + I)(2* + 1) + 2l(Jt + 1) (3k + 3)]
= A.(A: + 1) (2A: + 1) + 6 (A: + 1) (A: + 1)
= k(k + 1)(2*+ 1) + 6(* + 1)’.

From (f), k(k + 1) (2k + 1) is divisible by 6 and 6{k 
+ 1)2 is divisible by 6 because 6 is one of its factor.

Hence P(n) is divisible by 6 forall natural number n. 
Example 2. Prove the following by the principle

of mathematical induction
If 31", where n is a natural number, is divided by

8, the remainder Is always 1. [T.B.Q. 4];
Using principle of mathematical induction prove

that 3^- 1 divisible by 8 for every natural number n.
[Annual Exam. 1994]

or

Sol. Let the given statement be P(n)
P(n): 31" = M(8) + 1 

P(n): 3^ - 1 = M(8)
Step 1. When n = 1. then

L.H.S. = 32xl- 1 =32- 1 
= 9-1 = 8 = M(8)

=> P(l)istrue.
Step 2. Let P(A) be true

P(*):3a- 1 = Multiple of 8 ...(f)
Now it is to be proved that P(k + 1) is true.

P(A:+ 1) 32(‘*,)- 1 = M(8)
L.H.S. = 3J(i + ,)- 1 

= 3U . 32 - I 
= (9) 3U - 1 
= 9(3*)- 9 + 8 
= 9(3W - 1)+ 8
= M(8) + 8 (Using (f)
= M(8) + M(8) = M(8) ...(if)

Hence, P(k + 1) is true.
Combining (f) and (if) by P.M.I. P(n) is true for every 

natural number n.
Prove the following by the principle of 

mathematical induction.
Example 3. The sum S„ = n5 + 3n2 + 5n + 3 is 

divisible by 3 for any positive integer n. [T.B.Q. 5]
Sol. Let the given statement be P(n)

P(n): S„ = m + 3n2 + 5n + 3 = M(3)
Step 1. When n = 1, then

n’ + 3n’+ 5n + 3 = (1)’ + 3(1 )2 + 5(1) + 3
= 12 = M(3)

P( 1) is true.
Step 2. Let P(fc) be true.

i.e.. P(k] : Ar3 + 3k2 + 5k + 3 = M(3) ...(f)
Now it is to be prove that P(A: + 1) is true.

P(A + 1) : (A + l)’ + 3(*+ l)2 + 5(*+ l) + 3
= (1 + 1)((A + l)J + 5J + 3[(* + 1)2 + 1] 
= (A: + 1) ((A? + 2A: + 1 + 5J

+ 3 (A? + 2k + 1 + 1)
= (A + l)(Ar2 + 2A + 6) + 3((A: + 1)2+ 1] 
= (Ar + 3A:2 + 8A: + 6) + 3 ((A + 1)2+ 1]

= (A? + 3A:2 + 5A: + 3) + (3A: + 3)
+ 3[(*+ 1)J+ 1]

= M(3) + 3(A+ l) + 3((* + 1)’+ 1]
(Using (f)

= M(3) + M(3) + M(3) = M(3)
P(A: + 1) is true. ...{ii]

Combining (f) and (ii] by principle of mathematical 
induction, wc get P(n) is true for all positive integers.



PRACTICE EXERCISE 2.2 fix)

Prove the following by principle of mathematical 
induction :

1. Prove that for n e N 1(T + 3.4" * 2 + 5 is 5 is 
divisible by 9.

2. Prove the following by principle of mathematical 
induction.
Prove that 32**1 - 8n - 9 is divisible by 64 for 
every nnturnl number n.

3. Use tlie principle of mathematical induction to 
prove that nfn + 1) (n + 2) is a multiple of 6 for 
all natural number n.

4. Use the principle of mathematical induction to 
prove that 3U + 1 is divisible by 8 for all n e N.

[N.M.O.C. 1994 {Set R)] (Zmp.J
5. Use principle of mathematical induction prove 

that 102'’'1 + 1 is divisible by 11 for all n e N.
6. Use principle of mathematical induction,

(i) Prove that 8" - 3" is divisible by 5 for all 
n € N.

(if) Prove that 4" - 3n - 1 is multiple of 9 for all 
n g N.

(iii) Prove that 9" - 8n - 1 is a multiple of 64 for 
all ne N.

(iv) Prove that n3 + (n + 1)3 + (n + 2)’ is divisible 
by 9 for every natural number.

(v) Prove that n(n + 1) (n + 5) is divisible by 6 
for all n e N.

TEXT-BOOK EXERCISE 2.2 
TYPE—III

(SOLVED EXAMPLES)

** Example 1. If x and y are any two distinct 
integers, thenx*-y' Ls an integral multiple of (x - y).

[T.B.Q. 6]
Sol. Let the given statement be Pfn) 

i.e.. P(n):x/’-/ = Mfx-y),x - y * 0
Step 1. When n - 1

jf - / = x - y = M(x - y)
=3 P( 1) is true.
Step 2. Assume (hat P(k) is true 

i.e.. Let . x*-y* = Mfx-y), x-y#0 ...fi) »
We shall show that Pf/: + 1) is true 

i.e., x‘*l-y1*1 = M(x - y)
Now x**1-x‘y+x‘y - y‘*'

= ?(x-y)+y (.?- y‘)
= Mfx - y) + yMfx - y)

(Using (i)l
= M(x - y)

=> Pf/: + 1) is true
By principle of mathematical induction.

P(n) is true for all n e N.

PRACTICE EXERCISE 2.2 (iii)

1. By the principle of mathematical induction prove 
(hat
a + (a + d) + (a + 2d) + ... + (a + (n - 1)

|2ri +('» “ I)</|

2. Using principle of mathematical induction prove 
(hat

3. Using principle of mathematical induction prove 
that x^ - cf is divisible by (x - a), V n 6 N.

[/mp.]
4. Prove by the principle of induction (hat x2* - yu 

is di visible by (x-y), where n is a positive integer.

TEXT-BOOK EXERCISE 2.2 
TYPE—IV

(SOLVED EXAMPLES)

Example 1. Prove the following by the principle 
of induction

l1 + 2J + 32 + ... + n2 = -n(n + 1) (2n + I)
6

for every positive integer n. [T.R.Q.

Sol. LctP(n): 1 2 + 22 + 32 + + n =
n(n + 1) (2n + I)

When n = I
L.H.S. = (1)2 = I

I
R.H.S. = “ I (I + 1) (2 + 1) o

= 7x2x3=1 
6

L.H.S. = R.H.S. => P(I) is true. 
Assume (hat P(k) is true

i.e. lJ + 22 + 32 + ... + k=-k(k + 1) A(2A + I) ...fi) 
6

Now Pf/: + 1): I2 + 22 + 32 + ... + k2 + (k + I)2
= ^(* + l)<*+2) (2k +3)

7



L.H.S. = l2+ 2J + 32+...+*’ + (* + l)1

= 7*(* + l)(2* + l) + (* + l)2 
o

[Using («)]

= 7 (k + 1) [Jk(2A + 1) + 6 (k + 1)]0

«7(* + l)(2Jt2 + 7* +6) 
o

= 7 (k + 1) [2JtJ + 4k: + 3k 4- 6]
0

= 7(Jk + 1) (2* (k + 2) + 3(* +2)]
6

= 7^ + 1)(* + 2)(3I +3)
6

L.H.S. ofP(* + 1)
111 1

“ 1.3 + 3.5 + 5.7 + ■" + (21 - 1) (2Jt + 1)

1
+ (2A- + 1) (2Jfe + 3)

g(2rnj^2A7ij1(2rr3j iUsi"8p<*»

k (2k + 1) + 1 x 2JfcJ + 3* + 1 .
“ (2Jk + 1) (2k + 3) " (2k + 1) (2k + 3)

_ (2X + 1)(* + 1) _ * + l 
(2Jk + 1) (2Jt + 3) 2k +3 ' ' '

=> P(k + 1) is true.
Hcncc. by principle of mathematical induction, P(n) 

is true for all natural number n.

PRACTICE EXERCISE 2.2 (iv)

= R.H.S. of P(* + 1)

=$ P(k + 1) is true.
/. By principle of mathematical induction, P(n) is 

true for n e N.

tT Example 2. Prove the following by the principle 
of induction
111 I . n

1J + 3.5 + 5.7 + + (2/i - 1) (2/i + 1) ~ (2/i + 1)

[T.B.Q. 9]
Sol. Let P(n) denote the given statement 

P(n) : L3 + 33 + 5T + ’*' +(2n - 1) (2/i + 1) = 2/i + 1

For n = 1, L.H.S. = — =

1
R.H.S. = 2x1 + 1 3

L.H.S. = R.H.S. => P(l)islrue

Let P(A) is true then
I k1 1 1

1.3 + 3.5 + 5.7 + + (2Jt - 1) (2X + 1) “ (2Jk + 1)

1. Use the principle of mathematical induction to 
prove the following statement for all n e N.

n(n + 1) (n + 2)
(i) 1.2 + 2.3 + 3.4 + ... +n(n + 1) = —--------;--------- -

..Ill 
(H) 1.2 + 2.3 + 3.4* n(n + 1) (n + 1) 

1 1..111 - , -(m) - + - + - + ...+ — = 1-----
2 4 8 2” 2"

(iv) l’+3’ +5J + ... + (2n - 1)’ =
n(2n - 1) (2n + 1)

(v) 1.3 + 3.5 + 5.7 + ... + (2n - 1) (2n + 1)
n(4n2 + 6n - 1)

= 3

2. Using principle of mathematical induction prove 
each of the following statements

(i) 1 + 2 + 3 + ... +1 (21 + I)2 V Jt e N
8

(ii) I2 + (l2 + 22) + ... + (l2 + 22 + ... + n2)
n(n + l)2 (n + 2) 

= 12

(Hi)
1 1 1 1 

1.4 + 4.7 + 7.10 + +(3m -2) (3m + 1)

iNow Pa + 1):_>_ + _1_ + _L +

i

(2Jk - I) (2Jt + 1) 

(* + l)

(2A + I) (2A + 3) (21+3)

m
3m + 1

(tv) 1.3.5 + 3.5.7 +...+ (In - 1) (2n + 1) (2n + 3) 
= n(n + 2) (2n2 + 4n - 1)

2



TEXT-BOOK EXERCISE 2.2 
TYPE—V

(SOLVED EXAMPLES)

Example 1. If a set has n elements, prove that it 
has 2" subsets. [T.B.Q. 10]

Sol. Let P(zt): I + 2 + 3 + 4 + ... = 2'
Forzt=l L.H.S.’= 21 = 2,

R.H.S. = 21 = 2
L:H.S. = R.H.S. => P(l) is true.

Let P(A) be true, then
' > P(A)2" + 2' + 23 + ... + 2* = 2‘

Now P(A + 1): 2" + 2' + 2* + ... + 2* *' = 2‘.2 which 

is true also.
Hence by the principle of mathematical induction 

P(zr) is true for all values of n.

PRACTICE EXERCISE 2.2 (v) .

1. Prove by ' using principle of mathematical 
Induction

7
7 + .77 + 777 +...+ 777...7 = — (10" * ’ - 9z» - 10) * 1 o I

n digits
2. Prove by using principle of mathematical 

induction
1.4.7 + 2.5.8 + 3.6.9 + ... n(n + 3) (zi + 6)

+ l)(zj +6)(zt +7). 4

MISCELLANEOUS EXERCISE
(SOLVED EXAMPLES)

Example 1. Prove by induction that the sum of 
the first n odd natural numbers is n1. [T.B.Q. 1]

Sol. Let P(zi): 1 + 3 + 5 ... + (Zn - I) = n' 
when n = 1, L.H.S. = 1

R.H.S. = l2=l => P( 1) is true.
Let P(k) be true

1 + 3 + 5 ... + (2A - I) = A2
We have to show that P(k + 1) is true.

P(A + 1): 1 + 3 + 5 + ... + (2k - 1) (2k + I) = (k + I )J
L.H.S. = 1 + 3 + 5 + ... + (2K - 1) + (2k + 1) 

= AJ + 2A+1 (Using P(A)1
= (k+ l)3 = R.H.S.

=e> P(k + 1) is true.
Hence P(zr) is true for all natural numbers n.

S3* Example 2. If we take any three consecutive 
natural numbers, prove that the sum of their cubes 
is always divisible by 9. [T.B.Q. 2]

Sol. Let three consecutive natural numbers be
n, (n + I), (zi + 2).

Let P(zr): zr' + (zi + I)' + (zi + 2)' is always divisible 
by 9.

Forzi=l, P( I) is a statement : 
l' + (l + l)' + (l +2)' = 1+ 8 + 27 = 36.

which is divisible by 9
=> P( I) is true.

i.e., k' + (k + I)' + (k + 2)' is always divisible by 9
We have to show that P(k + 1) is true 

i.e.. P(A + I): (A + I)'+ (A + 2)'+ (A + 3)' »
is always divisible by 9

Consider (k + I)’ + (k + 2)' + (A + 3)'
= (A + I)’ + (A + 2)’ + A* + 27 + 9A2 + 27k 
= A' + (A + I)' + (A + 2)' + 27 + 9A2 + 27k

Now ky + (k + I)’ + (A + 2)’ is divisible by 9 because 
P(k) is true. Also 27 + 9A2 + 27k is clearly divisible by 
9 because every term contains 9.

P(k + I) is true.
Hence P(zr) is true for all natural numbers.

Example 3. Prove by induction the inequality 
(1 +x)" > 1 + zrx wherever x is positive and n is a 
positive integer.

x>-l(x*0) [T.B.Q ,d|
Sol. Let P(zr) be the statement

(I + x," > I + zix. x > - 1, tri)
Wc have to prove the truth of P(zr) for zi > 2, so wc 

start induction from zi = 2.
P(2) is true if (1 + x)2 > I + Zr 
If 1 + x + x2 > (I + Zr)
If x: > 0. which is true because r is a real non-zero 

number
Let P(k) be true

(1+x)
From (z) (I + t)

= (1+x) 
= (1+x)

(1+x)
.-. P(A + 1) is true

> 1 + Ax
* 1 > (1 + Ax) ( 1 +
’1 > 1 + r + A1t + Ax'
’1 > 1 + (A + 1 h (
*’ > 1 + (A + 1 )x

Av > 0)

...(/)

.-. By principle ol mathematical induction 
P (zi) is true for n 2 2

Hence (I + xf > (1 + zrx). zr > 2
Example 4. If P(zi) is the statement zi * - zr +41 

is prime, prove that P( 1), P(2) and P(3) are true. 
Prove also that P(41) is not true. How does this not 
contradict the principle of induction ? [T.B.Q. 4)

Sol. Let P(zr) : zi* - zt + 41 is prime number
Then P( 1): 12 - I +41 =41 is a prime number. It 

is true.
P( I) is true.

1



P(2): 2J - 2 + 41 = 43. is a prime number, it 
is true.
P(3): 3* - 3 + 41 = 47. is a prime number, it 
is true.
P(41) : (41)J - 41 +41 = (41)". is a prime 
number.

But 41 x 41 = 1681, which is not true so P(41) is 
false statement.

This' does not contradict the principle of 
mnlhemnlicnl induction P(4 I) hns not been proved to 
be true.

Example 5. Prove by Induction that (2n + 7) < 
(n + 3)J for all natural numbers zi. Using this, prove 
by induction that (zr + 3)1 < 2"*3 for all natural 
numbers n. ' [T.B.Q. 5]

Sol. (/) Let P(zi) be the statement ”2/1 + 7 < (n + 3)2"
Then P(l) is the statement

• "2 x 1 + 7 £ (I + 3)3 or 9 < 16"
which is.truc. .Suppose P (k) is true, then 

«... .. 2A+.7£(A + 3)J

P(k + 1) is the statement "2 (A + 1) + 7 <1 (A ■+ 3) " 
Now 2(k + l) + 7 = (2k + 7) + 2

£ (k + 3): + 2 [-.• P(k) is true) 
= k: + 6k + 11 
= (k2 + 8A + 16)- 2k - 5 
= (A + 4)1 - (2A + 5)
< (A + 4f
since (2k + 5) > 0 lor all k e N

=> P(k + 1) is true.
.•. By the principle of mathematical induction. P(zi) 

is true for alf zi € N.
(ii) Let P(zi) be the statement "(n + 3f < 2" ‘
Then P( I) is the statement "(I + 3)2 £ 2'*'

or 16 £ 16 which is true.
Suppose P(zj is true, then (k + 3)J < 2“'

P (k + I) is the statement "(k + 4)2 < 2‘‘J" 
Now (k + 4)1 = |(A + 3) + 11:

= (A + 3)J + 2(A + 3) + I 
< 2“' + (2A + 7)
£ 2“' + (A + 3f

(... 2A + 7S(A + 3)’ Vzre N| 

£ 2“' ♦ 2“' • | . P(A) is true)
• = 2. 2“J = 2‘*4 => P(A + I) is true 

By PMI P(zi) is true for all n € N 
Example 6. Prove that for n e N

KT + 3.4"n + 5 is divisible by 9. [T.B Q . 6| 
Sol. Wc shall prove the result by using principle ol

mathematical induction. Let P(zi) be the statement 
"10" + 3. 4n*2 + 5 is divisible by 9"

when zi = 1. 10" + 3. 4"‘; + 5 = 10’ + 3.4 “2 + 5
= 207 = 9 x 23

IO1 + 3 41’1 + 5 is divisible by 9 

P( I ) is iruc
Let I’tAjbetruc

IO1 + 3.4i‘* * 5 is divisible by 9
Let 10' + 3.4“’ + 5 = 9M ...if)

when zi = A + I. = l(T + 3. 4"‘* + 5
= IO*4' + 3. 4“' + 5 
= 10 (IO4) -I- 3.4“' -4- 5

= 10(9 M - 3.4“J - 5)+3.4“'+ 5 |by(r)| 
= 90M - 30.4‘. 16 - 50 + 3. 4*. 64 + 5 
= 90M = 44 (480 - 192) - 45 
= 9(IOM - 32.4* - 5)
= n multiple of 9

.•. I04* + 3. 4““* + 5 is divisible by 9

.'. P(A + I) is true whenever l’( A) is so

.•. By PMI. P(zi) is true for zi e N

.’. 10” + 3. 4"‘: + 5 is divisible by 9 lor all natural

numbers

O’ Example 7. Prove that 10 " + 1 is divisible by
11 for all zig N. [N.M.O.C. I<W (Set H)[ [T.B Q 7)

Sol. Let n = 10-’" •’ + I
For zi = l.o= IO2'1 + I = 10 + I = I I

11
As - j = I =3 T( I) is true

Let T(A) be true
I I

Let us consider a lor zi = A + I
a = i(V'“”-’ + l

= io?“-'-' + I 
= IOy 10- + 1 
= 100 (H)2""1 + I) - 99

Nou

and thereiore

Also

II

KX)(|0?'" + I,

II
99

________l_l________
I (X>( IO2"*' + I)-99

I I
— lor n = m I

0



...0)

T(m + 1) holds
Hcncc by pnnciplc of mathematical induction, 

11
102

V n e N
+ 1

Example 8. Prove that
n1j_J_ JL'

,1.2 2J 3.4 n(n + 1) n +1’
i • n 6 N

.. (T.B.Q. 8} (V.Imp.)
[A.I.S.S.E. 1983 ; Ph Board. 1987 ;

H.P. Board. 1988}
Sol. We shall prove the result by using P.M.I. Let

P(n) be the statement
111 1 n

+ ... +------------=--------
1.2. 2.3 3.4 n(n + l) n + l

•»” i P( 1) is true, if r— = 7—7, which is true
1.2 1 + 1

P(l) is true 
P(k) be true

• j it. j • ,« • v • • • j
+ + - t

Let

...(«)4(4 + 1) 4 + 11.2 2.3 '3.4

Now P(4 + 1) is true if
<1 • l’-.l’L: • ’ 1 (4 + 1)
1.2 12.3 ^3.4 *+ (4 -H)(4 + 1 + 1) " 4 + 1 + 1

If •• + +------ !-----
<1.2 2.3 4(4 + 1)

• I________4+_l
+ (4 + 1)(4 +2) “4+2

1 4 + 1
= 7~7 (by (i)|If

If

If

If

4 + 1 (4 + I) (4 + 2) 4+2

4 + 1
r+24 +

(4 + l)(" ' (4+2)

_J__ (4: + 24 + 1
(4 + 1)1 4+2

1 1(4 +l)2

k -F I 
4+2

4 + 1
, which is true(4+ 1)( (4+2)1 4+2

P(4 + 1) is true whenever P(4) is so 
Dy PMI, P(n) is true for n e N 

1 nJ_ _L 
1.2 2.3 3.4 n(n + 1) (n + 1)

. n g N

Example 9. Prove that

l3 + 23 + 33 + ... + n3 = n2(n + l)2

for every+ve integer rt. [M. Imp.] [T.B.Q. 9)

Sol. Let

P(n) = l3 + 23 + 33 + ... + n3 =
n:(n + 1 )3

Putting n = 1, we have 

., I’(l + I)! .

Thus Pf 1) holds 
Let P(4) be true

i.e., l1 + 21 + 3, + ...-U) = *:(V)' ...(ii)

We shall prove that P(4 + 1) is also true 
Adding (4 + I)' to both sides of (ii), wc have 

3 + 23 + 31 + ... +43 + (4 + 1)3 = * + (4 + I)3

(4 +l)2 , (4 + l)J(4+2)2
or P(4 + 1) = —-1[42 + 4(4 + 1)] =-------- ---------- -

4 4

which is the same expression as obtained by putting 
n = 4 + 1 is (i). Thus P(4 + 1) is true. Thus by principle 
of mathematical induction P(n) is true for every natural 
number.

MISC. PRACTICE EXERCISE ON CHAPTER 2

1. Use the principle of mathematical induction to 
prove the following statements for all n g N.

r + 4r + lx + ... + (3n - 2).r = -zi(3n - l)x

2. If P(zt) is the statement the arithmetic mean of 
the numbers zi and (n + 2) is the same as their 
geometric mean, prove that P(l) is not true. 
Prove also that if Pfzi) is true, then P(n + 1) is 
also true. How docs this not contradict the 
principle of induction ?

3. Using P.M.I., prove that 2” > n, for all n e N
4. Using P.M.I., prove that "3n > 2", for all n g N".
5. Use the principle of mathematical induction to 

prove the following statements for all n g N.
1.2 + 2.3 + 3.4 + ... + n(n + 1)

zi(n + 1) (n +2)
= 3

6. Using P.M.I., prove that 

l2 + 32 + 5J + ... + (2n - 1)
n(2n — 1) (2n + I) 

3

7. Use the principle of mathematical induction to 
prove the following statements for all zi g N.

u



additional solved examples 
SECTION—A 

[2 marks questions]

Example 1. If P(n) is (he statement "n’ + n Is 
divisible by 3". Is the statement P(3) true ? Is the 
statement P(4) true ?

Sol. P(n) : ny + n is divisible by 3.
P(3): 3’ + 3 = 27 + 3 = 30, which is divisible by 3.
Hence the given stntcincnt is true.
Again P(4) i 41 + 4 = 64 + 4 = 68. 

which is not divisible by 3.
Hence the given statement is not true.
Example 2. Let P (n) be the statement C(n.r) < 

n I for all £ r £ n". Is P(3) true ?
Sol. P(n) "C(n. r) <, [n’

P(3) is "(3. r)£|3" V "1 <,r^y
Now C(3, 1) = 3 £ | 3ii. i i—

C(3. 2) = 2£|_3 

C(3, 3) = 1 £|3 

C(3, r) £ |3 V I <i r £ 3
Hence P(3) is true.
Example 3. (a) If P(n) Ls the statement "nln + 1) 

is even”, then what Ls P(4) ?
Sol. Let P(zt) be the statement "n(n + 1) is even". 

Then P(4): 4(4 + 1).= 20, which is even.
P(4) is even.

(b) Let P(n) be the statement ”3’ > n”. W hat is 
P(n + 1) 7

Sol. P(n): 3" > n
P(n + 1) is the statement "3"*' > n 4 I".
Example 4. If P(n) is the statement ”9’ - 8" - 1 

Ls a multiple of 8”, then (i) evaluate P( 1), P(3) and 
P(6), (/») Is P(2) true 7 (iii) ls P(3) false 7

Sol. We have
P(n): "9" - 8" - 1 is a multiple of 8".

(i) P(l): "91 - 81 - I = 0 is a multiple of 8”.
' ' ” P(3): "9’ - 83 - 1 = 216 is a multiple of 8". 

P(6): "9a - 8* - 1 = 269296 is a multiple of 8".
(ii) When n = 2. 9" - 8" - I = 92 - 8* - 1 = 16 = 8.2. 

P(2): "92 - 82 - 1 is a multiple of 8" is true.
(iii) P(3): "93 -8s- 1 =216 = 8.27 is multiple of 8".

.-. P(3) is not false. ’
Example 5. If P(n) is the statement ”2'" - 1 Ls an 

integral multiple of7", then prove that P(5) is true.
Sol. When n = 5

2'" _ | - 2'5 - 1 = 32767 = 7 4681.

The statement P(5) : “2V<I - I is an integral 

multiple of 7" is true.

ADDITIONAL PRACTICE EXERCISE 2 la)

1. II P(zi) is the statement nln + 1) (2w + I) is an
integral multiple ol 6" Prove that l‘(2), P(5)and 
P(7) are true. . .

2. If P(zi) is the statement "I2n + 3 is a multiple of 
5". then prove that P(3t is false whereas P(6) is 
true.

3. If P(zi) is the statement ' r. ' + 2 is a multiple of 5". 
then show that P(4) is r.ot true.

4. If P(zi) is the statement

, , , , I n(n + 1) Y1+2+3 +r- -H-?

then verify that P(3). P 7) arc both true
5. Let P(zi) be the statement given in problem 4 

above, what is P(n + P ?

ADDITIONAL SOLVED EXAMPLES 
SECTION —B 

(4 marks questions]

Example 1. If P(zr) Ls the statement that the sum 
of first n natural numbers Ls divisible by n + 1, prove 
that if P(r) is true, then P(r * 2) is true.

Sol. P(zi) : 1 + 2 + 3 + ... * n is divisible bv zi + 1

«('» + !)., ,L1 L=5------------ is dis isiblc by zi + I
2

P(r) is true

.’. I + 2 + 3 + ... + r is divisible by r + I.

I e.. r (r+ I).
is divisible by r + I.

Nov.. P(r + 2): I + 2 + 3 * ... + (r + 2) is divisible 
by r + 3

Consider I + 2 + 3 + ... * r + (r + I) + (r + 2)
= (1+2 + 3*.. +r) + (2r + 3)

r^r ■ —- + (2r +3) (using 1’ (z)| 

r’ + r + 4r * 6 r' + 5r + 6

(r + 2)(z * D

uhich is diMsiblc b\ r ♦ t 
I lent,e P(r + 2) is true

I



Example 2. Write down the binomial expansion 
of (1 + x)’*1 when x = 8. Deduce that 9"*’ - 8zi - 9 is 
divisible by 64, whenever n is a positive integer.

Sol. (1 4-xf*1 = (! +8)’"'

= I 4-"*'C,. 8 4-"*'C2. 8j + ',*iC3.8’

+ ... 8"

or 9"*' = 1 + 8(n + 1) + " * 'Cj 64 + " * 'C3. 8J

4-••• 4-" *'C, +,. 8"

=> 9"*' = 1 + 8zt + 8 + 64 + "*'<3,. 85

+ ... + ’*'CbM.8’

=> 9~' - 8zi -9= "♦'Cj. 64 +’*'C,. 8’

+ ... + "*'C. + l. 8’

R.H.S. has 64 as a factor of every term, so R.H.S. 
is divisible by 64. •

Hence L.H.S. I.e., 9**' - 8zi - 9 is also divisible 
by 64.

Example 3. For every natural numbers n, prove 
by mathematical induction 4" + 15n - 1 Is divisible
by 9. [Roorkee Entrance. 1994]

Sol. Let P(zi) = 4" + 15zi - I,
We have P(l) = 4+ 15 - 1 = 18 = 9.2

i.e., P( 1) is divisible by 9.
Now assume that for some positive integer m, Pfzn) 

is divisible by ,9. ,,
i.e., 4" + 15m - 1 = 9k, where k is some integer ...(/)

Then P(m 4- 1) = 4"*1 4- 15(m + 1) - 1 
= 4.4" + 15m + 14
= 4. [91: - 15m + I] + 15 m + 14, by («) 
= 361: - 45m 4- 18 
= 9(41: - 5m 4- 2) = 9 some integer.

Thus P(m + 1) is divisible by 9 if P(m) is divisible 
by 9. But as already shown. P(l) is divisible by 9.

Hence by principle of mathematical induction P(zi) 
is divisible by 9 for ail positive integers n.

Example 4. Prove by the principle of mathema­
tical induction that:

(a) 2 + 4 + 6 + 8 4- ... + In = n(n + 1), V n g N.
(N.M.O.C. 1996. (Set A)]

(b) 1 4- 3 4- 5 4- 7 4-... 4- (2/» - 1) = V n G N.
(N.M.O.C. 1996. (Set fl))

Sol. (a)’Lct P(zi): 2 + 4 + 6 + 89 ... + In = n(n + 1)
Put zi = 1,P(1): '

R.H.S. = I x (1 4-1) = 1 x 2 = 2 = R.H.S.
?. P( 1) is true.
Let us suppose that P(r) is true i.e.,

2 4- 4 4-6 4- 8 4-... 4- 2r= r(r 4- 1)

Wc shall prove that P(r + 1) is also true, i.e.,
(2 + 4 4- 6 4- 8 4-... 4- 2r) 4- (2r 4- 2) = (r 4- 1) (r 4- 2) 
Now, L.H.S. = (2 4-4 4-6 4- 8 4-... 4-2r) 4-(2r 4-2)

= z(r + I) + (2r 4- 2)
= r (r 4- I) + 2(r 4- I)
= (r+ | )(r 4-2) = R.H.S.

.’. P(r 4- 1) is also true.
Hence, by the principle of mathematical induction 

the given statement is true for all natural numbers rt.
Proved.

(b) Let P(zi): I 4- 3 4- 5 4- 7 + ... 4- (2n - 1) = zf 
Put zi = l.P(l): R.H.S. = (!)’ = 1 = L.H.S.

P( I) is true.
Let us suppose that P(r) is true, i.e.,

1 4-3 + 5 4- 7 4-... 4-(2r - 1) = r2 
We shall prove that P(r 4- 1) is also true. i.e.

1 4- 3 4- 5 4- 7 4-... 4- (2r - I) 4- (2r 4- 1) = (r 4- 1 )J 
Now,

L.H.S. = { 1 4-3 4-54-7 4-...4-(2r-1)} 4-(2r 4-1) 
= ? + 2r+ I =(r+ l)' = R.H.S.

/. P(r 4- I) in also true.
Hence, by the principle of mathematical induction 

the given statement is tiue for all natural numbers n.
Proved.

ADDITIONAL PRACTICE EXERCISE 2 (b)

1. Prove 32" — 1 is divisible by 8 for all n e N.
2. Prove that IO2-"1 4- 1 is divisible by 11 for 

all n g N.
3. Prove that 8” - 3" is divisible by 5 for all n e N.
4. Prove that 4” - 3” - 1 is a multiple of 9 for all 

n g N.
5. Prove that 9” - 8zi - I is a multiple of 64 for all 

n g N.
6. Prove that n(n 4- 1) (2/i 4- 1) is divisible by 6 for 

all n g N.
7. Prove that n’ 4- (zt 4- 1)’ 4- (n 4- 2)3 is divisible by 

9 for every natural number.
8. Prove that n(n 4- 1) (zi 4- 5) is divisible by 6 for 

all n g N.
9. Show that if the statement P(zi),

2 4-4 4-6 4-....  4-2zi = n(n 4- 1) 4- 2
is true for n-k, then it is true for n = k 4- 1. Can 
we conclude that P(n) is true for every natural 
number.

10. If P(zi) be the statement, "AM. between n and 
n 4- 2 is equal to G.M. between zi and n 4- 2", prove 
that P(zi) is not true for all natural numbers. 
[Hint: P(l) is not true.)

13



11. Using principle of mathematical induction prove 
the following for all n e N.
(t) (2. 1 + l) + (2. 2 + 1) + (2. 3+ 1)

+ ...+ (2n+ l) = (n+ 1)’- 1
(ii) 2 + 2J + 2’+...+ 2" = 2(2"- 1)

3
(iii) 3 + 3’+ 3’+ ... + 3" = “ (3"- 1)

i. 5
(iv) 5 + 15 + 45 + ... + 5. 3"' = ~ (3" - I)

(v) 1. IJt + 2. [2 + 3. [3 + ... + n |_n = [n + 1 - 1

12. Using principle of mathematical induction prove
that n(n2 + 20) is divisible by 48 for every even 
natural number n. . [Af. Imp.]

13. Use the P.M.l. to prove each of the following
statements. [V. Imp.)

1
(i) 1 + 2 + 3 + ... 4- n < ~ (2n + 1)"

n(3n - I)
(ii) 1 4- 4 4- 12 4- ... 4- (3n — 2) = “

f. t • r
(iii) 4 4-8 4- 12 + ... + 4n = 2n (n + 1)
. [Hint : P(it) + 4 (k + 1) = 2k (k 4- 1) 4- 4 (k 4- 1)

= 2 (*4- 1) (k + 2) = P (k 4- 1)]
(iv) 2.5 4-5.8 4- 8.11 4-... to n terms

= n (3n3 + 6n + 1)
(v) 1.3 + 2. 4 + 3. 5 + ... + n (n + 2)

n(n 4- l)(2n 4-7)
=----------- ------------ . V n 6 N

6

14. Using the principle of mathematical induction
prove that following statements: [Imp]
(i) n2 - n - 41 is prime
(ii) Any natural number equals it successor i.e., 

P (n): n = n + 1.
(iii) 11"*’4- 121**' is divisible by 133.

.... , [Roorkee 1982}
(iv) 5"*’ - 24n - 25 is divisible by 576.
(v) , 1 4- 2.2’.+ 3.2’ +...+ n. 2" = (n - 1)2"*' + 2

(vi) 1 4- 2. 2 4- 3. 2’ 4-... n. ?'1 = 1 + (n - 1) 2"
(vii) 2"*' >2n> l.

. ADDITIONAL SOLVED EXAMPLES 
, SECTION —C

[6 marks questions]

Example 1. Prove by the principle of 
mathematical induction that

(a) 71" 4- 230*“n . 3”1 is always divisible by 25, 
V n e N. [N.M.O.C. 1996 (Set A)]

(b) 12’ 4- 25”' is always divisible by 13, V n e N.
[N.M.O.C. 1996, (Set B)]

Sol. (a) Let P(n) • 71" + 2’”’. 3"" 1

Put n = 1. P(l): I2 4- 2’-’. 3I_, = 49 4- 2*. 3’

= 49 4- 1 = 50 which is divisible by 25.
=> P( 1) is true.
Let us assume that P(k) is true, i.e.,

7?> 4 2U"\ 3‘"1 is divisible by 25.
12> + 2U " \ 3*"1 = 25r, lor some re N ...(/)

Now. P(k + 1) = 7”**" +2'“*"’’. 3f‘*""'

_ 7JI 7J + A 2’ I"' 3 
= 49.7’1 4- 24.2”"’. 31"'
= (50- l)7J‘ + (25- 1). 2'‘-\3‘-'
= (50.7’* + 25.2U 3*"') - (7J< + 2U 3‘"')
= 25(2. 7’* -t- 2U"\ 3*"')- (7’* 4- 2U'\ 3*"')
= 25 (2. 7:* 4- 2U" ’. 3*’') - 25r [by (/)]
= Divisible by 25 - divisible by 25 
= Divisible by 25

.*. P(k 4- 1) is also true.
Hcncc. by the principle of mathematical induction 

the given statement in true for nil positive number n.
Proved.

(b) Let P(n) : 12" 4-25”'

Put n = 1. P(l): 12 + 25'"'= 12 + 25*

= 12+1 = 13 which is divisible by 13.
=o P(1) is true.
Let us assume that P(A.) is true i.e.,

12* + 25*-1 is divisible by 13.
12 + 25*"'= 13r, for some r e N ...(/)

Now. P(A-+ 1) 12**' + 25,**,)"'

= 12*. 12 + 25*"'.25 
= (13 - 1). 12* + (26 - 1). 25‘"'
= (13.12* + 26. 25‘"')- (12* + 25‘"')
= 13(12*+ 2.25*"')-(12* +25*"')
= 13(12*+ 2.25*-')- 13r [by (0)
= Divisible by 13 - divisible by 13 
= Divisible by 13

=> POt + 1) is also true.
Hence, by the principle of mathematical induction 

the given statement is true for all n e N. Proved.
Example 2. Prove by the principle of 

mathematical induction that :
2

6 -1- 66 + 666 + ... + 666 ... 6 = — (10"*’ - 9n - 10)

n digit.'

(N.M.O.C. 1995 (Set B)]



Sol. Let P(/i): 6 + 66 + 666 + ... + (6666 6)

Il (IlgllS

2
= - (IO'"' -9.i - IO)

Basic step :
To prove : P( 1) in true 
Proof: For m = I.

R.H.S. = — (IO2-9x I - IO)

2
= ^(8I) = 6 = T,

.-. P( I) in true.
Induction step :
Given Pot) is true. Or

2
6 + 66 + 666 ... + 666 ... 6 = — | I(/*1 - 9A - 10J

k- I digits
To prove : P [k + I) is true i.e.,
6 + 66 + 666 ... + 666 ..: 6

1+1 digits

2
= -|IO“--90t + I) - |()|

Proof. L.H.S. = 6 + 66 + 666 ... + 666 .. .6
1*1 digits

= ~ |10‘*'-9X - I0J +6 [11 111 ... I|

k * I digits

= i|io,“-9*-io]+^|in‘-'-i|

2 a
= — |l()‘*' -9Jt - 10) + —I9.IO“'-9]

= ^|IO“'+9.IO“'-9A -9-10]

= l[10i‘,-9(A + l)- 101 = R.H.S.

.. P ot + I) is true.
Hence P(n) is true.
Example3. Prove the following by mathematical 

induction : \.,
1 + 5 + 9 + ... + (4n - 3) = n (In - 1).

’ ■ • t • [Annual Exam. J995]
Sol. Let P(zi) be the statement
P(n):. I +'5 + 9 ■+-... + (4n — 3) = n (2n — I) when

n = 1. : . . . • .

P( I): I = I (2 - I) = 1. which is true.
.-. P(I) is true.
Let us assume that it is true for n = k. 
i.e. I + 5 + 9 + ... + (4Jt - 3) = * (2* - I).
Now. we shall prove that it is true for n = k + I. 
i.e. I + 5 + 9 + ... + (4it - 3) + (4k + 1)

= (* + 1) [2(Jt + I) - 11 
L.H.S. = (1 +5 + 9 + ...+ (4Jt-3)J

+ (4k + I)
= k(2k - I) + 4k + I 
= 2k1 - k + 4k + I 
= 2Jt2 + 31+1

R.H.S. = (k + l)(2(Jt + I) - 11 
= Ot + I) (2Jt + 2 - 1)
= (k + I) (2)t + I)
= 2k2 + 3* + I

L.H.S. = R.H.S.
.’. P(t + I) is also true.
Hcncc. by mathematical induction, the given 

statement is true for all natural numbers. Proved. 

c5 Example 4. Prove the following by the principle 
of mathematical induction : (31" - 1) is an integral 
multiple of 8. [Annual Exam. 1994]

Sol. Let POi) be the statement that (32" - 1) is an 
integral multiple of 8.

When zi = I. then 3‘ - I = 9 - I = 8 is an integral 
multiple of 8. which is true.

.•. P(I) is true.
Now. suppose POt) is true. i.e.. (321 - I )isan integral 

inuitipic of 8.
Then, to prove that P(Jt + I) is also true.

32'1*" - 1 = 32*. 32 - I
= 32‘ . 9 - I 
- 321 9 - I - 8 + 8 
= (32* - I) 9 + 8 
= (an integral multiple ol 8) -+ 8

| (3*1 - I) is an integral multiple of 81

= an integral multiple of 8
:. P(I + I) is also true. Hcncc. by the principle of 

mathematical induction. POrl is true for all natural 
numbers n. Proved.

Example 5. Prove the following by the principle 
of mathematical induction :

J_ J_ JL 1 _ m
1.2 2.3 3.4 m + 1

[Annual Exam. 1993]
Sol. Let P(ni) be the statement

111 IP(m): — ■+■ — + — + ...+■------------- —-------- -
1.2 2.3 3.4 m(m + 1) m + I



When ni = 1.

L.H.S.
1(1 + 1) 1.2 2

R.H.S. =
I + I 2

L.H.S. = R.H.S.

P(I) is true.
Lei us suppose that the statement is true for in = k 

III 1 A
' ‘ 1.2 2.3 3.4 A (1 + 1) A + l

Wc shall prove that the statement is true for
zn = A + I •

i.e -----  4 -----  +-------- 1-
1.2 2.3 3.4

k + I
A (A + I) (A + l)(A +2) (A + l) + 1)

— + ... +L.H.S. =
L1.2 2.3 3.4 A (A I

1
(A + I) (A + 2)

A I _ A (A + 2) + I
A + l (A 4 I) (A 4 2) (A + I, (A + 2)

AJ + 2A + I _ (A + I)? _ A 4 I

(A 4 1)(A + 2) (A + I)(A + 2) A + 2

R.H.S.
A + I

(A + I) + I
a_+j
1+2

L.H.S. = R.H.S

P(A + I) is also true.
Hence, by the principle of mathematical induction, 

the given statement is true lor all positive integers zn.
.... <t Proved.

Example 6. Using P.M.I., prove that

3.2J + 3J.2' + 3’.24 + ... + 3zT.2"*' = (6" - 1).
» ' z» 5

Sol. P(zi): 3.2J4 3l.2’4 3’.244 . 4 l’.2" ‘1 = y (6’ - I)

1 , 12 
P(l):3.2‘ = —(6- I)

12
1 ,e.. 3x4= — x 5

5
or 12 = 12. which is true.

Suppose Pl r) is true.

3.2-’ 4 3’.2’ + ... 4 3*.2' ’1 = ~ (6J - |)

P( r + I) is the statement

3.2' 4- 1:.2' + ... 4 3'.2’41 4 3' ‘ ’.2' ‘' = (6* " - I)

L.H.S. = 3.2-’ + 3:.2' + ... + 3’.2’ ‘1 4 V ‘ '.2' * ’

•2 „ ...
= — (6-1)43 .2' ‘ I-. P(r)islrue|

!2f . 5 . J
= 6-14--- V 1.2 2151 12 • J

12 . , 12 ,
= - (6 - I + 5.6 ) = - (6.6 - I)

•2 ,,,
= y (6 I).

P(/ 4 |) is true.

Hence by the principle ol mathematical induction. 
P(zz) is true lor all natural numbers n.
6* Example 7. Prove by principle of mathematical 
induction that

1.4.7 4 2.5.8 4 3.6.9 4 ... 4- nlzi 4 3) tzi 4 61 

zz
= (ri 4 1) (n 4 6) (zi 4 7)

4
Sol. Let P(zi) denote the given statement 
I’tzz) 14 7 4 2.5.8 4 3.6 9 4 + zz(/i 4 1) (zi 4 6)

= - (zi 4 I) (n 4 6) (zi 4 7) ...(f)
4

Step I. |-or 11 = I
L.H S. = 14 7 = 28

I
RIIS = 4 (I 4 |) (| 461(1 4 7)

2x7x8 
=------------= 282

I. II S = R.H.S 
i.e.. P( I) is true

Step II. Let us suppose that P(A) is true
.-. P(A) I 4 7 4 2.5.8 4 3.6.9 + ... 4 A(A 4 li(A + 6)

A
= (A 4 |) (A+6)(A 4 7)

4

Wc shall show that P(A + I) is true 
L.H S ol P(A 4 |)

= 147 *2.58 + 169+ + A(A+l,(A*h)
♦ «A ♦ I) (A 4 4| (A + 7»



= 1 {A + |)(A »-6)(A +7) + (A + D(A +4)(* +7) 

(Using P(A))

= (A + I)(A + 7) - (A +6) + A + 4

_ (£ + ,A2 + 6A + 4A + I6|

_ I* t 22 (A + 7) (A2 + IOA + 16)
) 4

= 1 (A + I) (A + 7) (A + 2) (A + 8)
4

= 1 (A + l)(A +2)(A +7) (A + 8)
4

= R.H.S. ol P(A + I). 
i.e.. P(A + I) is true.

Hence hy principle ol mathematical induction P(n) 
is true lor all ii e N.

Example 8. Using the principle of induction, 
prove that

zf 7/1 v
- + + V zi e N

5 3 15
is a natural number.

n' ii' In 
Sol.' Let P(n) = — + — + —

Putting ii = I. wc get
(If (I)' 7.1

' 5 3 15

I I 7
= - + - + --

5 3 15

1 + 5 + 7 15
= I

15 15

which is a natural number. 
=> P(l) is true.
Putting zi = 2. we get

„ ' (2f 2* 7 2 12 8 14
P(2) = — + - + - + - + -

• 5 3 l< 5 1 15

96 + 40+14 150
_ — = - = |()

A-hich is a natural number .*. P(2) ixiruc
Let us now assume that P(A) is a natural number.

(A + lf (A + lf 7(A + I)

5 l 15

A’ + 5A‘ + I OA' + 10A2 + 5A + I 

5

A’+ 3A2 + 3A + I 

3

7(A + 1) 
15

A’ , 2 1 A3 ,, , 1 Ik 7
- + A +2A +2A +A+- + y + A +A+- + - + -

I I 7A' A' 7A= + L + _ +(A4 + 2A’ + 3A2 + 2A)+ -+- + —
5 3 153 15

or P(A + I) = P(A) + (A4 + 2A' + 3A2 + 2A) + P( 1)
Now P( I) is a natural number. P(A) is a natural 

number and A4 + 2A"' + A‘ + 2A is a natural number.

(•.• The sum. product of natural numbers is a natural 
number)

P(A+ I) = P(A) + P(1) + A4 + 2A3 + 3A2 + 2A
is a natural number.

.•. The truth of P(A) => the truth of P(A + I).

A' A' 7A
=> y + y + -y *s a nalura* number for all values of

n 6 N. Ans.
Example 9. By the method of mathematical 

induction, prove that 3*" *2 + 51**1 is a multiple of 14, 
for ail positive integral values of it, including zero.

Sol. Let P(zi) = 34"*2 + 52"*1
Let n = 0, then P(0) = 32 + 5‘ = 9 + 5 = 14, which is 

multiple of 14.
Tlius. two result is true for n = 0.
Let zi = I. then P( I) = 3* + 51 = 729 + 125 = 854 = 

61x14 which is a multiple of 14. Thus the result is 
true for zi = I.

Let us assume that the result is true for n = A. i.e., 
P(A) is a multiple of 14 Now we can show that 
P(A + I) - P(A) is also a multiple of 14, then the principle 
of induction is applicable nnd the result is proved.

Now P(A + I) - P(A)
_ | »n» 2 + ♦ ii« ij _ |♦ i + 52* ♦ * j
_ ^“.2 ^4 + «j2i ♦ 1 52 _ j** *2 _ * 1

= ( V - |) 3u‘J + (52- I) 524 “
= (70 + 10) 3U*2 + (14 + 10) 52*”
= 70 3J1 *' + 14.5" ‘' + 10 3'*,2 + IO.524 *'
= 14(5 3" *'+ 5:“')+|O(344 ‘2 + 52“i)

which is a multiple of 14 as 14 appears in the first 
expression and the second expression has been assumed 
to be a multiple of 14 Hence the result is true for all 
positive integral values of 11

Example 10. Using P.M.I., prove that
"z»(n + 1) (2/: + 1) is divisible by 6.".

Sol. Let P(zr) : z»(zi + I) (2zi + I) is divisible by 6.

u



Let P( 1) = Id + 1) (2.1 + 1) = 1.2.3. = 6 
which is divisible by 6.

a P(n) is true for n = 1.
Let us assume that P(n) is true for n - k.

PfA): A(A + 1) (2A: + 1) is divisible by 6. ...O’)
Now we shall show that P(k 4 1) is true, i.e.. (A 4 1) 

)k + 2) (2k + 3) is divisible by 6.
Now (A 4 1) (A + 2) (2A 4 3)

= (A+ l)(A + 2)l(2A+ 1) + 2]
= (A 4 I) (A 4 2) (2A 4 1) 4 2(A 4 I) (A 4 2) 
= (A + 2) ((A + 1)(2A+ 1)] + 2(A + I) (A+ 2) 
= A(A+ 1)(2A+ 1) 4 2(A + 1) (2A + I)
‘ : 1 • ' + 2(A + I) (A + 2)
= ‘ P(A) + 2(A + 1)(2A + 1 + A + 2)

(Using P(All
= P(A) + 2(A + 1) 3(A + I)
= P(A) + 6(A+ 1 )2

6(A * 1 )J is divisible by 6.
a P(A) + 6(A •+• 1 )J being the sum of two divisible 

by 6 is also divisible by 6.
A P(A + 1) is true.
A By the principle of mathematical induction. P(n) 

is true for all positive integral values of n.
Example 11.. Use the principle of mathematical 

induction to prove that 31* *3 - 8n - 9 Ls divisible by 
64 for every natural number n.

Sol. P(n) be the statement "31,+3-8n-9 is 
divisible by 64".

When n = 1. 3^*J-8n -9
= 33*3- 8.1 - 9
= 81-8-9 = 64 = a multiple of 64. 

a P( 1) is true.
Let P(A) be true.
a 3U *J - 8A - 9 is divisible by 64. ...(f)

Whenn = A+ D.a^^-Sn -9
= '3J,‘*"*J= 8(A+ I)- 9 
= 3U*3. 33 - 8A - 8 - A 
= (64M + 8A 4 9). 9 - 8A - 17 [by (1 )) 
= 576M 4 72A4 81 - 8A- 17 
= 64(9M 4A4 1)
= a multiple of 64

a P(A 4 I) is true whenever P(A) is so. 
a By P.M.I.. 3^ * ‘ - 8m - 9 is divisible by 64 for

all n 6 N. t
Example 12. For all positive integers n, prove 

that
n7 n5 2n’ n
"7. + ~7 + “7*_ 777 Is an integer.7 5 • 3 105 *

17.7.7. 799(7)

i * -. <n n 2n n
Sol. Ld P(n) = - + y+ —- —

Forh = 1.
1 1 2 1 15 4 214 70-1

P(I)_7 + 5 + 3~i05“ 105

105
= — = l, which is an integer 

105
A I’( I) is true
Now suppose I’(A) is an integer where A € N 

i.e.. Let P(A) = m. m e I

Wc have
(A 4 I)7 (A 4 I)' 2(A 4 I)* (A 4 1)

P(A + I) =----------*-----------+------- ----------------11 7 5 3 K15

A’ A' 3A_’ _£ 1
= 7 + 7 + 105*7

I’C.A u 4 7C,A' 4 7C,A4 4 7C,A ‘ 4 :C.A: 4- 7CaA 4 ’c,|

4 - I'C.A4 4 'C-A ' 4 'C,A2 4 'C,A 4 'CJ

4?('C!A:4 'C-A 4 'CJ =
105

1 1
= m 4 - (multiple of 7) 4 - 4 - (multiple of 5)

12 2 1 
4-4-(multiple of 3)4-- j--

= nt 4 (n 4vc integer, 4 - 4 (a positive integer)

4 - (n 4vc integer) 4

= (m 4 I) 4 {a 4vc integer, 7*5^3 105

= An integer.
Hcncc P(A) an integer => P(A 4 ,) is an integer 
.-. By mathematical induction P(/i, is an integer lor

all 11 e N
Example 13. Using mathematical induction, 

prove that

£ A3 "C4 = n(n 4 1) . 2" '3 for n > 1. 
i « n

n
Sol. Let P(n): S„ = I A* "C, = n(n 4 1). 2"'

1 • II



P(l): S, = £ k2. '0, = 1 .(1 + 1).2,_3 
> -1

(0+ I3. ,C1) = 2.2-' or 1 = 1 

/. P(l)istrue.
Lcl the statement be true when n = m.

Then iP(m): S = £ k2. mck = m (nt + 1) 2” ~ ‘ 
* -o

Consider P(m + 1): S . = L k2.”*'Ci
k -0

= I A \ fC, +"C,.,)

m ♦ 1 m + I
= £ k2. mC, + £ k2. "C, ,

4-0 , 4-0

/n m ♦ I
£ k2 "C + £ k2 ”C

4-0 * 4-0

[•.• First summation becomes meaningless for 
k = m + 1 and second for k = 0}

= £ 43."CI+ £ (k + l)3~C,
4-0 4-0

[Changing k into k + 1 ] 

= S„ + £ (43 + 24 + 1) ."C,
4 -0

= s„+ i k'.~c,+2 i *.-c,+ x -C,
4-0 4-0 4-0

= Sm + Sw + 2 . (m.2'"-1) + 2"
= 2S, + 2zn.2’-'+2”
= 2zn(m + l)2"”3 + 2m.2"”' + 2"
= 2’’"1 [zn(m + 1) + 2m + 2]
= 2"’-1 (m3 + 3m + 2)
= 2”'1 . (zn + 1) (zn + 2) = S„ + l

.'. The statement holds for n = m + I.
Hence by the principle of mathematical induction.

the result holds for n 2 1.
Example 14. Prove by principle ofmathcmatical 

induction that

, 1.3 + 3.5 + 5.7 + ... + (2n - 1) (2n + 1) = j (4n3 + 6n - 1) 

Sol. P(zi) = 1.3 + 3.5 + 5.7 + ... + (2/t - 1) (2/t + I) 

= — (4/t * + 6n - 1)

For n = 1.
L.H.S. = 1.3 = 3

1
and R.H.S. = "(4 + 6— 1) = 3

Thus L.H.S. = R.H.S. = 3 
Tor n = 2.

L.H.S. = 1.3 + 3.5 = 18 

and R.H.S. = (4.2* +6(2- 1)} = 18

P(2) is true.
.-. The relation holds for rt = 1.2.
Step I. Assume that the relation to be true for some 

positive integral value of zt, say rt = k, i.e.,
k

P(4) = 1.3 + 3.5 + ... + (24 - I)(24 + l) = -(443 + 64 - 1) 

...(0
Add to each side the (k + 1 )th term, viz., (2k + 1) 

(2k + 3), we have
P(4 + I) = 1.3 + 3.5 + ... +(24 - 1)(24 + l) + (24 + l)(24 +3) 

£
= - (4k2 + 6k - I) + (2k + 1) (2Jc + 3) 

= ^ {44' + 643 -4 + 3(44'+ 84 +3)} 

= | {44J + .I843 + 234 +9}

= i(4 + 1)(443 + 144 +9)

= i(4 + 1) {(44 + l)J + 6(4 + 1)- 1}

which is of the same form as (1) with (4 + 1) in place 
of 4. Therefore, the relation is true for n = 4 + 1. If it 
is true for zt = 4.

Thus we see that if the given relation is true for n = 
4 then it is true forn = 4,, and therefore, by the principle 
of induction P(n) is true V n e N.

Example 15. Prove by the principle of mathe* 
matical induction

11 1 2n
1 * -—- +----------- + ... +------------------------ -- --------

1+2 1+2 + 3 l+2 + 3 + ...+zt n + 1

[N.M.O.C. 1994 (Set A)]
Sol. Let the given statement be denoted by P(n)
Now P( 1) is true because when n = I 

L.H.S. = 1
and R.H.S. = 2/2=1 

L.H.S. = R.H.S.



I +

= 1 -
Let use assume that the result is true for n = k i.e.. 

P(fc) is true
1 2k

•+...+
1+2 I +2 + 3 1 +2 + 3+ .. +1 k + I

I
Adding (k + 1) the term, i.e.,

1
2» ♦ i

to both sides, we get 
1+ 1

1+2 1+2 + 3 1+2 + 3+..,+A
: I

+

=> P(1 + I) is true

.-. Using principle of mathematical induction, we 
can say P(n) is true for all n = N

2X
1 + 2 + 3+ ...+(A- + 1)

k + 1 1+2 + 3 + ...+(/. + !)

2X 2

Example 17. If x is not an integral multiple of 2n 
use mathematical induction to prove thnt

cos x + cos 2x +
n + 1 . nx x

+ cos nx = cos —-— x sin — cosec r 
2 2 2

k + I (A + l)(A+2) [l.l.T. 1994]

I + 2 + 3 + .. + (t + l)

1 + 2 + ... + (A + 1) =
(k + 1) (A. + 2)

k(k + 2)+ I
a + i) k + 2

2(k + l)5 2(^ + 1)
= T(A + 1)

Sol. Let P(n) denote the statement 
cos x + cos 2x + ... + cos nx

f n + 1 | . nx x
= cos —— x sin — coscc - ...(/)

2 J 2 2
For n = I.
The L.H.S. of (I)

(A + l)(A+2) (A+2)
Thus the given result is true for n = k + I. whenever 

it is true for n = k. Hence by the principle of induction 
it is true for all n e N.

Example 16. Prove by Mathematical Induction 
that

1 1 1 1 1

= cos X

provided coscc (x/2) exists 
multiple of n

= cos

= cos x sin - coscc -

i.e.. x/2 is not an integral

1 + I 'I . 1 . x x 
------ x sin-------coscc -2 J 2 2

~ + —: + — + — =1-----
2 21 2 2' 2"

Sol.' Let P(n) = - + — + — +...+— 
2 2* 2 2'

Putting n = 1. we get

=e> P( 1) is true.
Let P(k) be true

i .e„ r + — + — + ...+ — =!- —
2 2J 2' 2*

We shall show that P(k + I) is also true.
„ , , 1 I I I I

Now+ f.< P(k + I) = - + — + —- + ... + — + ——
2 2‘ 2 2* *

P(t) + _L=,_i + _L
2^ * i * i

X X
= cos x sin - coscc -

2 2

= Ihc R.H.S. of (I) for n = I
Thus P(n) is true for n = 1
Now assume as our induction hypothesis that P(n) 

is true for some positive integer m i.e., (I) is true for 
n = m.

Then for n = m + 1. then L.H.S. of (1)
= (cos x + cos 2x + ... + cos mx)

+ cos (m + 1) x [•.• P(m) is true]

x
= coscc - 2

1
= - coscc



1 aT . f 3a • c= - cosec - sin -sin -
2 2 I 2 > 2.

I a 'l (rn + 2) a sin (in + I) a-coscc-J.2cos---- ----- -------- -------

= COS
(/II + I) + I

sin
(in + I) a 
----------- cosec

A

2
The R.H.S. of (I) for /» = //! + I.
Thus P(/n,,+ I) is iruc il P(/n) is true mid us already 

shown P( I) is true. Hcncc by mathematical induction 
P(/i) is true lor all positive integers n.

Example 18. Prove that n1 > In, V n > 3, by 
using the principle of mathematical induction.

Sol.'Let P(/i):/?>2/l
Putting n - 3. we have 

1 L.H.S. = 3’ = 9
and R.H.S. = 2.3 = 6

Thus the statement Pl 3) is true 
Let n = 4. then

L.H.S. = 4; = lb 
and 'R.H.S. ,= 2.4 = 8

Thus the statement Pt 4) is true as 4’ > K

Let us assume the statement be true lor n - m. i.e..
nr > 2m. ...(/)

Now we shall show that I’tzn +• I) is also true. 

Adding 2/n + I to both sides ol (<). wc have
m2 + 2//i + I > 2m + 2m + I 

or (in + I)' > 2(m +- 11 +■ (2m - 11.

But 2/u - I is a positive quantity tor m > 3.

(hi + I )* > 2(hi + I).

=» The result is true lor in + I when it holds good 
lor n = in

By the principle ol mathematical induction. Pt ii ) 
is true tor all positive integral values ol ii. ii > 3

c* Example 19. Prove by the principle of 
mathematical induction

1.2 * 2.21 ♦ ... + n.22 = (n - I) 2" ’1 + 2. 

Sol. Let P(/»l = 1.2 + 2.2* > ... + n.2'
= (/t - I) 2’” * 2 

The result is true lor ii = I because
L.H.S. = 1.2 = 2

and • R.H.S = (I - 1)“' +2=0+2
•L.H.S = R.H.S => P( I) is true.

Let the result be true for it - ni
P(X-) = 1.2 + 2.2; +... * A.2;

=(A - I) 2‘•' ► 2

Adding (k + I) 2* ’1 on both sides, wc have
1.2+ 2.2* + ... + A.22 + (A + 1)2*’'

= (k- 1)2* + 2 (k + 1)2*”
= 2k.2"' + 2
= A.2*4,+ 2

This shows that the results is true lor n = k + I. i.e.. 
P(k + I) is true if P( A) is true. Hence by the principle 
of mathematical induction, P(n) is true for all positive 
integral values of n.
’»■ Example 20. Use the principle of mathematical 
induction to prove that

l2 + 22 + 32 + ...+n2 > y. n e N.

Sol. Let P(n) be the statement

I2 + 22 + 32 + ... + nJ > y

•r ’P( I) is true, if I* > y

or if I > - which is true.

.-. P( I) is true.
Let P(A> be true.

, , , , k ‘
I' + 2‘ + 3' + ... + k' > y

k
Let I ‘ 4- 2' + V + .. + A‘= p + y (p > 0) ...(/)

Now PtA + I) is true, if
. . . , . (A * l)‘

I* + 2* + 3’ + ... + (A + I)' > —-—

, (k + I)'
II (I’ + 2' + 3’ + ... + A) + H > I)- =—-—>()

A' • (A>l)’
II _ 4-(A + I)*------- -—>0

A' 1A: + 3 + 6A - A ' - 3A* - 3A - I
II P *------ ------------------ j------------------------- > 0

|Using U)|
(?A * 2)

IIP-*- —-— > 0, which is true because P and

U *■ 2
—— and both positive.

.. PtA + I) is true whenever PtA) is so.
Bv P M I P(n) is true for all n e N. Ans.

Q



ADDITIONAL PRACTICE EXERCISE 2 (c)

1. Prove by using principle of mathematical 
induction
7+77+ 777+ ...+777 ... 7 = ^-(I0"*'-9zi - 10) 

o I
n digits

2. Let u, = 1, u2= 1, + 2 for n £ 1 use
mathematical induction to show that

........ ±Tfi+’5'r

for all n £ 1. ’» .
3. Prove that x(x"'1 - na”" *) + a" (zi - 1) is 

divisible by (x - a)2 for all positive integers a 
greater than 1.

4. Using principle of mathematical induction prove 
that

1-x"*'
1 +x +x:+x’+ ... +x" = . X € N

1 -X

Using the principle of mathematical induction, 
prove that :

1 J_ 1 + + 1______ _ n
' 1.4 + 4.7 + 7.10* +(3/i - 2)(3n + I) ~ 3n + 1

6. 2.1 + 3.2 + 4.2J + ... + (zi + 1)2"'* = zi.2*.

I
+-------

(4n — 1) (4n +3)3.7 7.11 11.15

3(4n + 3) 
[N.M.O.C. 1994 (Set B)]

8. 3.2i + 3J.25 + 3’.2’ + ... + 3".2"*‘ =y (6" - 1).

9. 1.2 + 2.3 + 3.4-*. ... + n(n + 1) =
zi(zi + I) (n + 2)

10. Using mathematical induction, prove that 

"C, "C, + "C, "C,., + ... + mC, "Co = "‘"Cp 

where zn, n, k arc positive integers, and rCc = 0 
for p < q.

11. Prove by induction that 2zi + 7 < (zi + 3): for all 
natural numberszi. Using this, prove by induction 
that (n + 3)‘ < 2"*? for all natural numbers zi. 
Prove each of the following by the principle of 
mathematical induction.

I
12. 1 + 4 + 7 + ... (3n - 2) = ; zi(3rr - 1).

13 J- + -L + J-+ 1 »
1.3 + 3.5 + 5.7 + + (2zr - 1) (2zi + 1) (2n + 1)

14. — + — +-----+ ... +------------------------
1.4 4.7 7.10 (3n+2)(3n + I)

(3n + 1)
15. 1.3 + 3.5 + 5.7 + ... + (2zi - 1) (2/r + 1)

zi(4zr + 6n - l) 
= 2

16. 1.4.7 + 2.5.8 + 3.6.9 + ... + n(n + 3) (zi + 6) .

= (n + I) (zi + 6) (zi + 7).

17. 1.3.5 + 2.4.6 + 3.5.7 + ... + n(n + 2) (n + 4)

= 4 (n + 1) (n +4) (zi + 5).

Prove by using the principle of mathematical 
induction

(2zi - 1)3"*' 

4
1).

I)’.

18.

19.

20.

1.3 + 2.3J + 3.3’+...+zi.3" =

2 + 2: + 2' + ... + 2" = 2(2"- 

1
I + 2 + 3 + ... + zi < - (2n + 

o

+ 3

21. Prove by the principle of mathematical induction 
that 5‘” - 1 V zi e N is divisible by 24.

lA'.Af.CZC. 199J (Set A) ; 1992 (Set A)]
22. Prove bv the principle of mathematical induction 

that 4" 4 15/i - 1 is divisible by 9 for nil zi r N
[N.M.O.C. 1992 {Set B)}

23. If Pfzi) is the statement : the arithmetic mean of 
the numbers zi and zi + 2 is the same as their 
geometric mean, prove thal P( 1) is not true. Prove 
also that if Pfzi) is true, then P(zi + 1) is also true.

24. If zi > I. prove that

25. By the principle of mathematical induction prove 
that for each not natural number zi.

1 + 2 + 3 + + 4 + ... + zi < (2zi + 1)’.
26. For each natural number zi, 6"*2 + 72"41 is

divisible by 43.
27. Prove by principle of mathematical induction

S, = n' + 3ziJ + 5zj + 3 
is divisible by 3 for any positive integer n.

28. Prove by the principle of induction that x2" - y2" is 
divisible by x - v. where n is a positive integer.

29. Show that if the statement
P(n): 2 + 4 + 6 + ... + 2n = zi(n + 1) + 2 

is true for zi = k. then it is true for n = 1 + I can we 
conclude that Ptn) is true for every natural number zi 7

30. Prove by mathematical induction that
2" > 3”. for all zi e N.
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1 . LIMITS

1 .1 Introduction j

We live in a world of change - our values, ideals, hopes 

and institutions are undergoing constant change. It Is Interesting 

to note that certain changes are happening too rapidly, while 

other changes are not occurring fast enough. This illustrates 

that, although the topic of change is important, often the con­

cept of rate of change is more relevant. For example, in the 

study of population growth, it is not sufficient to know that 

the population changed by doubling. We need to know the rate at 

which this doubling took place. It is significant that at one 

time the doubling, of the world population took a thousand years, 

but now the doubling takes only few decades time. The mathematical 

tool for measuring rates of change is the concept of limits.

The concept of limit is needed to pass from the average rate of 

change to the more useful concept of an instantaneous rate of 

change. Indeed It is this concept of the limit, that resulted 

in the invention of Calculus. It may be surprising to discover 

that Newton did not have a complete understanding of the limit.

Many years later Cauchy put the concept of limit on a sound 

mathematical basis. In this section, the approach to the concept 

of limit is initially intuitive and later the mathematically 

elegant Cauchy epsilon-delta approach is given.



There are many topics in school mathematics through which 

limits can be illustrated. For instance consider the problem of 

finding circumference of a circle. The circumference of a circle 

can be taken as the limit of perimeter of inscribed regular polygo 

as the number of sides tend to infinity. Teachers can also use th 

action of a bouncing ball. If ^knjR = 1»2r... is a sequence 

of heights of the bouncing ball, then 0 is the limit of such a 

sequence.

1.2 Limit of a Function :

Consider the function f(x) = — for x / 2.

f(x) is not defined at 2 because the direct substitution 2 for x 

results in 0/0 which is an indeterminate form. Let us c alculate 

the values of f(x) for some values x that are very close to but 

unequal to 2.

From the table it appears that if x is very close to 2, then
y2—4 • ,f(x) = x g is very near 4. We represent this statement in mathe­

matical shorthand as,

limit of f(x) = * -~4x-2 as x x

approaches 2 is 4 or

Lim f(x) =4 
x—? 2

1.98
1.99 
2.01 
2.02

3.98
3.99 
4.01 
4.02



3

Now we can define f(2) as 4. Here we have used the limit pro­

cess to define f(2) though originally f(2) was not defined. It 

is possible to obtain Lin f(x) without finding table of values.

Since f(x) = x-2

X->2
(x-2) (x-2)

(x-2) if x /

= (x+2) if x 2.

Lim f(x) = Lim (x+2) = 2+2 = 4
x—*2 x-/ 2

Since limit of (x+2) as x tends to 2 can be obtained by 

substituting x=2 in x+2.

Exercise: Find (i) Lim 
x-+ 3

x^-5x+6
x—3

X / o

Now we provide intuitive definition of limit of a function.

Definition: If f is a real function defined on a set of real

numbers and a in the domain, of f, then we say that limit of

f(x) as x a is a real number 1 If f(x) is very close to 1,

whenever x is very close to a.

We write this as Lim f(x) =1 
x->a

If such a 1 does not exist then we say that Lim f(x) does not 
x-+a

e*i



exist. For instance Lim )'x does not exist.

Next we shall, introduce the iaea cf left hand limit and right 

hand limit of a function at a point. Let f(x) be a function 

aefined as fellows.

f(x) = )'2 x + 2 if x< 2.

= x+4 if x 2

he shall examine whether Lim f(x) exists.
x-—*■ 2

First suppose x—> 2 from the right side of 2 (or x—?2 and x > 2)

and symbolically it is written as x—>2+.

Then Lim f(x) = Lim x+4 = 2+4 = 6 
x—t2+ x—?2

This limit is called as right hand limit of f(x) at 2.

Next suppose x-—-2 from the left side of 2 (or x —2 and x 4. 2) 

and symbolically it is written as x—?2—.

Then Lim f(x) = Lim }'2 x + 2 = y:
x —2- x-t2

Lim f ( x) is called as left hand
x-+2-

Thus Lim f(x) i Lim f (x). In th
x—* 2+ x-r2.

does not exist. Because Lim f(x)
x—? a

Lim t(x) = Lim f C x) when Lim f(
x —ra+ x—^a- x—>a+
is taken as Lim f(x) . Earlier we

x—*a

x 2 + 2 = 3

limit of f(x) -» + OQ C Z. •

s case we say that Lim f(x) 
x—* a

exists if and only if

2case we notice that Lim x -4 
x—r2+ x-2

) = Lim f(x), one of these values 
x—-7s-

9
got Lim x —i A In this

x—h2 ~ = 4’

Lim x2u 
x-~2— x-2 4
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The definition of limit given earlier is intuitive and suffers 

from shortcomings. in the first instance, it lacks mathematical 

rigour and further it is hardly useful in the development of 

theory of limits. We can examine more closely the idea of limit 

so as to arrive at Cauchy's mathematical definition.

Let us begin with Lim (2x+1) = 7. This means that when x 
x—*3

is very close to 3, 2x+1 is very close to 7. Since "close to" 

is not mathematically defined so far, we have trouble in under­

standing what we mean by these words. Therefore, our first

attempt to explain Lim (2x+1 ) = 7 is unsatisfactory. In our 
x—?3

second attempt to explain Lim (2x+1) = 7, we mean that the value 
x—*3

of 2x+1 can be made as near 7 as we wish to have it by making x 

near enough to 3. This leads us to the ’Cauchy definition* for 

limit of a function.

Definition: Lim f(x) = L iff for every £ Q however small
x—-a

there exists £ y 0 such that | f ( x)-L|< £ whenever x is s uch that 

0 < | x-a | < S

Exercise: Use the above Cauchy definition of limit and show that

Lim (2x+1) = 7
x——*3
Solution: Let £ 7 0 be any given number. Then we have to find

S such that | (2x+1 )-7| £ whenever 0 < | x-31 < § •

Now |(2x+1)-7, = 2|x-31 iff 0 <|x-3|<

Mence choose £ = £/2, so that | (2x+1)-7f < £

for 0 < | x-31 S = £/2.

Lim (2x+1 ) = 7
x —*3



£

Exercise; Use the Cauchy definition of Limit and show that

Lim | y2x - 4? = _3
x—* 2‘~"

Solution: Let £7 0 be any given number.

Then |.(y2x-4) - (-3)| < £ iff |72x-1| < S

|(y2x-4) - (-3)|< £ iff y2 |x-2|<£

I (y2x-4) - (-3) I < £ iff 0^|x-2| <2 2 £

Choose & - 2£ , so that | (}'2x —4) - (-3)| <£ £

whenever 0 < | x-2| <_ 3

Hence Lim j )'2x—4 = —3
x->2 -

Now we shall illustrate the use of this definition of limit in 

proving some of the important properties of limits.

Theorem: Lim c = c (c is any constant) 
x—* a

(i.e. limit of a constant is constant itself).

Proof: Let £7 0 be given.

Then | c—c| =0 V x such that 0<|x-a|<£ where <S?D

can be any number. Because |c-c| = 0 is always true for any x and 

so in particular for x such that 0 < | x-a | 5

Lim c = c

Theorem: If Lim f(x) = L and Lim g(x) = M
x—?a x ] a

then Lim f(x) + g(x) = Lim f(x) + Lim g(x) = L+M 
x—? a x —* a x-7 a

(i.e. limit of a sum is sum of limits).
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Proof: Let £7 0 be given. Then ^/2 "y 0.

Since Lim f(x) - L ana Lim g(x) = M. 3y definition of limit there 
x-a a x—a

exist o, 70 and 6, 70 such that

|f(x) - n <_ ^/2 for 0 | x-a | -c S, and

|g(x) - M| /2 for 0 Z. | x-a | <

Let £ be the smaller of £, , S’, then1 ' c.
|f(x)-L| < ^/2 ana |g(x)-M|<_ £/2 for 0

Now |f(x)+g(x) - (LtM)| = |f(x)-L) + (g(x)-M)|

I f ( x)-L| 4- I g(x)-M|

< £-/2 + £/2 V x such that 0<|x-a]^~S*

Lim f(x) + g(x) = L-rM = Lim f(x) + Lim g(x)
x-?9 x—*a x-ra

On the same lines as acove some more results on the limits may be 

proved. These results are given at the end as exercises.

Next we shall explain limits at infinity ana infinite limits.

Let f(x) = y x

Let us examine behaviour of f(x) as x approaches zero from right

side. The closer x is to zero, the larger f(x) is. In other

words, as x-?0 + , f(x) goes on increasing without bound. In this

case, we write Lim /x = 4-00 (Read » as "plus infinity"), 
x—0

Similarly as x—>0—, f(x) goes on decreasing without bound and

we write Lim f(x) = Lim yx = -co 
x—? 0- x->0-

(Read ’-co’ minus infinity).
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Here, cx> is a symbol snowing tne phenomenon of growing larger 

and larger without bound. Similarly - czs is a symbol showing the 

phenomenon of decreasino without bound. Thus c*° and —-co are not

numbers.

Next let us consider Lim j'x. As x grows larger and larger the
X—’to

values of }'x are close to zero. Therefore, we write Lim /x = 0.
x —* <s-

Also asx—yx_>o and so we write Lim yx = 0 
x —

However, we shall not attempt formal aefinitions of the above 

type of limits.

£xercises :

Use the Cauchy definition of limit to prove the following results.

1. If Lim f(x) = L and Lim g(x) = M then, show that
x —> a x —r a

i) Lim f(x) - g(x) = L-M 
x —* a

ii) Lim f(x) . g(x) = L.M 
x a

iii*) Lim f(x)/g(x) = L/M, provided M, r 0. 
x — a

2. If Lim f(x) = L and K a constant, then show that
x -* a

Lim K f(x) = K.L. 
x -i a

3. Domination Principle

Let Lim f(x) = Lim g(x) = L 
x—->a x—' a

Suppose f(x) <_ h(x) g(x) V x.

Prove that Lim h(x) = L 
x —* a



04. Use Lin yn = 0 to prove that i) Lim Yn =
n —»o n —? co

ii) Lim yn2+n+1 = 0

5. Given h(x) = —-----------
x -2x-3

Find i) Lim h(x) ii) Lim h(x) 
x —'> o x -? 1

iv) Lim h (x)
X —* QO

iii) Lim h(x) 
x —> -1

2 n 1
6. Consider the infinite geometric series a+ar+ar +..+ar +..

If S = a+ar+...+arn“1 , define S = Lim S
n « n n —* o>

If |r| < 1, then prove that S = a/1-r

7. Consider the circle of radius r. Use the formula for the area
2

A = Tf r and show that the circumference C of the circle is 

given by the formula C = 2W r.

8. Evaluate the following : 

i) Lim U+x)3 - (1-x)3

i i) Lim 
x_> 0

iii) Lim 
x —f-3

sj a+x - j a-x
x

1 _ x
x 3

X—i

9. Prove that Lim 
x-> 0

x « e -1

10. Show that Lim a -1 . ,
x —~ 0 T~ ’ i09ea

= 1



2. COfJTINUITY AND discontinuity of functions

2.1. Closely related to the limit concept is the concept of con­

tinuity. We begin with the assumption that you have some idea of 

continuity. Ourpurpose is to lead you from an intuitively concept 

to an appropriate mathematical definition through a discussion that 

primarily follows the historical development of continuity in 

mathematics.

Consicer first the functions f(x) = x, and

g(x) = l-^-for x / 0. We observe that the graph of f(x) can be 

drawn with an uninterrupted stroke of the pencil, whereas the 

graph of g(x) has a gap at C.
lY

f qO

o

' y1
riq- 2.

Intuitively we feel that the graph of f(x) is continuous while the

graph of g(x) is not continuous as there is a gap in the graph at 0,

In fact g(0) is not defined. Even if we define g( 0) =0 still the

graph of g(x) is not continuous. The reason is that Lim g(x) 
x—* 0

does not exist. Hence one requirement for continuity of a function

say h(x) at a point *b* is that Lim h(x) 
x—} 6

must exist



Now consider another function defined as follows :

i)

f(x) = x if x / 0 

i 2 if x = 0

Here Lin f(x) = 0. Even though Lin f(x) exists the graph of f(x) 
x > 0 —"*

is not continuous at 0. the reason is that Lin f(x) / 2 = f(0).
x—0

If we alter the definition of f at 0 and define f(3) = 0, then 

f(x) becomes continuous at 0. From these illustrations we conclude 

that a function f(x) is continuous at a point c if

ii) f(c) is defined andLin f(x) exists, 
X -*• c

i ii) Lin f (x) = f (c) 
X-5» C

Now we are in a position to give the mathematical definition of 

continuity of function at a point.

Definition : Let f(x) be a function defined in an interval

containing the point x«. Then f is said to be continuous at x1

iff i) f(x.) exists, ii) Lim f(x) exists iii) Lin f(x) = f(xp 
x->x1 x-*x1

If any one of these three criteria is not met, then f is said to 

be discontinuous at x^. Earlier we gave Caucny definition for 

limit of a function. Now we shall use this to give another defini­

tion of (usually called epsilon delta definition) of continuity.

pefInitlon : Let f(x) be a function definec in an interval contain

ing ’a'. If f(x) exists then f is said to be continuous at a iff 

given c- 0 -3 S 7 0 such that

| f (x) - f(a)|<t V x with 0 < | x-a|



2.2 Continuity cf a function on an interval

Let f : I —~ R (r being set cf ail real numbers) be a function

defined on an interval 1. Then f is sale to be continuous on 1 iff 

f is continuous at every point of 1. Thus f is not continuous on I 

iff g x CI such that f is not continuous at x.

For instance consider the identity function f(x) = x aefined on any 

interval 1, then f is continuous or. I. Because if a is any point 

of 1, then f(a) = a and sc f(a) exists. Also

Lim f(x) = Lim x = a.
x a x -— a

Lim f(x) = a = f(a) 
x —*a

f is continuous at a. But a is an arbitrary point of I. Hence 

f is continuous at every point of 1 and so f is continuous on 1.

Now we shall prove an important result on limits which is quite 

useful in deciding whether or not a given function is continuous 

at a point.

Let fix) be a function defined in an open interval containing 

a point 'a'. ^hen when x —> a, x may approach 'a’ through left side 

of a (or through those values of x for which x—-a) or x may approach 

a through right side of a. if x approaches a from left, side we 

write x—* a - similarly x—-a + means that x approaches a from right

side



Theorem : Lim f(x) = L (L is a real number) 
x—*a

if and only if Lim f(x) = L = Lim f(x) 
x—*a+ x—ra-

Prcof: First suppose Lim f(x) = L ‘
x—? a

Let £7 0 be given. Then -z % / 0 such that 

|f(x) - L| < £ whenever 0 <. |x-a| S

If a < x < a+ C t then O^|x-a|^S and so

Jf(x) - L|<£ . Hence Lim f(x) = L
x —> a+

Similarly, Lim f(x) = L 
x—* a-

Conversely suppose Lim f(x) = Lim f(x) = L 
x —a+ x—? a-

Let £7* 0- 'here exists £, ~O such that if a<x <_ a+S, 

then | f (x) - L| £ . ^lso ol such that if a - £ < x L a 

then | f ( x) - L| < £,

Let J = min • Then if |x-a|-<S

either a x or a- x <_ a so that | f (x) -L|

Lim fix) = L 
x —* a

2.3 Discontinuous functions

DefInition : A function y = f(x) is said to be discontinuous at 

x = a iff f(x) is not conti nuous at a.

The discontinuity of f(x) at x = a can occur in any one of the 

following ways.



1 Lie f(x) does not exist, 
x —^a

2. Lim f(x) exists but is not eaual to f(a). 
x—> a

3. Lim f(x) is infinite, 
x—^a

Now we shall illustrate these possibilities by means cf seme examples

Illustration 1 ; Let f(x) be a function defined on _3,2J as follows:

f(x) = X V x L?»1)

= X+1 V x £ (1,2]

f(1) = 3/2

As x approaches 1 from the left 
siae (i.e. x—*1 -) we have

Lim f(x) = Lim x = 1
x —+ 1 x—* 1

As x approaches 1 from right siae,

we have, Lim f(x) = Lim x+1 = 2 
x—>1+ x—* 1

Thus Lim f(x) £ Lim f(x) 
x —?1 - x 1 +

In this case Lim f(x) does not exist because if 
x—

it exists then Lim f(x) = Lim. f(x) = Lim f(x) 
x——>1 — x—+1+ x—*1

Such a discontinuity is called as ordinary discontinuity or 

discontinuity of first kind of f(x) at x = 1.
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Illustration 2

Let f(x) x = x \/xf(o,2j and x 1 

= 2 if x = 1 •

Then Lin f(x) = Lin f(x) — Lin f(x) — 1 
X-^1+ X 1- X-?1

But f(1) = 2.

Hence Lin f(x) 5? f (1 ) 
x —1

Hence f is disconti nuous at x = 1 .

But this discontinuity of f at x = 1 can be removes by altering the 

value of f(1).

instead of defining f(l) = 2 if we define fO) ~ •» -hen f becomes 

continuous at x = 1.

Hence this type of discontinuity of f is called as rsnovable 

d iscontinuity.

illustration 3
if neither Lin f(x) nor Lim f(x) exist then

f(x) is said to have a discontinuity of second kinc at x = a• 

For instance define a function f on j_0, ij by, 

f(x) = +1 if x is rational

= -1 if x is irrational.

Then both Lin f(x) and Lin f(x) do not exist, 
x—>/2+ x-y/2-

Hence f has second kind discontinuity at x = */2.
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Illustration £

If one of the two limits Lim f(x), Lim f(x) exists 
x-^a-r x—-a —

while the other does not exist then the Doin': x = a is called a 

point of mixed discontinuity for f.

For instance define a function f(x) or. 1,2 ; as fcilows

fix) - X for 0 < x < 1

fix) = 0 if X is rational 1 x £ £,2J

= 1 if x is irrational J

Then Lim f(x) = 1 but Lim f(x) does not e>cist.
x-^1I x-M +

Hence f has mixed discontinuity at x = 1.

Illustration 5 If either of the limits Lim f(x). Lim. f(x) 
x—*a- . x — a—

is infinite then f(x) is said to have an infinite discontinuity

at x =a.

Consider f (x) =}'x V x £ <0,1~|

= 0 if x = 0

Then Lim f(x) = on - ;herefore, f has an infinite discontinuity 
x—70+

at x = 0.

EXERCISES :
1. Let fix) = aL-cxLx2-3 = x # K 

Is f continuous at x = 1?

Explain the type of discontinuity f has at x = 1 if f is 

discontinuous at x - 1 .
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2. Let f(x) = —x------
x-1

Then find out the values of x at which f(x) is continuous.

3. Let f(x) = for x / 0, f (0) = 1.

Examine the continuity of f(x) at x - 0.

4. Find the points of discontinuity of the function

= (X-r2) (x-4)

5. If f(x) is continuous at ’c’, then show that there exists 

6" 7 0, such that f is bounded on (c- S* , c+£ ).

6. Give an example of a function defined on a closed interval 

such that the function is discontinuous at every point of 

that interval.

7. If f(x) is a continuous function on Qa»bJ then show that 

f is bounded on £a,bj •

8. If f(x) is continuous on fa,b] and f(a)^ 0, f(b)<0 then 

show that f(x) = 0 for some x (a,b).

9. Let f(x) = 2x+1 when x<M

= 3 when x = 1 .

= x+2 when x > 1.

Show that f(x) is continuous at x = 1.

10. Let f(x) = x when 0 < x 1

= 3 when x — 1

= 2x+1 when x 1

Examine the continuity of f(x) at x = 1 .



2 . DERIVATIVES

3.1 Introduction :

Newton anc Leibnitz had been able to solve independently the 

two basic problems viz. finding the tangent line to £ curve at any 

given point and finding the area unoer a curve. a he tools that 

Newton and i-eibnitz inaepencentiy invented to solve these two basic 

problems are now called the ‘aerivative’ and the ‘integral’. 

Moreover, one of the great bonanzas of history is that the 

aerivative and integral which were invented to solve two particular 

problems, have applications to a great number of different problems 

in diverse academic fields.

The power of calculus is aerived from two sources. First, 

che derivative and the integral can be used to solve a multitude 

of problems in many different acaoemic disciplines. The second 

source of power is found in the relevancy of the calculus to the 

problems facing mankind. Among the present day, applications of 

the calculus are the building cf abstract models for the study of 

the ecology of populations, management practices, economics and 

medicine•

2.2 Gradient of a curve ;

The gradient of a curve at any point is defined as the 

gradient (or slope) of the tangent to the curve at this point.

An approximate value for the gradient of a curve at a point can 

be found by plotting the curve, crawing the tangent by eye and 

measuring its slope. This method has to be used for a curve when 

the coordinates of a finite number of points are known, but its

ecuation is not known. When the equation of a curve is known, an



accurate method for determining gradients is necessary so that 

we can further our analysis of curves anc functions.

Consider first the problem of finding the gradient of a 

curve at a given point A. If 3 is another point on the curve 

(not too far from A), then the slope of the chord AB gives us an 

approximate value for the slope of the tangent at A. The closer 

3 is to A, the better is the approximation. In other worms, as

3—^»A, slope of chord AB---- > slope of the tangent at h. Let us

now consider an example where we can use this definition to find 

the gradient or a curve at a particular point of the curve.

For this purpose, we introduce the following symbolism. A 

variable quantity, prefixed by £ t means a small increase in that 

quantity,

Sx is a small increase in x, 

ovj is a small increase in y.

•‘ere S is only a prefix ana it cannot be treated as a factor.

Now consicer the curve y = x (2x-1) and the problem of 

finding gradient at the point on the curve where x = 1.

If x = 1, y = 1, let A be the point (1,1). Let B be a point on the 

curve very close to A. Then x coordinate of 3 is 1 + £ x 

(where px is very small or ciose to zero).

y coordinate of B = (1 + SxJ ^x) - ij

= (1+=>x.) (26 X + 1)



Slope of AB c increase in y/increase in x.

= (1 ~ x) (2 f X 1 u 1
(1 + ck) - 1

= 2 ( <nx) 4- 3 6^ X

/•
= 2 c x + 3

As S approaches A, 5x —0 

Hence gradient of the curve at = Lim 
B—A

= Lim
Ax

slope

X +

= J

Now we found that the gradient of the curve y = x (2x-1 ) is 

3 at the point on the curve where x - 1. V»e will now derive a 

function for the gradient at any point on the curve. Then we 

can fine the gracienr at a particular point by substitution into 

this derived function. Instead of taking a fixed point on the 

curve, we shall take « as any point (x,y) on the curve. Let 5 

be another point on the curve whose x coordinate is x + x.

Then a is the point (.x + ux, 

The slope of chord AB = (x +

= 2x2 -x 4x Ax - 2 ( -‘x'2-3x

Ex.
= 4x f X -tVx 4- 2 (—£x)^ 

ax

- x (2x-1)

= {j4x - 1 + 2 o xj

Then the gradient at any point on the curve = 

Lim 4x-1 + 2 fx

= 4x - 1



So the function 4x-1 gives the gradient at any point on the

curve y = x (2x-1 ) .

We can now find the gradient of the curve at a particular point 

on y = x(2x-1) by substituting the x coordinate of that point into 

the function 4x-1 . Thus the gradient of the curve at x = 1 is 4.1 -1 

which we obtained earlier.

The function 4x-1 is called the gradient function of 

y = x (2x-1) and the process of deriving is called differentiation 

with respect to x. Since 4x-1 was derived from the function 

x(2x-l), it is called the derivative or derived function of x(2x-1).

Symbolically we write, d/dx ■ x (2x-lf) = 4X_1 where d/dx stands 

for "derivative w.r.t. x of". We also write dy/dx = 4x-1 . Some­

times, we call dy/dx as "differential coefficient of y w.r.t. x". 

The above methoc of finding derivatives is called as "finding 

derivatives from first principles'*.

3.3 Scuatlons of Tangents and Normals :

Now that we know how to find the gradient of a curve at a

given point on the curve, we can find the equation of the tangent 

or normal to the cur/e at that point.

Illustration 1

Find the equation of the tangent to the curve 
2y = x -3x+2 5: the point where it cuts the y-axis 
2

y = x -3x+2 cuts the y—axis where x = 0 ano y = 2.

The slope of the tangent at (0,2) = the value of dy/dx when x - 0.



= c/ax I x2-3x-i-2 J = l2x-3j = -3 
L "x=0 x=0

Thus "the tanoent is a line with siope —u and passing through (0^2). 

So its equation is y-2 = -3 (x-0).

Hence the desired equation is y = -3x-r2.

Illustration 2
2

Find the equation of the normal to the curve y — x + ux—2 a<- 

the pcint where the curve cuts the y—axis.

As shown in the illustration 1, the slope of the tangent 

to the curve at (C.',2) is -3.

Hence the slope cf normal to the curve at (0,2) is

Hence the equation of normal to the curve at (0,2) is given by 

y-2 = }'3x or 3y = x + 6.

Exercises :

. Differentiate the following functions w.r.t. x from first 
principles.

i) y = x2 ii) y = 3x2, iii) y = /x2 iv) y = x3+3 

2v) y = x - 2x + 1

2
2. Find the equation of the tangent to the curve y = x +&X-2 

at the point where this curve cuts the line x = 4.
9

3. Find the equations of the normals to the curve y = x -5x+6 

at the points where the curve cuts the x-axis.

4. Find the coordinates of the pcint on y = x2 at which the

gradient is 2. Hence find the equation of the tangent to 
2 Ly = x wnose slope is 2.



• Find the value of K for which y = 2x + K is a normal to

y =
,2 Z.X —3.

6. F ind the equation c f the normal to y = 2 _ „ .x -ux-rx wnose slope

is 2 •

7. Find the equation c t the tancent to y
2= 2x -3x whose slope

is 1 •

3. F ind the equation o 1 the tangent to y= (x-5) (2x+1) which

is parallel to the x-axis.
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APPLICATIONS op mean value thecrem

The Mean Value Theorem for derivative is of great importance 

in Calculus because, many useful properties of functions can be 

decuced from it. A special case of this result known as Rolle’s 

theorem was first proved by Michael Rolle, a French Mathematician 

in 1691. n formal statement of the Mean Value Theorem is given 

here for convenience.

(Ref: Th. ^.10 of the textbook)

Statement : Leo f be a real function, continuous on the closed 

interval ^a,bi and differentiable in the open interval (a,b), 

then, .there is a point C £ (a,b) such that

f(b) - f(-a? =f’(c) (1)
D—a

0 is called a mean vaiue.



Intuitively (1) can be interpreted thus - If we assume f(t) to 

be tne cistance travelled by a movingparticle at time t. Then 

the ierthand side of (1) represents the mean or average speed in 

the time interval a,b and the derivative f\t) on Rhs represents 

the instantaneous speed at time t. (1) asserts that at some instant 

C curing the motion cf the particle, the average speed is eaual to 

the instantaneous speed.

Geometrically, (1) implies that the slope cf the tangent at 
(C. f(c))i in fig.1 . T(C1 j f (C1 )) and (C9 , f(C2) in fig. 2 J is

equal to the slope of the chord PQ.

This is seen in the figure by the fact that the chord PQ is parallel 

to the tangent line at C (in fig.1) (and at C. and Co in figure 2).

There may be two or more mean values also on a given interval, 

depending on the graph of f.

Although the M.V. Theorem guarantees that there will be atleast

one mean value for a function whose graph is a smooth curve on a given

interval, the theorem gives no infomation about the exact location

of these mean values. V<e just know that the point C lies somewhere 
a

between/and b. Generally, an accurate location of C is difficult.

Many useful conclusions can be drawn by simply knowing about the 

existence of atleast one mean vaiue.
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Some Consequences of .Mean Value -heorem :

1 • A generalization of 

Parametric representati 

on £a,bj

Let x = g(t), y = 

he the parametric form

M.V.Theorem can be obtained by 

on of a function whose graph is

f (t) ; a t b .... 

of the given function.

Slope of the chord joining 

( g(b) , f(b)) of the curve =

the end points
f(b) - f(a)
g<o; - g{a)

considering the 

a smooch curve

(2)

(g(a).r(a^P) a r.c

(2)

The slope of the tangent to the curve the point C 
f1 (c)

g (c)
(-)

The Mean Value Theorem asserts that there always exists a mean value 

C in (a.b) for which

f(b) - f(a ,1 ( c) <h (A)
gto; - gka; gi(c)

g1(c) / o

(a) is referred to a Cauc.oy’s M.V. Theorem.

2. Alcebralc sign of the first derivative of a function gives

useful information acout the behaviour of its gracn. Using Mean Value 

Theorem, the algebraic sicn of the derivative of a given function can

be determined.

a



Theorem: Let f be continuous on £a,b~i 

then,

2) ** " (x) V x (a,b), then f is strictly increasinc on

and derivable in (a,b),

La» bJ

b) if f (x) <0 T x £ (a,fa) then f is strictly decreasing cn 

i a, b!

c) -- " (x/ = C 7x £ (a,b), then f is a constant.

Proof : (a) For any points x. and

the .Wean Value Theorem applied to
x2 with a < X] “9 —

f (X ) - f (Xl ) 1
-----------------------  = f (c);

LX1' x: give s

x2 “ X1
- -Ux. < c

Since f\c) is given to be 7 
0 imply incf(x9) - f(x ) z

increasinc on ^a,b ;.

0 and x^-x. 7 0, wesee that
2 1

that ftx^ <.f(x2) cr f is strictly/

Proof of (b) is left as an exercise. 

proof of (c) : Put x1 = a in (t).

».e get f(xo) - f(a)
= "(c) (6)- a

Since f1(c) = 0, (6) — f(x^) = f(2)

Hence f is a constant on fa,bi

V x 9 p- / a , b '

Using this result, it is possible to determine the intervals 

of increase and decrease of functions.

The well-known sufficient condition for the existence of an 

extrema for a function also follows from the above theorem.

3. The Mean Value Theorem can be used to show that : Any two

integrals of the same derived function can differ atmost by a constant



Proof ; Suppose F(x) ano G(x) have the same derivative f(x) 

over some interval a lx <1 b.

Consider K(x) = F(x) - G(x) ... (J) (1)

apply Mean Value Theorem to H(x) on '_a,cj 

where C is : a < c b to obtain

H(c) - H(a) = H1( ) (c-a), a -A. < c.

Since H1(x) = F1(x) - g\x) = 0 by hypothesis, y_ (_d , 0 

H(c) - H(a) = 0 and so H(c) = H(a)

F(c) - G(c) = F(a) - G(a) where 

F(a) - G(a) is a fixed quantity. Let F(a) - G(a) = C 

^ince G £s any vaiUG of x in [a,bj ,

we have F(£) - G(c) = C , VC £ Ja,bj 

- <■ F(x) anc G(x) can differ by a constant C.

Now, F(x) and G(x) which are any two integrals of f(x) can differ 

only by a constant C.

Lifferantlals ar.d Mean Value Theorem

Recall that the diffeisntial dy of a function y = f(x) is 

defined by the equation
ay = f 1 (x) . x = f1(x) dx for small 6x.

;1ere, dy is an approximate value of Ay, we know that,

zA ’/ = f (x + /> x ) - f ( x) ... (2)



Can we improve this approximation 7

Mean Value Theorem helps us to answer this question.

Nov.-, instead of considering x and x+ Ax let us consiaer any two 

values of x say, a and b.

Then we get Ay=f(b)-f(a).... (2)

and oy = f1(a) (b-a) .... (4)

Since cy ^fdy, f(b) - f(a)rtif1(a) (b-a) (5)

X

Vaiue Theorem there exists a C; a < c < b, such 

13 - Slope of tangent at (C, f(c)) = f'(c) •

which is

aB .but by Mean 

that sloDe of

'*• ~ b^b-af^a^ ~ f1 " f^a) = (b“a) f1(c)-.-(6)

a < c < b

Comparing (5) and (6) we see that (6) results from (5) when we replace 

a by c in f (a)pc being the mean vaiue. Also, (6) is an estimate cf 

£y - f(b) - f(a). In fact (6) gives an exact expression for 

A,y or f(b) - f(a), whereas (5) gives a mere approximation to
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f(b) - f(a) or Z^y. Hence we have proved that the approxima­

tion of Ay by the differential dy can be betterec by using the 

Mean Vaiue Theorem. For such an improved approximation of Ay,

&x need not be very small.

(o) if for a given function y = f(x) derivable on (a,b) ar.o 

continuous on fa,bj we further assume that f1(x) is continuous 

on , then f ought to attain its maximum arc minimum values

(bounds) atleast once on [j,bJ. 3y Mean Value Theorem, we have

b- a — v-z ,a < c b .........(*)
(*>now implies that f^(c) cannot exceed max. f^ nor can it be less 

1than min. f on \a,bj . So, we obtain

Least value of f1 x f(b) - f(a) , . _1
on Qa,bj < ------------ a ---- ^reatest vaiue of f on

or

Min f1(x) < a'°‘ < Wax f‘(x) x £. jja.bj

* ... (1 )

( 1) can now be useo to restate the .Mean Value Theorem as follows : 

i he mean value of a continuous function on a closec interval must 

actually be a value attained by the function.

(1 ) can also be used to estimate the value of a function at a given 

point when a and f ' are known.



Assignment Problems

1 . Use Mean Value Theorem to aeauce me following inequalities : 

Sin x - Sin y I z I x-y Ia)

b) ny n-1 / \ / n n n-1 / \(x-y) £ x _y nx (x-y)

if 0 < y <. x, n= 1,2,3,....

2. The function y = (--x^j, -3 <1 x 2 has a horizontal tangent

at x = 0 even though the function is -not differentiaole at x=-2 

ano x=2. Does this conzradict Mean Value theorem? Explain.

3. A mozorist crove 30 miles during a one hour zriz. Show that 

the Car's speed was eoual to 30 miies/hour atleast once ourina 

the trip.

4. Show that

ox

even thouah

— \ =
X-r 1

. -1

c_
ax x-1

x+1

y
x

X + 1

Explain. . . ' ~

5. Show thaz the Mean Value Theorem can be given r

hj - f(x? = f1 (x -r 0 h) , 0 < 0 < 1 .

Determine © as a function of x anc n when

he eauation

a) f(x) = x

c) f(x) = loo X,

(b) f(x) = e

x 0



DERIVATIVE AS A RATE MEASURER.

Consider a particle P moving in a straight line. Its motion 

can be described by the function

S = f(t), where S is the position of p at any time instant t. 

Let V be the Velocity cf the moving particle p, at the time instant 

t. We wish to obtain V as the derivative f*(t).

Recall that the average velocity of ? in a time interval At

is the difference quotient it ana

As = f(t + A.t) - f(t) = (S + A S) - s 
+ A zi - tAlt (D

V, the Instantaneous velocity of ? at time t. is now comouted from

the values of t ■ tor progressively smaller values of At.

This leads to V as lim —

f(t + A. t) - f(t)or V = Lim 
Ab

(2) Implies that when the position function S = f(t) of a movirg 

particle is known, the rate of motion of the particle w.r.t. time 

can be given by the aerived function f1(t).

= f‘(t) (2)

(1 + zi t; - t

When the motion of ? is uniform, the 

represents the instantaneous velocity, as 

remains constant at ail instants of time.

average velocity itself 

the velocity of motion

If P moves with variable 

differs with differing values 

time-interval of length zero; 

time) reduces to

which is meaningless. However

velocity, then average 

or At. By taking an 

(an instant is
) .

q for a given instant 

, for small values of

1 -4. A svelocity —- 

instant 't* as 

a point of

time 't’,
^s

’ ZAt

at

of

gives

a



approximate values of instantaneous velocity V. Hence ii is 

reasonable to define V with the aic cf the limit concept. Thus,

V = lim = f1(t)

Note: V is independent of the increment jit.but depends on the

value of t and the type of function f(t).

Variable Physical magnitudes as derivatives; More examples.

1. Acceleration ; When the velocity function \3 = f(t) of a 

particle performing non-uniform motion is known, the instantaneous 

rate of change of its velocity (acceleration) is computed by

Acceleration = — = f (t) = Limat Z.t -A- 0 At when the

Quotient a y 
At

= f (t 4- At) - f (t) 
A t is the averaae acceleration.

then, C = Lim C = Lim , aV

2. Heat Capacity: as a derivative

Let a = H(t) give the quantity of heat c, absorbed by a

physical body when heated to the temoerature t. Heat capacity C 

is the rale of change of the quantity of heat absorbed w.r.t. 

temperature. C is expressed as a derivative. If Average Heat 
Capacity bav is the quotient Aq/ /yt,

Ac = Lin H(t 4 &_t) - HU)
At -? o Ar «> At o A -

=



35

3. Reaction rate of a chemical reaction

Let the function m = G (t) represents the mass of a

chemical substance entering into a chemical reaction curing time t.

The rate of change of mass of the substance w.r.t. 

is called the reaction rate. This can be expressed as

the time t

a derivative .

if average reaction rate R for the time interval At is 3 V
given by the quotient

Am = 3 (t + -3(t)

Then the reaction rate R for a given amount of substance at time t 

is

R = Lim ■m

zi-lr -R’t-
Lim a = /(t) 
Al- -> oav

The above examples show how derivatives are useo to exoress 

certain variable physical magnituces as rates of chance w.r.t. seme 

other physical magnituces.

In general, the derivative of a function estimates the rate

of change of a given function. Hence

f (x) = Lim i*. x) - f(x)
A.3C—> Q A x

gives the measure of the rate at which f(x) cnanges with respect to

x, at a given point x.
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Related rates - Problems :

Before attempting to solve seme problemswe recall the chain 

rule, as it is often tailor-made in solving the related rates problem;

If Z

then cz 
ex

f(y) and y = g(x)

cz dv
cy * ex (D

where cz
ay

1 \ a v= f (y) anc — x 1 ' ex

(1) TeJL Is us tnaz the rare

of the £ L e of cnanae of Z

w. r • x.

= g'(x)

of change of Z w. r.t.Xis 
w.r.t. y anc the rate of

the proauct 

change of y

Problem 1. A variable right triangle ABC in the xy-plane has its

right angie at the vertex 3. a fixed vertex at the origin and
*7 2the third vertex Z restricted to lie on the parabola y = 1 + ~ x . 

The point 3 starts at (0,1) at time t = 0 and moves upward along 

the y axis at a constant velocity of 2 cm/sec. How fast is the 

area of the triangle increasing when t = 7/2 sec 7

Solution: Clearly tne moving vertex C of the expanding triangle

has for its cooroinates C (x,y) where x is the base and y the

height of the triangle, x and y are both variables. C(x,y) satis- 
2fies the equation y = 1 - 7

30 Note th-t the triangle

remains right angled while varying in its size.

The velocity of the moving vertex 3 along y axis (= dy/dt) 

is a constant (=2 cm/sec)tThe equations relating the variables 

x, y and t are

(J) t • z Area h = y2 xy
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(2) y = 1 +
7

36
2X

(32 y = 1 + 2t

(2? 7x2 = 7 2t

11'e must f ind dA
at at t = 7/2 sec.

d A 
a t = y2 (x.dy/dt + y.dx/dt)....

Substituting x = 6 and y — 8, (found iron (3) and (4) for t 7/2) 

anti ^sing the values p~r = and = 2 in the equation (5)

We obtain ^9 = —| cm^/sec at 7/2 = t

2
The triangle is increasing its area at the rate of 66/7 cn /sec.

problem 2. stone is cropped into a quiet pona anc waves move in 

circles outward from the place where it strikes, at a speed of 3” per 

second. At the instant when radius of one of the wave rings is 

three feet, how fast is its enclosed area increasing ?

Solution: Radius r ana area A are

the variables. The equation relating 

the variables are

A =TTr2 so that 2'iir^

The speed of the wave outward 
drthe raaius increases = —r

from the center is the rate at wnich

dr _ qji 
at J

increase in area =

/sec. At r = 3 the rate of

= 2 3. ± = 4.71 sq. ft/sec.



Problem 3 : Water runs into conical paraffin paper cup five inches 

high and 3 inches across the top at the rate of one cubic incn per 

sec. When it just half filled, how rapidly is the surface of the 

water rising ?

Solution: The height (H) and the diameter (D) of the conical cup are

the given constants. Let h be the height of the surface of water in 

the conical cup, when the volume of the water already in the cup is V. 

h and c (the diameter of water in the cup^are both variables.

The rate of increase in the volume of water = rate of inflow of 

water rnto the cup = dv/dt = 1 cubic inch per second. The rate of 

rise in the surface of water in the cone = rate of increase of 

height h = dh/dt

V - Volume of the conical cup = T u = 11.7d 12

1 V 11.7
2 2 

when first half filled.

— 5.85 cu. inc. is the volume of water in the cup

We must find dh/dt when v = 5.85 and dv/dt = 1. 

V, Volume of water in the cup =
H d2h

12
hd2 = 12 v

TT
(Dv
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(1) relates the variables h and V, but also contains 'd 

We must exDress d in terms of h or V.

— — — — 6We have h

d = .on (2)

Using (2} in (1 )
h. (.26 h2) = = .26 h3

h = )S- 
3 CT

w

7 3After computing cube roots, we can write h = 2.2 V‘

dh

at

.74 dV

.74

J_ -2/3 dV

dVwhen V = 5.35 (half filled) and ~ = 1

77 2 .1 = .74 = .23 in/sec.
3/ (5.35)

• I
9«=> 9

d h

, u I

Problem 4: A balloon is rising vertically from the ground at a 

constant rate cf 15 ft/sec. An observer situated at a point p 

160 ft away from the point of lift-off tracks it. Find the rate 

at which the angle at P and the rance r are changing when the

"p ( o oSwrver/
IGO -ft



Solution: Variables ar

From the figure, tan G

Dif f eren

9
Sec^G .

iating

cG
Gt ”

(1 ) or.

1
160 *

e angle G and the range r,
_h__
1o0

both sioes v-.r.t. t

dh
at ’ ’ *

(1)

At h = 160 ( 1 ) gives tan G = 1 r\v — " /4./

S ec“G = ( o \ — o • C*
' ~ GT /sec 1 / L ri. v <—•

*• £ = ,, .1 ■■ 1 c dG 15 rad/sec. = racians/sec.1 oO x at 320

Angie P is increasing at t he rate cf 3 -adians/’sec when h = 160 ft
04

Nov, to fine the rate cf c.nanoe of the range r

2 2 2From the figure, h + 16C~ = r 

(Note n anc r are variaoles) 

differentiating (3) w.r.t. t.

(3)

2h k dh/d t = 2 <•

when h = 1 60, r = y 160^-1602 = 160 vT

dh
ct = 15 ft/sec.

c± 160 4t 15 15 kP2
□ t lo0-r- ' " /7 2

15 J~2

ft/sec.

Range r is varying a he rate of

(-i)

f t/sec2



A step bv step guide to solve related rates problems :

1. Draw a figure. Name the variable ana constant magnitudes.

Label these in the figure.

2. Mark the variable/'variables whose rate/rates of change ycu 

must find.

3. Form equations relating variable and constants.

4. Substitute known values (if necessary) and differentiate.

Obtain a single equation expressing the rate that you want 

in terns of the rates and quantities already known.

Problems for Assignment :

1 . Suppose a rain drop is a perfect sphere. Assume that through 

condensation, the rain arcp accumulates moisture at rate 

prooortionai to the surface area. Show that the radius 

increases at a constant rate.

2. A baliocn 200 ft off the grouna and rising vertically at the 

constant rate of 15 ft/s. An automobile passes beneath it

3 vg i ’ * ng along a straioht road at the co ns ant ~ a e o x A^ni/hour. 

How fast is the cistance between them changing one seconc 

later ? (r»ns. J3.7 ft/sec).

3. A light is at the top of pole 50 ft high, a ball is dropped 

from the same height from a point 30 ft away from the height.

How fast is the shacow of the ball moving along the grouna ’/2 

seconc later 7 (Ans. 1500 ft/sec.).



A. Two ships A anc B are sailing straight away from the point D 

along routes such that the angle aOB = 120°. How fast is the 

distance between them changing, if at a certain instant DA=S miles? 

Ship A is sailing at the rate of 20 miles/hr and ship B at the 

rate of 30 miles/hr ? (Hint: Use law of Cosines) 260/37 miles/hr.

5. A particle is moving in the circular orbit x +y =25. As it

passes through the point (3,4), its Y—coordinate is aecieasing 

at the rate of 2 units per second. How is the X-coordinate 

cnanging ? (y\ns; 8/3 units/sec).

Additional Problems for Assignment :

1. Find the height of a right cone with least volume circumscribed 

about a given sphere of radius R. (Ans.4R)

2. It is required to make a cylinoer, open at the top the walls anc 

the bottom of which have a given thickness. What should be the 

dimensions of the cylinoer so thatfor given storage capacity, it 

will reouire the least material ? (Ans. R — 3 V/R is the inner 

radius of the base, V = inner volume).

3. Cut of sheet metel having the shape of a circle of radius R, cut 

a sector such that it may be bent into a funnel of maximum 

storage capacity. (Ans. The central angie of the sector = 2 ffj2/3

4. Of all circular cylinders inscribed in a given cube with side a 

so that their axis coincide with the diagonal of the cube and the 

circumferences cf the base touch its planes. Find the cylinder 

with maximum volume.



5. In a rectangular coordinate system a point ,Y ) is lying

in the first quadrant. Craw a straight line through this

point so that it fonts a triangle of least area with the

positive directions of the axis.

(Ans. X/2X + Y/2Y = 1 ).' o ' o
2

6. Given a point in the axis of the parabola Y = 2px at a 

distance of a from the vertex, f inc the abscissa of the point 

of the curve closest to it. (Ans. X = a-p).

7. Assuming that the strength of a beam cf rectangular cross-section 

is directly proportional to the width and to the cube of the 

altituce, fine the width of a beam of maximum strength that may 

be cut out of a leg of diameter 16 cms. (Ans. wicth = 8 cm).

8. a torpeco boat is standing at anchor 9 km from the closest 

point of the shore. rv messenger has to be sent to a camo 15 km 

(aiona the shore) from the point of the shore closest to the boat. 

Where should the messenger lane so as tc get to the camp in the 

shortest possible time ? (if he does 5 kms/hr walking anc 4 kra/hr 

rowing). (Ans. at a point 5 km from the camo).

9. Show that the volume of the largest right circular cylinder which 

can be inscribed in a given right circular cone is 4/9 the 

volume of the cone.

If sum of the surface areas of cube ana a sphere is constant, what 

is the ratio of an edge of the cube to the diameter of the sphere

when a) the sum of their volumes is a minimum? b) the sum of

their volumes is a maximum ?



11. A lamp 50 ft above the horizontal ground and a stone is

cropped f:rem tne same height from, a point 12 ft away from

the lamp. rind tne soeed of the shadow of the stone on the

ground when the stone has fallen 1C ft.

12. The volume of a certain mass of a gas unoer pressure p lbs wt/sq

inch is v cu.inches where PV = 120C. If the volume increases

at the r a *:e of -0 cucic incnes/min. fine tne rate of change

of pressu:re when vol = 20 c.inches,

(Ans. 120 lbs/mj.nJ.

13. A circula:r clot of ink on a blotting paper expanas in suon a

way that the radius r cms at t secs is given by

1
9

et
rind the :rate at wnich the blot is increasing at the end of

2 seconcs. (Ans. 2C79T x



DIFFERENTIALS AND APPROXIMATIONS.

In this section, we attempt to define derivative as a 

quotient of two quantities called differentials and see how this 

definition is useful in carrying out approximate calculations.

Recall that, derivative f1(x) of a given function y = f(x) is 

defined as the limit of a quotient,

i.e. f1(x) = lim * dY/dx
Ax-^0

Note that f \ x) itself is not a cuotient •

It is wrong to interpret

Where cy = lim Y and 
Ax -? °

This interprscation leaas

However, using the notion of derivative as a limit, it is possible 

to define a new quantity ’dy' called the differential of y so that 

the quotient dy/dx will indeed become equal to the derivative f1(x).

Meaning of differential :

Consider y - f(x), derivable at x.

Then, f1(x) = ay/dx = lim (1)

1) implies tliatj-^ differs from

(or f1(x)) by an infinitesimally small quantity £ ,

^Here ax, £ are examples of infinitesimals).

that dy/dx ds obtained by dividing dy by dx.

dx = lim A x 
A*—? 0

to the result 0/0.



o •

> £

V f1(x) + £ or

(D

The term i,Ax in bein9 the product of the infinitesimals, 

is mucr smaller when compared with the term f\x).Ax .

For __ x sufficiently small, we see that f1(x).yAx is a good 

approximation of Ay -- neglect the term

Now let us define the differential ay of y by ay = f1(x). Ax 

Denoting ax, the differential cf x as /kx itself (why ?)

Vte obtain oy = f \ x) • c* L\ncl d-K - 5c

1 \ d vThe derivative f (x> = tne quotient —

x. the quotient of the differentials dy and dx.

Illustmaticn* 1I) Consider a square of siae x units. An error of .01 

has crept into the measurement of its side. Estimate the eroor in 

its area.

Let us tar.e x = 12 units.

crror in. tne measurement of x = .01 

A i- x = .01
2If the function in question is y = x

then, y = 2x . £ x + ( A x)2 = 2 x 12 x (.01) + (.01)^

whereas dy = f1(x). dx = f1(x). A x = 24x . 01

neglecting (.01) A, y dy.

Error in this estimation is .0001 .
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see the advantage gained 

by dy, consider f(x) 

j^y = 4x3, Ax T 6x2( Ax)2 +

For small y\x, the powers of 

Replacing AY by dy,
dy = f1(x). A x = 4x3 .

by approximating 
4= x

. v 3 / x 44x . ( a x) + ( Ax)

Ax get progressively smaller.

/\ x is a good approximation to Ay.

It is worth noting here, how much simpler it is to compute dy 

as compared to Ay.

i'lhen the functions under investigation get more comolex, the 

usefulness of approximating Ay by dy becomes even more pronouncea.

The geometric meaning of dif frent lal.
Refer to the figure 4.22 given in the text book.

variation of the same figure is supplied here.

Geometrically, the approximation by the differential is the 

tangent line approximation to the curve y = f(x) at a given point 

P(x,y). Note that the tangent to a differentiable curve always runs 

close to the curve near the point of tangency.

From the figure It is clear that y and dy are not the same, 

tthile Ay gives the actual change in the function y = f(x) as x 

changes to x+ ZA x, dy gives the increment in the function represented 

by the tangent line to the curve y = f(x) air P(x,y). In other words, 

if the function y = f(x) were ..'replaced by its tangent line at P, dy 

would be the increment in the function representing tiie tangent 

line corresponding to the increment dx in x. The slope of this



tangent line is f1(x) at P(x,y). he difference in A y 

the vertical portion cf y between the tangent line ano 

of f(x). The less the graph curves, nearer is it to the

anc ay is 

the graph

tangent

line and better, the accroximation is ay to .zx v



£rrors and approximate calculations :

1. Differentials are used to estimate the square roots, cube roots, 

fourth roots ana so on. (Ref. text).

2. Estimation of small errors: Physical measurments using instru­

ments are subject to small errors. Diffaentials are usee to estimate 

the accuracy and the error involved in measurements.

For example, when the diameter (d) of a small steel ball is 

measured by a vernier ana if the reading is correct to —— of an 

inch. The true measurement differs from the vernier reacing by 

—th of an inch.

If ^x is the error in the measurement of a magnitude x, the 

corresponding error which results in y =f(x) is approximately
A y = f\x). x = ay. This error is called the absolute error.

The ratio cf this error A y 

is callea relative error.

to the magnituae y is and

1 00.’
A-.z is callea the percentage error in y.

Now, going back to the problem of steel balls, the actual

measurement gives the diameter as d + A x. The relative error here

is - — . Now we want to fine the corresDondina error in the a
volume of the sphere.

Volume of the sphere = V(d) 

ZtV dV = 3 ft d2.



Hence the relative error in the volume is
-Sr UcC 6 k

AV

A)

cLV
v c<h (X.V 77" ' - H C\

= 2 times the relative error in the diameter.

Examle 1 : if f(x) = x^ - 4x“ + 7x - 5 

find 5(2.99).
I

Here we take x = 3, and ax >01

f ‘ ( x) = 4x~ - 8x + 7

f1(3) = 91, f1(x). A x = f1(3) . ax = -o.9i 

f(2.99) = f(3) + f1(3) - A x

= 61 + (-0.91) = 6C.09 = 60.09

Example 2 : Find the linear approximation to 

f(x) = J1 + 2x near x = 2.

ne must evaluate f(2) + f1(2) (x-2) 

takingAx = (x-2)
f1(x) = i ( l+2x)~y2 . 2 =

7’+2x

Its value at x = 2 is 
f’(2) = —=

1/5

f (2) = JT

4 f(2) + f1(2) (x-2) = 5+7= (x-2)* r



We have f(x)~J"b" + 7=- (x-2) = 5 + — -
rr .rr

1 X 2

□ X

1 C,

Linear approximation or ■+■ 2x = f(x) near 2 is

f(2) + f1(2) (x-2) = (x /f5) +

L

If y = f(x) is differentiable at xq

then f(x)-2^ f(x.) + f\x ) (x-x ) for x near x 
* o o o o 1

^) How accurately should we measure the eacs x of a cube to

compute the volume v = xJ within 1£> of its true value.

Solution : We want inaccuracy Zb.x in our measurement to be small

enough to make corresponding increment AV in volume to satisfy the

inequality
1 1I AvI < 100 1 00x V =

Using differentials, dV = 3x4. x 
„ 2

1 00

A a « '— X. 01 = T? X_
1 001 ’ 3.100

Hence we must measure edge x with an error that is no more than one

third of one percent of the true value.
,0-llSvnu etcj^erenHuxlj dV ■=■ 3‘X?-' A'K

a ,, ..rL. AAV 7^ 5 X. M

| 4: - V-I 1 :}<loo 3 ioo

i ttyrer

iA -v 3,l00

In IfTe. Vn tuts ufr-d.t'Oet'V t 0?^ X_ (rtxlcl n-CC
exeiej. o_ v^Lu:L'



Ass icnmer.ts :

2.

1

Remember that in calculus formulae oresuppcse radian measure
for ancles

3. The width cf a river is calculated by measuring the ancie of

elevation from a point on one bank of the top of a tree 50 feet 

high and directly across on the opposite bank. The angle is

the possible error in

the calculated width cf the river.
4. A given quantity of metal is to be cast in the form, of a 

solid riant circular cylinoer cf radius 5" and height 10n.

If the radius is maae 1/20tn cf an inch too large, what is 

tne encr in the height ?

5. Trie ecge of a cube is measured as 10 cm with a possible

error of one per cent. The cure's volume is to be calculated 

from this measurement. About how much error is possible in 

the volume calculation ?

6. About now accurately must the interior diameter c" a 10 meter 

high storage tank of cylindrical shape be measurec to calculate 

the tank’s volume to within an error of one percent cf its

true value.

7. The radius of a circle is increased from 2.00 to 2.02 meters

a) estimate the change in area

b) calculate tte error in the estimate in (a) as a percent of
the original area



a
4

If f(x) = x -2x+3 and given f(Q) = 4083 find the value of 

f(8.001).
3 29. If f(x) = x -t-x ~x-3, find f(1.09) approximately.

10. bhow that the relative error in the volume of a sphere is

three times the relative error in the radius.
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INTEGRATION

1. Definite Integral and Properties 
of Definite Integral

2. Volumes of Solids by Definite 
Integrals



DEFINITION CF DEFINITE INTEGRAL

Introduction :

Historically, the basic problem of integrals is to find the 

areas and volumes by certain approximation methods. The first 

abstract proofs of rules for finding some areas and volumes are 

said to nave been developed by Eudoxus betv/een 400 3.C. anc 

350 3.0. Later his method of approximation was ceveloped and 

exploited by Archimedes. This method, called method of exhaustion 

is at the root of all modern developments in the theory of measure 

and integral. In the 19th century, this method culminated in the 

theory of Riemann integration, defined by means cf Riemann sums.

In modern times, the method of exhaustion can be stated as 

follows: Let b be a surface of known area s. Also suppose that 

S' is a surface of known area s’ contained in s anc s" is a surface 

of known area s'* containing s. Then s’ _ s < s". The approximating 

surfaces s' anc s" are taken as polygons or sums of slices, mainly 

trapezoidal or rectangular according to the particular figure s 

uncer the method of Eudoxus and Archimeaes. In fact, the definition 

of area as a sum of rectangular areas is in vogue from 16th century A.D

Calculus (both differential and integral) was inventec by 

both Newton ano Leibnitz— independent of each other. Newton, 

influenced by his teacher Barron used calculus to solve the problems 

of dynamics. Thus he conceived all functions as functions of a 

universal independent variable known as time (t). So he had no 

concept of functions of several variables and partial derivatives.



For Newton, the primary concept was that of fluxion (derivative) 

and arose from kinematical consioerations. Newton die not isolate 

the concept of integral; nor he introduced one symbol for integra­

tion. His first basic problem was to find fluxion (derivatives), 

integration was used in a geometric form to find fluents (anti- 

derivatives or indefinite integrals), functions when fluxions 

(aerivatives) are given. Newton basec his theory mainly on the 

fact: The aerivative of a variable area F(x) unaer a curve is the

ordinate f(x) of this curve. For Newton, integration was the 

inverse process cf differentiation, as he was mainly interested 

in the following problem— Given an equality relation containing 

fluxions, find the relation for fluents, which is the basic problem 

to solve ordinary differential equations. He solved these by use of

series.

On the other hand, Leibnitz thought of the aerivative as the 

slope of a tangent, and the integral as summa omnimum linae.

The main purpose of all his work was to aevise a universal language, 

that is, a general formalism for systematisation and organisation 

of knowleage. To a great extent, he succeeaed in creating such a 

formalism for calculus. In fact, the present formalism in calculus 

is mainly his including the integral symbol (a stylised form of the 

letter standing for summa omnimum). The terms constant, variable,

function and integral used in calculus are due to Leibnitz



G.F.8.Riemann in 1954 (published in 1867) gave necessary 

and sufficient condition for the existence of integrals called 

Riemann integral and showed that continuous functions satisfy 

his condition. The definition of integral as a limit of sue of 

areas as given in the text books is due to him.

Resume of the key concepts :

Two important ideas underlie the treatment of definite 
t

integrals in the text: 1. Definite integral j f(x). dx as a 

limit of the sum of areas and 2. Fundamental Theoremof Integral 

Calculus •

Here, we give an alternative treatment of Fundamental 

Theorem of Integral Calculus.

Statement Fundamental Theorem of Integral Calculus

If f(x) is integrabie in (a,b), a < b, and if there exists a 

function F(x), such that F* (x) = f(x) in (a,b), then

( f(x) . dx = F(b) - F(a)

Proof : Let a = xQ < x«j < x2 < .... < xR = b

Then, by the Mean Value Theorem of differential Calculus,

F(xr) - F(xr_,) = (xr - x__,) F (^), xr_,<Cr<.3.,

Taking the sum of the respective sides of the above equations, we

have —

-f

^where £, = xr - xr_,^

= F(b) - F(a) (j)



Suppose that c is the length of the largest cf the sub- 
intervals xr)* Then as -t 0, all the -s will also 

tend to 0. So we have

Lt > F( E ) = F(b) - F(a)

Now f(x) and so F’»x) is integrable in (,a,b). 

Hence
±-

> F ’ ( \ ) '-r - F ’ ( x) . d x = f ( x). dx x— • j
-v

(2)

From (1) and (2) we have
A

(x) dx = F(b) - F(a)
J
C_
The following points are to be notec regarding the above

theorem.

1. This theorem is very useful and important as it gives us an 

easy method of evaluating the definite integral without calculating 

the limit of the sum by establishing a connection between the 

integration as a limit of a sum and the integration as inverse 

operation of differentiation.

t
2. \ f(x) dx is a function of lower limit a and upper limit b,

and not a function of the variable x.

, *■ x
3. In \ f(x).dx the upper limit is the variable x. So f(x).dx 

is not a definite integral, but another form of the indefinite 

integral. For example,

K J f(x).dx = F(x). Then

j f(x).dx = F(x) - F(a) = F(x) + a constant = f(x).dx. 

cu



b
Extended definition of f(x ) .dx

The following definition of f(x).dx is an extension of 

the definition given in the text.

Let f(x) be a bounded function defined in the interval (a,b); 

and let the interval (a,b) be divided in any manner into n sub­

intervals

(a» xp, (xpx2),..., (xr-1 ,xr),... , (xn-1,b) of lengths 

respectively where a X1 < x2 < ........... c xr 1

Xr < •••• < Xn-1 < b.

In each of these sub-intervals select an arbitrary point and let 

these points be such that

*1 = = (xvx2).......... , I<= (xr_,,xr).

........... ' i e <xn-1’b)

Now let Sn = V C,- R-

-r >»

Now let n increase indefinitely so that the longest of the

lengths 1 , > '. . . , c ti tencs to 0. In such a case clearly each of

f E .J. tencs to 0. Now, if in such a situation (i.e.

max. ( -J —* 0), tends to a finite limit which dees not

depend on the manner In which (a,b) is divided into sub-intervals

and the points < < V aiB selected; then this limit

(if it exists) is defined as the definite integral of f(x) from 
<*

a to b and symbolically denoted by i f(x).dx.

In the textbook, for the sake of simplicity, the sub-intervals 

arc supposed to be equal and the points S, . » - - ’

are taken to be the end-points of the sub—Intervals.



Areas of cifficu11 v

Here are solved seme problems the types of wh'ich are not 

discussed in the text.

Problem 1. Evaluate ' xm.dx where m is any real number 1 

a nd 0 < a < b.

Solution: Consider the sub-intervals

(a, ar), (ar, ar~), (ar , ar"),...t (arn"1, arn) of (a,b) where 

arn = b i.e. r = (b/'a/n.

Clearly as n —- •*’ , r = ( — p n—* 1 so that each of the lengths

of the sub-intervals
2 , nar — a, ar — ary •..., (ar — ar""1)

0.i.e. a(r-l), ar(r-l),..., arr> ‘(r-1) tends to

■VZ’
Now by the extenaec aefinition of f(x) . ax.

.lx r J-t )
-,.U^ 1 3 L—•

rv 0 ■» i - 0

V. > I'* j

O Ik

<_ -w

-rr -—I
- it 'c-v-i) p-r

Y —
_ r v.

- L r a > ~
t” k \

'Y

x

-vr£v

-?U

-m4-\

v\ <\{,.uk. k 6,?

c .



{I

k-i \zWv- 1
d

J IL

-L/wV "•’V'
fAZ-*—

<\.

r^\

- LV

V----rl

-> 5
-r*’ hl

-ij
-

{A'
n\ V I

-'j Lr -Y -•
T*> ht

- U-
r—-'

- W\ H 
X, - 0

_ S’""-
'r»\ *-i 

G- ■»«•«.€

rr> +-,

ci . J_
-o\ H \

~m -f

-rr* «*i

'Vrl J- I

Series represented by Definite Integrals 

The aerinition of the definite integral can be used with

profit to evaluate easily the limits of the sums of certain series, 

when the number of terms in the series tends to infinity. The 

method lies in identifying a definite integral equal to series.

In fact,

\ f(x) .dx = Lim h / f (a +■ rhj) where nh = b—a 
< h-^o —

orit jf(x).
n —* *-x> Ax

If a = 0, b = 1, we have

It yn ^f(r/n) = y f(x) . dx

dx



in the above discussion, r takes the values either 

0,1,2,. . . .n-1 or 1,2,3,...,n . These two sets cf numbers

represent the left and right extremities of the elementary vertical

rectangles (columns) in the calculation of area represented by 
-t * u.

\ x(x).cx. (Refer to the definition of (f(x).dx in the text), 
a r-

The following are illustrative examples.

Problem 2. evaluate

It I 1
n -—| n+m n+2m

Solution: The given exoression

-—1
n+nm J

XV

I
( -1

< |t'_

1 +mx by definition of the oefinite integral 
j f(x).dx

= )'m log (1 + ex)

= ym log (.1 - m) - log 1 

1 ym log (1 + m)

Problem 3. Evaluate

1

77, -t • • T c

Solution :

Let « = | Q + i (j + 2 .... (1 + 2

Then It log A 
n —?

= xt i°g d + f )

log (1 + x)
o



Now put z = 1 + x

Then x = 0 implies z = 1 and x = 1 implies z = 2.

So It log -A 
n —* '•*

- flog
wI

= |'z log

z. dz

= 2 log 2-2-1 log 1 + 1

= 2 log 2-1=2 log 2 - log e

= log 4/e

So It A = —
n e

Assignments :

Using the definition of ' f(x).dx as a limit of a sum, 

evaluate the following definite integrals (1 to 10) :

1.

3.

-xe .dx

(ax+b) dx

2. ' x . d x
1\ * •**

4. \ sin x< dx

K. • cos & . dG 6. /"x . dx

7. dx 3. ( ' dx
t >

9. C ex.dx 10. (sec^x.dx
' c

Evaluate the following limits using definite integrals

11. It 
n —

1
n+1 n+2

1 l
n+n

it f-£— 
i—(_n + 1 2 °n+2

+....+ 2 2n +n
12.



13. it
nc+i n°+2'

14. it \
n —=*• /_ n 4-r

- •?,

15. It j 4 <(n-2) -r / f -’ ■»*t -r-)
n .. n

16. It
----- - ;<

751

n
(n+r) ,' -r (2n+r)j-

17. lt I7
I + 2

n

2 \
3 it 1

o.

, 1
n2 

2n /)

18



Answers

2. /3

3. a/2 + b

4. 1

5. Sinb - sin a

6. 2/3

7. 2

8. y4

9. e3-e

10. 1

1 1 . log 2

12.

13. (y3) log 2

14. + (y2) log 2

15. (4/3) f2 - 2/3

16. /3
17. 2e^/2) (W-i)

18. 4/e



PROPERTIES OF DEFINITE INTEGRALS

Here we will discuss and clarify certain important properties

cf definite integrals which have not been discussed in the text. 
j 4

1 . C f(x).dx = ( f(z). dz

O-
Proof :

Suppose that f(x).dx = 0 (x)

Then, we have by Fundamental Theorem of Integral Calculus

5 f(x).dx = 0(b) - 0(a) (1)
■i rv

Also, I f(z).dz = 0(z) and by the Fundamental Theorem of Integral 

Calculus,

f(z).az = 0(b) - 0(a) (2)

From (1) anc (2), we have the result.

This property states that a definite integral is independent 

>f the variables with respect to which the integration is performed

1. \ f(x).ax = n i'(x).dx if f(x) = f(a+x)

‘roof :
\f(x).ax = \ f(x).dx + f(x).dx f .... + ^f(x).dx

X

Set z + a = x. lhen dx = dz

Also, x = a implies z -• 0 and x = 2a implies 
r=- a

So, f(x).dx = j f(z+a).dz = (^f(a+x)dx 

= C f(x).dx

z



Again with the same substitution, z+a = x, we can see that
V- 2_<V

\f(x).dx = j f(z-t-a).oz = \ f(x).dx = \ Hx).dx
-V. rx, ~/-

Similarly, we can show that
. »v

f ( x). d x = 
iT'-h t-

Hence we get the

f (x) .dx = . . .=

resuit.

f ( x).dx f (x)dx

Illustration;

we have

Since cosx = cos (x+ n )

I V
/

x. dx = 6 \ cos x. dx

3. \ ftx).dx = fix).ox + \'~ f(2a—x).dx
- '

G z

Proof :

By formula 7.2 of the textbook

\f(x).ax = \f(x).dx + f(x).dx

Substitute 2a - z for x. Then ox = -dz.

Moreover, when x = a, z = a, ana when x = 2a, z - 0; so

, f(x).ox = - \ f(2a-z) = -f(2a-z) by formula 7.1 of the
-• • v-

textbook - \ f(2a—x)
tl

nence, \ fkx).dx = '« f(x).dx + • f(2a-x)
* j jJ O <■

4. i) y f(x).dx = 2 y f(x).dx if f(2a-x) = f(x) and
r* -»

I’.v-
ii) ( f(x) = 0, if f(2a-x) = -f(x^

o



Proof :

i) t. fix).CX :- \ flx).cx + f( 2a-x).dx by the previous result.

r
r cCv

= j f(x).dx + 1 f(x).dx
o JC3

= 2 \flx).dx

ii)i The proof can be written as in 4 I i).

5 . If fix) is integrable in the closed interval a, b a nc if

fix) 0 for all x in a,b , then fix).ex / 0 (b y a).

Proof :

Since fix) is integrable in , a,b'i fix).ex exists. Since 

fix)/ 0 in a,b in the sub-interval (x . , x ) of j a,b

the lower bound 0, and sc tne lower sum s for the partition

of Pa,b i =/ mr

So 1, which is the exact upper bound of the set cf numbers s, 

is /> 0.
.1 -

Now, since \ f(x).dx exists, t = ; f(x).cx
t

Hence, \ f(x).dx exists.

6. If fix) and g(x) are intecrable in a,b) and fix) > glx) 
* <-

for ail x in r"a,b' then f(x).cx lg(x).dx

Proof:

Let hlx) = f(x) - glx)

Then as f(x> and glx) are integrable in , Hlx) is so.

Also, as fix) >> g(x) in [_a,b] , h lx) 0 in J a,bj .



Applying the previous result, we find that

j h(x). ax y7 0
UL.

t-
i.e. \ (rix) - g(xZ) dx 0

. u ib
i.e. \ f(x).ax - \ gkx).ax 0

tw
a „ e

i.e. jftxJ.dx^ ^g(x).dx
a

7. if f(x) is integrable in (a,b), then 
-i- z
\ If(x)I .dx J J f(x).dx\
G.

P roof:

Let j a x^, x1, xo,...,x 

a ,b
c o' ”1 ’ A2’‘”,An-1 ’ xn “ & 5 beap art it ion of

1 ano let 8 = x - xr r-1*

Then we have

5 J i f J ( >?)' L ■

I ic V) -M -t [ -f uq\ - - -

>\ 4- - -

-t-
A

i (i>



Nov;, let n

‘••'here » xr| and each is clearly positive

• - • >ex, so that max. C

C i.e. each o

Tnen clearly

i.e.
V,
\ ‘i- S

Solved Examples :

The following examples will illustrate the use of the properties 

of the definite integrals in solving problems.

Example 1 :

Show that

\ log sin x. dx = J log cos . dx = (r'/2) log 72

( log sin x. dx

r*'!“ — ~
= /"log sin ( l'/2 - x) . ax

W-
= ' log cos x. dx by Formula 7.^ of textbook

Now if each of the definite integrals \ log sin x . ox and
(.nii.
\ log cos x. dx is taken to be I, then

»\{v
21 = [ log sm x. ax + I i°g cos x . ax 

TT/>-
= (log sin x + log cos x) dx = \ log (sinx. cos x) dx

•-Rh. .
= ; log s~2 -2* . dx = j («i°9 sip 2x - log 2) . dx

'iz.

log sin 2x . dx - ( 11 /2) log 2

Set 2x = u Then dx = du/2.



\'ie have

\ log sin 2x. dx = y2 \ log sin u . du
3 J

«)-
log sin x. dx = \ log sin x . dx by result 4(i)

So, 21 = I - ^/2 log 2

i.e., I = -( "/2) log 2 = ( 'v/2) log 0/2)

Example 2 :
i

Show that ; A_22—U x)gx = 
4, 1 + x

Set x = tan u

Then dx = Aa-C

( ^/8) log 2

Moreover, x = 0 u = 0

and x = 1 u = n/4

So I = log (1 + tan u) cu
_  tr/tf

= ■ log (1 f tan ( ll/4 - u))J

= log ---- -- — • Gu) 1 + tan u
ii ?t

= j(log 2 - log (1 + tan 
■n/q

= j log 2. du - log (1
c

= («/4) log 2 - I

:u = f log (1 +

u)) au

+ tan u) du

So, zl = ( tV/4) log 2

i.e. I = ( W/8) log 2

1 - tan u
1 -r tan u ) du



1 z-

Example 3 :

Show that
n

x sin x--------- ■?-------- ex
it COS X

n

u
Put I = x sm x

I . “"zJ l-t-COS X 

c
ex (1)

Substituting Tf - * *or x

1 = ( (y>-x ) sin ( h -x
2

1 T cos'" ( TV— x)

ex

( —x) sin x
z1 co s X n

'‘dding (1) anc (2) we get

i.e. 1 = ex 12)

I + I = c sin x
J 1 t cos x
o

-ex i.e. 21 = sm x
. 2 1 T co s x

dx

i.e. I = 7T a in x ex
1 4- cos'- X

tz

Set cos x = z. Then dx = cz
-sin x

Also x = 0 — z = 1 and x = f z = -1

So, 1 =T
-I Sin x

--------- ’5
1 + z

cz c z

cz-
3- J 1 + Z -i

-sin' 1 + z'

2 by property (1) of the textbook

[ tan'1 z j

TV (tan”1 1 - tan”1 (-1 ))

i\ ('P TV



i\_

4-

Example 4 :

Show that J x sin x dx = Tl ( cos x . dx

Solution;

I - x sin x . dx = (T-x) sin ( rr -x^ . dx by result No.4 
of the text.

f"
= \ ( rf —x) sin x . dx

7- rT' 7
= h \ sin x. dx - \ xin x . ax

= IK ( '* sin x. dx - I

TT/i.
= IW j sin x . dx - I by result No.4(i) of this booklet.

= In \ sin ( -x) dx - I

irji_
= 2 u cos x . dx - I

■n/j.
i.e. 21 = 2 u ( cos x. dx

0

i.e. 1 = ft cos x. dx

I



Hxar.ole 5 : ,

Show that x sm x , cos x
4 4 4cos x + sin x

Solution :
TT/1

x . sm x. cos x
£ 4cos x + sin x

ax

\ ( *' /2 - x) cos x . sin x
' . 4 4-• sin x -r cos x

o
by result No.4 of the text

'rtf'
r cos x . -m x

4 Asin x + cos x
cix - 1

i-e. 21 = “C cos x - sm x
. 4 4sm x + cos x

cix

2 x2Now, Sin x + cos x = (sin x + cos x)

2

2
CD S X

2
sin‘‘2x = +1 (1 - cos 2x) 

2

So, 21 = sin 2x • dx

t \ /i_

. 4

□ x = 1 o

- 2 sin x .

11 
u Ql - ix

set cos 2x = z. Then -2 $in 2x.dx = dz,

x = 0 v z = 1 and x = TT/2 ==> z = -1

So, 21 x 11
-I

„ TT f - i-2 "vC \ — d z.

-r \

1 H

by result No.1 of the text

4-

\ -V



= AL 
4

= ±L

= IL 
u

tan”1z
L+

tan”' 1 - tan ' (-nJ

=
H t

LV<-- 
i%-y

-'/3

)L
4

i.e. I = l\
16

Example 6 ;

Show that t. e . dt = 0
1 +t‘

The given integral

I = I-j + In, where 1^ s , z ' t*"
1 —- ■ -xe r - I X • e A(r

Now I = :U*
I -rt-a.

2zz . e az
1 + z

where z = -t ( t = —a -=?z = a)

- A-

2z
9 -r2— by result No.1 of the text

1 + z 
t2
:bv rssuxt Nc. 1 of the booklet

1 + t‘

= -I. i.e. + I2 = 0 i.e.) 0
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Assiannents :

Show that f(a-rb-x) =

Snow t hat \ f ( X-rC ) =

Snow that f(nx) ex =
•X.

Snow that

J
o

u/-
(accs“x + b sin

Show that
l \

, xf(sin

ax

77 £a+b)

f(sin x ) ex

6. \ t . sin v ct =

7. Show that
Sin Q 

1 Sin G
. a G = 0

8. Show- that log sin / . dG = - log 2

9. Show that t ;'a2-t2 . dt = 0

10. Show that tt/l.
• _ ie - —

i It.
P T

4-

1 1 . Show that

f(sin x) . dx = \ f(cos x) dx

I o
12. Show that f(xAdx = y2 t f(x ).dx

— CU.



13.

14.

15.

Show that

Show that

Show that

i n.
G"(1-x)ndx = \ xn(1-x)mdx,m 0 , 0

2 2 2 . 2a cos x + b sin x
dx 2afc>

a



EVALUATION 0? VOLUMES OF SOLIDS 0? REVOLUTION BY 
DEFINITE INTEGRALS

Lev Concents

\. Volume of a solid bv revolution
•L_

Let an area bound by the continuous curve y = f(x), x-axis, 

the Lines x = a and x = b. Suppose that this area is revolved abou 

the x-axis. Then a solid of revolution is generated. Here we are 

tc find an expression for the volume of this solid of revolution.

Let P , be the pornts on the curve y = f(x) corresponding to the 

points x_ -j »xt- respectively on the x-axis. Thus the area under the 

curve y = f(x) bietween the points and x^ generates a disc of

thickness E x . ^learly, the volume of this disc can be taken as

T\ [f (x__, )3 °r Cf ( XT^J <



77

Since J xr is very small, and f(x) is continuous, the volume 

of this disc of infinitesimal thickness is given by

S V - T\ [ R-toJ" § x, , wU- -c t, < -

Taking the sum of volumes of all such discs, we have

'V - S l\ f -A < t, < 7*"A v -»

Let n -----> so that max. Z' x____ x 0. Then we have" ° r 7

V
xe V_T\ LkM

0-
i £, - ,

- w -0
-J

2. Suppose that an area is bound by the curve x = g(y), y = c, 

y = d, and y - axis. Let this area be revolved about y-axis.

Then we get a solid of revolution generated by this area. By

proceeding as in (1), vse can show that the total volume of this

solid of revolution is given by 
A-/

v = (fCx2.dy



X

Let AS be a curve which is beinc revolved about £ line CD in 

the plane cf the curve. Then a solid of revolution is generated and 

CD is the axis of this solid of revolution. Now it is required to 

find an expression for the volume V cf this solid of revolution.

Let P anc C be points on the generating curve so that the 

distance PC is an infinitesimal. Draw PR and QS perpendiculars on 

CD such that and S are feet of the perpendiculars. Then the total 

volume of the solid of revolution is clearly given by

Solved Examples :

1 . Find the volume of the solid 

revolving about the x—axis, the

of revolution generated by 
2area bound by y = 5x-x and x-axis.

Solution:

The equation to the curve can be written y = u x-x



(1)

?!

i.e., y = -(x2-5x) i.e. y = - [_( 5,2 25x - j) + —

i.e., y -
25 B, 9

- (x - r

The x-ccorainates of the points of intersection of this curve 

with x-axis, i.e. y = 0 is given by

5x - x2 = 0 i.e., x (5-x) = 0 

i.e. x = 0 or 5 (2)

Considering the information given by (1) and (2), we can draw 

the graph of the generating curve as follows :

The generating curve is a parabola with vertex at (5/2, 25/4) 

ana intersecting x-axis at (0,0) and (5,0). So the total volume 

of the solid of revolution is given by

V = “ft ( (5x - x2)2 dx
e
C(25 x2 - 10x3 + x4) dx

t25 f -

=

= ix'? T\ r tc

= n

= i\
410 X +

ip. 2? -f- -
s J

- o



$

= 6-' • I

_ t 2 £
zC

2. Snow that the volume of a sphere of racius a is 4

X

A sphere is generated by revolving the region bounded by the 

circle
2 2 2 x ^y = a (D

about the y-axis.

So, the volume of the sphere

2 , x -dy

2 .2= \ (a -y )dy = ( a y -
.3 n

= tT
3 n3a - *_ + a3 - -

3 a 3

= )\ \_2a“ -

=



2
3. The area cut off from the parabola y = 4ax, by the chord 

joining the vertex to an end of the latus rectum rotates about the 

chord. Find the volume of the solid so formed.

Solution: The equation to the latus rectum of the parabola
2

y = 4ax is y = 2a. So the latus rectum intersects the parabola
2 2 y = 4ax at points whose x-coordinates are given by (2a)“ = ^ax i.e.

4a4 = 4ax i.e., x = a. Correspondingly, y-coordinates of the points

of intersection are 2 2given by y = 4a i.e ., y = 2a. So the poihts

o f intersection are ('a, 2a) and (a, -2a). Let us consicer the point

D (a, 2a) tor our purpose

Now, CD is the line joining 0 (0,0) the origin ana D(a, 2a). 

The equation to CO is given by

i.e. y 2x, i.e. y - 2x = 0.

Let P (x' 

perpendicular

PQ =

2
y’) be a point on the parabola y*" = 4ax and PQ be 

to CD with Q on CD. Clearly, the length PQ is given by

y* - 2x‘



Now the area shaded in the figure is rotated about CD and 

the volume of the solid so formed is to be evaluaxec.

The elem-entary length along CD is d . ox.

So the volume V of the solid of revolution is given by 

V = "V' PC2. . CX

Hy - 2x
=

, .11 ox , suppressing the oasnes m x ,y

=

= n

2 2 y ~xv * 4x ox

>IX
(4ax - S fax - 4x ) dx

Si — u xJ• VV
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Find the volumes of solids generated by revolving about the x-axis, 

the areas bounded by the following curves and lines.

y = sinx;x=O, x = )\
22. y = 3x - x , x = 0, x = 4

3. y2 = 9x, x = 4

4. x2+y2 = 4, x = 1, y = 0

6. Prove that the volume of a right circular cone of height h and
1 2base of radius r is - r h.

7. An arc of a parabola is bounded at both ends by the latus 
rectum of length 4a. Find the volume of the solid generated by 
rotating the arc about the latus rectum.

8. The area cut off by the line x+y = 1 from the parabola

7x -i- /y = 1 is revolved about the same line. Find the 
volume of the solid so generated.

9. Show that the volume of the solid of revolution generated by
revolving the cycloid x = a (0 + sin G), y - a(1 + cos ©)

2 3about its base is equal to a

10. Show that the volume of the solid generated by revolving the 

cardioide r = a(1 - cos 0) about the initial line is equal to

8rr 3— H a .3
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9 Evaluation or Plane Areas by Definite Xntearals 

Key Concepts

1- Let a region by bounded by the graph of y = f(x), 

x—ex-s, the lines x=a and x=b, (a <^b). ±hen area A cf this 

region is civen by

A

2. If f(x) < 0 for ail x £ (_a,bj , then -f(x)> 0 for all x

in [a,b] and the area a bounded by the graph of this function, 

x = a, x = b and x - axis (a b) is given by

f (x). dx
A

A = -

The proofs of the above two assertions are very nuch similar

to the extendedaefir.ition of J f (x) .dx given in lesson 1 and the

reader can frame the proofs themselves based on the definition of 
L

f(x). dx.

ru
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The above two assertions innediately lead to the following :

3. if f(x) 0 for x £ La,cj and 0 for x - Lc > bJ

then the total area A bounded by y = f(x), x = a, x = b and y-axis

4. The area A bounded by the graphs of

y = f^Cx), and the ordinates x = a and

f«(x) / f (x) for all x q- [ atb ' is 
1 ~ 2

the functions y = f(x) and 

y = b, (a b) where 

given by

The figure is self-explanatory.

Clearly, area PQRSP

= area MNhSM - area MNCPM 
Z A

f2(x) ax - \ f1(x) dx
c*.

f2C4 " ,l*-
a.



-"'‘-.--C—enc-csec—plane curve (ecuations given in parametric fern) 
Let a cicsec cu^ve be given by x = f(t), y = g(t), <% < t < ~

sc tnat f( x )=-.(.•- ) anc g(A ) = g( ^). Let us suppose that the 

closed curve s^c.-s (corresponding to -X ) and ends (corresponding 

to 3 ) at tne point r. Let any line parallel to y—axis (intersecting 

the curve; intersect the curve in exactly two points. Let the lines 

x = a and x = b touch tne curve in points k and C, where these 

points correspond to t^ anc t^ (values cf t) respectively so that

Let Q be a point on the curve corresponding to to such that 

t1 < t3 < t2*

Now the area of the region 

= area of region MNC Q DM - area of region MNLPDM

where = area

where S. = area 
4.

Also = y

of region MNCQDM

of region MNCPDM

dx covering the region MNCQDM
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Similarly,

dx
ats, = \ y(t). 37 dt + ' y(t) . . dt ,

• — • I

consiaerina the areas under the arcs DP and PC respective!/.

So, S = So - S

•x.

3 .*L± . Ar - | '} ( m . ,.i
Ik

it

-A

X.

- v.

fi
— 1 At

r<C
co

Sim i 1imiiarly, considering tangents to the closed curve parallel to

x-axis, we can show that

S = \ x . dv
at (2)

Adding (1) ana (2), we get

d vx —r . dtat

- /«§)"

Hence the area enclosed in the closed curve

r \ lx v dx H +
\ at “ y at dtY2

' fc
> • li . At 

d-t

. L i

' T.

. dt

2 S = (' dxj ’ • dt •



Solved examples :

1. Determine the area bounced by the parabola yZ = and x = b.

i I
"1

The required area is the shaded portion in the figure which is 
2

self-explanatory. The parabola y =4 a x is symmetrical aoout x-axis 

So, the required area

= 2 X area Q?R
x

= 2 \ y. dx
\ ___

= 2 \ 1 4ax . ex (y is taken
w/r-

as the positive side of the area i 
considered here)

= 2.2 P’s J’ 2 GX

4 a 2. 
’ 3

,u“

Mi­
L

X

a /T. t

q
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2.

c and

2 rf , sin x <9.

So the required area
Z. '*

sin x . dx - \ sin x. ax

1cos x ! i, COS X J

= (1-0) - (0-1)

= 1+1=2

3. rina the area enciosec by a loop of the curve
2 2 2/2 2xa y =x (a -x )

Solution: Here the equation of the curve is

a2y2 = x2 ta2_x2}

ine curve (1) interseers y = 0 in the points given by
2 2 2° = x (a -x ) i.e. x = 0, x = + a.

~he tangents at the origin is given by 
x2-y2 = Q

which shows that the origin is a noae.

So, a loop of the curve is 
a2y2 = x2 (a2-x2), " •

(1)

0 x a



Also the loop is symetric about x- ax:s
x- - X-

/ Z

____________________
<) J 6 c, •)

\ \
a

Thus the ares cf the iccr is

= 2 y ex =-- 1 .2 2x ,a - x .ex

= 2/a a sin ©, a sin ©, a cos © d © by putting

x = a sm ©

= 2 . a~ ) cos^G, sin «© . ci©

= 2a Z. 3n p
cos © !

= 2a'

4. Find the area above the x-axis, cf the region bounded by the

X



The x-coorhinates of points of intersection of the parabola

2 2 2
y = x and the circle x +y = 2x are given by

2 2x +x = 2x i.e., x -x = 0 i.e. x(x-1) = 0 i.e.

x = 0 and x - 1 .

So we have to find the area bounded by the given curve above 

the x-axis so that for the points of the region

0 x < 1

Thus the required area

5 ^yl”y2^ QX’ where y] = 2x-x2 and y2 = x

2x X2 - y d x

$1 2x - x“ » dx -5 • dx

For integrating ,'2x - x2 . dx, set x = 2 sin2 0. Then 

ix = 4 sin © cosG . AG

and x = 0

x = 1

© = 0,

‘hen \ r^x-x2 . d
J

K/u

^2.Jsin2© (1-sin2©) 4 sin 0 cos © . d©

TTJH

3 [sin2 9 - cos2C sin © . cos © . d©

o



il-J

0

)h
8 sin2© cos2© . d© = 2 sin 2© - d

Hi-cos 4©) d© = p? - 5“77'" __ n
u

I I
Also, j Jx . dx = ( T- 1 z

c

Therefore, the required area ~ _

5. Find the area enclosed by the curve given by

x (1 + t2) = 1 - t2, y (1 + t2) = 2t

Solution :

Here it is a variable parameter taking its values from 

to . So we can set t = tan © where

1 - f 
1 + t‘

Then x = 1 - tan ©------------- -— = cos 2©
1 + tan^©

2t 2 tan ©
1 *tarT*

= sin 2©, where

Note that the parametric equation represents a closed curve 

Hence the required area

-VT/i, 
rf/

(cos 20 . 2 cos 2© - sin © (-2 sin ©)) tie

-TTJ-
= 2 2 ^(cos2 2© + sin2 20) d©

and y =,'
1 + t‘

'? < e <5

1.



6. Find the whole ares of the cycloid x = a (C + sin 0) ,

Here the area of half the cycloid i.e., the shaced portion i 

the figure is the region bounded by the cycloid, y = 0 and y - 2a 

Hence the total area of the cycloid

= 2 (area of the shaded portion in the figure).

= 2 x y dy
a *

= 2 J a (0 + sin Q) , a sin 0 . dO
0

f or x = a (0 + sin C) , 

dy = a. cos 0 . dx ,

y = 0^=? 0 = 0, 

y = 2a 0 = ~ |

= 2 a^ \ (0 . sin 0 + sin*"£) dO



C S y-rv £' ft f L->< JJ ” \ £ - e/~ )

I \

r fj ~~ L-* t r - <>PTh

5 l'vx AC2 — - (^v— r<r' 1?

v
s.w_l

>

Hence the required area

2
= 2a £ cos o + sin © + 2, ( q _ ) J

2 ' ' - . • - ' (Tf - ^--n)

_ C + c - 0 - e]

— 2a \ \\ c»-s i\ -*■- Sv-mi

= let T\ -r 0 rr

rc

C- Crt O -s-C
- 2, <• . c >

= , 3 U ■7 L — 5 a TT

Note: Here the parametric equations of the cycloid do not

represent a closed curve



Assignments :

1.
2

Find the area of the segment cut off from y = 4x by the

2.

line y = 2x.
2 2Fina the area of rhe portion of the circle x +y =1 which

3.

2lies inside the parabola y = 1-x.
2

Find the area bounded by the curves y - 4x - 4 = 0 and

4.

2y + 4x - 4 = 0.
2 2Find the area includea between the ellipses x +2y =l and

5 .

2 22x +yZ = 1.

Find the areas enclosed by the following curves :

a) x = a cos t f b sin t, y = a\os t -t- b1 sin t

b) x = a sin 2t, y = a sin t

c) x = a (1-t2), y = at (1-t2) (-1 < t < 1)

b) X = 1 ~ , y = t (1 --W (-1 < t < 1)
1 + t2 (1 + t2)

6. Find the area bounded by the axis x, part of the curve 
g

y = (1 + ——) and the ordinates at x = 2 and x = 4. If the 
xz

ordinates at x = a divides the area into two equal parts, find a.

2 2Find the area bounced by the curves x +y 

and x=0, above the x-axis.

25, 4y7.



Answers :

1 . 8/3

2. (/y2)T+ f )

3. 16/3

4. 2 JT

b. a) Tf (an1 -a"1 b)

b) 8_ 2
3 3

c) 8a2
1b ___ _

U
d) 2 - —

6. Area /* = 4 sq. units, a = 2 7 2

7. 4 + 2b sin sq. units
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DIFFERENTIAL ECUmTICNS

An Introduction :

1. A body is falling freely under gravity.

2. A body is falling unoer air resistance.

3. The bob of a simple pendulum is pulled aside and let go.

4. A hot body cools according to certain law.

5. A chain of given length hangs over the smooth edge of a 
table anc begins to slide off the table.

Here are a few situations where we need to discuss the problem. 

The problem may be the motion of the body or the bob of the simple 

pendulum or the temperature of the cooling body at a given moment or 

the motion of the chain sliding off the table on which it is lying.

A Differential Equation set up to describe each of these problems is 

the mathematical formulation of the problem itself. Consequently, 

solving the diffeiential equation is equivalent to solving the problem 

itself.

Differential equations occur in the context of numerous problems 

which one comes across in different branches of science and engineering.

Some of them are the problem of determining

a) the motion of a projectile, rocket, satellite or planet.

b) the current in an electric circuit.

c) the conduction of heat in a rod or a slab.

d) the vibrations of a wire or a membrane

e) the flow of a liquid

f) the rate of decomposition of a radioactive substance 
or the rate of growth of a population.
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g) the reaction of chemicals

h) the curves which have certain geometrical' properties.

The mathematical formulation of such problems gives rise to 

differential equations. In each of the situations cited above, the 

objects involved obey certain laws of-nature-or scientific laws.

These laws involve various rates . of change of/one or more quantities 

with respect to other quantities-.? Such ratesrfare expressed as 

various derivatives and the scientific, laws themselves become mathe­

matical equations involving the derivatives, that is, differential 

equations.

"The vital ideas of mathematics.... were created by the solitary 

labour and individual genius of a few remarkable men.... A few of the 

greatest mathematicians of the past three centuries are Fermat, Newton, 

the Bernoullis, Euler, Lagrange, Laplace, Gauss, Abel, Hamilton, 

Liouville, Chebyshev, HermtE, hiemann and Poincare".

An elementary course on differential equations as this, aims at 

familiarising to its students, basic terminology and methods and 

techniques of solving first order equations of the type

-3% = f(x,y) in easy cases.

Further, a studdnt at the end. of this course should be able to 

apply the concepts and techniques of solving differential equations 

of first order to problems arising in real life situations, some of 

which have been mentioned already.
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The prerequisites for the course are

i) working knowledge of differentiation and intearation

ii) familiarity with plane curves.

Differential Equations and Their Classification - Terminology

An equation involving an unknown function of one or more 

(independent) variables and the derivatives of the unknown function 

w.r.t. the independent variable(s) is called a differential equation. 

Some examples :

1. + - o •

j-5".cLx- -e.
2‘ "SP

3 ? ~ o .

4. - o

5.
cLe

A differential equation involving ordinary derivatives of 

one independent variable w.r.t. the independent variable is called 

an ordinary differential equation (or equation).

Examples: In the earlier set of examples, equations (1)» (2) and

(5) are ordinary equations.

In (1) y is the dependent variable or the unknown function of x 

while x is the lone independent variable.

In (2) x is the depencent variable and t is the independent

variable.
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In (5) x and y are both dependent variables and t is the 

independent variable.

A differential equation involving partial derivatives of one 

dependent variable w.r.t. more than one independent variables is 

called a partial differential equation.

Examples: In the set of examples already given, equations (3) and

(4) are partial differential equations.

In (3) v is the dependent variable and s and t are independent 

variables. In (4) z is the dependent variable and x,y are independent 

variables.

More examples cf differential Equations :

3.

ctfc

6. •

2

4

7.;
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10 cLt

8

9

Some of these equations are classical. (5) and (6) are called 

Legencre s equation and 5essel's equation respectively.

The equations ( 7), (8) and (9) are the classical heat equation, 

wave equation and Laplace's equation respectively.

Readily i„ is seen that (1 ) to (6) and (10) are ordinary 

equations while* (7) to (9) are partial equations.

Order and Degree of a Differential Equation ;

The order of the highest ordered derivative found in a differen— 

tial equation is callea the order of the ecuaticn.

The degree of the highest order derivative in a differential 

equation which is free from radicals and fractions in its derivatives 

is called the de qree of the equation.

In the examples (1) to (10) we had earlier easily we can 

recognise the orcer and degree of each equation.

The equations (1) and (3) are of order 1 and degree 1.

The other equations are of oroer 2 and degree 1.
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More examples

l<
ci^J

= O

3
+ y = ex has order 1 and degree 3,

The equation
cLx-

c‘LVa
—

has to be rewritten as / cL^ A"

Then the order and degree are respectively 1 and 2.

Then the order and degree of the equation are both 2. A Linear 

Equation or nth order. An ordinary Linear differential equation of 

order is given by
aQ(x) + a1(x) y(n_1

Ik)

nth

+ .... + a (x)y = b(x) .
ch

.— = the kth derivative of y w.r.t. x. 
oL-Z

The equation is U) 

(2)

coefficients if all

said to be homogeneous if b(x) 2Z o.

said to be a linear equation with constant 

the coefficients aQ(x), a^x),..., an(x) are



constants. An equation which is not homogeneous is called a 

non-homogeneous or inhomogeneous equation.

Examples :

1- Lj’" _ -+ -+ Xj-0

is a linear homogeneous equation where

2. y” + y' + xy = 3

is a homogeneous linear equation with variable coefficients.

_ l4) ii x3 . y +y + y = e

is a non homogeneous linear equation with constant coefficients

4. x3ynl + 2x2 y4 5 6 * * * * 11 + 3xy^ + 4y = Sin x

is a non homogeneous equation with variable coefficients.
1 1 25. y + xy = 0 is not a linear equation.

6. (y ) + y = is also not linear.

N ote:

1. y and its derivatives in the linear equation occur in first 
degree only.

2. Consequently a linear equation is necessarily of first degree.

3. No products of y and/or any of its derivatives are present.

4. No transcendental functions of y and/or its derivatives occur.
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More examples :

1 .

2.

Il

clx.2"

■L

S'. -Uj 
<tx.

-0

•x?. 4l

(tLx.

— xe__  + X .

are ordinary linear equations.

An ordinary differential equation which is not linear is called

a non linear ordinary differential equation.
2

d -X— + 2-X + y2 = 0 is a non linear ordinary equation.
.2 Qx 1dx'

A general ordinary differential equation of nth order is a 

relation of -the type: F (x, y, y * » y" »• • •» y ) = 0*

Formation of Differential Eouaticns

Problems

1. Suppose that a body of mass rn falls freely under gravity, 

in this case the only force acting on the body is its weight mg. 

if x is the distance through which the body falls in time t, then 

its acceleration is d x
df

Then the equation of motion of the falling body is

m
d2X

df
= mg or d2x

dt2 d)g



2. If there is a resisting force by air (say) proportional tc
<4 y

the velocity, then the total force acting on the body is mg - K ~ 

(- because the air resistance opposes the motion). In this pase , 

the equation of motion becomes,

Ma , 

J (rv

j'p
b < yn cVX-

Or «- <

^_a _k ck 

J dt

"i< ■ <3^ 

ci ("

w U.L"
O------- M

3

3. Consider a pendulum consisting of a bob of mass m' at the end

cf an inelastoc string or 10a of negligible mass anc of length a.

If the bob is pulled aside through an angle ana released, then

by the principle of conservation of energy 
2

y2 mv .= mg (a cos p _ a Coso<( )

/£ - , cIa - 'v - d > cis
d. t
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4. Assume that a hot body cools at a rate proportional to the 

difference between the temperatures of the body and the surroundings 

This law is known as Newton's law of cooling.

Let 0 denote the

the temperature of 
ctp 
ctb

cooling of the body is

of cooling is

temperature of the body at any moment t and 

the surroundings of the body. Then the rate 

and this is proportional to Q(9 —(5^ .Then the 

governed by the equation

5. a tank contains SO gal of pure water initially. H brine

containing 2 lb of dissolved salt per gallon flows into the tank at 

the rate of 3 gals./min. The mixture is kept uniform by constant 

stirring and the well-stirred mixture simultaneously flows out of the 

tank at the same rate.

Then, Inflow = (2ib/gais) x (3 gal/min) = 6 lb/min...

Let x denote the amount of salt in the tank at time t. Then 

the equation for the rate of change of x is

dx—7T— = Inflow-outflow ... (i)

The brine flows at the rate of 3 gais/min and each gallon contains 

2 lbs salt.

(ii)
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Since the rate of outflow = the rate of inflow, the tank contains 

50 gal of mixture in time t. This 50 gal. contains x lbs of salt in 

time t. Therefore, the concentration cf salt at time t = /50 x lb/gal.

Then, the outflow == (x/50 lb/gal) (3 gal/min) =

—— lb/min. ..(iii)

Hence, (i), (ii) anc: (iii)

*•-&- - a - - - csj

which is the equation governing the rate of change of salt content.

The above discussed problems illustrate how a differential 

equation describes the problem. In other words, in these 

illustrations, the mathematical formulation of the problem is the 

differential equation.

In each problem above, we can recognise the following important 

steps leading to the mathematical formulation of the problem, that is, 

the differential equation.

1. Identification of the law/laws, operating in the problem..

2. Analysis of the problem.

3. Representing the attributes by symbols.

4. Formation of the equation using the relationships or laws in the 

problem.



Differentia1 Equations for Families of Curves :

Ill

1. Consider the family of concentric circles with their centre at 

the origin.

The circles are ail given by
2 2 2 .x + y = a (1)

As a takes various values, we get different members of the family 

of circles, »<e aescribe a as the parameter of the family of circle 

Differentiating (1) w.r.t. x, we get

2.x. r - 0 or X + = D
cix.

The differential equation (2) represents the family of circles.

We note: 1. that (2) is free from the parameter. In other words, 

the pcirameter a is eliminated m getting the differential equation 

2. The number of parameters in (1) is equal to the orcer of the 

differential equation (2), each being one.

2. Consider the family of circles through the origin with their 

centres on the x-axis.
2 2Each circle or the family is given by x + y = 2cx. (h)

As c takes different values, we get different circles, c is the 

parameter of the family of circles.

Differentiating (1) w.r.t. x

. _ 0-C X -t-M —c --W
ix. -t --j e-2

cl X
X - J

ax

Eliminating c between U) and (2), we get



II-

oC"'j7'
cbc )

~ LX." -r Lxq sLt 
J 4.x

Or yt-X' - Xxvy.^ 

cl x.

This differential equation represents the family of circles. Again 

we notice that (3) is a first oraer equation got by eliminating the 

single parameter c of the family of circles.

3. Consider the family of parabolas : y = (x-rc) ... (1)

c being the parameter of the family.

Diffeientiatina (,), ay _ (x+c)
ax " '

Eliminating c from (l)and (2), we get 

= 4 (x+c)2 = 4y

or -4y = 0 (3)

is the differential equation representing the family of parabolas.
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Solution of a differential equation ;

An Illustration : Consider the function y = ae2x t be 2x (1) 

where a,b are arbitrary constants.

bifferentiating w.r.t. x we get y = 2ae2x - 2 be“2x

Differentiating w.r.t. x again, y = 4ae2x + 4be"2x

= 4(ae2x + be“2x)

or y = 4y - _ ^2.)

The function (1) satisfies the differential equation (2) for all 

constants a and b. (1) is a solution of the differential equation 

(2) for all values of a and b.

Consider an nth oraer ordinary differential equation

7,= O--0j
where F is a real function of x, y, y', y",....y(n)

u ' — fKe y-^ chtY.Lt/alive. y W, r. x - (Xj’

A real function y = f(x) (2) is called a solution of the 

differential equation over some interval I if y is differentiable 

n times and ‘satisfies the differential equation’
i.e. F (x, f(x), ff(x),---«» f(n\x)) = 0 for all x^ I.

The phrase ‘satisfies the differential equation* means that 

when y, ■ ,...., are replaced by f(x), f ’ (x) ,.. .f 

respectively in (1), the equation (1) becomes an identity.

chtY.Lt/alive


it^-

A differential equation is 

of the equation is found.

Another Illustration :

The differential equation

y = a cos m x -r b sin m x where

said to be solved if a solution

9c Y j. n x = 0 has its solution
2d xz

a a no b are arbitrary constants.

Verlfication :

7 = (1 -+bsc-n>r,x.

dy _ □"Sen mx -f

GLni tly - _rutW«n*“ m 

cIk1 2 * *"
•— _ -r bStnwx)

V V — —mt or -r vn<y — O

ci^ 7 1
In the illustrations, the constants a and b of the solutions 

can take any values. Such a solution of a cifrerential equation 

containing arbitrary constants (as a and b) is called the .general 

solution of the differential equation.

A solution got from the general solution for particular 

values of the arbitrary constants is called a particular solution 

of the differential equation.

Initial Value Problem ;
2

y = x + c, c being an arbitrary constant, is the general 

solution of = 2x. The particular solution satisfying the



condition y = 4 when x = 1 is from the general solution

y =s x^+c. putting x — 1 > y = 4, 4 = 1 + c or c = 3. Hence the 
2

particular solution required is y = x +3.

A given differential

condition as in the above

Thus, = 2xax
together with y = 4 when 

The above initial value p

d y
• ax 
y(1 ) =4

= 2x The aifr

The init

equation together with an additional 

is called an Initial Value Problem (I.V

x = 1 is an initial value problem, 

roblem is written as

erential equation

ial condition i./.P.

.)

The condition in the initial value problem is called an initial 

condition of the problem. For the initial value problem ; 

p-m = 2x, y(l) = 4, y = x“ + 3 is the solution.

Thus a solution of

the differential eauatio

tne solution must satis
/■>

dAnother Examole : ——1
---------------------------- dx2

an initial
n of the

fy the init

- y = 0 has

value problem is a solution of 

problem. In addition to this,

iai condition also.

the general solution

y = a cos x + b sin x. Suppose y(0) = 2, y'(0) = 3, then a=2, b=3. 

Thus, y = 2cos x + 3 sin x is a particular solution of the differen­

tial equation. This particular solution satisfies the conditions 

y(0) = 2, and y’ (0) = 3.

Therefore 0

with y(0) = 2 and y'(0) 3
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is an init ial value problem having the solution
y = 2 cos x + 3 sin x.

A general nth order initial value croblem is cf the
F (x,y, y, y, .... v^) 1 - n’ > J - 0 over i.

H-0
(1)

AM =y0, y c^o) yc ?

for some value x = xo £ I.

tn-o
> ! CXe) = y - - (2->

The set of conditions in (2) is the set cf initial conditions 

of the initial value problem. Here,

yo’ yo ’ yo y. (n-1) ,are given values

Geometrical Meaning :

A differential equation represents a family of curves. Given 

a family of curves

f(x,y,a,b) =0 ... (!)

by eliminating a and b, by differentiating (1), we get the 

differential equation.

(1) is the general solution of (2) and represents the family cf 

curves. Each curve of the family is a particular solution of the 

differential equation (2).

A solution of an initial value problem is a particular curve 

of the family of curves given by the differential equation (2).
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Points to stress while teaching :

1. The difference between

a) the ordinary and partial equations

b) order and decree equations

c) Linear and ncn-linear equations.

d) Linear homogeneous and non homogeneous equations

e) General solution and particular solutions

f) Formation cf an equation and solving an ecuation

g) Solving an equation and an Initial Value problem

2. The geometrical meanings of

a) a differential equation : —= f(x,y)

b) the general solution of an equation

c) a particular solution of an equation

3. Information cf a differential equation for a physical problem

a) identification of the law/lav/s operating

b) analysis of the problem

c) symbols and notations

4. Solution of an equation

a) Verification of a function as a solution cf a given equation.

b) Formation of the equation from a given solution .

Assignments and Self Test :

I. 1. Classify the differential equations as ordinary or partial 

differential equations.

z. State the order and the degree.

3. Determine whether the equation is linear or non linear.

4. If the equation is linear, whether it is homogeneous or 

non—homogeneous .



i) 2y ’ + x y = x e

nt
ii) y + 4y" + 5yt 3y = Sin x

iii)

2 2iv) x ay + y dx = 0

a U. _ n
v) -+ CL ~ u 

at7$ X,

vi) y<~ + 3y" + 5y2 = 0

vii) y" + y sin x = 0

viii) y” * x sin y = 0

/_ix$
61-/L 
c/^ x

4-

x)
<Zy cU - j

ci TC cl y

oLs J

J " M 2
xi) xy' = y’ /1 -x y

xii) dv 
ax

XV
2 2 x +y

xiii) y* = xex 

c/y <

~cC-
xiv)

xv) 111

)-7 
"l -K“

y + 4y” - 5y* + 3y = sin x

0



II. Form the differential equation for the following problems.

a) The population (p) of a bacteria is increasing at a rate 

proportional to the population at the moment.

b) a moth bail evaporates at a rate proportional to its surface.

c) The air resistance on a falling body exerts a retardation 

proportional to the square of the velocity.

d) A chain 4 feet long starts sliding off the smooth table when

1 foot of the chain hangs over the eccs which is supposed to be 

smooth (no friction).

e) A tank has 100 gallons of pure water. Brine containing 1 lb/gal. 

runs into the tank at the rate of 1 gal/min. The mixture is 

constantly stirred and flows out at the same rate as inflow.

f) An amount of invested money craws inrerest compounded continuously 

(i.e. the amount of money increases at a rate proportional to the 

amount present)..

g) a chemical reaction converts a certain chemical into another 

chemical at a rate proportional to the amount of the unconverted 

chemical amount present at any time.

h) The rate at which radioactive nuclei decay is proportional to the 

number of such nuclei that are present rn a given sample.



<x>

III

1.

2.

3.

4 .

5 .

6 .

7.

8.

Show the': the family of curves given by the first equation is 

represented by the corresponding differential equation.

y = 2 + ce
~ 2 -zx

—3x
e »

c v 

GX

~ 2 -3x zv = 3x ey = (c+x*)

4 x _y = a e + be , y " - 2y 8y = 0-2x // _ /

yz = 4ax, 2xy' = y

//y = c,sin 2x + cos 2x, y + 4y = o

xy = c, xy' + y = 0

yz = ^c (x+c), (2x + yyz) yz = y

c^ez.
-X yJ/ = y

d v , c— + - x y = S x .□ x 1

y =

IV. Verify that each function is a solution of the corresponding 

differential eauation.

1. y = / 2 2x Tan x, xy = x + y + y

2. y = logex , xyz = 1

3. y = 1 + yx, x^yz +1=0

4 . y — ceJ/ , x (y-n) y = y
c, • X +

2_ _i 2 /y = i an y, 1 + y -r y y = 0
n a v6 . y ex , X — = ny

- dv dxex + a/c, y = x — + a —' ' ax ay7. y

8. y = 3 2x + ax4^ + bx + c, y/z^ = 6

9. y = ) 2 2x - ex, 2xyyz = x + y

1 0. y = x + 3e“x, yZ + y = x + 1

1 1 . y = 2e^x - be4X", y z/ - 7yZ + 12 y = 0

12. y = ex + 2x‘“ +6x+ 7, y^-3y^ + 2y

13. y = (1+x2), (1 + x2)yzz + 4xyJ + 2y



V. Verify that the function given is a solution of the corres

ponding initial value problem.

a) x2 + 2 = ,K. cv + y- =0, y(3) = 4

b) y = y x, xyz + y = 0 , y(') = 1

c) y = (2+x2)e—x, y = 2xe-x, y(0) =

d) 2 dvy = 4 sec 2x, ax = y Tar. 2x, y(0) = 2

e) y2 = 16x3; 2xyz = .3y, y(D = 4.

f) Sin y = x; y z= Sec y, y(0) = 0

g) y = e_x; y1+ y = 0, y(0) = 1 .

h) y = Tan”'' x; y 1 = y (1+x2), y(0) = 0

VI. Assuming the given general solution of the differential equation, 

find the particular solution satisfying the additional (initial) 

condit ion.

a) yz + y = 2xe”x, y (c+x2)e~x, y(-l) = 3+e

b) xy/ = 2y, y = cx2,y(1) = 1

c) yy/ = e2x, y2 = e2* + c, y(0) = 1

Q) y + xy' = x4- (y' )2, y = c2 + c/x, y(l) = 0

Key : Ord - ordinary equation, part - partial equation,

1,1 - 1st order, 1st degree

L - Linear, H = homogeneous, NH = non homogeneous, NL = Non
linear

1) Ord, 1 ,1, L, NH

ii) Ord, 3,1, L, NH

iii) Part, 2,1, L, H

iv) Ord, 1 ,1 , N, L

v) Part, 2,1, L H

vi) Ord, 4,1 L, H



vii) Ord, 2,1 , L, H

viii) Ord, 2,1, NL

ix) Ord, 2,1, NL

x) Ord, 2,1,HL

xi) Grdf 1,1, NL

xii) Ord , 1,1, NL

xiii) Ord, 1,1, L, N, K

xiv) Crd, 1,1, NL

xv) Ord, 2,1, L, NH

II.
a)

b)

c)
dv ks

otb

l<-

d)
Ct ,- cp<-

ku u

x = the length of the hanging chain at any moment t.

If x lb is the amount of salt present in the tank at time t, 
dx
at

x
100

f)

g)

h)

« = Ka, K >0 A = The amount at any moment t

= K (x -x) , x = The amount of the chemical present 
init ially.

ax
at = Kx, x = the no. of radioactive nuclei disintegrating
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METKCLS CF SOLVING FIRST CRbER DIFFERENTIAL EbUATICNS.

In this lesson, we discuss seme first order differential equations 
ar.a methods of solving them. * first orcer equation is of the type

dv
— = f(x,y) 
dx

or the type Mcx + Ndy =0 (1)
where M = M(x,y), N = N(x,y) (i.e. functions of x,y)

Eouaticns with variables seoarable are of the form
Mdx + Ndy = '0

Methoes of where M = Mix) = a function of x only
solution where N = N(y) = a function of y only

The solution of the equation of this type is got by direct integration 
of the equation
The solution of (1) is Mdx + ^Nay = - - (J)

C being an arbitrary constant. '

Note: (2) is the general solution of the equation (1). The solutions 
get from 12) by substituting particular values for L are particular 
solutions of the equation.

Illustratiens; Solve the following problems.
1 . (1 -r x2) dx + (1 + y2) ay = 0

The equation is of the type (1 ) where M = 1 + x2, N = 1+y2 
The solution is ((1 + x) dx + ((l+y2)ay = C

' 3 i 3or X + yj X I-r y + y3 y =C 
or x3+y3 -c 3(x+y) = 2C = K (say)

2. + 1 - 0

The equation can be reaucea to 
separated, by manipulation. 
Accordingly we get, cLt_

Integrating

y

an equation

I
(Ji_ = 
) l+y1'

in

c is the solution.

which the variables are

0

<1

or tan



3. y log x dx + x log y 

Rewriting the equation, 

Integrating / Lcj X J x
J

Now f f

dy - 0

‘I,c /

x_

4~L
/ I cxr

IK— - c .

/cjX ~

2
5

Similarly

Hence,

or (log x) 9+ (log y) = K is the solution

4. — + Ky = 0 or ay + Kycx = 0
O Y 4 * *

The solution is y = ae~‘
a being the constant of integration. 
Homogeneous differential equation ofthe type

M(x,y) dx + N(x,y) dy = 0 - — - |^{ 3 J

Homogeneous exoressions/functions: Homogeneous eouatlons

Consider (1) f(x,y) = x+ xv + y^

We can write f(x,y) = xV(1 + y/x + (y/x)2)

or f(x,y) = x f(1, y/x)
Since f(1, y/x) =1+1. y/x + (y/x)2 = 1 + y/x + y2/x2 

f is a homogeneous function cf aegree 2 in x and y.

2. f(x,y) = x° + 2x2y + y3
= x3(1 + 3 y/x -r (y/x)3) = x3 f(1,y/x)

and f(x,y) is a homogeneous function of degree 3 in x and y



3. f(x,y) = x + ,/xy + y
= x ~[_1 + y/x + y/£] = x f U , y/x)

so that f(x,y) is a homogeneous function of degree 1 in X. and y

4. f(x,y) = x sin (y/x) + y cos (y/x) —q
= x j^in (y/x) + (y/x) cos (y/xjj 

= x f(1 , y/x)
f(x,y) is a homogeneous function of degree 2

In general, a homogeneous function of degree n in x and y, 
f(x,y) has the property— f(x,y) = x f(l, y/x)

Putting y = v x or y/x = v
f(x,y) = x f(1,v)

Note: In a homogeneous function, each term is cf the sane degree. 
2 o

f(x,y) = x + x + y + y^
is net a homogeneous function.

. L 2_
Since f(x,y) = x + x -r y + y

= x1" (i + Vx + y/x2 + y2/x2)

This part is not a function or" (y/x). Thus we cannot write 
f(x,y) = xn f(1 , y/x) for any x.

Lefiniticn : M (x,y) dx + N (x,y) dy = 0
is caiiec a homoceneous equation of 1st orcer if M(x,y) and N(x,y) 
are homoceneous functions of same oegree.

can write the

—

If the differential equation is a homogeneous equation, then we 
equation as
-^1 - _X1 M 11, K) _ Y/*)

^/Vf. NO- ^x)

Method of solving a homogeneous differential equation j
Given the homogeneous equation 
U(x,y) ox -f N(x,y) dy = 0 - - (JJ

Put y = vx - - -
d v dv
cT7 = V*1 + x o7 or dy = Vdx + xdv
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This substitution converts the equation (1) into an equation in v and 
x with separated variables. Then the equation can be solved.

Illustrations: Solve the following equations.
, d v .• • X — = x + y<4 X
3y checking the coefficient function, it is easily seen that the 
equation is a homogeneous equation.

dPu - '15 X-
ctx7 / i m ■*-

f -T x • CJ_L > -

\ n- =7 L !+ X ■ civ l+U X- X =x I
ct X

Or J cot
7<_

On integration cf the equation, we cet
v = log x + c
or y/x = log x + c.-e
Hence y = x (locex + c) is the solution of the given differential 
equation.
2- ir = c* +xy)/'/L+-7Lt)

2x = a homogeneous function of degree 2 and 
x + xy y = a homogeneous function cf degree 2. 
Hence the equation is a homogeneous equation.

Put y - + c(y_ _ -[) + X • di< 
cl X (d >C

c + V + C v + xx1-

A
d.x )

T3"x • cl'15 — 1—33^-
z ar



_ u —
/ - Lc *-

Separating the variables, we get V _  CZ?C

V. cl 20 r. cGc 

x 
clx. 
X

i >

o r
Dy

a r

L5 x_
X^cj '<

o-
I

v cLy — (L 
v^i

- 1C - 2.C

is the solution of the equation.

~ 2 dv 2 23. x — = x T xy + y

The equation is obviously a homogeneous equation.

io- — L* - x
ctx

Pu1

C U -+- -A. • Jj3 A

cU
‘ x(-V.

rA. X

Separating the vari aoles, we get 
gtx _ oi v

I -H Uu
On integration

1 /

rl~ ~~~ i_ n>L -r "X. 'V + X U

ax _ 1 iZ_ J— c 
X. Jl-t-V2- '

Hence the solution is 1.3^ - ' (y/^) - t
or y = x Tan (k -r logex) , k being the constant of integration.

If the given problem is an initial value problem, then we need to 
find the particular solution of the differential equation which 
satisfies the initial condition also.
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4. X (l-yZ) -U y ( 1 + y 1 ) = 0

with y(1) = 0
I X + V y' =  

7 x - y 
Putting y =

wnicn is a ncncceneous eauaticn.

= vx, y = v -r xv
X (1-t-v)
X u -v )

xv ’ =

xv =

1 + V
1- V

1 + V‘
1 - V- V =

GX
Xcv =

On integrating we get
— I o

Tan v - y2 log (1 v >=.0 -r log x

or Tan 1 (y/x) = C + log (x/ 1+\T y 

or Tan 1 (y/x) =

Hence the solution of the equation is Tan = leg / x^-j-y

x sin (y/x) = y sin (y/x) + x, y(l) = Tr/2
c£x_

putting y = vx, c).y = v + x . dv 
“TtTL TbL

Sin v (v + x dt) = v sin v - x 
dx_

v siX9 + x sin v = v^<Tn v -t 1

-r ioc , ' x -r vz putting x=1 , y =0 so that 0 = 0 
T-2

S in v dv = cx/x

On integrating we get leg x + c = - cos v

Therefore, the general solution cos (y/x) + log x •+• C = 0 

Putting x=1 , y = VT/2, Cos ( ft/2) ■+ log + C = P 0=0 

Hence the solution is Cos (y/x) -r log^x = 0

6. xy1 = y + 2x e ‘with yU) = 0, putting y = vx, y^ = v + xv1 

x(v i- xvz ) = vx -r 2x e~v

ov = 2cx/xI —vv + xv' = v + 2e 
On integrating v/e get 

V / xThe solution is e* ' =
Put x = 1, y = O ,

e = 2 log x + c

2 log x + c 
= 1=2 log + C c = 1

exp ( Y/ ) = 2 log x is the solution.7 A
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7. (y + x2+y2) - xy' = 0, y(l) = 0 

The equation being homogeneous, cut y = vx, y = v
vx + ,/x2 + v x'') - x (v + xv^ ) = 0 

I

X'/

V l+U1-
On integrating, Sin h v = C + log x

Or Sin h (y/x) = C + log x

Putting x = 1, y = 0, sin h (0) = C + log I 
The solution of the initial value problem is 
Sin h ' (y/x) = logex

or y = x Sin h (log x)

8. (x Tan (y/x) + y) = x <7/_ y(l) = K/2
d x

Putting y = vx, yl = v + xy 1

xTanv+vx = x(v't- xv'1)

Tanv + v = v + xl’'

Separating the variables,
dx/x = (cos v/sin v)dv
On integrating log x = C + log sin v 
or log x = C + log sin (y/x)

Putting x = 1, y = K/2, we get C = 0
The solution of the initial problem is

log x = loa sin (y/x)
. -1or y = x sm x

Equations recucible to homoceneous equations :

rC,
+ <2. ’

- V - X V 
— z
— X

= 0

/

0 = 0

1 .
d x.

In this case, put x = X + h, 
choose (h,k) such that a h + 

a h +
with t he substitutions, the

h = Y + K and 
b k + c =0 
b k + c =0 
equation becomes

CL *
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This equation is homogeneous anc can be solved by putting Y = vX

z%n illustration ;
C V 
ex

x + V - 5
x - y -r 1 

?ut x = X - h , y = Y + k 
such that h + k - 5 = 0 

h - k + 1 = 0

c v 
ax

X + Y
X-Y

Tut Y = vx, = v + X
d. "X

ia y _ n * ! t s o u h a cb

c(u

V -+

Solving h = 2, 1 = 3, 
Hence, x = X + 2

y = Y + 3

dx.
ch» _ I u-V

elu — X + v y __ b'
dt x

-v —
l-d 

I-V

L-

z

X -v y /_L' 
- d.^ = Z/-u\ /'r Ti

Cr. separating the variables, we get /*V 2.

. X-
X

/l—L Zb => (A = fizi j-v _ z
Y /-X’2'/ / * J /^-V- >/ + L’2' Jm,.--

-1 2Integrating log X = Tan v - }'2 log (1 + v ) + C 
leg X + loc .fi -r v^ = Tan v + c

-1i.e. log /x+Y = Tan (y/'x) + C
V

The solution is log (x-2)2+ (y-3)^ = Tan /■/ 'j +
z

2. J y _ CX, ?L -H L, J 

d X

I X_ -2- 

&l ^2 I =• 0

i i

a d +- c 2_

l = it = _l - d(s^ a2-
4 n - K^/ , k = kt,

a(x 4-

2 ■ ■ ) -'j,

b,^+C, _ □ I X 4- fczll

3.1* +k/7)-4<l2_



]3|

ci , > -/* N y -** C

k t! x + j C’/M
a, x + b,^ + C;

where C~ = Co/K

Note : (a„x + b^y) is (a^x + b^y) for some constant. Substituting
Z = a^x - b,y the equation can be solved.

cl w  tx. + h ><-*/ -Illustration :
d x. 2a + 2.7 -

~2_ -ri+

iiHbr.b

d X-

d. z- 

d x.

'A + B.

5 Z-

ut-1 UZ-1

so that 2z-5 = a(2z-1 ) + 3

Put z =

■C \-X

——c? cLx. n

u tt-
ct

d z_

3 = -□, m = 2/2

d^ X -h C — A
put z = * , 2A + B = -3, 3 = -12/2

(aK 3 p,
d— loc (c z - 1)

t . 6i<- —
integrating, x + c = a z +

x + C = .<x(x + y) + A- log (3x - 3v - 1 ) 
3

x + C = 2/2 (x+y) - 12/9 log (2x + 3y - 1)

The solution is 9x ■+■ k = 6 (x+y) - 13 log (3x + 3y - 1) 
or (3x - 6y) + 13 log (3x + 3y -1) + K = 0.

First orcer Linear Equations :
Type : dy/dx + py - Q - — * • -
where p = ? ( x) , 2 =2( x)
(i.e. P, 2 are functions of x only).

GJ

J

i -

= A +



u
j

Let p - £e - function such that U) becomes an exai

differential ecuaticn on multiolication bv .

Multiplying (1) by 

(1) becomes LI — L ~= U

c< x
or p & y -i , u^ p y n >; — p~ r< K - - (^2_)

By definition cf exact eouaticn,
the L.H.S. cf the equation (2) can be written as 

d(p) = ( p pv) ex - lu cy - - - (3)

By the chain ru_e,

Hence , lL 'o H ex x 
,)x

D <X — i

■> /< !
“ (?. y

2) d — L:

Lc

rL

CM

I.

r'/

Since
J *> •/> £ X.

since U - LL Ipp -£ L,

ft y.

(b) becomes pi p. j __i 7 5(/-c

p is a function cf x only f)

^Fdx.

o-mce

r< LL
-7C

On integration v.e cet

UP ' i

d X.

CO

__  h V
y

n ?

y ?. X ? V 3 >V

M / y.u =_ 3

- r.

1 fl'X.F rom (2) anc (2) c/ci — pi- **•>

* By exact equation, v.e mean that the L.H.S. is the total 
derivative of some function of n.
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Integrating the second equation : j _ n

$ " n
d<f ■=

U;. r. f-

forking Rule: Given (1 )

i)
ii)

identify ? ana Q. 
comaute ( pax

iii)

iv)

v)

compute exp \ pax = e
JMx. 

ecomoute

J & X_

Fit in (7) to get the solution

a particular case of U) is got when p is a constant. The equat: 
is then callee a :irst orcer linear ecuation with constant coeffic

on (1) 
ients .

T hen, OCX = DX
J

J pdx = pxe = eJ

The formula (~) becomes
-4

- e c f X CC

Illustrations: Solve the following equations ;
1 . dy/ax + 2y = 4x 
Here, P = 2, Q = ^x

/’*'Jx
i r t i

~ 4-*e4x = 4 v'te- —7
A*

6 ^7t

- 1 "X
it Ax

‘Ax
The solution ye = C + (2x-1) e 

or y = ce“ +• (2x - 1)

AX

2-



/V f y = ccs x , X.
Here F =1,C< = ccs x , • £ _

! f < ( X I
\ & < d~>Z ) <1 Ct^KtlX.

Let I =

Tn.en I -

■>c xcU
. p a r

"7

e- sl71x - jy

£? ' S» >1 X- 4- £Z c 5 z J-

or I = e “ (sir. x + ccs x) - I 
21 = e^ (cos x -r sin x)

1 =\e cos x ex = )'2 e'l(ccs x -*- sin x)

The solution is Y
ye = C -r y 2 e (cos x + sin x; or 

-X_ .
y = L e -*■ y 2 (Sin x ccs x)

y - y = 1
c = _1 p = 1 n- - 1 ’ 1 r<

,px = e -x 5 s € a. x
= K — >L

cl X — —
—X

—x — X.The solution is y e = C - e

or y - 1 = C e

'K.
y - 2y = ce , F = 2, L = 6e

X_ fx. X_

Pk ,
& c x-

F = 2, L = o e e = e
e'S-x = 6 ;

J A
l’x „ lx.

£ &L-X. — L_ <cZ

2* -IK -7^
The solution is y e = C + 2e or y = C e + 2e

5. (1 + cos x) dy/cx = (1 - cos x)

y/cU =
I 4- ecsx

— -tavH/Xl)

or ay = Tan1" (x/2) ax = (_Se-C_ (x/2) - Q ax

Integrating y = C + j(sec^ (x/2) - 1) dx 

y = C + 2 Tan (x/2) - x
is the solution of the equation.



-=. «u ,±-

ct

X

6L+X

it- j-C :
Cbr '< 7

d.__
/-d.'

d

or log (a+x) + c = log y - log (1-ay)

or loc V

70-
± +S- 
7 1-^

1

= log (a+x) -r c = leg (s^x) + leg k

fii.i
j - an

or log
' > "t/

or y = K (a-t-x) (1 - ayi)
is the solution.

7. 2x y7= 2v, y(1) = 4 . 

2.x = 2y 2 C_jl
Z y

2 log y = 2 leg x f log C

2
X

2 *y = C x~ put x = 1 , y = 4, c — 16 

The particular solution satisfying y( • ) =4, is i = l6x'

3. Y'= 2e~ y: y(O) = y2

x4
dy
_  — (2_ dtX

dz
J y3 J 

2.^.

Fur x - 0 Y = Y2, -‘/2 
d

-'/2 (/2) = C + 2e = C + 2

i.e. C + 2 = ~2 x L = -2 or c = -4
Y_

The particular solution required is ------ • = 2e - 4
2 1 ~or y

8-Ue



Q CV X
' • = x eex y(D = 3 

dy = x e ex

cy = C + x e ex
x

C + (x e - .ex = C - (x-1 ) e
x.

Xor y = C + (x-1) e'

Putting x = 1, y -

y = 3 - (x-1 ) g is

C + 0 r==t C = 3/

solution of the initial value problem

1°. £7 + x eX •' = C, y(0) = 0
y ■ 'V'—Y 

e' cy - xe ex = 0 
oC"
e ex = Ce cy

+ Y2 e
Put x = C, y = 0, 1 -r ;2.1 = C cr C = 3/1

The solution cf the initial problem is 2e + e

Equations reeuoible to tne form : -r py = Q, where P = P(x), Q = C(x)

Bernoulli's ecuction:
dividing the equation by y 

- _ P <' T -
‘ PX cbC

Put Y =
7-

— + py = Qy - - - (ij>

= C

c v

7 J x. dx.
1 hen, on substitution, the given equation becomes

" (n~1) Y;p = ~- (n~1)---- ---  (3)
Put P( = -(n-1) p, Qf = -(n-1) q

Clearly, p = p (x), q = U (x) and (3) becomes 
11 i /
+ P Y = q - - (4) ax i i

This equation can be solved since it is an equation of the form

~ + PY = Q.ax



1 . ^olve : dv— -r yx ax 1 = x/y

Put j2 * = > dv 2y 7T* 1 a x
cv
ex

The equation becomes 
Y2 dV/ax + xy = x

or dy/dx + 2x y = 2x
Comparing it with dy/dx + py = Q, 

'P = 2x J Fdx = x2, U = 2x

Q Pdx l x e =i e 2xdx = e 
2

x."

X XThe solution is Y e = c + e

or y = c e -x

Since y = y“, the solution is y^ = c e_x -r 1.

•• / 42. ^olve : xy' + y = x y
3 /dividing by xy“, ‘ X- L

I?7

\/ - J-
u L J

:{ Y __ —jY. o< — y -
43 J

ay

cv<

ihe equation becomes,

-= —
4i

dx

Comparing this equation with / j, py — J
cL 

3

or

P = -2/x, Q = -2x'

jJ dx

F ut Y '

+ y x = x

+ 1

= *3

j Z

r cAx x

2

dx

\>Pdx = -2 logex = loge (yx ) /, = ’/x

The solution is Y e pGX = C + Jq e pGX 

Q e PGx dx = f-2x^ yx2 dx = -x2

Therefore, Y. yx = C - x“

or Y = x2 ( c - x2)
2 2 2 9or yy" = x“ ( c - x ) is the solution or .. y“ =

XL ( C ~ v7-)
1



3. Solve (e^ - 2xy) y1 = y2

Here it is necessary to treat x as the cependent variable anc } 
deoen+ent variable.

/

as t

Noting y = cy/cx =

The equation becomes (e' - 2xy) / = y‘

«y o 2 dxe - 2xy = y —

V
Here P = P(y) = 2/y, Q=q(y)=e'/y 

Pay = \ 2/y dy = 2 log y

e <Fcx = y2 , y
5 4 J' = ;

xhe solut icn is x e = C * j Q e dy

- 2 y1 he solution is xy = C + e

4. Solve the initial value problem :

y(o) = ,/2c V . o—- T y = xy , ox 7

7-
dy _ _L 
d.-*- *1

Put yy^ = Y

cy/ax - 2y = —2x 
P = -2, q = —2x

^Pcx = -2x
fj 

-2x

ejPcx = e-2x

q e pGX dx = (-2xe dx
-7-X.
e: D

L - K

e J

— 7.X | -lx
- x e -h v e

The solution is Y e~2x = C + (x+y 2) e”2x

cr yy2 = x + : y2 + ce+2x<

- 6--)^



Using the initial condition 
y(0) = /I

X 2 = y 2 + c c = 0 
2The solution is yy = x -r )'2

5. Co s y

put sin y = y

dy , s in y 
dx x

cos y

= 1

dy
ox

cV
ex

dV
ex = 1X

p (x) = y x, u (x) = 1
r (x) c x = i o a e x -7=* e x' c x = 

P < x) d x - \ 1 . x dx = /2 x*

Hence the solution is Y = e —3 P^x) ex -r (4 e P < x)

0 r s in y = y x < c -h y 2 x 
or sin y = c/x + x/2

2S

6. (y + 1) dy/dx + (yz+2y) x = x

n 2Put y - o = y(2y+2) c’y/dx = a’y/dx\ 'I'd L^'e-

’/ 2 c'//d x -f ' y - x

0 r aV 
ax (2x) y = 2x

P = 2x, Q 
e J Hkx) ax

= 2x o 
xz

= e

e dx /2x
zX

q a x =

Hence the
J

solut ion is
— no < Y = e >

/■> 2 2
i.e. (y^ t» 2y) = e —x (c + eX )

5 -°<x)

2or y + 2y = c e -x 1



Theoretical ?icble~e r-. 1;nCc- _----- ------------------------- -—-  ------ — • — £ >- order ecuatisns :
1 . IT ■? -P anc g are tv.c of cy/cx + py = 0 (then c,f T
also a solution of the ecua-4-~ anv t-nTT _ '“ .o. any arbitrary constants

rtoof : f is a solution. cf/cx + p.f. = o X'C,

a is a solution cc/cx + c.c. = 0

cn3 is 
ci and c~

C, di H- C ^-q
l —r~ ' >

ci Y £l v
= 0

or d/cx ( c 1 c r* ' — (c.f -r c2g) = 0

nence c^f :3 is also a solution cf cy/cx + py = 0.

: The result can be extended. Accordingly, for any solution,
:, a, cr the ecuaciur., c.f -r cca t- c,h + ... is a>SQ ,

i 2 u ° a solution
cr the equation for any arbitrary constants c^» c^, co,...

2. Consider.the differential equation dy/dx + py = o where P =?(x). 
Show that
a) fix) q 0 f or ail x is a solution of the equation.
b) if fix) is a solution of the equation such that f(x ) = o for some 

value X = XQ , theP. f(x)=O for all x.
c) if f and o are solutions such that f(xQ) = o <x ) for some x=x

then fix) - c(x) for ail x. °’

Note: i he solution f(r)r= 0 of the equation (1) is called the cero
solution or trivial solution. ,.uy other solution than this is ca'led 
non zero cr non trivial solution 1 ).
a) Putting y = 0 in the equation, the equation is satisfied.
Hence f(x)~ 0 is a solution cf the equation.
b) consider dy/dx + py = 0
Separating the variables, cy/y + P(x) dx = 0
Integrating the equation, we get y = c e 5P^X) dx

is the general solution (i.e. all solutions are of this form).
Let f(x) be a solution. Then for some c, f(x) = c dX.

Let f(xQ) = 0 for some x = xq , then putting x = x
f(xo) = c e $pkx) dx ._ o =^c =

Then f (x) “ 0 for all x.
0



c) Le* f(x)» be tV7° solutions such that f(xQ) = g(xQ).
Then f(x) = cle P *

(p(x)dx
g(x) = c2e 

f(xo) = g<x0)

•f(x) - g(x) = 0* Mlso t(x) - g(x) is also a solution of the equation. 

Hence from (t) » f(x) — y(x) 0 for ail x
f(x) — g^x) for all x.

3. Let f,(x) =e a solution of + p(x) y = Q, (x)

C Vid fo(x) be a solution of — + p(x) y = C,o(x)anc

”nen prove tha- f^(x) + f0(x) is a solution of

— + Plx) y = Q. (—x) + Q (x )dx i 2.
bince f«(x) arc f^(x^ are solutions of the differential 

equations (1) anc (2) respectively.

(D

(2)

(3)

df
ex

dfQ
—- + ? x) fQ = L ( x) ox 2.

+ P( x) t 1 = ( x)

racing: d/dx (f1 + f.^) + P(x) (f] + f2) = Q^x) + Q2(x) which 

shows thstf^x) + fo(x) is a solution of the differential equation (b)

A Unicueness Theorem :

4. if p(x) anc Q(x) are continuous functions of x, then show that 
dy/dx * P(x) y = Q(x) .
has a unique solution y(x) satisfying the initial condition.
y <x0 > = y0

Let y^x) and y2(x) be two solutions of the initial value problem 
dy/dx + Ptx) y = U(x)

y<x0} • yo

Then y1 (x) - y2(x) is a solution of dy/dx + PU) = 0 

Also, y,(x0) - y2(xo) = yQ - yQ = 0



Hence,• y^x) - y2(x) is a solution cf the homogeneous equation

dy/cx + P<x) y = 0 satisfying the condition y1(xQ) - y„(xQ) =

Hence , (x) - y2(x) ' 0 (i.e. for ail x)

y-j(x)^ y2(x0 for all hC

lienee the solution is unique.

assignment and Self Test :

1. Solve the differential equations.
a) (x-4) y^cx - (y2-3) x2ay = C

2
fc) x sin y ex + (x +1) cos y civ = C

c) 4 x y -r (x 2-i-1 ) y1 = 0

c) (e* + 1 ) cos x + (sin x+1) “ =0

e) Tan £ d.T + 2 d,v =0

f) (x+y) dx - xdy = 0

c) (2xy + 3y ) - (2xy + x^y = 0

h) (x2-2y2) -r xyy1 = 0

i) x2 Hx = 3 (x2+y2) Tan-1 (y/x) + xy

j) (xy1 - y) sin (y/x) = x

k) xy1 = y + 2x e”y/x

l) (x Tan (y/x) + y) dx - x y = 0

2. Solve the Initial Value Problem
a) (y+2 ) ex + y (x+u) dy = 0, y(-3) = -1
fc) (x2+3y2) dx - 2xy dy = 0, y(2) = 6

c) (2x-5y)dx + (4x-y) dy = 0, y(1) = 4

d) (3x+8) (y2+4) dx - 4y (x2+5x+6) dy = 0, y(1) = 2
9 2 2 dy

e) (3x +9xy +5y ) - (6x + 4xy) ax = 0, y(2) = -6.



3. Solve :

a) (x+2y-3) + (2x-y-D = 0

b) (x+y-1) dx + (2x-y-8) dy = 0

c) (x+y) — + (2+y-x) = 0

c) (x+y+1) dy + (2-x-y) dx = 0 

e) (x+2y+3) ~ + (2x+4y+3) = 0

4. Solve :

a)

b)

c)

dv
ex.

4q y 
C G'X. 

d v

= 6x

+ 2x y = 1

~ 2 -3 < cy = ex e

a) d v 
dx

i)

j)

k)

4xy = 3x

a)

f)

g)

b)

dx X 1
GX tz

— n
u

(u2-1) du
a u - 4ij v =34

X. ^7 t- tL y - -x. -I
<1 X x.

x — , 22 t (.<*') y
*-> U_*Z

d a- r/Jan d = Cos d
a&

dy y 2
+ — = 0Xax X

x^ + 
ax y •r 2x6y4 = 00

( x-Q



, ) £1 
C X - X (~y - = 0

□) £ X = —Cv <zx / xx

n) X - 2y = 2x“, y;2) = 8

°) 77 * 3x y = y~ ’ y^c' ~ 2

\ C V V X r < \' — - — = —-> v(' > =

Z
J/a) x ~ y = (xy) ' , y(1) = 4

cy
*) ax * f ( x) , when f(x)

y ( 0) = 0 l 0 x <: 1
» 0 < x < 1

s) (x-r-2) — ex y = f(x) when f(x) = 
y(0) =

< 2x , 0 < x / 2

i4 x 2



APPLICATIONS CF FIRST CRUSH equations

Geometrical Applications - orthogonal Trajectories 
Given a first order equation

the general solution cf (l) is given by 
F(x,y,c) = 0 - - - (2-J

c being an arbitrary constant.
(2) represents a family of curves (a one—Parameter family) in the 
x y plane.
(1) gives the slope of a curve of the family at (x,v).

Lefinition : Given a C, - family of curves, a - family of curves is 
called an crthouor.al family of curves to C^ if each curve of Co cuts 
every curve of C^ orthogonally (i.e. at right angles).

Note : Since orthogonality (i.e. Perpendicularity) is a symmetric 
relation, if C2 - family is orthogonal to C] - family, then C] - family 
is orthogonal to Co - family.
Given the family of curves C^ by the differential equation (1), the 
orthogonal trajectories to C^ are got by

= - —------ - - 13)ex r (x , y) L

(Recall that for two curves to be orthogonal, the product of slopes= -1 )

Procedure for f ir.aing the orthogonal trajectories cf a given family 
of curves :
Step 1 : From the equation (given) F(x,y,c) = 0 (1) of the given family 
of curves, find the differential equation of the family : = F(x,y)
Step 2 : Replace in {ii), f(x,y) by - 1 / f(x,y) to gee mg = - 1 f(x,y)

ihis is the differential equation of the orthogonal trajectories 
of (1 ).

Step 3 : Solve the equation (iii) to get the equation of the family of 
orthogonal trajectories - a one - parameter family of curves

G (x,y,c) = 0 (iv)

Caution j In step 1, in finding the equation (ii) be sure of eliminating
C.

Illustration :
1. Obtain the orthogonal trajectories of the family of circles :



X2 + y2 = C2 • - (1 )

(1) represents the family of concentric circles centred at the orioin. 
-if f er_-nt iatinc (1) we get

2x + 2y = 0

or cv 
ex (2A

c.tanq mainc -x/y by - ( - /y ) = y/x

(*)

The orthogonal trajectories of (1) are given by 

— = — ------ A)

Separating the variables in (3) ano integrating t3) we get y = c x

differentiating — = 2 ex3 ax
- • • . . C v /t_mmatmg C, = 2

T.te orthogonal trajectories are given by

occtxi'ht-ydj—$^/aK - 

Integrating this equation
2 2 2 2 2y -r x = constant or . x + 2y = C

wr.icn are ellipses.

Y/- - - — - • 43)

(<)

(3) Find the orthogonal trajectories of the curves given by 
y2 = 2 Cx + C2

Consider Y = 2 Cx + c - - (1)

Substituting for C in (1)
99 1 9 "A

Y = 2(yy )x + y y

9 1 9 1
y = 2xyy + y y - - - (^)
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Replacing y by

We get y2 = ' > -r iL

2 ?’
9 1 x 1 9Y Y + 2xyy = yz (3)

(2) and (3) are identical, ."-ence the orthogonal trajectories of the 
given curves are themselves i.e. given by (1) itself.

Definition : a given family of curves is said to be self -orthogonal
if its family of orthogonal trajectories is the same as the given family
In the above example, the elven family of Parabolas

2 2 ” 
y = 2cx + c is seif—orthogonal.

Miscellaneous Examples :
(^) rind the curves such that the portion cf the tangent intercepted by 
the axes is bisected at the erne of contact.
Let f = f(x) m a curve wrt.t tne propertv.
The equation cf the tangent =t ?(x^, y^ is

d ■/
(y-yj = C’-X,)

Putting Y = 0 in (1) -y = tx-x1)
(1)

(1)-1 = 'C
yor x = - x1 - 3-

x -m yX . iiA =
H’ ' '

Putting x = 0 in (1), y-y^ = yj 
or y = y - x y

(-xp

3 — ( 0, y .j i p

Since P is the mid point of r-.£,

» y1 ) = </* c; - ~x'Yr'°



x x — ' v■ ' • — — < I
u • 1/
”u'

'p

), ’ kp, - >

X
u1/= 2x. = x. - JL f 1 1 .7'/f

\

x,yp = o

Then the curves with the property are given by the differential
equation x y’ -r y = 0
Solving it by separating the variables, we get the curves to be x y = Cx.

(5) Find the curves for which the subnormal at 
is cf length 1.
The sub normal at any point ?(x,y) is given by y y'.
therefore, the ciffeientiai equation of the curves whose subnormal is

. 1 d vis y y = 1 =± y =1

integrating y" = 2 x-r c
are the reouireo curves.

any ocint of the curve

1

6. A curve rises he origin in the xy plane in the first quadrant.
The area unaer the curve from (0,0) to (x,y) is one-third the area of the 
rectangle with t.ne point, 
the curve.

= y3 (The area cf the rectangle CMPN)
= >'3 xy /
The area unaer the curve = \ ydx

i J
Hence, ydx = y3 xy 

o J
differentiating w.r.t. x

or 3y = x 

or 2 y =

y = 3

y1 + y 

1xy

It- (x.y)

2cx
x

dy
y



This is the differential satiation of the curve.
2Integrating the equation we get its equation to be y = x or 2x

Falling 3ccv ?roblems/Pendulum
(Oh Free ball: If m is the mass of a falling bocy and a is the acceleration 

of the bocy, then the force acting on the bocy is given by F = ma 
by the second law of motion, accordingly, if v is the velocity of a 
freely falling body which has fallen through a distance x, then the

iv = g (i) 
etc

• - . . /'?* ecuation or motion is m mid. - mg or

Intecrating the equation v = v + qt 
0 ,v^ cemg the initial velocity (atjt=O) .

(D

Since v = (2)ot ' becomes — at v + gt o
1 2Integrating again, x = v t + — gt (3)

Since x = 0, when t = 0
the motion of the freely falling body is governed by the equations 
(1) , (2) ano (3).

Retarded fall : If we assume that air exerts a force opposing the 
motion of the falling booy and that this opposing force vad.es directly 
as the velocity of the body, then the cuaticn of failing body becomes 

Jv = g - c v (c > 0)(1)

or d.'
1Integrating (1) - — log (g-cv) = t + c, or g - cv = c„ e

Taking the initial velocity as zero i.e. V(0) = 0 
C2 = g

v = £ (1 - -c

C is +ve. Hence > 9/ on t

(2)

co

This limiting vaiue of v is callee the terminal velocity . 
dxSince v = —

dx(2) becomes = (1 - e-Ct)

= c

)

Integrating again, x = c_ + 3. (t + — e_ct)
J d (-

sir.ee x = 0 when t = 0 or C? = - g/c2

X



(c) ^he motion cf a simple pendulum : Let m be the mass cf the boc 
anc a the length cf the pendulum. The bob is pulled asice through an 
ancle C* (measurec from the plumb line). if V is the velocity of tne 
bob when the strinc makes with the plumb line, the: by the principle
of Conservation cf eneroy

mv = r.g (a cos 6? - a cos=< )

But s = a£

The equation

That is the ecuaticn of motion of the
pendulum

Differentiating <1) w.r.t. t

6L it T — - <1 «n 0 . J £•
d (r &L t~ ct h

or d^ - " ? - - - C2O
dir2' cv

- CoS^')

L

r1'

(i) Case of small oscillations

Assuming that the oscillations are smal~, (i.e. © is small) 
he replace : sin S by © (since © is small, sin © is almost © itself)
This equation becomes

1 £ - - 
77 C-

lb

This is the ecu ition cf motion of a simple pendulum
for small oscil laticns.

assuming that 9 - A and = 0 when t = 0
_ \ clh

& ' d C:5 j - C4)

Simple electric circuit s : *

Consider a simple electric circuit consisting of .
(i) a source of electromotive force (emf) E
(ii) a resistor of resistance which opposes the current producing
a drop in emf cf macnituae Ea. If I = the current, then E~ = RI rt . • rt
(This equation is called Ohm’s law).
(iii) An inductor of inductance L, which opposes any change in the 
current by producing a orop in emf of magnitude
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(iv) a capacitor (or concenser) of capacitance C which stores the 
charge Q. The charge accumulated by the capacitor resists the inflow 
of additional charge, and the drop in emf arising in this way is

= c Q-

Furthermore, since the current is the rate of flow of charge at which 
d Gcharge builds uc on the cacacitcr, we have I = ■ . ■at

These elements act in accorcance with Kirchoff’s Law, which states that 
the algebraic sum of the emfs around a closed circuit is zero.
This principle yields

c“EL“ER-EC = 0

or E - Ri - L oi

C
or L + HI + 1 C = £

Reoiacina I bv
C

c:

(1)

r Q = o□ t

(1) becomes L , -r R.
EE C

When no capacitor is present the equation (1) becomes the first orcer
differential equation : L —2T - Ri = £

We solve (2) assuming that initial current 
impresses on the circuit at time t = 0.
The equation governing the flow of current

L 21 + RX = £
Gt O

separating the variaoles

(3)

and a constant emf E is o

1 s

ai
Eo " RI

- -1 dt- L Gu

on integrating using the initial condition I = Iq, when t = 0

V.e get log (E -RI) = - Er_ t + log (E - Ri )
o I__ ~ 0 O

i = Eoso
R

Note that the current I consists of a steady state Part Eq/R and a

transient Part ( IQ - lro ) exp ( "lE ) that approaches zero as
t -?£,-»• Lonseouently , Chm ’ s law £ = RI is nearly true for large values 

o
of t. If I = 0, then I = Ev ( 1 - e"Rt'/L)
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and if £ = 0, then 1 = I e “ ~

C7KE.4 RATh
a) Mixture rrcb_em: 
S c c — u i n o a

- n ’ - < - ' * i - 1 1

i---- e t =
,ci;x _:;_-ici_y contains 5C gallons cf pure water. 

0 brine contammc 2 ib cf dissolved salt per oaiic 
flows into the rank at the rare of 3 galion/minute. The mixture is 
kept uniform by consrant stirring and the mixture simultaneously flows
cut of the tank at the same rate.
1 . How much sdt r emains in the tank at any t ime t > 0 7

2. How much salt r emains at the end cf 25 min ur e s ?
3. How much salt r emains eventually (after a long time ) ?

Let x aencte the amount cf salt in the tank ar five t. The basic 
equation governing the flow is

CX T r 1 -XI / • \— = inflow - outflow (l)
Since the inflow is at the rate 3 gallen/minute ano each gallon contains 
2 lb of sal t
Thus inflow = 2 ib/gal X 3 gal/min = 6 io/mi.n (ii)

Since the rate cf outflow equals tne rate of inflow the tank contains 
50 gal. of the mixture at any time.
Then 50 gallons contains x ib cf salt.
The concentration of salt at time t = lb/hal

S' o
The outflow = ■ X lb/gal \ X (3 gal/min) = -Ci— ib/min. (iii)

< 5 0 /
Thus the differential equation governing the .flow is

dx , 3x / • \at ” 6 50 (lv)

Initially there was no salt in the tank. Hence x = 0 when t = 0 
(or X(0) = 0).

ci xTo solve (iv) separating the variables, y..

Integrating x = 100 + C e”~k'/

S ince x (0) = 0, C = -100
x = ICO (1 - e“3t//5°)

= to dt

(v)



This answers question (1).
For the question (2), put t = 2b. 

x(2b) = 1C0 (1 - e-1,5)^ 78 lb

The question (3) is solved by letting t - - 

in (v) . 1 hen x = 130.
b) A certain chemical is converted into another chemical by a chemical 
reaction. The rate at which the first chemical is converted (into the 
second) is proportional tc the amount of this chemical present at any 
instant. Ten percept of the original amount of the first chemical has 
been converses in b minutes.
i) i.hat percent of first chemical will have been converted in 20 min?
ii) in how many min. will 6Ch> of the 1st .chemical has been converted ?

Let in the amount of first chemical present initially. Let x be 
the amount of chemical uncergoing reaction at the end of time t.
Then (x -x; is the amount of the chemical left out at the end of time t. 
3y the hypothesis, the rate of charge cf x is prep, to (xq-x).

therefore, the differential equation cf she reaction is 
exfr- = K (xo-x) (1)

Separating the variables and integrati.no 

Since x = 0 when t = 0, c = x

-ktx = x - 3 e o

N ow x =

nc<_
io

X = x ( 1 - e”kt)

c. when t = b min.
(2)

-bk
x ( 1 - e "k) 
c ' *

= 0.9

Hence (2) becomes x = x

ek = (0,9)75 

(1 - (0.9)ty5)

(i) Kt the eno of 20

Thus at the end of 20 min.

mm. x = x

- •

( 1 _ (0.o)2°/“) = x (1 , (0,9)

100x = 100 ( 1 - (0.9) )

integrati.no


Then from ^3)

C.o = (

Percent cf the chemical is converted into the second chemical, 

(ii) If x = Lui- (60/a of the first chemical)

- y.0 <1 "
ic

- (0.9)t//5

• q)'

t(C.?)t/5 = C.4

leg C i Q<

/' 0. t
t = 5

c) /'ssums that the rate at v.nich a hot bocy cools is proportional to the 
difference between its temperature and that cf the surrcur.cinc (this law
is called ‘'ewtcn's law of ceding) . z-. bocy is heatec to 110C0 anc placed

c cin air ar 10 C. zvfter one hour its temperature is 60 C. How much 
accitionai time is required for it to cool to 30cC ?

Let E?i' re the temperature cf the body at time t 
trie temperature cf the surrounding air is 10d, by hypothesis 

4* = k ( G -10) (1) , k 7 0

rom start Since

di'
r nt e cr a t inc, lcgc( &- 10) = -kt +

cr = . n -k10+ c e
-

when t = 0, © = 1 10 , 1 1 0 = 10 +

= 10 + 100 -kte (X)

when t = 1 hour, - = 60°C
60 = 10 •+ 1 00 e“k’1

-ke = 0.5

e = 10 - 100 (0.5 )*• -- (3)

if e = 30° C, 30 = 10 + 100 (0.5?

(0.5)1 = 20 (0.2)1 00

t = loa 0.2
log 0.5

The additional time required

hr
C; c-2. Urs — 
tc q 0 • 5'

Icj > 

lc<|l-
hrS .



d) -A sua' of money is deposited in a bank that pay,s interest at an 
annual rate compounded continuously.
1 .. Find ihe time required for the original sum to double.
2.-Find.the interest rate that must be paid If the initial amount 

-'doubles in 10 years.
If A =- a(t), be the amount at any time, 

then , ? ’ cl A - - - - (

lOC
Integrating A = Aq £
A -• = A(0) = the initial deposits.

If t T, when = 1AO 2. A. — Ao £
CO

'7lT/100 = log' 

jT = cc log^ (3)

,2. If. I — 10, then 10 = (co loc41- _ ___ - Q

. LP ^0<3e is rate of compouna interest. x t

(e; In.a certain chemical reaction a substance is converted into 
another substance X. Let a be the initial concentration of and 
x = x(t) in the concentration of X at time t. Then a - x(t) in the 
concentration of a at t. If the reaction is jointly proportional to 
x and a-x (i.e.,the reaction is simulated by the substance being 
produced, when the reaction is described on auto catalytic) and 
x('0)- = x * find x(t).
ihe rate of reaction

dx.
dir

— l< *

is governeo by 

- ( a. -x) - - U? k-7 0

r i ( x -----  ') r
CL- <

Loux —Lcn(a-t') afcl- 4-O-nsL



o r
—a k

- h Ce

3or x =

a.
I +- ct

rt O-Vt

VCVX 'X-o
— ck(r

h (c - *c) c

4- C

At t = 0, x

= C =

X =

If >-i#?~moth ball wnose racius was originally }'4 incn is found tc have 
a racius 1/8 ir.cn after one month, assuming that it evaporates at 
a rate proportional to its surface, fine the racius at any time.
After how many months will the moth bail disappear altogether.

If x is the racius of the moth ball, V its volume ana S its surface 
a at time t,

<•).. — — t< -S 
de

v ' L- x? , z - u *•

?-Ja - S cK
7G

Kente (J) 5 1 ~
at-

___> gt~x- _
ctf

ci\J_
ctx.

— L| n x

K -
Integrating x = C - Kt

Vihen t=0, X=y4, y4 = C x = y4 - Kt
V. h e n t = 1 , x = ;' 8, y 8 = y 4 - K o r K = }' 8

z- v 
8

(3)x = x(t) = ye (2-t) 

when t = 2, x = 0 and the moth ball disappears. * he moth ball 
disappears after 2 months.

g) The rate at which racicactive nuclei decay is proportional to the 
number of such nuclei present in a given sample. Half of the original 
radio active nuclei have undergone disintegration in 1500 years.
h) \<hat percentage of the original raaio active nuclei will remain 
after 4500 years ?



2. In how many years will only one-tenth of the original 
remain ?

If x = x(t) is the amount of raaio active nuclei remaining
years ana x (0) = x , the origi nal amount of the nuclei, 

o
disintegration of the radioactive nuclei is governed by

tbc
Lit 

xtO)
= -K% U)

Integrating the equation ^1 ) we get, x = x(t) =C_(exp(—<- 

Putting t = 0, x = x , we get x = x e -kt (2)

It is given^that when t = 1500, x = /2 x

= x .e'1500 k 
2_ ° 0

r _

(r
(2) becomes x =

( 1 ) when t = 45 00,

M b'c0 (3)
=

6
12.5% of the original amount remains after 4500 years.

, L
(,2) when x = — x ,

to 0
— - '*■ 

to

Taking Logarithm
O = 7^, (bi)

/-5"7

nuclei

after t 
then the

K > 0
= x

)).

_ ; 5*0 O L
£ O r

(4)

X = x

15 ° c
I e J " x

J_ \ I Sco

Lcs / (
t = 1500 J <fC = 1500 .________ iLLq>4985 years.

h) The rate at which a certain substance aissclves in wars 
proporrional to the product of the amount undissolved ana 
difference C,-Co where is the concentration in the sari 
solution ana Co is the concentration in the actual solurii 
saturated, 50 gm of water wodld dissolve 20 gm of the sic-

=r in 
rhe 
rrated 
:n. If 
stance.



if 1C gm or the substance is placed in 50 cm of water and half of 
the substance is then dissolved in 90 min. , how much will be 
dissolved in 3 hour ?

lince 20 gm of the substance dissolves in 50 gm saturated 
solution, the concentration in the saturated solution

- C1 - 50 W

Let x gm be the substance dissolved in 50 gm of water al 
Lnen (10 - x) gm of the substance is uncissolved at time t.

■ he concentration of the substance in 50 gm cf water at time

ne t

=
So

(ii)

ihe substance dissolves in water according to the law

cU
eil-

= K (C^) (1C-x)

— = Jl(2C-x) (10-x)
til Sr

Separating the variables 
Ax

(jo--x)tLe--x')
zz. JS_  tv

so

Ir.trcr&tiny Log^ )

or
= t - const. 

*5"

If _x

»<hen t = 0, x = 0,

7-0 -X- 
I C — X-

= 2e
‘Si­s'

c r

i
- x

J<__ ai

o.c-x_ c p%(

C = 2

Since half the substance (i.e. 5 gin) is dissolved in 90 m in 
putting x = 5, t = 90



I
lb k

t c •- *-

3_
~2_

Ls>
e->

- e CV

- ^')

Nov; v;e express x in terms cf t

20-x = 2
A ?/

u-
^’( 10-x)

20-20
1/ /c 0 = x

x = 20
li'K'

_J-G A-^-i

then t = 3 hrs = 180 min.

- - - (i>

"C/,t -i
rr i — *-

'7 -<

_lb-^

I CC"
C'y x - 7, jQ- Tr\



EXERCISES
ON

DifferentiarEquations

Formation of Differential Equations

I. Form the differential equation by eliminating the arbitrary constants in the 
following equations.

1.
9
3.
4.
5.
6.
7.
8.
9.
10. 
11. 
12 
13.

14

16

17

y = a cos mx * b sin mx where a and b are arbitrary constants.

y = aemx + be'™*, a, b are constants.
Ax2 + By2 = 1
y = aebx

y = a cos (x + b)
y2 = m(a‘ - x2), m, a are constants
c(y + c)2 = x3

y = c(x - c)‘
y = a sin fbx - c) where a and c are constants
xv = Aex + Be'x

y“ - 2av + x = a
(x - aff (y - b)x = r", where a and b are constants.
Form the differentia'! equation representing a family of straight lines passing 
through the ongin.
Form the differential equation representins a family of concentric circles 
x2 + y2 = a2.

Form the differential equation representing the family of parabolas having x- 
axis as the axis and focus at the ongin.
Obtain the differential equation representing a family of rectangular 
hyperbolas which have co-ordinate axes as asvmptotoes.
Form the differential equations by eliminating a and b

i) y = ev (a cos x * b sin x)

ii) y = a sec x b tan x
in) y = a sin x * b cos x - x sin x

Variables separable form :

Solve the following equations:

1 sec2 x tan v dx ~ sec" v tan x dv = 0

v 1 - y2 dx - yl - x' dy = 0 

(2v - 1) dx +(2x + 3)dy= 0 

dv
— T.W = XV'
tfx
(y2 + y) dx - (x‘ ~ x)dy = 0

dv jV-X — = O! V 
dx

dy }



7.
8.

9.

10.

11.

12.

13.

14

15.

16

17.

18

19

20.

21.

on

r~ r--- - -
xyl + y2 dx +yyjl + x2 dy = 0 
(e5 + 1) cos x dx + ey sin x dy = 0

log — = ox + by 
dx

— = O " a) (y -5) 
dx

cos y log (sec x + tan x) dx = cos x log (sec y - tan y) ch

dy _ x (2 log x+1)
dx sm y + y cos y

(y‘ + >’+ 1) dx + (x2 + x + 1) dy = 0

dv f , ch' 
v - x — = a\ x‘ — + 1

dv

— = (*+>•) 
dv

dv

— = sm (x -+- v) 
dx

— + 1 = e"y 
dx

(x r -r 1) — =1 
' dv

, x-/— = 1 - c 
dv

dv x + y +
dv 2x + 2 v +

i x + y - a j dy _ x + y + a 
x + v - b J dx x + v + b

dv— = vtan 2x With y(0) = 2 
dv



23. 2x — = 3v giveny(l) = 4 
dx

dv
24. — = sec y given y(0) = 0 
' dx

25. — = 2e' y> given v(0) = 
dx

26. sin ; — i = a given y( 1) = 2

27. = x + 1 given y(0) = 3

7. dv •)
28 (1 + x‘) — -h( 1 ~ v' ) = 0 given y(0) = 1 

dx

29. (1 - y") dx - xv dv = 0 given vfO) = 1

„ < , 3 .
30. e' — = 3 v given vfU) = 12 

dx

Homogeneous Equations
Show that the following equations are homogeneous and solve them

1. xy'-x-y

2. x" y' = x* *xv + y*

3 (3xy - y") dx ■+■ (x" * xv) dv - 0 

, dy _ x -3y

dx x - y 
. dy _ x - v

dx x - y

o. 2x v — = x -+• v 
t dx

7 (x‘ - xy) dy = (x2 - y2) dx
8. (y - x2) dx - 2xy dy - 0

9 xd y - ydx = x,'x~ - y dx

1 A v10. x — = v — x tan —
dx ' x

.. / v 7 r . , - r ,
11. (x tan -— vsec’ — ,) dx -x sec' — dv = 0

X X X

3



x cos — ( vdx xd v)= x’sin — ( vd x -xd 
X ' ' ' r

12.

13.

14.

15.

16

17.

IS

X — = V [ l02 V - l02 X - 1 1 
dx '

/ \
d-r e*'") <ir + - — I dr=0

I y)
dv - v

x — = r - xsec' — 
dx xs \

xdx-sin2 — ' (vdx-xdv')=()

( 2 yxy - xjdr - vdx = 0 

dr , y r‘

dv x x*

Linear Differential Equations
Find the general solution of the following equations.

- £<V
tx' ’ 1) — - 2xv = 1 

dv
dv
— - V cot X - COS X 
dv

*» dv
cos' x —— v = tar. x 

dx

4 (x-2,y^ = v 
dv

( 1 - y idx = (tan ’ t
6 (x- tan r )dr = sin 2y

7
dv
—— r tan x - sec x 
dv

S X IX - 1 )------ V = X
dv

9 x------ 2 r = loz x
dv

b.i.
dr

( X- -1 ) — = 1 
' dv

4



11. (2i-10y2 )^- +y = 0

dx

12. x cos x — + v (xsin x-t-cos x)= 1
dx

13. (x+1)—-y = (x+l)i e’x
dx

dy!14. X|^.yj = l-v

15.
dv y = 1 - V x
dx (l-x)vx

Reduce the following equations to the linear form and hence solve.

Equations of the form j"( y) — - fiy')P- O can be reduced to linear form by using the 
dx

substitution ffv) = u so that f'iv! — =
Jv

1 dv 3
— -xsin2v=x cos v 
dx

dy tan y r

dx 1 -x ‘ ~ ~ •’

3
Jv

x —----- v log v = x v e ’
Jv

4.
dy' v log v r (, log vj'

Jv x x:

5 dy 1 _ ev

Jv X X'



av .
o. tan v — + tan x = cos x cos' x

' dx

_ dv
I X — = x Ilogy -logXT 1)

dx

9. — =
dx

dv 1 1
— + — tan x = — tan xsm x 
dx x * x*

.Yt X- V / X V \- e ie - e )

,, av . x cos x
10. — = (sinx-sm x)---------

dx ' cos x

1 1 sin x — = cos x ( 1-x cos x ) 
dx

, dv
1_ — - ('2x tan x-x ill- V i= 0

dx

Differential Equations of the form dv a. x - 6, x -

civ a. x- b, x —

Find the general solutions of the following equations.

dx x - 2x - 3
dv 2x - x - 3

dv X - X - 1
XV 1 ■ - x - ?

dx 2x - 2 x - 1

dx 3x — x - 5

dv x — 3x — 4
dv 3x - x - 2

■. 3y - 7x - 7 j dx -r- (7y - 3x - 3'i dy =

(y - x - 2) dx - (y - x - 4 j dy - 0

dv 6x —lx •• 3
dx 3x - 2 x - 1

6



8. (5x - y + 2) dy + (3x - 7}

9. (2x - y + 1) dy - (x + ?

10. (x + y + 1) dx - (2x + 2y

11. (2x - 4y + 3) dx + (x - 2

12. (x -i- 2v) (dx - dy) = dx -

; - 1) dx = 0 

f + 3) dx = 0 

+ 3) dy = 0 

y + 1) dy = 0 

dy

7



Bernoulli’s equations

A differential equation of the form — + Pr=qyr' where P and O are functions of x is
dv

called a Bernoulli’s differential equation.

Find the general solution of the following equations.

->

dx

dV

dv

4a

1 -A
v= _a \ .*

v (2xv - c / dv - c dy = 0

- dr
4 ( a* v - a v )— - 1

’ dv

dv - i? A --- - V = V log A
dv

x dvo — - v tan a = - v se< a 
dv

, dr - i 
I x — - A v - V COS A -

dv

8
U 1

dv
2 v tan a - V' tan

9.
~ dv

- v sec a = y la;

10. AV ~
dr -— - r c 
dx

11 (x-y ) dx - 2xydy = 0

12 y <-xy + e ) dx - a e dr =

13.
dy xv —
dx 1 - A-

$



14. 2xydy - (x: + v + l)aV = 0

15. ’2— - 2 v tan x = v" tan“ x 
dx

Differential Equations of the type d^y_
dx2

= f(x) and
d' y 
~d^~ = g(y

Solve :

d~ y _ 1 

dx2 X

d~ V
—7- = cos nx 
dx’

d~ V

dx-
— - sec x

d ' V
—r- = x' sinx 
dx~

d" v

dx
= sin x

t/‘ V 
tiv

= xe

d’ y 
dx’

- cos ->x - sin ox

d' y
TZ7" - sin x

—r- ~ ion x

10 d' y 
dx~

= x sin x

dy\

dx'
■ - (I1 1

9



d~ y | 11 - cos 2x

k * * /

i — ----- — — | ------------------
dx' v\l-r-cos2x

13 d' y x-1
dx~ ( 2x - x )3/2

i’ d'y * i1- —— = cosec x- lo2 x
dx'

15 sec x I - 6e2' 1 = 2-x 
I dx'

16
if' ?'

ax' 
■}- ,•

= x-stnx given y(0) = 0 and yYO) = - 1

17
av

= logx given y(J) = J, y'(l) = - 1

—— = x sinx givenytO) — 0, r’(0) = n
JLV’

d' V ,
x—- = 1 civen vfli = 1. v fl) - <>

dx'

A ‘ V X . • , • ,
—? = e «. sinx - cos x ) given y(<J; - 1. y n>)= U 
riv

Application of Differential Equations

1 A horizontal beam of length 21 metres carrying a uniform load ol &) kg per metre ol 

length is freely supported at both the ends satisfying the differential equation :

r i -v 1 i
E I —— - - (0 x - co Ix

dx' 2

d\' .
x being the defection at a distance x from one end Ifv = 0 at x = O and — - n at 

dx
x - I find the deflection at any point

2 A particle starting with velocity 'u ’ is falling freely under gravity with a constant 
acceleration Find the velocity v and the distance a travelled bv the particle at lime 
*r’.

in



3. The velocity v of a particle vertically satisfies the equation

4

where g and/; are constants. If both v and x are zero initially find v in terms of.r. 
The decay rate of radium at any time is proportional to its mass at that time. The 
mass is m0 at t = 0. Find the time when the mass will be halved.
The equation of electromotive forces for an e'ectnc circuit containing resistance and 
self induction is :

6.

where E is the electromotive force given to the circuit. R , the resistance; L the 
coefficient of induction. Find the current7' at time 7' when (i)F = 0 and (ii) E 
= a non-zero constant

A particle falls towards the earth, starting from rest at a height 'h ' above the surface 
If the acceleration of the earth vanes inversely as the square of the distance tiom its 
centre, find the velocity of the particle on reaching the earth's surface, given ‘u' the 
radius of the earth and ‘tg’ the vaiue of acceleration due to gravitv at the surface of the 
earth
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Exercises :

1. A random variable X has a binomial distribution with parameters 

n = 4 anc p = V 3.

i) Describe the probability mass function and sketch its graph.

ii) Compute the probabilities P(1 <X4. and P(1 X 4 2).

2. In a binomial distribution consisting of 5 independent trials , 
probabilities of 1 and 2 successes are 0.4096 and 0.2048 respectively 
rind the parameter p of the distribution.

3. The probability of a man hitting a target is /3.
i) If he fires 5 times what is 

target at least twice ?

ii) How many times must he fire 

the target at least once is

4. The random variable X has a 
p = 0.5. Find P S |X-2| >

Answers :

1. ii) 8/27, 56/81.
2. 0.2

3. i) 131/243 
ii) 6

4. 5/16

the probability of hitting the

so that the probability of hitting 

more than 90% ?

binomial distribution with n = 4,



LINEAR PRCGRrMMlNG

Introduction ;

Mathematical Programming constitutes one of the most important 

problem areas of Operational Research (OR). It encompasses a wide 

variety of optimization problems. The basic problem of Mathematical 

Programming is to find the optimum (maximum or minimum) of a non- 

linear/linear function (called the objective function variously 

known as cost function, 'gain, measure of efficiency, return function, 

performance index, utility measure, e:c. depending on the context) in 

a domain determined by a given system of non-linear and linear 

inequalities and equalities (called constraints).

Linear Programming (LP) is a Mathematical Programming problem 

where the objective function anc the constraints are all (at least 

approximated) Linear functions of the unknown variables.

In practical terms, mathematical programming is concerned with 

the allocation of scarce resources - men, materials, machines and money 

(commonly known as the 4 M’s in GR) - for the manufacture of one or more 

products so that the products meet certain specifications and some 

objective function (cost/profit) is minimized or maximized. Whenever 

the objective function is a linear function of the decision variables 

and the restrictions on the utilization or availability of resources 

are expressible as a system of linear equations or inequations, we 

have a Linear Programming Problem (LPT). For example, in the case of 

manufacturing a variety of products on a group of machines, the 

production problem is to determine the most efficient utilization of 

available machine capacities to meet the required demand. The
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programming problem is to allocate the available machine resources 

to the various products so that the total oroouction cost is 

minimum. To solve this prooiem, we need to know the unit produc­

tion cost (cost for producing one item), unit production time, 

machine capacity and proauction requirements. This is anLPP (for 

more clarification see Section 3 on formulation of Linear 

programming problems for a similar example).

The standard technique of solving an LPP is by Simplex Method 

(aue to George, B.Lantzig, 1947) which is quite complicated and is 

beyond the scope of this unit. However, LPP's involving two 

variables can be solvea graphically. Moreover, there are certain 

special types of LPP’s suer, as transportation and assignment 

problems which aamit easier methods of solution. Recently, there 

have been some spectacular developments in the area of LP due to 

an 1naian,harencra Karmakar of Bell ielephone Laos, U.S.A, where 

he is able to reach the solution of an LPP considerably faster than 

simplex method.

In this unit, we confine our attention to formulation of 

LPP's and their solution by graphical method.
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LINEAR INEOJATICNS ANU CONVEX SETS :

The restrictions on the utilization (demand) or availability 

of resources in a linear programming problem (LPP) are expressed 

as a system of linear equations or linear inequations, and the set 

of feasible solutions of an LPP is convex set. Though any LPP 

(in any number of variables) could be solved by the famous 

Simplex Algorithm, the LPP in two variables can be solved in an 

easier way by graphical method essentially identifying the inter­

section of graphs of various linear inequations ana testing the 

objective function for maximum or minimum at the vertices of such 

a graph. The graph of a linear inequation is essentially a convex 

set. Thus the concept of Linear Inequations (and their graphs) and 

convex sets play an important role in the study and the solution 

of Linear Programming ProDlem (especially in the two variables case)

Linear Inequation :

Consider the relation 2x=4 in exactly one variable x on real 

number line. In this equation, the highest power of x is 1 and so 

it is a linear equation in one variable. The graph of the equation 

is the set of all those points on x axis (Real line, Ft) satisfying 

the conaition 2x=4. Since there is exactly one point satisfying 

the condition namely x=2, the graph of the equation consists of 

just one point namely x=2 and it divides the x-axis into exactly 

two parts A and B, where a is the set of points on the axis 

satisfying 2x <z 4 and B is the set of points on the axis satis-



fying 2x £ 4, 2x s 4 and 2x z 4 are linear inequations in one 

variable anc their graphs are respectively A ana £, which are 

two opposite rays with end point x = 2.

The following illustrates the graphs of equation 2x=4 and 

inequations 2x 4 and 2x 4.

A : x 2 x = 2 B : x ? 2
«» ■* ■ rt----(a). ■ «----- c - ____ _ __ >

-A -3 -2 -1 C 1 3. 2 5 6

In general, ax= b, where a and b are real nuumers, is a 

linear equation in one variable and its graph is just the point 

x = b/a on x-axis (real line). Also, the point x = b/a is common 

to the rays ax < b and ax b.

Consiaer another relation 2x-r3y = 6 in two variables. This 

is a 1inear equation in two variables. The graph of the equation 

is the set of all the points (x,y) in the cartesian plane (i.e. xi2 

cr xy-plane) which satisfy the equation 2x+3y = 6. (3,0) and (0,2)

are respectively the points of x—axis and y-axis satisfying 

2x-r3y = 6. i hus the graph of 2x+3y = 6 intersects the x-axis and 

y-axis respectively at (3,0) and (0,2). Vie know that the equation 

of the line passiny through (3,0) and (0,2) is 2x+3y = 6. Thus, 

v. he graph of 2x+3y = 6 is essentially the straight line which 

intersects x-axis and y-axis respectively at (3,0) and (0,2).

Further, the graph of 2x+3y = 6 is the common edge of the two regions 

C and - where C is the set of points satisfying the inequation 

2x+3y — 6 and D is the set of points satisfying the inequation 

2x-f3y 6. C and u are called the graphs of 2x+3y < 6 and
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2x + 3y z 6 respectively. More precisely, we observe that the 

xy-plane has the following partitions.

1. The set of points satisfying 2x+3y < 6.

2. The set of po ints satisfying 2x+3y = 6

3. The set of points satisfying 2x+3y ? 6.

Thus, if (x,y) is a point in the xy-plane, then it belongs to

e ither i) the graph of 2x+3y < 6

or ii) the graph of 2x+3y = 6

or ii i) t h e graph of 2x + 3y j? 6

This is the basic philosophy in iaentifying the graph of an 

inequation. he illustrate the same as follows :

Suppose we wish to identify the graph of the inequation 

2x+3y < 6. In the following figure, L represents the graph of 

the line 2x+3y = 6. The graph of 2x+3y < o couio be either or 3 

(but not a portion of both). he have tc mark whicn one of them is



Here h and 3 are mutually disjoint. Choose a point v.-hich 

aoes not belong to L. (0,0) is one such point. The point (0,0) 

satisfies the inequation 2x-r3y < 6. Hence is the graph of the 

inequation.

AUL is the graph of the inequation 2x+3y 6. Suppose we wish

to identify the graph 2x-t3y > 6. Since (0,0) which is in A does 

net satisfy the inecuation, A cannot be the graph of the inequation. 

Therefore, 3 is the graph of the ineauation. Also 8 U L is the 

graph of the inecuation 2x-r3y > 6.

In general, the graph of the linear equation ax-t-by = c (in 

two variables) is the set of points on the line intersecting x-axis 

at (c/a, 0) anc y-axis at (0,c/b). Further, the graph divides the 

xy-plane into two parts - and F, one of which is the graph of 

ax-rby < c and the otner is the graph of ax-t-by c. If a point in 

E (which is not on L) satisfies ax+by <. c,, then E is the graph of 

the inequation ax+oy < c and F is the graph of the inequation 

ax-t-by c . Otherwise, E is the graph of the inequation ax+byc 

and F is the graph cf the inequation ax-t-by < c •

Consider the linear equation ax+by+cz = d in three variables.
3

The graph of this is a plane in the space R and is common to the
3

two parts A and 8 where a is a set of points (x,y,z) in R 

satisfying ax-t-by-t-cz * d and 8 is the set of the points (x,y,z) 

satisfying ax+by-rczz d. a and 8 are called half Dianes
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In general, the graph of + a2x2 + •••• + anXn = ° is

called Hyper plane in the space Rn (i.e. n-dimensional Euclidean 

space) giving rise to two parts A and B where A is the set of points 

(x1 ,X2» •.. ,x ) in Rn such that a^x^ + a2x2 + •••• + anxn b anci

'B is the set of points such that a^x^ + a2x2 + •••• + anxn 

A and B are callea Half spaces.

In what follows, we shall mainly confine our discussion to 

equations and inequations in two variables only.

Example: Icentify the intersection of graphs of the following 

linear inequations : x + y ?> 1, y - b, x < 6,

7x i- 9y £ 63, x, y 0.

In the following figure, we have arawn arrow marks along the 

line L. representing x+y = 1 in such a way that the pointers of the 

arrows lie in the graph (region) of x+y £ 1. The same is repeated 

for the rest of the inequations. ‘he intersection of the graphs of 

these inequations is identified as that region which includes 

pointers corresponuing to all the lines L]» J-2, Lg, L4 , X and Y.

The region enclosed by the polygon ABCbEF is such a region and 

hence it is the required graph satisfying all the six inequations 

simultaneously. Note that the region S enclosed by CDF j_s not -^he 

requirea region as no pointer corresponding to L4 lies -in it.

Note that the arrows corresponding to all the lines , L-,, Lg,
L4, X and Y converge in the graph satisfying all the six inequations
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NOT CONVEX (ct) No i Convex
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The figure (a) is distinctly different from the other three.

In the figure, the linear segment joining any two points is entirely 

within it, while the regions (b), (c) and (a) do not have the same 

property. For example, in (b) the iine segment joining X and Y is 

not entirely in it, in (c) the iine segment PQ is not in it and 

in kd) the line segment joining R ana S is not entirely in it.

Note that the dotted portion of the lines in (b), (c), (c) are not 

inside the regions. The figures like that of (a) are of special 

significance in the solution of LPP's and they are said to be 

convex. Speaking more precisely, a set of points 3 in the xy-plane 

(or Rn in general) is called a convex set if the line segment 

joining any two of its points is entirely container in 3.

Examples of Convex lets :

i) xy-plane is a convex set.

ii) Circular region in xy-plane is convex but a circle is not 
convex. (by a circle, here we mean the set cc points in 

xy-plane each of which is equiaistant from a given point 

in the plane) .

iii) Sphere, cube, cone, eliiosoia, paraboloid, etc. are convex
3sets in d .

iv) Torus is not a convex set in R°.
3

v) Hyperboloid is not a convex set in R .
vi) The graphs of the inequations ax+by c ano 

convex, i.e. half planes are convex.
vii) Half spaces in Rn are convex.

ax-rby > c are



Nov. suppose and D are any two sets with a given property P. The 

intersection of a and B may or may not have the property P, thouah 

it is part of the both. For example, if and £ are triangular 

regions in xy-plane their intersection is not necessarily a trian­

gular region in the xy-plane. Similarly, if A and B are two sets 

in xy plane which are 1 not convex1 , their intersection need not 

have the same Droperty, that is, it could be convex. The following 

figures illustrate this.

The Intersection A £ is not a triangular region.

The Intersection a B is a convex set.
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If a and B are convex, will the intersection of A and B also be 

convex ? We will verify whether this is true or false.

Let C be the intersection of A and B. Let P and Q be any two 

points in C. Let L be the line segment joining P and Q. Since A 

is convex, the points of L are contained in a. Since B is convex, 

the points of L are also contained in it. Thus the points of L are 

in both and B. That is, the line segment joining any two points 

P and J is entirely in C. This implies that is a convex set.

That is, the intersection of a and B is a convex set. We list the 

interesting result as

FaCT : The intersection of any numbet of convex sets is also convex 

Justification for this essentially follows from the above arguments, 

replacing sets A and B by any number of sets.

We now look for another way of defining convex sets which often 
helps in proving results concerning convex sets.

We know from cooroinate geometry that (x,y) is a point on a 

line segment joining the points (x^y^ and (x2,y2) and or|iy i+ 

x = (1-t) x1 + tx2 and y = (1-t) y^j + ty2» where 0 < t < 1. 

Justification for the statement follows by consioering the similar 

triangles P^P and P1P2°2 implication viz.

P^ CP
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Let X = (x,y), X, a (x,, y,), X 2 = (x3_,y2), t, = 1-t, t2=t.

Lsing these symbols, the above statement can De restated as follows: 

X is a point on the line segment joining and if and only if 

X = t X1 + t2X2 such that t] -r t2 = 1 , t1 , t2 0.

(Since X = (x,y) = ((1-t) x1 + tx2, (1-t) y1 + ty0)

= ((l-t) xp (i-t)y1) + (tx2, ty2) = (1-t) (x^yp + t (x^» y2) = 

(1-t) X^ + tX2). The point X so expressed is said to be a convex 

combination of the points X^ and X2 in xy-plane.

A convex combination of points X^ , X2,.. . , X^ in xy-plane

(or Rn in g eneral) is a point X = t^X1 ^^2 +.......... * ^nXn

where t^’s are non-neyative real numbers and, t^ + t2 + tn = 1 -

As seen already, a point X = (x^,y^) belongs to the line segment 

joining X1 = (x^y.,) and X2 = (x2,y2) if and only if X is a convex 

combination of X^ and Thus a convex set can also be defined as

follows:
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set C in xy-plane (or Hn) is a convex set if convex combina­

tion of any two points in c is also in it.

In fact, for a given convex set G any convex combination of any 

number of points in C is also in C.

Not every point in L is a convex combination of some points in 

C. For example, consider the triangle aBC in xy-plane (.The following 

figure). There are no two distinct points in the triangle such that 

the line segment joining them contains That is, A is not an

'intermediate* point of any line segment in the triangle. Though

is a point on the line segment aB , it is not an intermediate point 

but one of the extreme points. Thus, a is not a convex combination 

of any other two distinct points in the triangle. Similarly, the 

points a and G nave the same property. dut any other point in the 

triangle is an intermediate point of same line segment in C. mat 

is any point in the triangle other than m, B and G is a convex 

combination of some other two distinct points. ihe points A,3,G are 

extreme points in comparison with other points in the triangle.

A point X in a convex set is called an extreme point if X cannot 

be expressed as a convex combination of any other two distinct points 

in C.

Note that in the above example, the vertices 

a, B and G are the only extreme poinrs of the 

triangle.
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£ xamples ;

1• The end points of a line segment are extreme points.
3

2. Vertices or corners of a cuoe in R are extreme points.

2. Every point of the boundary of a circular region is an extrerre 
point. •

4. All the interior points of a circular region are not extreme 
points.

5. No point of a xy-plane is extreme in the plane.

6. The extreme points of a polygonal region are its vertices.

7. Any point in xy-plane is an extreme point of the singleton 
set containing the point.

8. The point of intersection of two line segments is not an 
extreme point of the line segments.

The extreme points play a very significant role in the solution 

of a LPP. In fact, the objective function of a LPP attains its 

optimum at at least one of the extreme points of its feasible

region which is always convex.

Exercises :
1. IVhich of the given points belong to the graph of the given

inequations ?

i) x + y < 5 (0,0); (3,2)

ii) x - y ? 6 (4,3); (11,4)

iii) 3x+y < 2 (0,0); (0,4)

2. State whether the solution set of the following system of

linear inequations is a null set or not.

i) x £ 0 and x £ 2

ii) x < 2 and x z 2

iii) y. z 1 and y z -1

3. State true or false.

i) The line y = 1 Ox + 50 separates the xy-plane in two half planes.

ii) A half plane is the graph of the inequation.
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iii)

iv)

v)

vi)

vii)

viii)

ix)

x)

xi)

xii)

xiii)

4.

i)

b.

a)

d)

6.

The graph of a linear inequation is a convex set.

The union of two convex sets in xy-plane is also a convex 

set in xy-plane.

The intersection of two convex sets in xy-plane is a convex 

set in xy-plane.

If A and ° are two sets in R which are not convex, their 
2

intersection is also not convex in R .

Vertices of a cube are extreme points.

If m is the number of linear inequations in two variables and 
if the intersection of their graphs is a polygonal region with 

n sides then m = n.

If a point (x,y) in xy-plane is a convex combination of two 
points (r,s) and (p,q) in the plane, then it lies on the line 
joining the two points (p,q) and (r,s).

The converse of the above statement is generally not valid.

The intersection of two convex sets could possible be disjoint 

union of two convex sets.

Union of two convex sets is convex.

Every point in a convex set is a convex combination of two 
other points in it.

Find two points in xy-plane that satisfy each of the following

iii) y > bxii) y < bxy = 5x,

Mark the region which represents the graph of following 
ineouations.

c) 2x+ <y - 8b) y > 3x < 3

x + y 4- 4

State whether the region representing the following is 
bounded or unbounded.

x 0 y ? 0 and x+y < 8



1. Let aBCD is a square in the first quacrant of xy-plane.

i) If x + y = 1 is the equation of the side MB, fine the 
equations of the sioes, BC , CD and DA.

ii) Write the inequations whose intersection is the inter ior 
of the square.

8. Let aBCDEF be a regular hexarqn with length of each of its siaes 
equal to 1 unit, write the inequations whose intersection is 

the given hexagon.

9. Prove or disprove :
2 2' 2i) Tt.e circle x +y = a (a is a given real numDer) is a convex set.

ii) Every point on the boundary of a circular region is an extreme 
point.

iii) If G is the graph satisfying m linear inequations simultaneously, 
then C is a polygonal region having m sides.

iv) 2 2set consisting of single element of is a convex set in R .

10. Find the linear constraints for which the shadeo region in the 
foliowing figure is tne solution set.
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FOKMULaTIIN OF LINEaK PKCGKAMMING PhOBLLMS

a large class of problems can be formulatec as LP models, while 
formulating an LP mocel it is worth-while to ren ember the following 
3-way rule suggested by Lantzig. .
i) Identify the unknown activities to be determined and represent 

them by suitable algebraic symbols. Identify the inputs and outputs 
associated with each activity.

ii) Identif v the restrict ic ns (constraints) in the problem and express
(at least approximate) them as 1 inear algebraic eguations/inequations.

iii) Identify the ooiective function and express it as a linear function 
of the unknown variables.

Proper definitions of the variables (step (i) ) is a key szep and 
will largely facilitate the rest of the work.

Let us illustrate the formulation by a few examples.
Example : Suppose we are concerned with a problem encountered by a 
man who sells oranges and apples in a running train. He has only Rs.120 

with him and he decided to buy atlaast 5 kgs of earn item. One kg of 

apple costs ? .10 and 1 kg of orange costs is.5. He can carry to the 

train oniy a maximum load of 15 kgs which his bag would hoid. He expects 

a profit of ib.2 per kg from applies and Rs. 1 per kg from oranges. How 

mucn each of these two items should he buy (if he is wise enouan) so 

as to get a maximum profit ?

Here, the ultimategoal or objective of the fruit seller is to gst 
the maximum profit in nis business, i.e. he wants to maximise his profit.
To achieve this, he cannot purchase the items at random. The problem is 
to find out in what combinations should he buy apples ano oranges so 
that the profit is maximum. Let us try to find cut the possible combi­
nations. The man can buy a total of 15 kgs of apples and oranges.
Can he buy 15 kgs of oranges? Of course, not, because he has to buy at 
least 5 kgs of apples, i.e., he can buy a maximum of 10 kgs of oranges.
Can he buy 15 kgs of apples ? He cannot because he should buy at. least 
5 kgs of oranges i.e. he can buy a maximum of 10 kgs of apples. .ie can 
purchase oranges from 5 kgs Lo 10 kgs and so also apples. ^e can list 
all the possible combinations of his purchase of apples and oranges v_nd 
calculate the profit in each case. See the table below.
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PURCHASE
Orange

(in kgs) 
apple

COST PROFIT
Orange 
Rs .b

Ample 
Rs. 1 0

) o t a 1 Orange
Re . 1

Apple
Rs .2

Total

b 1C 2b. 00 I 00.00 12b.00 No t possible
6 9 30.00 90.00 120.00 6.00 1 8.00 24.00
7 8 3b. 00 80.00 11b .00 7.00 16.00 23.00
8 7 40.00 70.00 110.00 8. 00 14.00 22.00
9 6 4b.00 60.00 10b.00 9.00 12.00 21 .00

1 0 b 50.00 bO. 00 100.00 10.00 10.00 20.00

Look at the last column. ine maximum profit is Rs.24. He gets 
this profit when ne purchases 6 kgs or oranges and 9 kgs of apples.

This is the solution cf the proclem which maximises or optimises 
the profit. So we call it an optimal solution of the problem.

Optimal solution = 9 kgs of apples and 6 kgs of oranges.
Optimum profit = Rs.24.

After investigatinc the next example, where we maximise the profit as 
in this example, v.e will be able to see if we can arrive at the optimal 
solution by trial and error metnod. Before that let us formulate the 
above example in Mathematical terms (see Uantzig's 3-way rule).

i) Definition of variables
Let x be the number of kgs of oranges and y be the number of kgs of 

apples bought.

ii) Constraints ; Since one cannot buy negative number of oranges or 
apples it is clear that x 0 and y > 0.

Since one kg of orange costs Rs.b, x kgs of orange will cost Rs.bx. 
Similarly, y kgs of apple costs to.10y. Therefore, the total cost will be 
bx •+ 10y. Since he has only Eg.120 with him we have,

5x + 10y £■ 120.

£»ince he has aeciaea to buy atleast 5 kgs of each item, 
x > b , y > 5 .

ms he cannot carry more then 1b kgs 
x + y <15.
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iii) The objective function :

Since he expects a profit of Rs.2 per kg from apples ana rte.1 
per .-.g from oranges, his total profit would be x+2y which has to be 
maximised. The L.P. model is : Maximise -Z = x+2y subject to x 21 5, 

y > 5, 5x+10yf3 120, x+y 5 15; and x,y > 0. In this problem, the

non-negativity restrictions are not necessary in view of the 

constraints x,y~ 5.

Example : A company sells two differ-.nt types of radios - 3 band 
types and 2 bana types. Company has a profit of Rs.50 for each of tte 
former type and Rs.30 for each of the second type. The production 
process has a capacity of 80,000 man hours in total. It takes 10 man 
hours labour to assemble 3-band type and 8 man hours for 2-band type.
It is expected that a maximum of 6000 numbers of the former type and 
a maximum of 3000 of latter type can be sold out. How many of each 

type should be produced so as to maximise the profit ?

In this problem, the company aims at getting the maximum profit, 
i.e. profit is to be maximised. The problem is to find out in what 
comDination should he produce 2-bana radios and 3-band radios in 
oraer to achieve this objective. We know that the company gets more 
profit from the 3-band radios. Naturally, we can think of a possibi­
lity vhe re all the radios produced are 3-band type. This could not be 
done since the maximum number of 3-band type radios should be six 

thousand. The other possibility is to think of another way. The man 
hours needed to produce a 2- banc radio is smaller compared to 3-band 
raaios. In that case, he should increase the number of 2-bana radios, 
which should not exceed 8000. Naturally, a third question arises - 

can the company produce 6000, 3-band radios and 8000, 2-bana radios.
In thar case, we have to take into consideration the man hours available. 
1 he man hours required for producing 8000, 2-band radios is
8x8000 = 64000. The total man hours required to produce 6000 3-band 
type and 8000 2-band type is 124000 which is greater than the man hours 
available. From the above discussion, we found that the number of 
3-band radios can extend from 0 to 6000 and that of 2-band radios f rom 
0 to 8000. To get a solution for this problem, we have to enumerate 
all the cases from 0 to 6000 and 0 to 8000, which evidently is laborious. 
Therefore, we have to find out an easier method to solve such probl~ems.



Vrfe will now think of evolving an easy method to solve such 
problems. Before entering into the aetails of this methoc, let us 
explain the problem mathematically. In other worcs, let us try to 
write the LP formulation cf the problem.

In the aDove problem, wnat we are expected to find is the number 
of 3-band racios and 2-banc radios to be produced so as to get the
maximum profit . Let us assume that the number of 3-banc raaios
produced is ' x ' and the number of 2--banc radios produced is 1 y ’ .

Number of 3-band radios = X
Numoer of 2-band radios = y

Once we know the numoer of each type of radios, we can calculate 
the total profit of the company. Profit from a 3-band radio is Rs.50 

anc the profit from a 2-banc radio is Rs.30.

Total profit = bOx -+■ 30y.

Tne oojective of the company is to get the maximum profit i.e.

50x -t- 30y should be maximum. Vie call this the objective function of the 
problem. Now the problem reauces to finding the maximum values of 
50x u. 30y. In other words, we have tc maximise bOx + 30y.

h'hat are the conditions to be satisfied ?
V.e know that ‘ x’ and 'y' are the numbers of radios produced. So we can 
say that x and y cannot be negative. Mathematically, we put it as

x 0 and y z 0
x is the number of 3-band radios. The maximum number of 3-band raaios 

produced is 6000.

i.e. x — 6000 

Similarly y 8000

The total man hours available is only 80000. Man hours required 
to produce one 3—band radio is 10.
Man hours required for x radios = 10 x X

= 10 X

In similar way, man hours needed for y, 2-band racios = 8y.
The total man hours should not exceed 80000 

i.e. 10x 8y iS 80000
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Thus the restrictions or conditions to be satisfied are

1. x IT 0
oz. • 7 0

3. x < 6000

4. y £= 8000

5. 10x + 8y 1= 90000

These conditions are generally calleo constraints or the problem.

The first two viz. x Z: 0 and y 0 are called nori^negativity 
restrictions. Each of these constraints is an inequation of degree 1. 

hence, they are called linear constraints.

The mathematical formulation of the problem is as follows :

Maximise 50x + 30y
subject to x - 0 

y > 0 
x 6000 
y < 8000

and lOx t 8y 80000
Here the objective function as well as the constraints are all linear 

(first cegree).

m typical LP Model :

Suppose a company with two resources (labour ano material, wishes 

to produce two kinds of items ano 3.
Let t« , t^ units of time (hours or minutes) be respectively time required 
to produce ont unit of and B, m^ and m^ be the amount of unit, 
material (in Kg or pouncs or any unit of weight) respectively required 
for one unit of ana 8, and Hs.p^ ano Hs.Dq profit per unit of A and

3. Suppose the daily availability of manpower (laoour) is T hours 
ana the supply of raw material is restricted to M Kgs per day. ihe 

problem of the company is :
How many items of kind k and how many items of kina 9 be produced 

everyday, so that the total profit is maximum ?
This kind of problem is generally known as Product-Mix problem.

The entire information of the problem can be stored in matrix 
(tabular) form as follows :



'Kinds of Items

He sources A B Supply/availability

LaDour (nours/unit) t2 •r

Material (Kgs/unit) n,
i

mo i M
2 i_______________________ -

Profit (Rs./unit) p1 P2

In view of the 3—way rule suaaestea earlier we have
Step 1 : Lex. x = Daily proauction of kind a 

y = Daily proauction of kind B

Step 2 : constraint corresponding tc the first row : 
t.x * toy .< T

Constraint corresponaing to seconc row ; 
n^x + aQy -c m

fjon negativity conditions : 
x y > 0

Step 3 :

1 he thirc row ccrresponas 

Z = p.x - p2y
to tne objective function ana is given by

Thus tne mathematical formulation of tne problem is
(I) - Find numbers x; Y which will maximize 

Z = Plx + p2y

subject to the constraints 

t1x + t2y <2 T 

m^x + moy < m

and x, y £ 0

Note that in the oaxhem-atical formulation (I) above we deal only 
with numbers, equations, inequations and the given situation (that 

is company's problem) is no larger unaer consideration.



The above typical problem can be adopted in many real life 

situations anc thus a teacher can find a problem of linear oro- 

gramming according to the nature of the students (urban, rural, 
etc). For example, if the 'company* is an industry, like "CftKAY"
A coula be taken as idly mix and B could be taken as Lcsa mix.
The relevant information concerning resources and profit (possibly 
in terms of cost price and selling price) can be obtained in the form 
of a matrix. Such matrix will help in identification of the problem 
as well as in its mathematical formulation. If we consider a
comfy in kitchen appliance,
M could be considered as a pressure cooker
3 could be considered as pressure pan.

If we want to have a farmer’s problem, we can take a anc B respectively 
to be areas of a given field for production of wheat and gram. The 
resource corresponding to material coula be fertilizer, nere we will 
have an extra constraint viz. x+y = a where a' is the area of the 
given field. Note that there could be any number of resources (and 
hence constraints^ depending upon the situations.

Linear proararmep Mathematical Model :

n mathematical moael is a symbolic representation of a real 
situation. The process of mathematical moaeiiing is depicted in the 
following figure.



In example 1, the real situation is 'selling of oranges and 
apples'. In example 2, the real problem (situation) is ’to evolve 

a selling policy of two kinds of radios' and in the product mix 

problem the real situation is 'productive scheauling'. In all these 
problems, mathematical formulation is mathematical mocel. The mathe­
matical models in the above examples consist of objective function 
and constraints which are expressed quantitatively or mathematically 
as functions of decision variables 'Mathematical conclusion1 ana 
'Meal conclusion* constitute the solution of a linear programming 
problem, v.nich we would be dealing within the next section.

EXERCISES :
1. a company makes two kinds of leather belts a, E. Belt a is of 

higher quality and belt B is of lower quality. The respective profits 
are Rs.4 and Rs.3 per belt. Bach belt of type a requires twice as 
much tine as a belt of type B, and, if all belts were of type B, the 
Company, cculd make 100C per aay. The supply of leather is sufficient 
for only SOC belts per aay (both a and B combinec). Belt A requires

a fancy bucxle and only 400 per day are available. There are only 700 
buckles a cay are available for belt B. Formulate this as a linear 
programming nodel.

2. Give an example of a real situation (other than those mentioned 
it* c.*is lesson) whose mathematical model is a linear programming model

3. Give ar. example of a mathematical moael which is not a linear 
programming moael.

4. An Advertising company wishes to plan an advertising campaign in 
three different media - television, radio and magazines. The purpose 
of the advertising company is to reach as many potential customers as 
possible, results of the market study are given below :
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------------------Tele vision Rad io Magazinebay T im e P r ime T ime

Cost of an 
advertis ing 
unit

*'•
4 0,0 C C

Rs.
75,000

Rs.
30,000

Rs.
15,000

Number of poten­
tial customers 
reached per 
unit.

400,000 900,000 500,000 200,000

Number of women 
customers 
reached per 
unit

300,000 400,000 200,000 100,000

The company does not want to spend more than Rs.800,000 on advertising.
It further requires tnat ;i\ atleast 2 million exposures take place 
among women, (ii) advertising on television be limited to 
ks.500,000, (iii) atxeasc 2 advertising units be bought on day time 

television and two units curing prime time; and (iv) the number of 
advertising units on radio and magazine should each be between 5 anc 10

rind different types of advertising units which minimize the 

total number of potential customers reacnec is maximum.
(Note: i he problem involves four decision variables;.

b. write the constraints associated with the solution space shown in 
the following cigure anc identify all redundant constraints.



SOLUTION CF LINE?iR PROGRAM*. 1N3 PRC5LEM BY GRmPHICmL METHOD :

Let us consider another example cf an optimisation problem.
'we car. examine whether tnis is a linear programming problem by 
formulating a mathematical moael of the problem. We can also try 
to find the solution of the problem by graphical method.

Example 1 : A contractor has 30 men anc 40 women working unaer him.
He has contracted to move at least 700 bags of cement to a work site 
bue rc the peculiar nature of the work site he could employ at the 

time. m man will carry 25 bags in a aay 
cay. m an demands Rs.45 a day

In what ratio should

maximum of 50 workers
anc
and

woman will carry 20 bags in 
woman ceinanos R-,.25 a day as their wages, 

the contractor employ men anc women sc that tne cost of moving the 
cement to the work site is minimum ?

New the mathematical mccei of the problem is :
Minimize Z = 45x - 25 y

subject to the conditions
X cl C
y 0
x 4 30
y = 4C
and 5x + 4y > 140
(x and y are respectively the number of men end women employed ana 
z is tne total wage for them).

The above problem is an optimisation problem. The objective 
function as well as the constraints are linear. Hence, it is a LPP.

The next step is to find a value for x and a value for y such 
that 45x -r 35y is minimum subject to the conditions laio a own in the 
problem.

k.e first craw the graph of the inequations and see how the 
graph will give the solution of the problem.



The intersection of the graphs of the inequations is the 
region of the polygon ABCbEF, called the feasible region, ^ny 

point p (x,y) in the feasible region is a feasible solution of 

the LPP. The coorainates of such a point will satisfy ail the 
inequations. Let us consider a point p(20, 20) in this region.
We can easily verify that it satisfies all inequations. So we can 
consider the x-coorainate of P as a value of x and y - coordinate of 
P as a value of y. i.e. x = 20 (x- coordinate of P) and y = 20 
(y - coordinate of p) is a feasible solution of the LPP* If we 
select another point say (10,40) in the region, x = 10 and y = 40
is another feasible solution of the problem. We know that there are 
infinite number of points in the region ABCbEF. The coorainates of 
eacn point will give a feasible solution of the problem i.e.
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the number of feasible solutions are infinite. The problem is tc 

decide v/hich one cf these is optimal. For this, we make use of 
the following key result.

TKeCRtM . < If there exists an optimal solution to an LPP, the 
objective function of the LPP always attains its 
optimum (minimum or maximum) at at least one of the 
corners (extreme points) of the feasible region.

Proof: he prove the vaiicity of the theorem for two variables
(coordinates) anc in fact the same arguments can be extended to 

prove the theorem for any number of variables.

Let K be the set of feasible solutions of a linear programming 
problem. Let (x1 , y^), (xQ,y2),..., (xp,yn) be the extreme points
(corners), of the feasible region corresponding to K. Let 

Z (x,y) = C.x + Coy be the objective function of the linear 
programming problem.

Suppose for x = xq and y = y. the objective function attains its 
minimum.

That is, Z (x , y ) = C x. + C y is the minimum value of the objective " o ° o w
function. Let m = Z (x , y ).'o’ '

If (xp , y ) is one of the extreme points (corners) of the region 

representing K, the theorem is true. Therefore, we assume that 

(x , y ) is not an extreme point. Hence, by the definition of 
extreme point, (x^ , ) can be.expressed as a convex combination cf

extreme points of k.

That is,
(xc, yc ) = t (x( , ) + t^(xx, yx ) + ....+ t^( x^, y^) (1)

where t*+’t+....t ~~ 1 and t. 0.\ -l

This implies that
m = Z (x , y ) = t z (x , y ) + t z (x , y ) + .... + t z (x , y )

O C III T| V

Suppose Z (xr, yr) be minimum along

Z (x , y ) ,........... , z (x^, yn ) so that

Z (x. , y ) > Z (x , y ), 1 < i < n (2)



How (1) and (2) together imply that

m t( z (x- , yr) -r z (xr , yr)

(Since t? s are non negative).
That is ,

+ .. .. T t()z (Xr, yr)X

m t, + ta t .... + t ) Z ( xr , y)
or m > Z (*r, y ) (^ince t; + t„ ■t .... + tn = 1) (2)
3y definition of minimum
tn < Z (x,y) for every (x,y) in R and in particular

> yr ) (4)
(3) and (4) together imply that

m = Z (xr, yr) where (xp, yr) is an extreme point. Thus Z (the
objective function) attains its minimum at an extreme point of 
the feasibility region.

itema rk :

Let for x = x1 and y = y
uttoin its maximum. Then by 

1 .< z(x,y; ror every x,y in

, z vx,’/y <the objective function)
uefiniti.r. of maximum 

* 11k kwnere z = z (x, .y ;
-zi < -z(x,y>

-z is the minimum value of -z;x,y;

i hat is, -z = min (-z (x,y) )
or - (max zvx.y) ) = min (-z (x,y) )
or max z lx,y) = -min <-z (x,y) )

Thus minimisation problem can oe converted to maximisation 
problems by considering negative of tne oojective function z(x,y). 
and accordingly, the above theorem is true in the case of maximisa­
tion problems also.

In view of the aoove theorem, it is sufficient to concentrate our 
attention only on the corner points of the polygon AoCLEF. Evaluating 
the objective function at each of the vertices of AoCLEF anc selecting 
the minimum of these values, we get the minimum value of the
oojective function. The coordinates of the corresponding vertices 
will constitute an optimal solution. The details are shov;n in the 
table given below :



Corner t-oint Value of the objective function Z = 45x + 35y

A (2b, 0) 45x28 + 35x0 = 1260
B (32,0) 45x30 + 35x0 = 1350
C (30,20) 45x30 + 35x20 = 2050
b (1C.40) 45x10 + 35x40 = 1850
E (0,40) 45x0 + 35x40 = 1400
F (C,35) 45x0 + 35x35 = 1225

Thus, it<is clear that when t he contractor employs 35 women and n
men me cost of moving cement to work-spot is minimum anc the
minimum cost is L». i225* Mow let us solve a maximi satr on problem
by graphical method.

Example 2 • if a young man rides his mo;or cycle at 25 km per hour, he 
has io spend Pi.2 per km on petrol; if he riaes «.t faster speed of 
40 km per hour, the cost increases to Rs-5 per km. He has R>.100 

to spenc on peirc_. i.nat is the maximum cistance he can travel 
within one hour ?

Lei x = distance travellec by the younc man in one day at the speec 
of 2 km/hour-

anc y = cistance travellea by the younc man in one day at the speea 
of 40 km/hour.

Lei Z = X-rY

Objective Function ; 2 = x-ry (with the objective to maximize Z) 

Constraints:
i) money spent on petrol = 2x+5y < 10u (constraint aue to money)

ii) total time of travel = + 40 1 (constraint due to time)

or 8x -r 5y < 200

iii) non negativity conditions : x^.0 , y 0

l\e now craw the graph corresponaing to the constraints
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The feasible region is

Corner point 

0 (0,0)

MO,20)

C (25,0)

Therefore, 30 = Max z = the 

travel in one cay.

the snaaea region of the polygon OABC.

Value of z = x+v
0
20

30

25

maximum cistance the young man can

The proceaures tnat we follow in solving a LPP (in two 
vari3oles) by grapnical method is summarised below :
1. Mark the feasible region. (This is the intersection of the 

graphs of constraints).

2. Evaluate the oojective function at each of the corner points 
of the feasible region and pick out the point which gives 
the minimum (maximum) value for the objective function as the 
case muy be.

Theorem holos true if there exists an optimal solution to 
a LPP. There may be cases where the objective function has no finite 
optimal value. For example,
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Maximise _ = x + 2y
subject tc x -r y 1
x > 0 , y ,2 0
y < 4

The snaoed region in the following figure is the feasible 

region or tne problem. Note that the feasible region is not a 
polygons- region, but is unbounaed.

In this case, moving farther away from the origin increases 
the value cf the objective function Z = x •+• 2y and the maximum 
vaiue of i. would tend to + =-0 i.e., Z has no finite maximum, 
whenever a _?P has no finite optimal value (maximum or minimum), 
we say that it has an unbounded solution. Further, there could be 

a linear crocramming problem such that it has no feasible solution



For example,
Maximise Z = 4x + 3y 
subject to x + y < 1 
2x + 3y > 6
x 0, y zz 0

i he shadea regiorPA ana 3 in the following figure indicate 
the graphs of the inequation x+y <. 1 and the graph of the 
inequation 2x t 3y 6 respectively.

Obviously, the intersection of m ana 3 is emDty. Hence the 
LPF has no feasible solution.

The following L?p has or aces not have a feasible solution 
aepenaing upon the value of L.

Maximise Z = X

subject to x+y < L

-x -r y .< -1

x 'x 0 , y 0

If L = 1 , the feasible region of the problem consists of jus
one point (1,0) (See figure shown below).



i- — ) the leasmie region is empty since there are no points 
satisfying the non-negativity restrictions.
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In fact, for all values of L < 1 the feasible region corresponoing 
to the given constraints is empty.

The above fact can also be verifiec analytically. For L < 1, 
suppose there exists a point (x^ , y^) satisfying the constraints 
of the problem.
That is x. + y^ < 1, since L is strictly less than 1
-x1 + < -1

and x1 >: 0, y1 0

The first two inequalities imply (by adding them), that

2y1 < 0.

in other words, Y-, < 0 which contradicts the fact that

71 i 0 •

Tnus we conclude that there is no point (x,y) which satisfies 
the given constraints whenever L < 1.

If L = 2, the feasible region is the shaded region ABC of the 
figure which is non empty.



From the foregoing discussion, it is clear that the feasible 
region is non-empty for all values of 1 > 1 .

If L = 1 , it consists cf just one point. If L > 1 it consists 
of infinitely many points.

we can verify this analytically also. Given constraints are 
x - y <. L 
—x + y <. -1 
x 0, y > 0

First two inequalities .(oy aocing tnem) imply tnat
2y < 1—1 or 1—1 > 2y

This implies that
1-1 C, (since v > C)

In ccner woros, 1 1
If i_ e: 1 » choose non negative numbers x. ano y. such that

anc 2y, = 1 - 1i
(This is possible since 1-1 0)
These equations imply that

2x. T 2y^ =21 and -2x1 - 2y] = -2

Thar is, + y^ = 1 anc -x. -r = -1 obviously, such x^ and y^ 
satisfy the given constraints.

Thus we conclude that there exist numbers x=x^ anc y=y1 
satisfying the given constraints if and only if L > 1.

That is the yiven L.P.P. has a feasible solution if and only if L 2 1

V»e now solve the given L.P.P.
If L 1 , then the given problem has no feasible solution. 

Therefore, let L 1.

If L = 1, the feasible solution has just one point (1,0) and 
so the maximum value of 1 is 1. The feasible region for any value 
of L > 1 will look like the snaded region aBG of the f ollowing 
f igure.
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L and -x+y = -1The coordinates of m are obtained by solving x+y

i.e., x = L±1 y _
2 ’ y

L-1
2

Now,
the value of Z at A - L+1

2

The value of Z at 8 := 1
The value of Z at C = L

L+1
2Since L 1 , L+1 > 2 and so

also, since L 1 , 2L L+1 and so L

Thus, we have
1 <1 - 2 L

Theref o re, max { 1 » L+1
2 ’

Li = L

That is maximum value of Z is L, and Z attains the maximum at C



If the problem is to minimize Z=x with the same constraints, 
minimum value of Z is 1 anc it is attainec at o.

Exercises :

1. Choose the most appropriate answer.

i) The set of feasible solutions of a linear programming problem is

a) convex d) not a convex set c) convex or concave
b) bounoec ano convex

ii) Tne minimum number of inecuaticns neeoed to fine a feasible 
region in a linear programming problem is

a) 1 , b) 2, c) 3, d) 4

iii) The maximum value of the oojective function of a linear 
programming problem always occurs

a) exactly at one vertex cf the feasibility region.

b) everywnere in the feasibility region.
c) at all the vertices cf the feasibility region.
d) at some vertices cf tne feasibility region.

iv) The feasible region of a linear programming crobiem intersects
a) first quaarant b) second quadrant
c) third quadrant ci) fourth quadrant

v) zx factory has an auto latne which when used to proouce screws 
of larger size produces 400 items per week anc v.hen used to 
produce screws of smaller size proauces 300 items per week.
Supply of rods used in making these screws limits the total 
production of both types/week to 380 items in ail. The 
factory makes a profit of 2b paise per large screw and 10 
paise per small screw. How much of each type should be 
produced to get a maximum profit 7 (nns. 80,300)

vi) Using graphical method 
maximise Z = 3x + 4y 

subject to 4x + 2y < 80

2x + 5y 180 

x 0, y >0,
(^ns: x = 2.5; y - 35;maximum value = 147.5)
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vii) Using graphical method 

minimise Z = 4x + 2y 
subject to x + 2y >> 2

3x + y 3 

4x + 3y^ 6 
x 0 , y 0

(Ans: x = .6, y = 1.2, minimum value = 4.8)

viii) Consider the following problem :
Maximize Z = 6x^ - 2x^

subj ect to x1 —X2 4- 1 ; 3x -X2 4 6; x, , x^ 0.

Show graphically that at the optimal solution the variables 
x^ ,x^ can be increased indefinitely, while the value of the 
objective function remains constant.

ix) Consider the following LPP :
Maximize Z = 4x + 4y
subject to 2x + 7y 4 21 ; 7x + 2y 4 49; x,y > 0.
Find the optimal solution (x,y) graphically. What are the 
ranges of variation of the coefficients of the objective 
function that will keep (x , y ) optimal ?

x) Consider the following problem.
Maximize Z = 3x + 2y subject to 2x + y 4 2, 3x + 4y ^12, 
x, y 0.
Show graphically that the problem has no feasible extreme 
points. What can one conclude concerning the solution of 
the problem ?

xi) Prove or disprove :
a) For some LPP, the set of feasible solutions is a disjoint 

union of convex sets#
b) The set of feasible solutions of every LPP is non empty.

c) Every L.P.P. is a mathematical model.



Applications of L.p.

LF is a powerful anc widely applied technique to solve problems 
related to decision making. It was employed formally in three 
major categories - military applications, inter industry economics 
and zero sum two-person games. But, now the emphasis has been 
shifted to the industrial area. ihe following are a few of the 
applications of L.p.

1 . Agricultural applications :
Farm economics and Farm management - the first is relazed to the 
economy of a region whereas the secono is relatec to individual 
f arm.

2. incustrial applications :
a; Chemical Industry - Proauction ana inventory control - 

chemical equilibrium problem.
z, Coal industry 
c; airline operations
c. Communication industry - optical design and utilisation cf 

communication network
e. Iron anc steel industry
f) Paper industry - for optimum newsprint production 

g, petroleum industry 
h; nail road industry

3. Economic analysis - Capital budgeting

~ • Military - Weapon Selection and Target analysis
5. Fersonal assignment
6. Proauction scheduling - inventory control and planning cost

controlled production
7. Structural aesigns 

Traffic analysis
9. Transportation problem and network theory

10. Travelling salesman problem

11• Logical cesign cf electrical network
*2- Lrficiency in the operations of a system of Dams
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In our duv-to-duy life we perform certain activities to verify certain known facts or to 
observe certain phenomena. Such activities usually we call as experiments. In certain 
experiments, we can predict results exactly before conducting the experiment and in other it 
will not be possible. The experiments where the results can be predicted exactly are known 
as deterministic experiments and the experiments where the prediction is not exact are known 
as non-determinisric or random or probabilistic experiments. For example, a train is running 
at a uniform speed of sixty km. per hour, then we can predict with hundred percent surety 
that it will cover one hundred twenty kilometers after two hours, assuming that it never 
stopped during these hours. Similarly, for a perfect gas, PV = constant (P is pressure, V is 
volume).

In case of non-deierminisric experiments, we cannot make predictions with complete 
reliability. The resulLs are based cm some ‘chance element’. For example, if wc toss a coin, 
will it show ‘head up’ or ‘tail up’? Although we cannot predict anything with complete surety, 
yet if we throw the com a large number of tunes, it is very likely that the head will turn up fur/ 
percent of the times and also it is very’ unlikely that the head turns up in every case.

Consider another example of a trained parachuter who is ready to jump. When he 
jumps then either his parachute wiil open or it will not But experience says that most of the 
time it opens, though there are occasions on winch it does not i.e. the uncertainty associated 
with the head or tail coming up when wc toss a coin.

How will you proceed in answering the following questions ?

1. How should a businessman order for replenishment (filling once again) of his 
stocks (inventory) so that he has not earned very large stocks, yet the risk of 
refusing customers is minimized ? (Inventory problem).

2. At what intervals should a car owner replace the car so that the total 
maintenance expenses are minimized ? (Replacement problem).

3. I low many trainees should a large busmens organisation recruit and tram them 
in certain intervals so that at any tunc it does not have a large number of 
trained persons whom it cannot employ and yet the risk of its being without 
sufficient persons when needed is minimized 7

4. How should the bus service in a city be scheduled so that the queues do not 
become too long and yet the gains by the bus company are maximized ? 
(Queing problem).

5. How many booking counters should be provided at a station to serve in the 
best way the interests of both the railways and the travelling public ? (Queing 
problem).

l



6. What should be the smmgth of a dam (or a bridge) so that its cost is
reasonable and yet the risk of its being swept away by the floods is 
minimized ?

2- How many telephone exchanges should be established in a given city so as to
give the best service at a given cost ?

S. Wnich variety is the best out of given varieties of wheat, on the basis of yields
from experimental fields ?

9. What should be the minimum premia charged by an insurance company so
that the chance of its running into loss is minimized ?

10- How to decide whether a gr/en batch of items is defective when only a sample
of the batch can be examined ?

Answers for all such questions ere based upon certain facts and then try' to measure 
the uncertainty associated with some events which may or may not materialise. Tne theory’ 
of probability deals with the problem of measuring the UDcenamiy associated with various 
events ralher precisely, making h these by possible today, to a certain extent of course, to 
control phenomena depending upon chance.

The ‘measure of uncertainty’ is known as probability.

History of Probability Theory

Probability’ bad its birth in the seventeenth century and over the last three 
hundred years, it has progressed rapidly from its classical heritage of simple mathematical and 
combinatorial methods to its present rigorous development based on modem functional 
analysts. The probability had its origin in the usual interest in gambling that pervaded France 
in the seventeenth century'. Tm inert mathematicians were led to the quantitative study of 
games of chance. Tne Chevalier de Mere, a French nobleman and a notorious gambler, posed 
a senes of problems to B Pascal (1623-1662) like the following :

Two persons play a game of chance. The person who first gains a certain number 
of points wins the stake. They stop playing before the game is completed How is 
the stake to be divided on tbe basis of the number of points each has got ?

Tnough Galileo (1564-1642) had earlier solved a similar problems, this was the beginning of 
a s-stematic study' of chance and regularity in nature. Pascal’s interest was shared by Fermat 
(1601-1665), and in their correspondence the two mathematicians laid the foundation of the 
theory' of probability'. Their results aroused the interest on the Dutch physicist Huyghens 
(1629-1695) who started working on some difficult problems in games of chance, and 
published in 1654 the first book on the theory of probability. In this book, he introduced the 
concept of mathematical expectation which is basic to the modem theory of probability'. 
Following this, Jacob Bernoulli (1654-1705) wrote bis famous ‘Aft Conjectandi’ the result of 
his work of over twenty years. Bernoulli approached this subject from a very' general point
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of view 2nd clearly foresaw the wide applications of the theory. Important contributions were 
made by Abraham de Moivre (1667-1754) whose book ‘The Doctrine of Chance’ was 
published in 1713. Other main contributors were TJBayse (Inverse Probability), P.S. Laplace 
(1749-1S27) who after extensive research published ‘Theoric Analytique des probabilities’ in 
1312. In addition to these Lew, Mises and FLATisher were the main contributors. It was, 
howevemin the work ofRuaaan mathematicians Tschebyshev (1821-1874), A Markov (1856- 
1922), Liapounov (Central Ihrr.it theorem), A Kintehine (Law of Large Numbers) and A 
Kohnogorov that the theory made great strides. Kolmogosofi-wns the person who axiomised 
the calculus of probability.

The pro-habihr/ theory itself has developed in many directions, but at present 
the dominant area is the stochastic processes, which has wide applications in physics, 
chemistry, biology, engineering, management and the social sciences.

Calculus of Probability'

In our day-to-day vocabulary we use words such as ‘probably’, ‘likely’, ‘fairly good 
chances’, etc. to express the uncertainty as indicated in the following example. Suppose a 
father of a XU class student wants to know his son’s progress in the studies and asks the 
concerned teacher about his sou. Teacher may express to the father about the student’s 
progress in any one of the following sentences.

It is certain that he will get a first class.
He is sure to get a first class.
I believe he will get a first class
It is quite likely that he will get a first class.
Perhaps he may get a first class.
He mav or be mav not get a first class.
I believe he will not get a first class.
I am Hire he will got get a first ciass.
I am certain he will get a first ciass.

Instead of expressing uncertainty’ associated with any event with such phrases, it is better 
and exact if we express uncertainty mathematically. The measure of uncertainty or 
probability' can be measured in three way's and these are known as the three definitions of 
probability, lhcse methods are

Mathematical or Classical or Priori Probability
Statistical or Empirical Probability and
Axiomatic Probability

Before discussing those methods, we define some of the terms which are useful in the 
definition of probability.

3
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Experiment: An act of doing something to verify some fact or to obtain some result. (Ex 
Throwing a die Lo observe which number will come up '(Die is a six-faced cube'*.

Trial: Conducting experiment once is known as the trial of that experiment. Ex. Throwing 
a die once.

Outcomes: Tne results of an experiment are krxywn as outcomes. Ex. In throwing
a die, getting 41’ or ‘2’ or ‘6’ are the outcomes.

Events: Any single outcome or set of outcomes in an experiment is known as an event. 
Ex: 1. Getting T in throwing of a die is an event 
Also getting an even number in throwing a die is also an event 
Ex: 2. Drawing two cards from a well shuffled pack of cards is a trial and getting of a 
king and a queen is an event.

Exhaustive Events : The total number of possible outcomes m any trial are known as 
exhaustive events.
Ex: 1. In tossing a coin there are two exhaustive events.
2. In throwing a die, there are six exhaustive cases viz (lE.3/,5.6).

Favourable Events (Cases): The number of outcomes which entail the happening of an 
event are known as the favourable cases (cvenu) of that event 
Ex: In throwing two dice, the number of cases favourable for girting a sum of 5 are 
(1,4). (2,3), (34) and (4,1).

Mutually Exclusive Events : Events are said to be mutually exclusive or iixxjmpaiibie if the 
happening of any one of them precludes or excludes the happening of all others.
Ex: In tossing a coin, the events head and tail arc mutually exclusive (because both 
cannot occur simultaneously).

Mathematical or Classical or ‘a priori’ probability

If a trial results in 4n’ exhaustive, mutually exclusive and equally likely cases and ‘m’ 
of them are favourable to the happening of an event E, then the probability’ ‘p’ of happening 
of E is given by

We write p = P(E).
Ex:l. Probability of getting head in tossing of a coin once is 16 because the number of 
exhaustive cases are 2 and these are mutually exclusive and equally likely (assuming the 
coin is made evenly) and of these only 1 case is favourable to our event of getting head.

Ex: 2. The probability of gening a number divisible by 3 in throwing of a fair (evenly 
made) die is 2/6 because the favourable cases arc 3 (viz. 3 and 6) and exhaustive cases are
6.
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The probability ‘q’ that E will not happen is given by

" n ~ m , m _■q = -------- = 1 - — “I ~P
n n

Always Os p k; 1.

If p = P(E) = 1, E is called a certain event and if T(E) = 0, E is called an impossible cvcnL

In this method, the mathematical ratio of two integers is giving the probability and therefore, 
this definition is known as mathematical definition. Here we are using the concept of 
probability in the form of ‘equality likely cases’ and therefore, this definition is a classical 
definition- Before using this definition, we should know' about the nature of outcomes (viz. 
Mutually exclusive, exhaustive and equally likely) and therefore, it is also known as ‘a priori' 
probability definition.

The definition of mathematical or classical probability definition breaks down in the 
following cases: 1. If the various outcomes of the trial are not equally likely. 2. If the 
exhaustive number of cases in a trial is infinite

Ex.l. When wc talk about the probability of a pass of a candidate, it is not ’A as the two 
customers ‘pass’ and ’fail’ are not equally likely.
Ex: 2. When we talk about the probability of a selected real number is to be divided by 10, the 
number of exhaustive cases are infinite.

In such above mentioned circumstances it is not possible to use mathematical probability 
definition. Thereiore, probability is defined in the other way as below :

Statistical or Empirical Probability :

If a trial is repeated a number of times under essentially homogeneous and identical 
conditions, then the limiting vaiue of the ratio of the number of tunes an event happens to the 
number of trials, as the number of trials becomes indefinitely large, is called the probability’ of 
happening that event.

Mathematically, w’e write

Here n is the number of trials and m is the number of times of the occurrence of event E. The 
above limit should be finite.

Ex: When you throw a die IOCCO times and if you get 1600 times the number ‘ T, then the 
probability of getting ‘T is 1600/10000. This ratio is nothing but the relative frequency of 
‘1\
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Bui this definition is also nor applicable always because it is very difficult to maintain 
the identical conditions throughout the experiment. Therefore, the probability is defined in 
another way by using certain axioms. This definition is known as ‘.Axiomatic Probability’ 
definition.

Here we define some of the terms which are useful in the ‘Axiomatic Probabihty"’ 
definition.

Sample Space: The set of all possible outcomes of an experiment is known as the sample 
space of that experiment. Usually we denote it by S. Ex: In tossing a com, S = { H, T }.

Sample Point: .Any element of a sample space is known as a sample point

Ex: In tossing a coin experiment, H or T is a sample point

Event: Any subset of a sample space is an event
Ex: In throwing a die, (1,2,5), (2,4,6) or (5,6) are the events where S = {1,2,3,4,5,6).

If A and B are any two events then A, B, AUB, A r B are also events because they 
arc also subsets of S.

The event S (entire sample space) is known as certain event and the event d’ (empty set) is 
known as impossible event

Mutually Exclusive Events : Events are said to be mutually exclusive if the corresponding 
sets are disjoint
Ex: In throwing of a die experiment, if A = (1,3,5) and B = (2,4,6) then A and B are 
mutually exclusive because we cannot get both odd number and even number simultaneously. 
Thai is, if A n B = $ , then .A and B are mutually exclusive events.

Axiomatic Probability :

Let S be a sample space and £ be the class of events. Also let P be a real valued 
function defined on £. Then P is called a probability function and P(A) is called the 
probability of the event A if the following axioms hold :

i) For every event A, 0 ± P(A) £ 1.
ii) P(S) = L
iii) If A and B are mutually exclusive events, then P( AUB) = P(A) + P(B).
iv) If A„ A;, .... is a sequence of mutually exclusive events, then

P(A,U A2....) = P(A1) + P(A2)+.......
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In the above definition axiom (iv) may seem to be not necessary. But it is necessary to 
stress that axiom (iii) should be extended to more than two events.

Theorem 1 : If 0 is the empty set, then P(O ) =0.

Proof: We know that S = S U $ and P(S) = P(SU <$ ) = P(S) + P( 0).
(because S and 0 are disjoint and according to axiom (iii)). But T(S) = 1 and therefore,
1 = 1 + P($ ).

Theorem 2 : If a is the complement of an event A, then

P(7)=1-P(A).

Proof: AUi -S.

P(A U I) = P(A) + P(T) - P(S) (A and I are disjoint).

But P(S) = 1, therefore, 
P(A) + P(I) = 1 
OtP(a) = 1— p(A).

Theorem 3 : If A sa B, then P(A) P(B).
Proof: We know that if A c B, then 
B = A U(B — A) (here we may use the notation B/A) 
So, P(B) = P(A) + P(B-A)
But from axiom i, P(B-A) 2 0 
-?iP(Bj^P(Aj:

Theorem 4 : If A and B arc any two events, then
P(A-B) = P(A) - P(A 0' B)

Proof: We can write, A = (A n B) U (A — B)

But (A 5 B) and (A - 3) arc disjoint and according to axiom (iii). 
P(A) = P(A Q B) + P(A-B).
Or P (A—B) = P(A) *-P(A q B).

Theorem 5 : (Addition Theorem)

If A and B are any two events, then
P(AUB) = P(A) + P(B)- P(A O B)



Proof: We can write, AUB = BU(A-B). Bin B and (A-B) are disjoint and therefore, b) 
axiom (iii),
P(AUB) =P(B) + P(A-B).

Also, from theorem 4, P(A-B) = P(A) - P(A ri B)

Hcncc, P(AUB) = P(B) I T(A-B)
= P(B) + P(A)-P(A n B)

This theorem is known as addition theorem and it can be extended to any number of events 
as follows :

Theorem 6 : (Addition Theorem in case of n events)

If A j, A,,...A* are any n events, then
» V

PCX, U A. U ...A} = £ P(X(nXp- £ P^fiX, fixp PCX,^ n ...nXp

Proof: This theorem can be proved by the method of induction. For the events A, and A2 
we have from theorem 5,

PCX,Lha) = P(X,) + P(X2) -PCX, n XA

= E w? +(-iy n u 1-1

Hence the theorem is true for n = 2.
Now, suppose the theorem is true for n = r, say

Then,
PCXj UA^ U ....UA) = £ ?(x; - £ PCX, n xp +... X-i/*1 PCX, n X, rA)II
Now,
■PU, UAX......UAr VA'J UA2 U....UA) U A^)

= J’(,ilUA.U...L'A) + P(A^ "^(W, n A^ U (J,n 2^).. U(A, MJ

r B
= E “ E n A) +... (-1/ P(AxnA^...A

«■» U-k Ky

+pcw>-E JWKa + E +_-KD’,,n ^7r-1 r*l
= 1^- E -in, ru; +„„vir ■PW'u.n ..2 ..)IH
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Hence, if the theorem is true for n=r, it is also true for n=r-Ll. But we have proved that the 
theorem is true for n = 2. Hence by the method of induction, the theorem is true for ail 
positive integer values of n

Corollary 1 : If A and B are two mutually exclusive events, them
r(AUB) = P(A)frP(B).

Corollary' 2 : If Ab A^,... .A^ are n mutually exclusive events,

Then P(Aj IJ A,... IJ AJ = P(A,) + P(AJ + ... + P(AJ

Conditional Probability :

So far, we have assumed that no information was mailable about the experiment other 
than the sample space while calculating the probabilities of events. Sometimes, however, it 
is known that an event A has happened. How do we use this information in making a 
statement concerning the outcome of another event B ?

Consider the following examples.

Ex. 1: Draw a card from a well-shuffled pack of cards. Deuce the event A as getting a black 
card and the event B as getting a spade card. Here P(A) = :/i and P(B) = lA . Suppose the 
drawn card is a black card then what is the probability that card is a spade card? That is, if 
the event A has happened then w hat is the probability of B given that A has ahead/ happened? 
This probability’ symbolically we write as P(B/A). In the given example,

WX) =i = =
: W (i>2)

Because probability of simultaneous occurrence of A and B is Vi and probability of A is l/a

Ex.2: Let us toss two fair coins. Then the sample space of the experiment is S = {IIII, IIT, 
TH. TT}. Let event A = { both coins show same face } and B = { at least one coin show's H 
}. Then P(A) = 24. If B is known to have happened, this information assures that TT cannot 
happen, and P {A. conditional on the information that B has happened } =

P (A-3) - 1/3 - —
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In the above two examples, we were interested to find the probabilir of one event given the 
condition that the other event has already happened Such events based on some conditions 
are known as conditional events. In the above examples B/A and A/B are the conditional 
events. Tne probabilir of a conditional event is known as conditional probabilir of that 
event We write the conditional probabilities as P(A/B), P(E'T), etc.

Definition of conditional probabilir : Tne conditional probabilir of an event A. given B, 
is denoted by P(A'B) and is defined by

Where A. B and A n B are events in a sample space S, and P(B) * 0. 

From the definition of conditional probabilir we know that

-p(3)
Therefore, we can write from the above

P (ArB) y FfB; Pf ABl

Also, we know that P ( An B) - P (BrA) and

P(B n AgP(A)7{H'A)

Hence we can write

P(ATB>:= P-A)iP£B7A)[ or P(B)iBCA'B)"

The above result is known as multiplication law of probabilities in case of two events.

Multiplication Theorem of Probabilities : If A and B are any two events of a sample space 
S, then

P(Ar.iB}Z.P(A)lP(B^) or P(B)'.P(A'B)1

The above theorem can be extended to any n events as follows :

If A,, AB are any n events, then
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inis theorem can be proved by method of induction or generalization.

Bave’s Theorem : LfEb E^,..., Eaare mumaily exclusive events with FCE.JT3 (* “ l,2,...n) 
then for any arbitrary event A which is a subset of U Et such that P(A) > 03 wc *iav£

f (E, M)
a

£ P^ P^UE) 
i-x

for all i.

Proof: Since Ac u Et we have

■ ■
a = a P(cZ E.) = u (aTei )) (by distributive law), 

m

Since c< 0 2) c ^(for i = 1,2,...., n) are mutually exclusive events, we have by addition^ 
theorem of probability

pw =p[u cxcur;] = F p(xfi£,) =E ?fyrw)11 n m
(By multiplication theorem in case of two events.)

Also, we have

fl £,) =?C<) and

PU n 2) P{2) P(JJE)P(£, /A) = k _ ✓
PW PW

Hence, Pf£/X) PC£; PCX/£p
»

E M} rtf‘)

This theorem is very useful in calculating the conditional probabilities in certain situations.

If P(A n B) = P(A) P(B), then we-Jsee that P(B/A) = P(B) and hence we say that the 
probability of B is not depending upon the happening of A That is the conditional probability 
ofB is same as the unconditional probability' of B. Such events are called independent events. 

Two events A and B arc independent if and only if

P.CAriB> = P(A) :PfB)
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Ex: Lei two fair corns be lossed and let

A = { head on first coin }, B = { head on the second coin }. 

Then P(A) = P {HH, HT } = ‘/2

P(B) = P { HH, TH } = '/2 and

’ =2/1 =172 
P(3) 1/2

Thus,

P(Afl B) = P(A)P(B).

and we know tha: the probability of gening bead on the first coin does not depend upon the 
probability’ of getting head on the second coin. Hence A and B are independent. Also wc see 
that the condition F(A n B) = P(A) P(B) is both necessary and sufficient for these events 
A and B to be independent.

If there are three or more than three events, we will have the situation where ever.’ pair 
of these events are independent or the situation where the events in every set of events are 
independent In the first case, we call the events as pairwise independent and in the second 
case we call as complete or mutual independent events.

Geometric Probability' :

Sample space can be countably finite or countably infinite or uncountably Unite or 
uncountably infinite depending upon the situation If the sample space is countably finite. then 
it is easy to calculate the probability of any event by using either mathematical probability or 
axiomatic probability definition Even if the sample space is countably infinite say S ~ (e > 
e^,...) we obtain a probability' space assigning to each q e S is a real number p, called its 
probability’, such that

PiiTTh TEHbTbi? F F, ~ 1
i-i

The probability P(A) of any event A is then the sum of the probabilities of its points.

Consider the sample space S ={ 1,2,...} of the experiment of tossing a coin till a head 
appears; here n denotes the number of times the coin is tossed. A probability space is obtained 
by

-pen = i/2. j>(2) = 1/4....= a —
2"

But the calculation of probability' of events regarding an uncountably finite or infinite sample 
space is not so easy.
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Consider a situation of selecting a point at random on a line segment of length ‘1*. 
Here the sample space is uncountably finite and the procedure to find the probability of any 
event in case of countable sample space is not applicable.

Consider another example. Suppose that two friends have agreed to meet at a certain 
place between 9 arm to 10 a.m. They also agreed that each would wait for a quarter of an 
hour and. if the other did not arrive, would leave. What is the probability that they meet ?

In the above example also both the sample space and the given event are uncountable 
and the ordinary' procedures of calculation of probability are not applicable. So we need 
different procedure in such cases.

If the sample space is uncountably finite, we present that sample space by some 
geometrical measurement, m(S) such as length, area of volume, and in which a point is 
selected at random. The probability of an event A, i.e. the selected point belongs to A, is then 
the ratio of m(A) to m(S) is

?y) = »fA or ?U) = w'1“' °fAOr
oj S arsa of S vo karts of 5

Such probability is known as ‘geometrical probability’.

Solved Problems :

1. A bag contains 5 red. 4 while and 3 blue balls. What is ihc probability that two balls 
drawn arc red and blue ?

Sol: Total number of balls = 5 + 4 + 3= 12

The number of ways of drawing two balls out of 12 balls = I2r2 = —----  = 56 *ay<

The number of ways of drawing 1 red ball out of 5 red balls = 5 ways.

The number of ways of drawing 1 blue ball out of 3 blue balls = 3 ways.

The number uf ways of drawing 1 red ball out of 5 red bails and 1 blue ball oui of 3 blue balls 
= 5x3=15 ways.

The required probabihty' = 15/66 = 5/22, by using Mathematical probability definition.

2. If the letters of the word ‘STATISTICS’ are arranged at random to form words, what 
is the probability that three S’s come consecutively ?

Soi: Total no. of letters in the word ‘ STATISTICS’ = 10. Total no. of arrangements of these 
10 letters in which 3 are of one kind (viz. S) , 3 are of second kind (viz. T), 2 are of third kind
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(viz. I), l of fourth Lind (\iz. A) and 1 of fifth kind (\iz. C).

10 I— —■ I---------
3! 3! 2! 1! 1!

Following are the S possible combinations of 3 S’s coming consecutively.

i) in the first three places

ii) in the second, third and fourth places

iii) in the eighth, ninth and tenth places

Since in each of the above cases, the total number of arrangements of the remaining 7 
s, viz. TTiiiAC of which 3 are of one kind, 2 of second kind, 1 of third kind and 1 ofletter 

fourth kind

31 21 ii 11
i K 71and the required number of favourable cases = -------------- h-----

3! 2! 11 1!

Hence the required probability

_ Fzvovrcb'.t Case: _ £ * 7/ 7 101
Total No cf caoe; 31 2! 11 II ‘ 31 31 21 11 11

_ t * 7j * 3! _
10/ 15

3. What is the probability that a leap year selected al random will contain 53 Sundays ?

Sol: In a leap year, there are 366 days cf 52 complete weeks and 2 days more. In order that 
a leap year selected at random should contain 53 Sundays, one of these extra 2 days must be 
Sunday'. But there are 7 different combi nations with these two extra 2 days viz. Sunday and 
Monday, Monday and Tuesday, etc. Out of these 7 possible ways, only in 2 ways we are 
having an extra Sunday.

Required probability =2'7.

4. Two dice are thrown simultaneously. Wfiat is the probability’ of obtaining a total score
of seven?

Sol; Six numbers (1,2,3,4,5,6) are on the six faces of each die. Therefore, there are six 
possible ways of outcomes on the first die and to each of these ways, there corresponds 6 
possible number of outcomes on the second die.
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Hence the total number of ways, n = 6 x 6 = 36. Now we wall find out of these, how many 
are favourable to the total score of 7. This may happen only in the following ways (1,6), 
(6.1), (2,5), (5^2), (3,4) and (4,3) that is, in six ways where first number of each ordered pah- 
denotes the number on the first die and second number denotes the number cn the second die.

m = 6.

Hence required probability = Favourable No of Caus 
Total No of cassx

m _ 6 _ 1
n 36 6

5. Tw’o digits are selected at random from the digits 1 through 9. If the sum is even 
find the probability, p that both numbers are odd.

Sol: If both numbers are even or if both numbers are odd, then the sum is even. In this 
problem, there are 4 even numbers (2,4,6,8) and hence there are 4 ways to choose two even 
numbers. There are 5 odd numbers (1,3,5,7,9) and hence there are wa>a to choose two 
odd numbers, lhus there are 4°2 + 5°2 = 16 wa\s to choose two numbers such that their sum 
is even. Since 10 of these ways occur when both numbers arc odd, the required probability,

_ 10 _ 5
P 16 8

6. Six boys and six girls sit in a row randomly. Find the probability that a) the six gins
sit together, b) the boys and giris sit alternately.

Sol: a) Six girls and six boys can sit at random in a row in 12 ways. Consider six girls 
as one object and the six boys as six different objects. Now these seven objects can be 
arranged in 71 different ways. But the six girls in the first object can be arranged in 6! ways. 
Thus the favourable number of cases to the event of sitting all girls together is 7! 61 ways.

Therefore, the required probability - Favourable No of Cares 
Total No of Caiet

I
132

b) Since the boys and girls can sit alternately in 61 6! ways if we begin with a boy
and similarly they' can sit alternately in 6i 6! ways if we begin with a giri. Thus the total 
number of ways sitting the boys and girls alternately = 2 61 61.
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: ne required probability = .Fffvcvrtfiie No of Cats 
ToloJ No of Com

2 6' 6’ _ 1 
121 462

7. Oat of (2rt-1) tickets consecutively numbered, three are drawn al random. Find the 
chance Thai the numbers on them are in AT.

Sol: Suppose that the smallest number among the three drawn is 1. Then the groups of three 
numbers in AT. are (1,2,3), (1,3,5), (1,4,7)..... , (1, n-1, 2n+l) and they are n in number.

Similarly, if the smallest number is 2, then the possible groups are (2,3,4), (2,4.6),... (2, nil, 
2n) and their number is n-1. If the lowest number is 3, the groups are (3.4,5), (3,5,7),....(3, 
n+2, 2n+l) and their number is n-1.

Similarly, it can be seen thal if the lowest numbers selected are 4.5.6..... 2n-2. 2n-l. the 
number of selections respectively are (n-2), (n-2), (n-3), (n-3),..., 222,1,1. Tnus the 
favourable ways for the selected three numbers are in AT.

= 2(l + 2- 3 + ... + n-1) + n

_ 2 (n~l) r. _ _ 3
—------------------ • n — n*>

Also the total number of ways of selecting three numbers out of (2n+1) numbers

_ ( 2*+i = (2r"l) (2n) (2*-Q _ r. (4--: - 1)
1 3 J 1.2.3 3

Hence the required probability =
rota; No of cam n (4n2 - 1V3 4n2 - 1

8. If a coin is tossed (m+n) times (m >n), then show that the probability of at least m
consecutive heads is 2-4_.

2"*1

Sol: Let us denote by H the appearance of head and by T the appearance of tail and let X 
denote the appearance of head or tail. Now P(H) = P(T) = 1/2 and P(X) = 1.

Suppose the appearance of m consecutive heads starts from the first throw’, we have 

(H H times) (XX....... n times)

The chance of this event = (16 . *6 .... m times ) = —
r

If the sequence of m consecutive heads starts from the second throw, the first must be a tail 
and we have

T(HH....m times) (XX ....(n-1) times)
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The chance of this event = Vi (‘X . l/i.. m times) - 1
2"n

If the sequence of m consecutive heads starts from the (r+1 )th throw, the first (r-1) throws 
may fc-e head or tail but rth throw must be tail and-we have

(X X..,, r-1 times) T (H H .... m times) (XX... (m+n-Jt) times) 1

Tne probability of this event = 1 — = —1—
2 2" 2"*1

In the above case, r can take any value from Id.... el Since ail the above cases are mumaily 
exclusive, the required probability’ when r takes 0,1,2,... n

 n * 2

2“

Hence the result.

9. What is the probability that in a group of N people, at least two of them will have the 
same birthday ?

Sol: We first frn-d the probability that no two persons have the same birthdav and then subtract 
from 1 to get the required probability’. Suppose there are 365 different birthdays possible in 
a year (excluding leap year).

Any person might have any of these 365 days of the year as birthday. A second person mav 
likewise have any of these 365 birthdays and so on. Hence the total number of ways of N 
people to have their birthdays = (365)N.

But the number of possible ways for none of these N birthdays to coincide is =

365. 364 ....(365 -)

= (3fi5)i
(365 -tf)l

The probability' that no two birthdays coincide is

/ (3«/(365H
(365-V)l

Hence the required probability (for at least two people to have the same birthday)

065)1
(365 rV)I (365/

17



iu. A and B are two independent witnesses (i.e. there is no collusion between them) in a 
case. The probability that A will speak the truth is x and the probability that B will 
speak the truth is y. A ana 3 agree in a certain statement Show that the probability 
that the statement is true is xy / (1 - x - y + 2xy ).

Sol: A and B agree in a certarn statement means either both of them speak truth or 
make false statement But the prozaoility that they both speak truth is xy and both of them 
make false statement is (1 — x) ( I — v).

Thus the probability' of then agreement in a statement 

= xy + (l-x)(l-y)=l-x-y-2xyI

Therefore, the conditional probability of their statement is true = _____ T_____
1 -x -y *2xy

(by using the definition P f A / B ) = ,
B is the event of common statement >.

where A is the event of correct statement and

11. Two friends have agreed to meet at a certain place between nine and ten O' clock. 
They also agreed that each would wart for a quarter of an hour and, if the other did not 
arrive, would leave. VTaa: is the probability that they meet ?

Sol: Suppose x is the moment one pemon amves at the appointed place, and v is the moment 
the other arrives.

Let us consider a point with coordinates (x,y) on a place as an outcome of the rendezvous.

Every possible outcome is within the area of square having side corresponds to an hour as 
shown in the figure.

Tne outcome is favourable (the two meet) for all points (x,y) such that | x - y | £ 1/4. 
These points are within the shaded part of the square in the above figure i.

All the outcomes are exclusive and equally possible, and therefore, the probability of the 
rendezvous equals the ratio of the shaded area to the area of the square. Thai is, m(A) = 7/16 
and m(S) = 1.

Hence by geometric probability, the required probability = -L—= -TA
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Exercises :

1. A factor of 60 is chosen at random. What is the probability that ft has factors of both 
2 and 5?

2. The numbers 3,4 and 5 arc placed on three cards and Lhen two cards are chosen at 
random.

a) The two cards are placed side-by-side with a decimal point in front Wnat is the
probability that the decimal is more than 3/8 ?

b) One card is placed over the other to form a fraction. What is the probability that 
the fraction is less than 1.5 ?

c) If there are 4 cards with numbers 3,4,5 and 6, then what are the probabilities of
the above two cases ?

3. A vertex of a paper isosceles triangle is chosen at random and folded to the midpoint
of the opposite side. What is the probability that a trapezoid is formed ?

4. A vertex of a paper square is folded onto another vertex chosen at random. What is
the probability that a triangle is formed ?

5. Three randomly chosen vertices of a regular hexagon cut from paper are folded to the 
centre of the hexagon. What is the probability that an equilateral triangle is formed?

6. A piece of string is cut at random into two pieces. What is the probability that the 
short piece is less than half the length of the long piece ?

2. A paper square is cut at random into rectangles. What is the probability that larger 
perimeter is more than 1 V2 times the smaller ?

8. The numbers 2, 3 and 4 are substituted at random for a,b,c in the equation ax - b =
c.

9. Each coefficient in the equation ax2 + bx + c = 0 is determined by throwing an
ordinary die. Find the probability that the equation will have real roots.

10. The numbers 1, 2 and 3 are substituted at random for a.b and c in the quadratic
equation ax2 + bx + c = 0.

a) What is the probability that ax2 + bx +• c = 0 can be factored?

b) What is the probability that ax2 4-bx + c = 0 has real roots ?
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11. Two faces of a cube are chosen at random. WOdat is the probability that they are in
parallel planes ?

12. Three edges of a cube are chosen at random. WTat is the probability that each edae
is perpendicular to the other two ?

13. A point P is chosen at random in the interior of square ABCD. What is the
probability that triangle ABP is acute ?

14. Fmd the probability of the event of the sine of a randomly chosen angle is greater
than 0.5.

15. Suppose you ask individuals for their random choices of letters of the alphabet. How
man}’ people would you need to ask so that the probability of at least one 
duplication becomes better than 1 in 2 ?

16. Six boys and six girls sit in a row randomly. Find the probability that i) the .six girls
sit together, ii) the boys and girls sit alternately ?

17. If the letters of the word ‘ThATHEMADCS’ are arranged at random, what is the
probability that there will be exactly 3 letters between H and C ?

1S. The sum of two non-negahve quantities is equal to 2el Find the probability that their 
product is not less than W times their greatest product

a) What is the probability’ that the solution is negative ?

b) If c is not 4, what is the probability' that the solution is negative ?

19. If A and B are independent events then show that a and B are also independent
events.

20. Cards are dealt one by'one from well-shuffled pack of cards imtil an ace appears,.
Find the probability of the event that exactly n caids are dealt before the first ace 
appears.

21. If four squares are chosen at random on a chess-board, fmd the chance that they
should be in a diagonal line.

22. Prove that if P(A/B) < P(A) then P(B/A) < P(B) ?

23. If n people are seated at a round tabic, what is the chance that the two named
individuals will be next to each other ?
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24. A and 3 are two very weak students of Mathematics and their chances of solving a
problem correctly are 1/8 and 1/12 respectively. If the probability of their making 
common mistake is 1/1001 and they obtain the same answer, find tlie chance that 
their answer is correct.

25. A bag contains an unknown number of blue and red bails. If two balls are drawn at
random, the probability of drawing two red balls is five times the probability of 
drawing two blue bails. Furthermore, the probability of drawing one bail of each 
colour is six times the probability of drawing two blue balls. How many red and 
blue balls arc there in the bag ?

26. A thief has a bunch cf n keys, exactly one can open a lock. If the thief tries to open
the lock by trying the keys at random, what is the probability that he requires 
exactly k attempts, if he rejects the keys already tried ? Find the probability of the 
same event when he does not reject the keys already tried.

27. A problem in hlathemancs is given to three students and their chances of solving it 
are ‘/x, 1/3 and What is the probability that the problem will be solved 7

23. A bag A contains 3 while bails arxl 2 black bails and other bag B contains 2 while and 
4 black halls. A bag and a bail out of it are picked at random. What is the probability 
that the ball is white ?

29. Cards are drawn one-by-<?ne at random from a well-shuffled pack of 52 cards until 
2 aces arc obtained ior the first time. If N is the number of cards required to be 
drawn, then show that

= (.-.I (53-,, (51-n)
50.59. 17. 13

Where 2 c n c 50.

30. AJ3. C are events such that

P (A) = 0.3, P(B) = 0.4, P( C ) = 0.8, P(A n B) = 0.08, P (A n C) = 0.23,

P(A r. B n C) = 0.09

If P(AUBUC) a 0.75, then show that P(B n C) lies in the interval (0.23, 0.48).

31. A man takes a step forward with probability 0.4 and backwards with probability 0.6.
Find the probability that at the end of eleven steps, he is one step away from the 
starting point
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52. Huyghcos Problem. A and B throw alternately a pair of dice in that order. A wins 
if he scores 6 points before B gets 7 points, in which case B wins. If A starts the 
game, what is his probability of winning. ?

33. A Doctor goes to work following one of three routes A, B,C. His choice of route is
independent of the weather. If it rains, the probabilities of arriving late, following 
A, B, C are 0.06, 0.15, 0.12 respectively. Tne corresponding probabilities, if it 
does not rain, are 0.05, 0.10, 0.15.

a) Given that on a sunny day he arrives late, what is the probability that he took route
C ? Assume that, on average, one in every four days is rainy.

b) Given that on a day he arrives late, what is the probability that it is a rainy day.

34. Bonferrcnfs Inequality. Given n(> 1; events
» a •
S -W ’(4, A 2 P U ' (A)

k3 ' r“.

snow 7 °* -J? * -X.’-" *

35. Show that for any n events A j Ato,..., A,
9 ■

i) P (D A}> 1 - T
» »

ii) p (fl a) i T -fr-i)

36. If A and B arc mutually exclusive and P(AUB) * 0, then prove that

P^AJAUP) =----- -----------

37. If 2n boys are divided mto two equal groups, find the probability that the two tallest
boys will be a) in different subgroups, and b) in the same subgroup.

38. A small boy is playing with a set of 10 coloured cubes and 3 empty boxes, if he puts
the 10 cubes into the 3 boxes at random, what is the probability that he puts 3 
cubes in one box, 3 in another box, and 4 in the third box ?

39. The sample space consists of the integers from 1 to 2n, which are assigned
probabilities to their logarithms. A) Find the probabilities, b) Show' that the 
conditional probability of the integer 2, given that an even integer occurs is

kg 2
nlogl + log n!



40. a) Each of n boxes contains four white and six black bails, while another box contains

five white and five black balls. A box is chosen at random from the (m-1) boxen, and 
two balls are drawn from it, both being black. The probability that five white and three 
block balls remain in the chosen box is 17. Find n.

40b). A point is selected at random inside a circle. Find the probability p that the point is 
closer to the centre of the circle than to its circumference.

41. What is the probability that two numbers chosen at random will be prime to each
other?

42. In throwing n dice at a time, what is the probability' of having each of the points
1333,5,6 appears at least once ?

43. A bag contains 50 tickets numbered 133v, 50 of which five are drawn at random
and arranged in ascending order of magnitude (xt< x2< x3< x<< x<), what is the 
probability that x3 = 30 ?

44. Of the three independent events, the probability that the first only to happen is lA, ±e
probability LhaL the second only to happen is 1/8 and the third only to happen E 
1/12. Obtain the unconditional prob-abilities of the three events.

45. What is the least number of persons required if the probability exceeds !6 that two or
more of them have the same birthday (year of birth need not match) ?

46. If m things are distributed among ‘a’ men and ‘b’ women, then show that the chance
that the number of things received by men is

1 “ft
2 (5 + a)-

47. A pair of dice is rolled until either 5 or a 7 appears. Find the probability' that a 5
occurs first.

48. In a certain standard tests I and H, it has been found that 5% and 10% respectively of
10^ grade students earn grade A. Comment on the statement that the probability
is —— 35L = JL that a 103 crude student chosen at random will earn

100 too 200

grade A on both tests.

49. A bag contains three coins, one of which is coined with two heads while the other two
coins are lair. A coin is chosen at random from the bag and tossed four times m 
succession. If head turns up each time, what is the probability' that this is the tw o 
headed coin ?



50. A mar stands in a certain position (which we may call the origin) and tosses a fa
coin. IT a head appears he moves one unit of length to the left If a tail appear 
he moves one unit to the right After 10 tosses of the com. what are his possib. 
positions and what are the probabilities ?

51. There are 12 compartments in a train going from Madras to Bangalore. Five friend
travel by the train for some reasons could not meet other at Madras static* 
before gening aboard. What is the probability that the five friends will be 
different compartments ?

52. lhe numbers 1,2,3,4,5 are written on five cards, ’three cards are drawn in succession
and at random from the deck, the resulting digits are written from left to rigim 
What is the probabihtv that the resulting three digits number will be even ?

53. Suppose n dice are thrown ax a time. What is the probability of getting a sum ‘S’ ot
points on the dice ?

54. A certain mathematician always carries two match boxes, each time he wants a muter
slick he selects a box at random. Inevitably, s moment comes when he finds a box 
empty . Find the probability that the movement the Erst box is empty, Lhe second 
contains exactly r match sticks (assume that each box contain N match-stick, 
initially).

55. There are 3 cards identical in size. The first card is red both sides, the second one is
black both sides and the third one red one side and black other side. Tne cards arc 
mixed up and placed flat on a table. One is picked at random and its uppe 
(visible) side was red. What is the probability that Lhe other side is black ?

56. N different objects 1.2,...., n arc distributed at random in n places marked 1.2,...m
Find the probability that none of the objects occupies the place corresponding tc 
its number.
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Answers :

i. y2

2. A) 2/3 b) 5/6 c) 3/4, 3.4

3. 1/3

4. 1/3

5. 1/10

6. 23

7. 2/5

8. a) Vi b) 3/4

9. 43/216

10. a) 13 b) 1/3

11. 1/5

12. 2/55

13. 1 - ti/8 = 0.60 73

14. 23

15. 7
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16.

17.

IS.

20.

21.

23.

24.

25.

26.

27.

2S.

31.

32.

33.

37.

38.

39.

40.

41.

42.

7' 6!
121

7/55

4 (51-?f) (50-7:) 
525150.49

91
1 f ?*■! •<J. _) bo-t—t

n~i

13/24

Red = 6, Blue = 3

3/4

7/15

(0.4)’ (0.6)’

30/61

a) 0.5 b) 41/131

a) —7— b)
2n ~ 1 4r - 2

3 10!

31 3! 4! J10

a) K log 2i b) (log 2i ) (n log 2 + log n!)

a) 4 b) 1/4
f \

i - — =_L 
k rJ *•

1 -n I -
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'13

44. ’/2, 1/3, 1/4

45. 23

47. 2/5

49. 8/9

50.

Dilin
DCC

C orn 
origin

-10 -8 -6 -4 -2 0 2 4 6
oc 10

Prob or (Mr (■•jur 1 '*) ( 1)"1,»J (j) (Mr f ”1 f 9fcV 1 1 \ ’ J (Mr (7)(M f ”) f 9UV •/ I jJ ("9 (9"I»J lo or

51. 55/144

52. 1/5

53. (-1/ f
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2n-r

54. n

55. 4

56. A -1 + _i_
2! 3« 41

_1_
rtl
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RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

In the earlier pages, ±e idea of a function, subject to certain postulates, which 
assigned w eights called probabilities, to the points of the sample space, was introduced. We 
then had a probability function which allowed us to compute probabilities for events. Now 
we deal with the concept of Random Variable.

Random Variable :

Scientific theories on models are our way of depicting and explaining bow observations 
come about. Such theories are simplified statements containing essential features and make 
for easier comprehension and communication. In statistics, we use a mathematical approach 
since *ve quantify our observations. Random variable is the result of stach mathematical 
approach dealing with the probabilities assigning to different events of a random experiment. 
The set of possible outcomes for a random experiment can be described with the help of a 
real-valued variable by assigning a single value of this variable to each outcome. For a two 
coin tossing experiment, the outcomes are two tails, a tail and a head, a head and a tail, or two 
heads. The sample space can be represented as (TT, TH, HT, HH). Here we express the 
outcomes by using the number of heads and so assigning the values (0,1,1^) respectively to 
those outcomes. Therefore, the outcomes of this experiment can he denoted by the different 
values of the real-valued variable viz. 0,1,2.

Any function or association that assigns a unique, real value to each sample 
point is called a chance or random variable. The assigned values are the values of the 
random variable.

Random variables are symbolised by capital letters, most often X, and their values by 
lower case letters. The omcome of a random experiment determines a point Le., the sample 
space, caiicd the domain of the random variable, and the function transform each sample point 
to one of a .set of real numbers. This set of real numbers is called the range of the random 
variable. If the sample space is discrete, then the outcomes will be denoted by certain discrete 
values. The random variable associated with a discrete sample space is known as discrete 
random variable. Similarly, the random variable associated with continous sample space is 
known as continuous random variable.

Probability’Function :

The association of probabilities with the various values of a discrete random 
variable is done by reference to the probabilities in the sample space and through a 
system of relationships or a function is called a probability set function or, simply', a 
probability function.
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Let the discrete random variable X assume the values x > x?...x= Inen the system of 
re i a lions can be unnen as

P pc = <) = Pi

This is read as ‘the probability that the random variable X takes the value ofXjis p,’. 
The set of ordered pairs (xf p^ constitutes a probability function with numerical values to be 
provided for the x, and pfs such that p 2 0 for all i and V p( = 1.

I
A discrete probability function is 2 set of ordered pairs of values of a random 
variable and the corresponding probabilities.

For a two coin experiment X takes the values 0,1.2 with the probabilities ’X, V;, Vi 
respectively.

Sometimes probability function can be represented by a graph or a mathematical function. 
In case of above example, the X values and the corresponding probabilities can be represented 
with the heip of the following graph.

A

P.I

___________________J_________ _____ ____________ ______ *
0 1 2- 

L
Suppose X assume the values 1 and 0 with the probabilities p and 1-p respectively. 

This information can be given with the help of the following function p(x) defined by

P(x) = px(l-p)1Xx = O,l.

This type of function which gives the probabilities of the different values assumed by a 
random variable is known as probability’ mass function or simply probability function. 
Therefore, a function p(x) is said to be a probability’ function of random variable or a 
distribution If

i) p(x) 2 0 for all X-

E Xx) = 1
z

where p(x) denotes the probability of the events that the random variable X assumes the value 
x.
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Distribution Function :

The law cf probability distribution of a random vanable is the rule used to find the 
probability of the event related to a random variables. For instance, the probability that the 
variable assumes a certain value or falls in a certain interval. The general form of the 
distribution law is 'distribution function, which is the probability that a random variable X 
assumes a value smaller than a given x i.e. F(x) =P(X x).

The distribution function F(x) for any random variable possesses the following properties :

i) F ( -« ) = 0

ii) F (+ « ) = 1

iii) F(x) does not decrease with an increase in x.

In the case of discrete random variable

=i ?•--)
I".

Where x,, x^...., xk... are the values of the random variable. The graph of F(x) in 
discrete random variable case is generally as shown below :

A

It is seen from the above figure thru the graph ofF(x) is a ‘step function’ having jump 
p(xl) at x = Xj and is constant between each pair of values of x. It can also be proved that

=X*)
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Tnerefore, distribution function can also be used to indicate the distribution of the random 
variable instead of probability function.

Example:

A student is to match three historical events (Mahatma Gandhi's birth year, India’s freedom, 
and first Word War) with three years (1947, 1914, 1869). If he guesses, with no knowledge 
of the correct answers. what is the probability distribution of the number of answers he gets 
correctly ?

Solution : Here the number of correct answers is the random variable, say X. Therefore, X 
assumes the values 0,1,2,3 because there are three events to match with only three years. 
Suppose the events are E^Ev E3 and the coiTesponding correct years are Yb Y2 Y3. Student 
gets the correct answers when he'she matches E, to Y„ to Y: and E3 to Y,.

All marchings arc wrong only when hc/shc matches E to Y? E:to Y^ E3to Y j or E, 
to Y„ E~ to Y, En to Y2. But the total possible matchings are 6. Therefore. the probability 
of all matchings to go wrong is 2'6 =1/3. That is, the probability that X to take the value ‘O' 
is 1/3.

Similarly X assumes the value ‘ 1 ’ with probability 3/6 (= !6) the vaiue ‘2’ with 0 probability 
and the value ‘3’ with 1/6 probability.

So the probability distribution of the correct answers in the given matching is 

No of correct answers (x) 0 1 2 3

Probability 1/3 0 1/6

Example : Suppose a number is selected at random from the integers 10 through 30. Let X 
be the number of its divisors. Construct the probability function of X YTal is the probability 
that there will be 4 or more divisors ?

Solution : X is the number of divisors of randomly selected number from the integers 10 
through 30. Therefore, X is a random variable. The possible values tht X assumes are :

t, 3 t, 5,6 depending upon the selected number. For example, if the selected number is 
either 12,3,5,7,11.13,17,19 then X takes the value 2. Similarly when the selected number 
is 4. ,8.10,14,15 X takes 4. Therefore, the different values of X and the number of their 
app- ances we get the following :
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X values 1 2 3 4 5 6

No of
appearances out 
of 20

1 g 3 4 1 3

Now the required probability distribution is

X 1 2 3 4 5 6

p(x) 1/20 g'20 3/20 4/20 1/20 3/20

The probability of X to take 4 or more

= P (x = 4 or 5 or 6) = P (x = 4) + P (x 15) + P (x = 6)

Mean, Variance, Standard Deviation of the Random Vanable.

Let X be a random variable with probability function as follows :

X X, x2 .. ..

p(x) P(Xi) iXxJ .. .. .. p(O

The mean of X is defined as

Zj pOj) + + - + («M)

, or
E *, pW

This is also known as mean of the distribution and generally denoted by p.

The vanance of X is defined as

E *«’ Xx3 “ E *,m t
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vbere u is the mean of X.

Tbs 'variance is generally denoted by cr.

The standard deviation is the positive square root of’variance and is denoted by a.

Hxamnle : A single 6-sided die is tossed rind the mean and variance of the number of 
points on the top face.

. - * remesent* me j_i; iner Oi points on tne top la i ne m obahihr. ram a on
of X is

V 1 2 3 44 5 6

p(x) 1 l 1 i 1 1
6 6 6 6 6 6

me mean a ls nven bv

V
V

p<x, ) - X, p(Xj ) + p(x, )__ + x, X*„ )

Etrt b =1.1+2.- +3.1.4.1+5.1+6.1 
£ 6 6 6 6 6

= i(l + 2 + 3 + 4 + 5 + 6)
6

= 1 Hl = 2
6 2 2

Variance, o: is given by
*
P x,3 Xv,) ~ V where p is mean.
r“i

Here

£ ?(I, ) = l2-. 1 + y-I + 3’-I + I + 5>-. I + 6V- A
m 6 6 6 6 6 6
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= i [lI-t2t+3,-+41t5’- + 6’-] 
0

_ 2 (2x6x1) _ 91_
6 6 6

Variance * o2 = 2L - [ Z. 

= 2L - 22. = 21
6 4 12

c- > 4>

Exercises :

1. One cube with faces numbers 1,2,3,4,5 and 6 is tossed twice, and the recorded 
outcome consists of the ordered pair of numbers on the hidden faces at the first 
and second tosses.

a) Let the random variable X takes on the value 0 if the sum of the numbers in 
the ordered pair is even and 1 if odd. What is the probability function for 
this random variable ?

b) Tet the random variable X takes on the value 2 if both numbers in the ordered
pair are even, 1 if exactly one is even, and 0 if neither is even. What is the 
probability distribution of this random variable ?

c) Let the random variable X be ±e number of divisors in the sum of the two
faces. What is the probability function of X ?

2. Of six balls in a bag, two are known to be black. The balls are drawn one at a tune
from the bag and observ’ed until both black balls are drawn. If X is the 
number of trials (draws) required to get the two black bails. Obtain the 
probability distribution of X.

3. Suppose that the random variable X has possible values 1,2,3,...and P(x = j) = -i,
j = U,... 2

i) compute P(x is even), ii) compute P(x is divisible by 3).

4. The probability mass function of a random variable X is zero except at the points x=
0,1,2,. At these points has the values p(0) = 3c3 4, p(l) = 4c - 10 c2 and p<2) = 
5c -1 for some c > 0.
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i) Determine the value of c.

ii) Compute P (1 < X s 2).

iii) Describe the distribution function and draw its graph.

iv) Find the largest x such that F<x) < Pk

5. Let X denote the profits that a man makes in business. He may earn Pa.2000 with 
probability 0.5,-be may lose Rs.5000 with probability 0.3 and he may neither earn 
nor lose with probability 0.2. Calculate his average profits.

6. A man wins a rupee for head and loses a rupee for tail when a coin is tossed. 
Suppose that he tosses once and quits if he wins but tries once more if he loses on 
the first toss. What are his expected winnings ?

7. Three boxes contain respectively 3 red and 2 black balls. 5 red and 6 black balls 
and 2 red and 4 black balls. One ball is drawn from each box. Find the average 
number of black balls drawn.

8. If the random variable, X lakes the values 122,....n respectively with probabilities
—, —....  — find the mean and variance of X
nr. r.

Answers :

1. a) X Prob

0 *6

1 ‘/i

b) x Eroh

o »/<

. 1 'A

2 Pi
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c) A Pk-P

2 15/36

3 12/36

4 8/36

6 1/36

2. z Prob-

2 1/15

3 2/15

4 3/15

5 4/15

6 5/15

3. i) 1/3 ii) 1/7

4. i) 1/3 ii) 2/3 iii) 1

5. 0

6. 0

<y 266
165

8. Mean = Variance = ------ -
2 12
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DISCRETE DISTRIBUTIONS

m the previous pages. we discussed about ‘random variable1, ‘probability function’, etc. Here 
we discuss some theoretical discrete distributions in which variables are distributed according 
to some definite law which can be expressed mathematically.

Bernoulli Distribution : Suppose you want to study the probability of different events 
corresponding to tossing of a single coin experiment. The two possible events arc ettring a 
head or getting a tad Define a random variable x assuming the values 1 and 0 corresponding 
to these two events viz. Head and tad respectively. If the probability of getting a head in 
tossing that coin is ‘p1 then the probability that tire random variable to take T' is p and the
nrcbabilhv that the random ?ie to take ‘O' is 1-p. Therefore, the distribution of the
random variable X becomes

X_ iTob
i p
0 I-p

Anv experiment where there are oriy two possible outcomes vi7_ Success and failure is called 
a> Bernoulli etuxuaiteu. A single trial of a Bernoulli experiment is known as Berwufii trial

Corresponding to any Bernoulli experiment, it is possible to define a random variable 
X as given above.

A random variable X which takes two values 0 and 1, with probability qyT-p) 
and p respectively ts called Bernoulli variate and is said to have a Bernoulli distribution.

Binomial Distribution :

Let a Bernoulli experiment be performed repeatedly and let the occurrence of an event 
in any trial be called a success and its non-occurrence a failure. Consider a icrics of n 
independent Bernoulli trials (n being finite), in which the probability ‘p1 of success in any' trial 
is constant for each trial Then q = 1-p is the probability of failure many trial Let the 
random variable X be the number of successes in these trials.

The probabifey of x successes and consequently (n-x) failures in n independent trials, 
in a specified order (say') SS FT SSS .... FSFF (wliere S represents success and F failure) is 
given by compound probability as given below :

P (SSFF, ... FSFF) = P(S) P(S) P(F) P(F) ...-P(F) P(S) P(F) P(F)
- p.p.qq....q p q q
= pp ....p qq ....q (x p’s and (n-x) q’s)
— —* ~D-X-p q
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But x successes in n trials can occur in ways and the probability for each of these ways 

is pT q-'. Hence the probability of x successes in n trials in any order whatsoever is given by' 

the addition of individual probabilities and is given by n j ?x?""* • The number of

successes in n trials will be cither 0 or 1 or 2 ... or n in any experiment

p(x) = P(X = x) = ("

Is true for all x = 0,1,2,... n.

_ X _ »tp ?

This function p(x) = [ n ] p* q’^, x = 0, 1,...., n is called the probability mass function of

the Binomial distribution, for the obvious reason that the probabilities of 0,1,2,... n successes,

V17_ q \

(q + p'A

z n i-i f? p. q‘~P \..... p ’ Are the successive terms of the binomial expansion

A random variable X is said to follow binomial distribution if its probability mass function is 
given bv

=i) =p£) =| "| p- ?»-',x = 0,1,2,.... n; q = 1 - p.

The values n and p of this distribution are known as the parameters of the distribution.

Mean and Variance of Binomial Distribution

We know, mean of any discrete distribution 
= X r Xr>

r

where p(r) is the probability that the random variable X to take the value r. In case of binomial
distribution x takes the values r = 0,1,2,...., n and pr = 
parameters of the binomial distribution.

.-. Mean = £ r
r-3»

= E r
n!

rl (n-r)l

Pr q'"* where n and p arc the

(r-l)l (n-r)l
- V

3?



~n p [ ?" ’ l) q*"'2 + p’""1 j

-np fr’’?/'1

= np ( V p - q = 1 )

Also we know Variance = V r 2
T

V r* p(r) ~ (Jtftan)* 
r

in case of binomial distribution

S r p(r)

Variance = Vs r: r - c-?):

= v r>
ri ip-r)i

p r ?B-r ~ (pprf (T Mezr - np)

nl
r! («—7*)1

(n Pi

— V r\r—1) '_r + V r nl
ri (n~r)l rl (n~r)i

Pr ?'~r ~ (« p)3

(v L r

n 1
(r-2)> (n-r)!

P r ?’~r + np ” (n p)2

n!

ri (n~r)I
— p S ~ rsp t™* deixfv«)

n(n-l) p' (n-C)l

(r-2)l (n-r)l
_ r-0 »-3
P V + rtp ~ (n p?

z \
n

“ S ! r v-1)+ r!

“ P ?

r

_ F „ >“TP Q
>

n(n~l) p3 J s’"3 + (n-SiCj + (n~2) C2 +^’-3J + np - (np/

n(n-l) p2 (g + p7‘3 + np - (np)2

n(n-i) p2 + np ” (np)3

np [(n-i) P + 1 ~ np]

n p [ np ~ p + 1 — np]

np [ 1 - p ] = n p q
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So, Mean = Dp
Variance = npq
Standard Deviation — Variates = \'^x>

Example : The mean and variance of binomial distribution with parameters n and p are 16 and 
8. Find i) P (x = 0 ), ii) P ( x 2).
Solution : Wc know mean = np and variance = npq.

np = 16 and npq = 8
Solving for n and p we get n = 32 and p = !6

Now p cr = o) = I n | q^ = q*

(Eecause p(x=r) = | "| pr q^

?(x - 0) =(!-?)" = j 1 ~ - r=

(••• m2, q=l ~p - 1~ —)

Uj P (x » 2) = Ir? (x < 2) =1 -[? (x=0) + P(x=v)] =1 -? (x=0)

But P(x = 0)=fi! (As obtained above ) 

n-i=3rih fnand p (x=i) = n

?{x i 2) = 1

Example : A perfect cube is thrown a large number of items in ^ets of 8. The occurrence of 
a 2 or 4 is called a success. In what proportion of the sets would you expect 3 successes.

Solution : In this problem wo have to find the probability of getting 3 successes out of 8 trials. 
Tossing of a smgie cube is our trial. The probability of success, p is getting either 2 or 4. The 
number of cubes in the set is the number of trials. If we define x as the number of successes 
in 8 trials, then x is distributed as a binomial variate with parameters 8 and p where p is the 
probability' of success.

The probability of getting either 2 or 4 in tossing of a perfect cube = 2/6 = 1/3. 
p = 1/3

Hence P(x-r) -[ n 
r/

_ r -,»~r 
P 4

and P(x=3) =[ 2j p3 (x x is a binomial variate)
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(vn = S,p= 1/3, q = 1-p)

V 3 )
fi V=

= 0.2731

Tne proportion of sets in which we expect 3 successes = 27.31 %.

Example :The probability of a man inning a target is Vi.
i) If be arcs 7 limes, \shal is the probability of ins killing Lbe target at ieast twice ?
ii) How many times must he fire so that tne probability' of bis bitting the target at least

once is greater than 23 ?

Solutions :

i) Consider ‘bring once' as a Bemoulb trial. Firing 7 times is the Binomial experiment 
with 7 independent Bemoulb trials. If X is the number of hits in 7 trials, then the required 
probability' of hitting the target at least twice = P (X £ 2).

We know,
P(X a 2) = 1 - p (X < 2) 
= 1-P(X = O)-P(X = 1 )

andP(X = x)=H p* 

P(X = 0) = (3/4)7

where n = 7, p =1/4, and q = 1 - p =3/4.

P(X=1) =

The required probability

= 1 ‘(i li - 4547
47 S192’

7

ii) p = q = 3A

We want to find n such that P(X 2 1) > 23 
Or 1—P(X<l)>2/3 
Or 1-P (X = 0)>23
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Or 1 - q° > 2/3 when q = 3/<
=*(3/4/ < 1/3 
=>n = 4.

POISSON DISTRIBUTION

There are many situations where we must count the number of individuals possessing a 
certain characteristic yet have difficulty in defining the basic experiment In turn, it becomes 
difficult to say what is the probability of the occurrence of a single event For example i) 
number of telephone calls received at a particular telephone exchange, ii) emission of 
radioactive particles, iii) number of printing mistakes in a book. In all these situations, it is easy 
to count the events, but what are the non events.

In situations like those mentioned above, we customarily resort to specifring a unit size or 
a time interval in which to observe the events etc. We find then that we are observing events 
that fluctuate around some mean value that might be defined in terms of some sort of 
underlying binomial parameters p and n as np, a product never separable into its component 
parts and simpty give the mean value. Therefore, in such situations, we assume that for a short 
enough unit of time or space, the probability of an event occurring is proportional to the length 
of time or size of the space. Wc also assume that for non overlapping units, the results in one 
unit are of no value m predicting when or where another event will occur (independently). 
The above assumptions underlie the probability function given by

“* l i1? £Z ==) =------— , x =o,uj...x!

where X is the average number of times an event occurs in a unit interval and is called the 
parameter of a Poisson distribution./Poisson Distribution as a limiting case of Binomial
Distribution.

The above mentioned Poisson distribution can be viewed as a limiting case of the binomial 
distribution under the following conditions.

i) n, the number of trials in the binomial cxpcricmcnt is infinitely large ic. n -
ii) p, the probability of success in each trial is indefinitely small, i.e. p - 0.
iii) np = X is finite so that p = — , q = I - —.

n *

We know , if X is a binomial variate with parameters ru 

= f(x) = N . x =0, 1, 2_- «

where n - °° and p - 0.

Therefore, this probability
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- = x) = *----- . x =MJ.—
xl

This function is known as the Probability function of the Poisson distribution and X is the
parameter of the distribution.

Mean and Variance of the Poisson Distribution :

"1 (J
-----— In case ofPuisscu distribution)

xl

Mean = £ * f(xl> 
1 *1
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e ‘ X’ ( v the values of Poisson variate are 0,1,2,...)f 3

+

~ X , 
= 1

Variance- £ r; - Y \

C^Doz A-o-i P ■

Eiercises :
i- A random variable X has a binomial distribution with parameters n = 4 and p = 1/3 
M Describe the probability' mass function and sketch its graph, 
ii) Compute the probabilities P(1 < X s 2) and P (1 s X s 2).

z.

1)
ii)

i

In a binomial distribution rcrbring of 5 independent trials, probabilities of 1 and 2 
successes are 0.4096 and 0.204S respectively. Find Lite parameter p of Lhc 
distribution.

The probability of a man rnmng a target is 1/3.
If he fires 5 limes what is the probability of hitting the target at least twice ?
How many times must he rim so _st the probabilir.' of hitring the target ax least cncc

is more than 90% ?
The random variable X has a binomial distribution with n “ 4, p ~ 0.5.
Find { |X-2| z 1 }

Answem :

1. 8/27,56/81
2. 02
3. I) 131/243 

ii) 6
4. 5/16

x<;



Dr D.Basavayyft.
R.I.E., Mysore

Problems in Probability

EXERCISE -1

1. Three points are taken at random on a circle. What is the chance that they 
determine an acute angled triangle?

2. Two coins Ci and C2 have a probability of falling heads pi and p2, respectively. 
You win a bet if in three tosses you get at least tw;o heads in succession. You toss 
the coins alternately starting with either coin. If pi > P2 , what coin would you 
select to start the game? Give reasons for your answer.

3. A box contains p white balls and q black balls, and beside the box lies a large pile 
of black balls. Two balls chosen at random are taken out the box. If they are of 
the same colour, a black ball from the pile is put into the box, otherwise, the 
white ball is put back into the box. The procedure is repeated until the last two 
balls are removed from the box and one last ball is put in. What is the probability 
that this ball is white? ( Ans. 1 when p is odd and 0 when p is even)

4. If the probability of success is 0*01, how many trials are necessary in order that 

probability of at least one success is > — ?

5. Can the following sets serve as sample spaces of some experiments. If yes, give 
one experiment in each case.

i) S = {(x,y)/ x, y are natural numbers, 1< x < 6, 2 < y < 6}
i

ii) S = {x / x = — where p and a are natural numbers such that 1 < p <6,
7

1 < q < 6}.

6. State and prove multiplication theorem of probability.

.. a"7. A sportsman’s chance of shooting an animal at a distance r (> a) is —. He
r~

fires when r = 2 a and if he misses he reloads and fires when r = 3 a, 4 a, ....... If
he misses at distance na, the animal escapes. What the odds against the 
sportsman?

8. A local post office is to send M telegrams and to distribute them at random over N 
communication channels. The channels are enumerated. Find the probability' that 
exactly k| telegrams will be sent over the first channel, k2 telegrams will be sent



over the second channel and so on, k\ telegrams over the channel, with

1

9.

10.

Let A. B and C be the three events with P(B) and P(C) > 0 . If B and C are

independent, show that P(A / B) = P(A /(BnC)) P(C) + P(J/5nC)P(C). 
Conversely, if this relation holds, P(A / (B n C)) P(A / B) and P(A) > 0, 
then B and C are independent.

In the game of tossing a fair coin, the first one to obtain n successes (heads or 
tails) wins. Show that the game is fair i.e,, each gambler has a probability' of

-1wanning equal to — .

11. If the coins are unbiased, the probability' of getting exactly 50 heads in tossing of

100 coins is — . Comment. 
2

12. What is the least number of persons required if the probability' exceeds — that 

two or more of them have the same birth day? (Year of birth need not match).

1 A company manufacturing cornflakes puts a card numbered 1 or 2 or 3 .....or r at
random in each package, all numbers being equally likely to be drawn. If n (> r) 
boxes of cornflakes are purchased, show that the probability’ of being able to 
assemble at least one complete set of cards from the packages is -

fd 1 n (r> 2 „ < r >
(1--)" + (1 ....+(-1)'-'

T"br J r •]

The following data was given in a study of 1000 subscribers to a certain 
magazine. In reference to sex, marital status and education, there were 312 males, 
470 married persons, 525 college graduates, 42 male college graduates, 147 
married college graduates, 86 married males and 25 married male college 
graduates. Show that the numbers reported in the study must be incorrect.

1 f 4 married couples are arranged in a row find the probability that no husband sits 
• ext to his wife. •

i man forgets the last digit of a telephone number, and dials the last digit at 
andom. What is the probability of calling no more than three wrong numbers?

Vhat is more probable: to get one six with four dice, or to get two sixes in 24 
frow's of two dice?

o6. P(E) = 0.9 and P(F) = 0.8, show' that P(E n F) > 0.7.



19. Consider an example whose sample space consists of a countable infinite number 
of points. Also show that not all points can be equally likely.

20. A game is played as follows. The gambler throws two dice. If the first throw he 
gets 7 or 11 he wins, and if he gets 2, 3 or 12 he loses. For each of the other sums 
the game is continued in two ways. 4) the gambler continues throwing the two 
dice until he wins with a 7 or he loses with the result of the outcomes of the first 
throw, o) The gambler continue until he loses with 7 or wins with the result of the 
first throw. What is the probability of the gambler winning in case (a) and (b) ?

21. A store opens at 9 A.M and closes at 5 P.M . A shopper taken at random walks 
into this store at time x and out at time v (both x and y being measured in hours 
on the time axis with 9 A.M as origin) Describe tfie sample space of (x , y). Also 
describe, in terms of x and v the following event. The shopper is in the stores less 
than one hour.

22. A small boy is playing with a set of 10 coloured cubes and 3 empty boxes. If he 
puts the 10 cubes into the boxes at random, what is the probability that he puts 3 
cubes on one box, 3 in another box , and 4 in the third box?

23. Describe how you explain to a layman the meaning of the following statement : 4 
.An insurance company is not gambling with its clients because it knows with 
sufficient accuracy that will happen to every thousand or ten thousand or a 
million people even when the company cannot tell that will happen to any 
individual among them.’

24. Comment on the following statement:

i) Mutually exclusive events are independent

ii) Independent events need not be mutually exclusive.

25. Events E|, E?, ....., En are such that the probability of the occurrence of any
speciried r ot them is pr , r = 1. 2..........n. Show- that the probability of the
occurrence of exactly m of the events E;. E;,.... En is

(n ' m + 1V n rziY
Pit i zn-l \n)

Pnm + (-!)'
n

A m

26. When is P(A / B) -r P(A- 3 ) = 1 ?

27. A box contains n balls numbered 1, 2.......n. We select at random r balls, a) wiih
replacement b) without replacement. What is the probability that die largest 
selected number is m?

28. If A and B are two events and the probability, P(B) * 0 , prove that P(A) > or < 

P(A / B) according as P(A / B) > or < P(A).

3



29.

30.

31.

S'7

33.

? jj-t.

35.

State and prove addition theorem of probability.

N players Ai , A 2 , ...........A\ throw a biased coin whose probability of heads
equals p. Aj starts (the game ). A2 second etc. The first one to throw heads wins. 
Find the probability that Ak ( k 1,2.........A\ ) will be the winner.

A and B alternately cut a pack of cards and the pack shuff ed after each cut. If A 
starts and the game is continued until one cuts a diamond, what are the respective 
chances of A and B first cutting a diamond?

If n letters are placed in the corresponding n envelops at random, what is the 
probability that no letter is placed in the right envelop?

A bag contains three coins, one of which is coined with two heads while the other 
two coins are fair. A coin is chosen at random from the bag and tossed four times 
in succession. If heads turn up each time, what is the probability that this is the 
two headed coin?

Bertrand's Paradox: A chord AB is chosen at random in a circle of radius r. What 
is the probability that the length of A3 is less than r?

Two points are selected at random on a line of length ‘a’ . What is the probability

that none of these three sections in which the line thus divided is less than — ?
4

36.

37.

State and prove Bave's theorem of probability.

A group of 2N boys and 2N girls is randomly divided into two equal groups. 
What is the probability that each group has the same number of boys and girls?

38. A man is equally likely to choose one of three routes A, B, C from his house to 
the railway station, and his choice of route is not influenced by the weather. If the 
weather is dry; the probabilities of missing the train by routes A, B, C are

respectively J_ J_ 1
20*10*5

If he comes out on a dry day and misses the train then

what is the probability that the route chosen was C?

On a wet day the respective probabilities of missing the train by routes A, B, C

are —. On the average one dav in four is wet. If he misses the train, what 
12 5 2

is the probability that the day was wet?

What is wrong with the following procedure ?

To find the probability that an Indian chosen at random was bom in a given state, 
divide the number of favourable cases (1) by the total number of states (say 30),

and obtain the answer — .
30

39.



40. The letters of the word PEPPER are written on cards. After shuffling thoroughly, 
four cards are drawn randomly one after the other. What is the probability that the 
result is PEEP ?

41. A thief has a bunch of n keys, exactly one of which fits a lock. If the thief tries to 
open the lock by trying the keys at random, what is the probability that he 
required exactly k attempts if he rejects the keys already tried?

42. A point is chosen at random on a line of length T. What is the probability that the

ratio of the shorter to the longer segment is less than — ?
4

43. Prove that P[(Ei u E2) / F)] = P(E, / F) + P(E2 / F) - P[(E, n E?) / F)]

44. Mrs Revathi types 15 letters per day and Mrs Gavathri types 5 letters per day for 
the department of Science of R.I.E. Mysore. Experience has shown that Mrs 
Revathi has a probability' 0.99 of producing an error free letter and Mrs Gavathri 
has a probability’ 0.70 of doing the same. A letter without identification of the 
typist is placed on the Professor's table for signature. The letter has no error. 
What is the probability that the letter was typed by Mrs Gavathri?

45. A thief has a bunch of n keys, exactly one of which fits the lock. If the thief tries 
to open the lock by trying the keys at random, what is the probability that he 
required exactly k attempts if he rejects the keys already tried?

46. N identical balls are distributed among n boxes. What is the probability that a 
specified box will contain k balls.

47. Suppose that for the independent events A. B and C we have P(A) = a. P(A o Bo 

C)=l-b, P(AnBnC)=l-c and P(jn5nC) = x.

Prove that the probability x satisfies the equation

.Ax" + [ a b - ( l-a)(a-c-l)].x-r-b(l-a)( 1 - c ) = 0

it , i , (l-a)2-rtfZ>Hence conclude that c > ---------------
1 - a

Moreover, show that P(B) = —————— , P(C) =------ax x + 6

48. If m things are distributed among ‘a’ men and ‘b’ women, show that the chance 
that the number of things received by men is odd is

2 (b + ay - (b - a)'"
2 (b + a)"'



EXERCISES : 2

1. A factor of 60 is chosen at random. What is the probability that it has factors of 
both 2 and 5 ?

2. The numbers 3,4 and 5 are placed on three cards and then two cards are chosen at 
random.

a) Tne two cards are placed side-by-side with a decimal point in front. What is 
the probability' that the decimal is more than 3/S ?

b) One card is placed over the other to form a fraction. What is the probability 
that the fraction is less than 1.5 ?

c) If there are 4 cards with numbers 3.4,5 and 6. then what are the probabilities 
of the above two cases ?

3. A vertex of a paper isosceles triangle is chosen at random and folded to the 
midpoint of the opposite side. What is the probability' that a trapezoid is formed ?

4. A vertex of a paper square is folded onto another vertex chosen at random. What 
is the probability that a triangle is formed ?

5. Three randomly chosen vertices of a regular hexagon cut from paper are folded 
to the centre of the hexagon. What is the probability that an equilateral triangle 
is formed?

A piece of string is cut at random into two pieces. What is the probability’ that 
the short piece is less than half the lengthof the long piece ?

A paper square is cut at random into rectangles. What is the probability that 
larger perimeter is more than 1 times the smaller ?

The numbers 2. 3 and 4 are substituted at random for a.b.c in the equation ax ~ b 
= c.

a) Wnat is the probability that the solution is negative ?

b) If c is not 4, what is the probability that the solution is negative ?

•ach coefficient in the equation ax2 + bx + c = 0 is determined by throwing an 
>rdinarv die. Find the probability that the equation will have real roots.

he numbers 1, 2 and 3 are substituted at random for a,b and c in the quadratic 
. luation ax“ + bx + c = 0.

Wnat is the probability that ax2 + bx + c = 0 can be factored? 

friat is the probability’ that ax2 +bx + c = 0 has real roots ?



11. Two faces of a cube are chosen at random. What is the probability that they are 
in parallel planes ?

12. Three edges of a cube are chosen at random. What is the probability that each 
edge is perpendicular to the other two ?

13. A point P is chosen at random in the interior of square ABCD. What is the 
probability that triangle ABP is acute ?

14. Find the probability of the event of the sine of a randomly chosen angle is greater 
than 0.5.

15. Suppose you ask individuals for their random choices of letters of the alphabet. 
How many people would you need to ask so that the probability of at least one 
duplication becomes better than 1 in 2 ?

16. Six boys and six girls sit in a row randomly. Find the probability that i) thesix 
girls sit together, ii) the boys and girls sit alternately ?

17. If the letters of the word ‘MATHEMATICS' are arranged at random, what is the 
probability that there will be exactly 3 letters between H and C ?

18. The sum of two non-negative quantities is equal to 2n. Find the probability that 
their product is not less than ii times their greatest product.

19. If A and B are independent events then show that A and B are also 
independent events.

20. Cards are dealt one by one from weil-shuffled pack of cards until an ace 
appears,. Find the probability of the event that exactly n cards are dealt before 
the first ace appears.

21. If four squares are chosen at random on a chess-board, find the chance that they 
should be in a diagonal line.

22. Prove that if P(A/B) < P(A) then P(B/A) < P(B) ?

23. If n people are seated at a round table, what is the chance that the two named 
individuate will be next to each other ?

24. A and B are two very weak students of Mathematics and their chances of solving 
a problem correctly are 1/8 and 1/12 respectively. If the probability* of th^ir 
making common mistake is 1/1001 and they obtain the same answer, find the 
chance that their answer is correct.

25. A bag contains an unknown number of blue and red balls. If two balls are drawn 
at random, the probability* of drawing two red balls is five times the probability* of 
drawing two blue bails. Furthermore, the probability of drawing one bail of each

7



m

colour is six times the probability of drawing two blue balls. How many red and 
blue balls are there in the bag ?

26. A thief has a bunch of n keys, exactly one can open a lock. If the thief tries to 
open the lock by trying the keys at random, what is the probability that he 
requires exactly k attempts, if he rejects the keys already tried ? Find the 
probability of the same event when he does not reject the keys already tried.

27. A problem in Mathematics is given to three students and their chances of solving 
it are ’A, 1/3 and ’A. What is the probability that the problem will be solved ?

28. A bag A contains 3 white balls and 2 black balls and other bag B contains 2 white 
and 4 black balls. A bag and a ball out of it are .picked at random. What is the 
probability that the ball is white ?

29. Cards are drawn one-by-one at random from a well-shuffled pack of 52 cards 
until 2 aces are obtained for the first time. If N is the number of cards required 
to be drawn, then show that

(n- l)(52-n)(51 -m p(7\ = nj =------------------50.59. 17. 13
Where 2 < n < 50.

30. A.B. C are events such that

P (A) = 0.3. PfB) = 0.4. P( C ) = O.S. P(A r B) = 0.08. P (A nC) = 0.28.

P(A n Bn C) = 0.09

If P(AUBUC) > 0.75. then show that P(B n C) lies in the interval (0.23, 0.48).

31. A man takes a step forward with probability OA and backwards with probability 
0.6. Find the probability that at the end of eleven steps, he is one step away from 
the starting point.

.Huvghens Problem. A and B throw alternately a pair of dice in that order. A 
wins if he scores 6 points before B gets 7 points, in which case B wins. If A 
stans the game, what is his probability’ of winning ?

A Doctor goes to work following one of three routes A, B.C. His choice of route 
is independent of the weather. If it rains, the probabilities of arriving late, 
following A, B. C are 0.06, 0.15, 0.12 respectively. The corresponding 
probabilities, if it does not rain, are 0.05, 0.10. 0.15.

a) Given that on a sunny day he arrives late, what is the probability that he took 
route C ? Assume that, on average, one in every four days is rainy.

b) Given that on a day he arrives late, what is the probability that it is a rainy 
day.



34. Bonferroni's Inequality. Given n(>l) events Aj, A2,... An show that 

Z P(A,)-Z P(A,r>A])^ PUP(A,)<£ P(A.)
i-l i< j i“l i~l

35. .Show that for any n events Ai,A2,..., An

i) P(^A,)>l-tp(A)
i~l /-/

ii) P(r\A,) ^P(A,)-(n-1)

36. If A and B are mutually exclusive and P(AUB) 0, then prove that

P(A/A UB) =--- —P(A) + P(B)
37. If 2n boys are divided into two equal groups, find the probability that the two 

tallest boys will be a) in different subgroups, and b) in the same subgroup.

38. A_small boy is playing with a set of 10 coloured cubes and 3 empty boxes. If he 
puts the 10 cubes into the 3 boxes at random, what is the probability that he puts 
3 cubes in one box, 3 in another box, and 4 in the third box ?

39. The sample space consists of the integers from 1 to 2n. which are assigned 
probabilities to their logarithms. A) Find the probabilities, b) Show that the 
conditional probability of the integer 2. given that an even integer occurs is

log-7
nlog2 + log n!

40. a) Each of n boxes contains four white and six black balls, while another box
contains five white and five black bails. A box is chosen at random from the 
(n-1) boxes, and two balls are drawn from it. both being black. The probability' 
that five white and three block balls remain in the chosen box is 1/7. Find n.

40b). A point is selected at random inside a circle. Find the probability p that the point 
is closer to the centre of the circle than to its circumference.

41. What is the probability that two numbers chosen at random will be prime to each 
other?

1
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42. In throwing n dice at a time, what is the probability of having each of the points 
1,2.3,4,5,6 appears at least once ?

43. A bag contains 50 tickets numbered 1,2,3,..., 50 of which five are drawn at 
random and arranged in ascending order of magnitude (xj< Xo < X3 < X4 < X5), 
what is the probability that X3 = 30 ?

44. Of the three independent events, the probability that the first only to happen is ‘Z, 
the probability’ that the second only to happen is 1/8 and the third only to happen 
is 1/12. Obtain the unconditional probabilities of the three events.

45. What is the least number of persons required if the probability exceeds *Z that two 
or more of them have the same birthday (year of birth need not match) ?

46. If m things are distributed among ’a' men and ‘b’ women, then show that the 
chance that the number of things received by men is

7 (b +a )n' - (b - a )m 
~2 (b + a)n‘

47. A pair of dice is rolled until either 5 or a 7 appears. Find the probability that a 5 
occurs first.

48. In a certain standard tests I and II. it has been found that 5% and 10% respectively 
of 10th grade students earn grade A. Comment on the statement that the

probability is —---- — = —that a 10lh Grade student chosen at random
100 J 00 200

will earn grade A on both tests.

A bag contains three coins, one of which is coined with two heads while the other 
two coins are fair. A coin is chosen at random from the bag and tossed four times 
in succession. If head turns up each time, what is the probability that this is the 
two headed coin ?

A man stands in a certain position (which we may call the origin) and tosses a fair 
coin. If a head appears he moves one unit of length to the left. If a tail appears, 
he moves one unit to the right. After 10 tosses of the coin, what are his possible 
positions and what are the probabilities ?

There are 12 compartments in a train going from Madras to Bangalore. Five 
friends travel by the train for some reasons could not meet each other at Madras 
station before getting aboard. What is the probability that the five friends will be 
in different compartments ?

The numbers 1,2,3,4,5 are written on five cards. Three cards are drawn in 
•accession and at random from the deck, the resulting digits are written from left



to right. What is the probability that the resulting three digits number will be 
even ?

53. Suppose n dice are thrown at a time. WTiat is the probability of getting a sum ‘S' 
of points on the dice ?

54. A certain mathematician always carries two match boxes, each time he wants a 
match-stick he selects a box at random. Inevitably, a moment comes when he 
finds a box empty . Find the probability that the movement the first box is 
empty, the second contains exactly r match sticks (assume that each box contain 
N match-sticks initially).

55. There are 3 cards identical in size. The first card is red both sides, the second one 
is black both sides and the third one red one side and black other side. The cards 
are mixed up and placed flat on a table. One is picked at random and its upper 
(visible) side was red. What is the probability that the other side is black ?

56. N different objects 1,2,...., n are distributed at random in n places marked
l,2,...n. Find the probability that none of the objects occupies the place 
corresponding to its number.



Answers :

1. */2

2. A) 2/3 b) 5/6 c) 3/4, 3/4

3. 1/3

4. 1/3

5. 1/10

6. 2/3

7. 2/5

8. a) Zz b) 3/4

9. 43/216

10. a) 1/3 b) 1/3

11. 1/5

12. 2/55

13. 1 - 71/8 = 0.6073

14. 2/3

15. 7

17. 7/55

18. */=

4 (51-n) (50-n) (49 - n) 
52.51.50.49

158844
9121.
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n-1
23.

24. 13/24

25. Red = 6, Blue = 3

26. 1/n, 1/n (1

27. 3/4

28. 7/15

31. (0.4)5 (0.6)5

32. 30/61

JJ. a) 0.5 b) 41/131

37. a)
2n-l

, A2 -
b)

38. 3 JO!
3! 3! 4! 3"

39. a) K log 2i

40. a) 4 b) 1/4

41.
I rj

6

42. z PY 
b

bbY.

b) (log 2i) (n log 2 - log n!)

"YiY.W L2y.!“l W'
2j\6) (jJ [SJ <J( 6} [JJ \6 I



Z'29'| <2^
I 27 I 27
a

44. y2, 1/3, 1/4

45. 23

47. 2/5

49. 8/9

50.

Dista
nee
from
origin

-10 -8 -6 4 0 2

Prob f/V" f/oV/Y" (IO\( 1 V" yoy/y fW/Y0 f^V/Y°
— If — i — — 1 —1 9 J J 9 I J

V 77V-/
I ^7 V - J < 3 J I-7 1 77V-J I 5A-J 1 6A-y

4 6 8 10

f/0V/Y° f/ay/Y0 fW/Y° m"
Il — —1 /J I-7 I sjyj I P7<-7 1-’J

51. 55/144

52. 1/5

x / 1*
72(

53. <k) I

- 6k - ly 

n -1)

(2n-ry 

I n)
55. */2 56. 2. 2-+2_ 

2/ ’ 31 7/ nl '
54.



OmpilBd by B.C. Basti

Probability

Objective Type Questions

1. The probability that at least one of A and B occurs is 0.6. If A and B occur 
simultaneously with probability 0.3, then P(A) + P(5)is

a) 0.9 b) 1.15 c) 1.1 d) 1.2

For three events A, B and C, P (exactly one of the events A or B occurs) = P(exactly one 
of the events B or C occurs) = P(exactly one of the events C or A occurs) = p and p(al 1 
the three events occur simultaneously) = p:, where 0 < p < Vi. Then the probability of at 
least one of the events A, B and C occurring is

a)
3p + 2/

b)
P + 3p:

c) d)
2>p + 2p'p + 3p:

3. Let E and F be two independent events. The probability that both E and F happen is 1/12 
and the probability that neither E nor F happens is Vi. Then

a) P(E)= i,P(F)= 1 b) P(E)=i, P(F)= i

c) P(E)=i,P(F)=| d) P(£) = 1 , P(F) = I

4. There are two balls in an um whose colours are not known (each ball can be either white 
or black). A white ball is put into the um. A ball is drawn from the um. The probability 
that it is white is

2
3

a) b) C) d)
4 J 6

Let A, B. C be three mutually independent events. Consider the statements Si and S2.
51 : A and B C are independent.
52 : A and B n Care independent.
Then,

a) Both Si and S2 are true,
c) Only S2 is true

b) Only Si is true,
d) Neither Si nor S2 is true

5.



I * . t ”C : si ;

6. Given that A. B. C are events such that P(A) = P(B) = P(C) = -, P( AnB) = P(BnC) = 0

and P(AnC) = . The probability that at least one of the events A. B or C occurs is

a) b) c) d) — 
10

7. Let A and B be two events such that P(A n B ) = 0.20. P( A n B) = 0.15 and 
P(A n B) = 0.10. then P(A | B) is

a) b) c) d)
7

Let A and B be two events such that P(A) = 0.3 and P (A u B) = 0.8. If A and B are 
independent events than P(B) is

a) b) c) d)

9. A speaks the truth in 70 percent cases and B in 80 percent cases. The probability they 
will contradict each other in describing a single event is

a) 0.36 b) 0.38

10. if and
4 3 2

events then

c) 0.4 d) 0.42

are the probabilities of three mutually exclusive

a)

c)

- < p <-
4 2 b)

1 1
-<p <- 
6 2

d) None of these

1 1- < p < - 
3 2

3 211. Suppose that P(A) = - and P(B) = - . Then

a) P(A u B) > - 
3

c) P(A n B) > j

b)

d)

P(A n B ) = - 
3

P(A | B) > — 
10

2



12. A fair die is thrown until a score of less than 5 is obtained. The probability of obtaining 
not less than 2 on the last throw is

3
4

4
5

5
6

a) b) c) d)
£
3

13. An urn contains 6 white and 4 black balls. A fair die is rolled and a number of balls 
equal to that appearing on the die is chosen from the urn at random. The probability that 
all the balls selected are white is

£
5

a) b) c) d)6 7
£
8

14. Seven digits from the numbers 1,2,3,4,5,6,7,8 and 9 are written in the random order. The 
probability that this seven digit number is divisible by 9 is

]_
7

2
7

]_
9

a) b) c) d)
]_
J

15. Ten students are seated at random in a row. The probability that two particular students
are not seated together is

2 3a) - b) - c) 7 d) 1

6. Six boys and six girls sit in a row
alternatively is

randomly. The probability that the boys and girls sit

a) — b) —
462 132

c) —
66

d) —
462

17. A three digit number is formed using the digits 1,2.3.4.5.6 repetitions being allowed. The 
probability that the number is divisible by 4 is

2 1 7
a) — b) — c) — d) None of these

9 4 36

18. A three digit number is formed using the digits 1,2,3,4,5,6 without repetition of digits. 
The probability that the number is divisible by 4 is

a)
4
15

b)
7

30
c) d) None of these

5

3



Two cards arc drawn at random from a pack of 52 cards. The probability that both arc 
accs is

«■>
b) c) d)

20. Two cards are drawn successively with replacement from a pack of 52 cards. The 
probability that both are aces is

a)
1

169
b) c) d) None of these

21. A person draws a card from a pack of playing cards, puts it back, shuffles the pack and 
again draws a card. He continues doing this until a spade card is seen. The chance that 
he will fail the first two times is

a) — 
64

b) — 
64

c) — 
16

d) — 
16

A card is drawn from an ordinary pack and a gambler bets that it is a spade or an ace. 
The odds against his winning the bet are

a) 4 to 13 b) 13 to 4 c) 9 to 4 d) 4 to 9

23. Two fair dice arc tossed. Let x be the event that the first die shows an even number and y 
be the event that the second die shows an odd number. The events x and y arc

a) mutually exclusive b) independent and mutually exclusive
c) dependent d) none of these

24. The probability in the toss of two dice we obtain the sum 7 or 11 is

1
6

2
9

a) b)
_1_
is c) d)

23
108

25. The probabi 1 ity that in the toss of two dice an even sum or sum less than 5 is obtained is

2
9

1
6

2
3

a) b) c) d)
5
9

26. Two events A and B have probabilities 0.25 and 0.50 respectively. The probability that 
both A and B occur is 0.14. Then, the probability that neither A nor B occurs is 

a) 0.39 b) 0.25 c) 0.11 d) None of these

4



27. A bag contains 3 red, 6 white and 7 blue balls. Two balls are drawn. The probability’ that 
one is white and one is blue is

13 7 • 6
a) — b) — c) — d) None pf these} 20 20 20

28. A bag contains 2 red, 5 white, 6 black balls. Three balls are drawn. The probability that 
all the coloured balls are drawn is

a)
4_

d) None of these

29. The probability that an event A happens in one trial of an experiment is 0.4. Three 
independent trials of the experiment are performed. The probability that the event 
happens, at least once is

a) 0.936 b) 0.784 c) 0.904 d) None of these

30. Suppose the probability for the birth of a male child is 0.55 and that two successive births 
are independent. A woman has 5 children. The probability that she will have children of 
both sexes is

a) (0.55)3 b) (0.45)3 c) (0.55)3 (0.45)3
d) 1 - { (0.55)5 + (0.45)5 }

31. A student takes a TRUE or FALSE examination. He is completely unprepared and 
makes a random guess of the answer. Then the probability that he guesses correctly at 
least nine times out of 10 times is

11 1013 (1 V°

a) ------ b) ------ c) 10C9 — d) None of these
1024 1024 k2j

32. The probability that a marksman will hit a target is 0.25. Then, the probability that he 
has, at the most, 9 hits out of 10 shots is

a) l0C, (0.25)’ (0.75) b) (0.75)'°
c) l-(0.25)‘° d) l-(0.75)'°

33. India plays two matches each with West Indies and Australia. In any match, the 
probabilities of India getting 0, 1, 2 points are 0.45, 0.05, 0.50 respectively. Assuming 
that the outcomes arc independent, the probability of India getting at least 7 points is 

a) 0.8750 b) 0.0875 c) 0.0625 d) 0.0250

5



34. A coin is tossed 4 times. The probability of getting 3 heads is

oJ
8

1
0a) b) c) d) None of these

8

35. 8 coins are tossed simultaneously. The probability of getting at least 6 heads is

a)
57
64

d)
37

256

36. The probability of an event A happening is 0.5 anc ofB happening is 0.3. If A and B are 
mutually exclusive events, then the probability of neither A nor B occurring is

a) 0.6 b) 0.5 c) 0.7 d) None of these

37. It is known that at noon at a certain place, the sun is hidden by clouds on an average two 
days out of three. The probability that at noon on a: least four out of five specified future 
days the sun will be shining is

a) c)
1

243
d) None of these

38. If A and B are two events such that P(A) > 0 and P(B) * 1, then P(A j B ) is equal to

a) 1 - P(A ! B)
c) { 1 - P (A | B) } / P(£)

b) 1-P(J|£J 
d) P(/f) | P(B)

39. If A and B are any two arbitrary events then,

a) P(AnB) > P(A) + P(B)- 1
c) P(A n B) = P(A) + P(B) - 1

b) P(AnB)<P(A) + P(B)-l
d) None of these

40. If A and B are independent events, then

a) P(AuB) > 1 - P(A) . P(B)
c) P(AuB) = 1 - P(A). P(B)

b) P(AuB) < 1 - P(A). P(B)
d) None of these

41. If A and B arc mutually exclusive events, then P (A AuB)is

a) P(A)
c) P(B)/{ P(A) + P(B) }

b) P(A)/{ P(A) + P(B) }
d) None of these

6



42. If Aj, A2,...., An are n independent events and P(A,) - (I < i < n) then the

probability that none of the events occurs is

1
a) b)

c) d) None of these

n + 1

n - 1 
n + 1

i + 1

n + 1

43. Three identical dice are rolled. The probability that the same number will appear on each 
of them is

a) b) — 
36

c)
18

d) — 
28

44. The probability that at least, one of the events A and B occurs is 0.6. If A and B occur 
simultaneously with probability 0.2 then /’(J) -t- P(B) is

a) 0.4 b) 0.8 c) 1.2 d) None of these

45. A purse contains 4 copper coins and 3 silver coins. A second purse contains 6 copper 
coins and 2 silver coins. A coin is taken out of any purse. The probability that it is a 
copper coin is

a) b) c) dO — 
56

46. If A and B are any two independent events such that P( A) =0.7, P( B) =p and 
P(A uB) = 0.8 then p is

1a) b) c) d)

47. There are four machines and it is known that exactly two of them are faulty. They are 
tested one by one in a random order till both the faulty machines are identified. The 
probability that only two tests are needed is

a) b) c) d)

7



48. A fair coin is tossed repeatedly. If tail appears on first four tosses, then the probability of 
head appearing on fifth toss is

1
a) b) c) 21

32
d)

2
5

49. One bag contains 3 white and 2 black balls. A second bag contains 5 white and 3 black 
balls. A ball is drawn out of any bag. The probability that it is white is

49 37 49
a) — b) — c) — d) None of these

40 40 80

50. The probability that out of 2 x 2 determinants by using 0 and 1 only, the value of 
determinant chosen is positive is

1 3 1
a) - b) — c) — d) None of these

8 16 16

8



Key to Objective Questions on Probability

1. c 2. a

3. a 4. c

5. a 6. b

7. a 8. b

9. b 10. a

11. a 12. a

13. c 14. c
15. c 16. a
17. b 18. a

19. b 20. a

21. a 22. c
23. d 24. c

25. d 26. a
27. b 28. d

29. b 30. d

31. a 32. c

33. b 34. d

35. d 36. d
37. a 38. c
39. a 40. C*
41. b 42. a

43. b 44. d

45. d 46. c

47. b 48. a

49. c 50. b

7



Vectors
Rao

SYLLABUS : Vectors as directed line segment, Magnitude and direction of a vector, Equal 
Vectors, Unit vector, Zero vector, Position Vector of a point, localized and free vectors, parallel 
and collinear vectors^ Components of a Vector, Vectors in two and three dimensions, Addition 
of vectors, Multiplication of a vector by a scalar, position vector of the point dividing a given 
straight line in a given ratio, Application of vectors in problems of plane geometry.

> POINTS TO
• .1 .1 .If • • .

1. Definitions :
(i) Scalars. A scalar is a physical quantity that is 

specified by magnitude only.’ It is represented by a real 
number along with suitable unit. Thus length, mass, 
volume, temperature, density, speed are scalars.

(u) Vectors. A vector is a physical quantity that is 
specified by both magnitude and direction. It is 
represented'by a directed f line segment. Thus 
displacement, velocity, acceleration, force are vectors.

2. (Z) ’ Vector as Directed Line Segment : A 
directed' line ’ segment is a line segment with an 
arrowhead showing direction. Its two end-points are 
distinguished as Initial and Terminal. The directed line 
segment whose initial point is A and terminal point B 
is denoted by the symbol AB. Its direction is from A 
to B i.e., from the initial point to the terminal point.

(a) Magnitude and Direction of a Vector : In 
case we represent the vector a by the line segment AB, 
then length or magnitude of AB is given by

a=|a|»|AB|
where A is called the initial point and B is called the 
terminal point.

REMEMBER

The direction of vector AB is defined from A to B.
3. Types of Vectors :

(/) Null Vector : When A and B coincide, we get 
a null or zero vector. Thus a vector whose length or 
magnitude is zero is called a null or zero vector, 
denoted by 0. Any non-zero vector is called a proper 
vector.

(»r) Unit Vector : A vector whose magnitude is 
unity is called a unit vector. If we divide a vector by 
its magnitude, we get a unit vector in the same direction.

a _
Thus “ is a unit vector in the direction of a. a

(iii) Equal Vectors : Two vectors a and b are said 
to be equal if they have the same magnitude, same or 
parallel direction in the same sense. It is written as 
a =b.

(tv) Collinear Vectors : Two or more than two 
vectors are called collinear vectors when they are 
parallel to the same line.

(v) Copianar Vectors : Vectors are said to be 
coplanar when either they lie in the same plane or are 
parallel to the same plane.

(vt) Negative (or oj)p- 
site) Vectors : If the line 
vector O A which has the same 
magnitude but in opposite 
direction to thnt the vector of 
a, then it is called the negative 
or opposite ofo and is denoted 
by -a or -OA (see Fig. 3.2).



(vii) Position Vectors : If 
the vector OA represents the 
position of a point A relative 
to a fixed point 0, then OA is 
called the position vector of 
the point A.with reference to 
the point 0 a$ origin (or origin 
of reference). ---- - FIr. 3.3. -

(viii) Localised Vectors : A vector drawn parallel 
to a given vector through a specified point as the initial 
point, id known ns a localised vector.

(rv) Free Vectors : If the initial point of a vector 
is not specified, it is said to be a free vector.

(x) Like Vectors : Two -
vectors of any magnitude (or 
modulus) arc said to be like 
vectors if their direction is the 
same.

Thus all vectors drawn in 
the same direction, whatever 
their magnitudes may be, are 
called like vectors (see Fig.
3.4).

(xr) Unlike Vectors: Two 
vectors of any magnitude arc 
said to be unlike vectors if their 
directions be opposite as 
shown in the adjoining Fig. 3.5.

4. (i) Components of a Vector : Let i, j. k be 
the unit vectors along the axes of x. y, z respectively. 
If P(x. y, z) be any point in space, then 

OP = xi + yj + zk

I OP | = + +

If F = F,i + Fj + F,A, then F,i, Fj/, F,A arc called 
components of the vector F along OX, OY, OZ 
respectively. F is called resultant of F,i. Fg, F,k.

(ii) Any veetor in space : Let P(x,, y,. z() and 
Q(x2, y2, z2) be any two points in space, then

OP + PQ = OQ or PQ = OQ-OP

or PQ = (.v, - \t)i +(\:- A

and I PQ I = i)' + ( v, + v,)- +

(iri) Magnitude of a vector : Let PQ be a vector 
in the plane XOY whose initial point is P( v,. v,) and 
terminal point Q(x?, y2). Wc know that (x, - a,) and 
(y, - y,) are called the components ol vector PQ along 
the x and v-axis, respectively, (x, - \,) i and (v, - v) j 

arc called the component vectors of the vector I’Q.
The magnitude ol PQ cun be determined by applying 

the Pythagorean theorem. We have

I PQ I = ~ + (v; - v,)’

Thus, if n = o,i + aj, then
| h | = V«i3 +

Definition : The magnitude or modulus ol a vector 
PQ denoted by I PQ I. or simply PQ. is the length ol the 
line segment PQ.

Note that the magnitude of n vector Is never 
negative. In particular. I PQ I = I-PQ I. Modulus of a 
zero vector is zero.

5. Operations on Vectors :
Addition of Vectors :

(») Triangle Law of Addition of Two Vectors : 
The law stales that if two vectors arc represented by the 
two sides ol a triangle, taken in order, then their sum 
(or resultant) is represented hy the third side of the 
trinnglc hut in the reverse order.

Let a, b he the given vectors. Let the vector a he 
represented hy the directed segment OA and the vector

u

Hr. 3.7.

b be the directed segment 

AB so that the terminal 
point A ol<r is the initial 
point of b. Then the 
directed segment OB (r.r, 
OB) represents the sum (or 
resultant) ol <•/ and b and is 
written as ii + b

Huis OB = OA + AB=rr + />.



Notes: 1. The method of drawing a triangle in 
order to define the vector sum (a + b) is called 
triangle law of addition of two vectors.

2. Since any side of a triangle is less than the sum 
of the other two sides.

Modulus of OB is not equal to the sum of the 
moduli of OA and AB.

(it) Parallelogram Lawof Vectors: In a parallelo­
gram OABC, if OA and AB 
represent a and b respecti- 
vcly, then the diagonal OB 
represents in magnitude 
and direction the sum a + b.
This is known as parallelo­
gram law of addition of
vectors. Fig. 3.9.

(iii) Properties of Vector Addition :
1. Vector addition is Commutative : If a and b

be any two vectors, then
a + b = b +a

Proof. Let the vectors a and b be represented by 
the directed segments OA and AB respectively so that 
a = OA, b - AB.

Now OB = OA + AB

or OB = a + b ..(i)
Complete the llgm OABC,
Then OC = AB = b and CB = O A = a

OB = OC + CB = b + a ■•■(ii)
From (i) and (ii), we have

any three vectors, then
a + (b + c) = (a + b) + c. [M. Imp.)

Proof. Let the vectors a, b,c be represented by the 
directed segments OA, AB, BC respectively ; so that

a = O A, b = AB, c = BC

Then a + (b + c) = OA + (AB + BC)

= OA + AC )A Law of addition) 

= OC f A Law of addition)

a +(b +c) = OC ...(/)

Again, (a + b) + c = (OA + AB) + BC

= OB + BC [A Law of addition)

= OC {A Law of addition)

(«+/;) +c = OC ...(H)

From (/) and (ii), wc get
a + (b + c) = (a + b) +c.

3. Identity vector for addition : For every vector 
a,a+() = a„ where 0 is the zero vector and is the 
identity vector for addition.

Proof. Let OA = a and AA = 0
Now by addition of two vectors

OA = OA + AA = a + 0

a = a + 0.
4. Additive inverse of a vector : To every vector, 

a, there corresponds the vector -a (called its additive 
inverse) such that a + (-a) = 0, where 0 is the zero 
vector.

Proof. LctOA=n ; then AO = (-l)n.

Now OA + AO = 00 (By definition of addition of 
two vectors)

a + (-<i) = 0.

(iv) Difference of Two Vectors :

Geometrical Representation of a - h

Let the vector a, b be represented by the directed 
segments OA, AB respectively ; so that

3



a - OA, b = AB

Produce BA (o C, such 
that

AC = BA 

Then AC = BA

, =-AB=-fc 
a - b = a + (-b) = OA + AC

= OC [By triangle law addition)

Hence a - b is geometrically represented by the 
directed segment OC.

(v) Multiplication of a Vector by a Scalar : If a 

be a vector and m a real positive number, then m a is 
defined to be a vector having direction as a and m times 
its magnitude.

Geometrical Representation

Let the vector a be represented by the directed 
segment AB.

Case I. Let nt > 0. 
Choose a point C on AB on 
the same side of A as B such 
that

| AC | = m | AB |

C6

(m> 0)

Fig. 3.13.

a

Then the vector ma is represented by AC.

B

Case II. Let ni < 0. 
Choose a point C on AB on 
the side of A opposite to c'
that of B such that (m < 0) 

Fig. 3.14.| AC | = | m | AB |
Then the vector ma is represented by AC.
(vr) Properties of Scalar Multiplication

(a) ma = a.m

(b) m{nA) - n(mA)

(d (m + zr) A = zn A + zzA

(d) m (A + B) = znA + nrB.

6. Section formula :
Statement If a and b are the position vectors of 

two points A and B, then the point C which divides 
AB in the ratio in : n, where in and n are positive 
real numbers, has the position vector.

_ na + mb 
c =---------------

nr + zr

Fig. 3.15.

...0)

Proof. Let O be the 
origin of reference and let a 

and h be the position 
vectors of the given points 
A and B so that

OA=o, OB=F
Let C divide AB in the 

ratio m : n.

AC 
CB =

Hcncc m/n is positive or negative according as C 
divides AB internally or externally.

We have to express the position vector OC of the 
point C in terms of those of A and B.

We rewrite (r) as, zrAC =nrCB.

And obtain the vector equality, nAC = znCB. 
Expressing the vectors AC and CB in terms of the 
position vectors of the end points, we obtain

zr (OC-OA) =m (OB-OC)

(zrt + n) OC = nOA + znOB

, — zrOA+mOB na+mb
=x> OC =----------------— —--------------

m + n m + n
Position Vector of the Centroid of a Triangle :

The position vector of the centroid G of a triangle
ABC is

a + b + r 
3

where n, h. c arc positive vectors of vertices A. B, C 
respectively.

Proof. a,b,c arc position vectors of A, B. C 
respective!) relative to any origin.

If D he the mid-point of 
BC, then its position vector is

b+7 

~2

|Mid-point formula! 
The centroid G divides the

median AD in the ratio 2:1. 
i.e.. AG:GD=2:I.

Position vector of G

(_) Tu

2 + I 

/z + C + a
[Section formulal

In

3



Hence position vector of G

7. Definitions :
(i) Linear Combination. A vector r is said to be

a linear combination of the vectors a, b, c......if there
exist scalars x, y, z..... such that

r -xa + yb + zc + ...
{ii) Linearly Dependent. A system of vectors 

a,, alt .... a„ is said to be linearly dependent if there 
exist scalars x,, x2,..., x„ (not all zero) such that

*|fl,+x2H,J + ...+x„a(,=0.
(in) Linearly Independent A system of vectors 

a,, a2, .... an is said to be linearly independent if there 
exist scalars x,, x2,.... x„ (all zero) such that x,a, + x^a2

+ ... + x„aH = 0 and a set of vectors a,, a2..... an is said
to be linearly independent if every relation of the type 
x,a, + x^ + ... + x„a„ = 0 implies x, = 0, x2 = 0, .... x„ 
= 0. I

TEXT-BOOK EXERCISE 3.1 
1 TYPE—I

{SOLVED EXAMPLES)

Example 1. Find the component of the vector PQ 
along the direction OX if P is (x,,y,) and Q is (x2,y2) 
with reference to rectangular co-ordinate Ox ; Oy.

ir.fl.e. /]
Sol. In this case component of the vector PQ along

Example 2. Find the component of the vector AB 
where A is (1, 0) and B Is (5, 0) along the direction 
y - -x in the increasing direction ofx. [T.B.Q. 2)

Sol. In this case, the angle made by the vector with 
the directed line whose equation is y = -x in the 
anti-clockwise direction is 0 = 315*.

Hence, the component has magnitude 
= | AB 11 cos 315° |

= 2<2f
where i is the unit vector along x-axis.

PRACTICE EXERCISE 3.1 (i)

1. Find the component along OX of the position 
vector of the point P(2, 5).

2. Find the component of the position vector of the 
point (-2. -3. 5) along the direction OY of the 
axis of coordinates.

3. Find the component of the vector AB where A 
has coordinates (1.0) and B has coordinates 
(-3.0) along the line y = x in the increasing 
direction of X.

TEXT-BOOK EXERCISE 3.2 
TYPE—I

{SOLVED EXAMPLES)

Example 1. If a,b are position vectors of the 
points (1,-1), (-2, zn), find the value of m for which 
a and b are collinear. [T.B.Q. 1]

Soi. Here a-i-j and b=-2t+my

Since a and b are collinear.
a =Xb, where A. is a scalar

=> i ~ j - "L{-~i + zny)
Comparing coefficients of i and y, we get 

1 = -2X

7.



Xzn = -1

1 1m = — - =---------- = 2
X (-1/2)

Hence m = 2. Ans.
Example 2. If the position vector a of the point 

(5, n) is such that I 3 I = 13, find the value of n.
[T.B.Q. 2}

Sol. | a | = ^5J + nJ

We are given that
I a I =13 

^52 + n2=13

=> . 25 + n2 = 169
=> n = ± 12.
Example 3. If A =_(0, lh_B = (1, 0), C = (1, 2),

D = (2, 1), prove that AB = CD. [T.B.Q. J]

Sol. AB = i - j

and CD = i - j

Now | AB | = a/i2 + (-1)2 = <2

and |CD| = a/| 2 + (-1)2 = <2

' As 1 AB I = I CD I and the direction of the two vectors 
are same.

AB = CD. Hence proved. 
Example 4. Find the co-ordinates of the tip of 

the position vector which is equivalent to AB, where
(i) A = (3, 1), B = (5, 0)

(it) A = (-JL 3), B = (-2, 1). [T.B.Q. 4]
Sol. (0 AB = (5-3)i +(0-l)i

= 2i'-;
Hcncc. required co-ordinates are (2, - 1). Ans.

(ii) AB = (-2+l)i + (l - 3);
= - i - 2;

Hence, required co-ordinates are (-1, -2). Ans. 
Example 5. If A, B, C, D are the vertices of a

parallelogram and A, B, C have respectively the 
following co-ordinates,

(/) (2, 3), (1,4), (0,-2)
(u) (-2,-1), (3,0), (1,-2).
Find the coordinates D. [T.B.Q. 5]
Sol. (0 A = (2, 3), B = (1, 4), C = (0, 2)
Let D = (x, y)

Also

OA = 2f+3y 

OB = i+4j 
OC = 0j-2/ = -2;

OD = xi + yj.
In a II gm ABCD, diagonals AC and BD bisect each

other.

by

by

Position vector of P i.e., mid-point of AC is given

- = 2f+2LaZ = At2 = f+i;
2 2 2'

Position vector of P i.e., mid-point of BD is given

Clearly

OP =
r . r f f i + 4j + xi + yj

‘+2> =

(1 + x)i t (4 + y); 
2 2

4+y1 + x
“T~ i +

Equaling the coefficients of i and j, we get
1 + x

and

2

1 +x = 2 
4 + y = 1

= 1 A
4 + y

t.e., 
i. e.,

! = I 
v = -3

Hcncc, the co-ordinates of D are (1, -3). Ans.
(ii) Similar to part (/), please try yourself. 
Example 6. a is a position vector whose tip is

(1, -3). Find the co-ordinates of the point B such 
that AB = 3, if A has co-ordinates (-1,5). [T.B.Q. 6]

Sol. a = i-3j and AB = o

A = (-1,5) .-. OA = -i' + 5/

Now AB = OB-OA 

OB = AB + OA 

OB = (i - ij) + (~i + 5/)

= O.i + 2j
Hcncc. the co-ordinates of B arc (0, 2). Ans. 
Example 7. If xi +yj Ls a vector referred to tw o

rectangular axes in a plane, show that
xi + y/i | = <x2+y2

Derive a similar result for a vector in 3-dimen­
sional space. [T.B.Q. 7]

Sol. (a) Length of the vector OP = xi+ yj is given 
by



OP = VOQ2 + QP2 [From Pythagoras Theorem]

Thus, if r=xi+yj, then | r | = 'jx2 + y1 

(b) Length of the vector xi +yj + zk.

Since OZ ± plane XOY and NP II OZ
.*. NP ± plane XOY [Plane Geometry]
Also ON meets NP in that plane
.’. NP ION [Plane Geometry]
=> ZONP = 90‘

Now, in rt. Zd AONP,
OP2 = ON2 + NP2

[By Pythagoras Theorem] 
= (OA2 + AN2) + NP2

(•.• ZOAN = 90’] 
= OA2 + OB2.+ NP2 [AN = OB] 
= x2 + y2 + z2

[■.• OA = x. OB = y, NP = <] 
OP = jx2 + y2 + z2 ...(i)

Thus, if r = xi+ yj + zd, then
Irl = length of the vector r = OP

or | r | = "Vx2 + y2 + z2 [From (t')J

Hence, the length of the vector r ■= xi + yj + zk is 
the positive square root of the sum of squares of its 
components.

Example 8. Find the distance between the points 
A(2, 3, 1), B(-l, 2,-3). [T.B.Q.12]

Sol. ... A s (2. 3, 1) and B s (-1, 2, -3) 
OA.=2i+3j + k

and OB = -i+2j-3k

AB = OB-OA = (-f+2;-3<)-(2tf+3;+£)

= (-1 - 2) f + (2 - 3)/ +(-3 - 1) £

= _3f_;_4<

Hence | AB | = V(-3)2 + (-l): + (-4)2

= t/9+ I + 16 = <26. Ans. 
Example 9. If A, B, C have position vectors

(2,0,0), (0,1,0), (0,0,2), show that AABC is isosceles.
[T.B.Q. 13}

Sol. A = (2. 0, 0), B = (0. 1,0). C = (0. 0. 2)
.’. O/\ = 2i + Oj + 0k,

OB = O.t + \.j + O.k 
OC = 0j* + 0.;+2JC

Now, AB = OB - OA

= (0j* + ly + Ol) - (2i + O.j * 0k)
= (O - 2) r* + (I - 0) j + (0 - 0) k
-~2t+j

BC =OC-OB

= (0j* + O.j + 2k)- (O.i + I./ + O.k)
= (0 - 0) i + (0 - I) / + (2 - 0) k 

AC = OC - OA

= (Oj* + ()./ + 2JC) -(2/ + ()/ + 0i)

= (O-2) j + (O-O) j + (2-0) k
= — 2i + O.j + 2k — — 2i + 2k 

| AB | = V(-2)2 (1 )2 = a/4 + I = V5 

|BC| = V(-l)2 + (2)2 = Vf+4 = V5 

| AC | = a/(-2)j + (2)2 = VT+4 = V8

Since, | AB | =|BC| i.e. AB = BC

7



Hence. AABC is nn isosceles triangle.
Its two sides arc equal] Ans.

PRACTICE EXERCISE 3.2 (i)

1. Prove by vectors that the points P(-2, 1). Q(-5, 
-1) and R( 1, 3) are collinear.

2. If-vectors a = 2i + 4j - 5k and b = / + 2y + 3^. 
Find I a 4- b I.

3. Express PQ in terms of unit vectors t nnd j when 
the points are :
(«) Ptf^). Q(-3, 2) (ii) P(l. 2). Q(-6, 5). 
Find I PQ I in each case.

4. If the co-ordinalcs of the points A, B, C, D are 
(1,2). (2. 1). (2. 3) and (3. 2) respectively, show 
that AB = CD.

5. Find the co-ordinates of the tip_of_thc position 
vector which is equivalent to AB, where the 
co-ordinates of A and B are (-2. 5) and (-3, 2) 
respectively,

6. If the position vector a of the point (n, -6) is 
such that I a I = 10. find the value of n.

7. If a be the position vector whose tip is (3, -2), 
find the co-ordinates of a point B such that AB 
= a. the co-ordinates of A being (-1,3).

8. Find the value of x so that the points A(x, -1) ; 
B(2, 1) and C(4, 5) are collinear.

9. Show that the vectors a = 2i, h=-i'+4;, 
c = -Z - 4j form an isosceles triangle.

10. ABCD is a II gm, if the co-ordinntcs of A, B, C 
are (2, 3), (1,4) and (0, -2) respectively, find the 
co-ordinates of D.

ADDITIONAL SOLVED EXAMPLES 
SECTION—A 

[2 marks questions]

Example 1. Show that the three points 
A(2, -1, 3), B(4, 3, 1) nnd C(3, 1,2) nre colllncnr.

Sol. OA=2if-/+3<

OB =4r+3/ + ( 

and OC = 3»r + J + 2^

AB =OB-OA

= (4Z+37 + C-(2/f - y+3() 

= 2if + 4y-2Z.

BC = OC - OB

= (3» +7 + 2iC) - (4i + 3y + £)

= — i + 2j ■+■ £

Now, AB = 2i + 4} - 2l

= - 2(-f - 2;' + 7) = - 2 . BC

Thus, AB is parallel to BC, hut one point B is 
common. Hence, the three given points A, B, C arc 
collinear. Proved.

Example 2. Let a be n given vector whose initial 
point is P(xn y,) and terminal point is Q(x2,y2). In 
each of the problems (») to (v), find the magnitude 
and component of the vector along x and y 
directions.

(/) P(2, 3); Q(4, 6) (ii) P(-l, 3); Q(l, 2)
(iii) P(0,2); Q(5,-3) (»v) P(-1,-2); Q(-5,-6)
(v) P(2, 4); Q(-5,-3).
Sol. (i) In this x, = 2, x2 =

4, y, = 3, y2 = 6 and if PQ = a, 
then

a = (4 - 2) i' + (6 - 3) j
<2.3)

= 2/ +3;
Its components along 

x-axis and y-axis are respecti­
vely 2 and 3. Ans. FIr. 3.21.

and |a 1 = <2J + 3J = <4 + 9 = Vn. Ans.

(ii) In thisx, = - 1 ,x2 = 1 , y, = 3,y2 = 2 nnd if PQ = n, 
then

d =(xJ-x,)if + (y2-y,)j 

= (1 + l)if-H2-?); = 2»r-/

I d | = ^22 + 1J = VT. Ans.

nnd component of d along x-nxis nnd y-nxis arc 
respectively 2 nnd - 1. Ans.

(iii) In this x, = 0. x2 = 5, y, = 2, y2 = -3.

If PR d, then

d = (x2-x,) i + (y2 - y,);

= (5 - 0) f + (-3 - 2)/

= 5/-5/

I d | = Vv’ + (-5f = <25 + 25 = 5<2. Ans.
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I")

Ans.

Its component along x-axis and y-axis arc 5 and -5 
respectively. Ans.

(iv) In this question x, = -1, x2 = -5, y, = -2. 
y2 = -6 and if PQ = a, then

n =(x2-x,) i + (y2-y,)/

= (-5 + I) i + (-6 + 2) /

=-4i — 4j

|n | = <(-4)2 +

= *716 + 16 = 4x/2. Ans.
Its components along x-axis and y-axis are -4 and

-4 respectively.
(v) In this question x, = 2, x2 = -5, y, = 4, y2 = -3 

and if PQ = a, then
n = (x2-x1)j‘ + (y2-y,)/

= (-5-2)i +(-3 + 4)7

•»•» ', ____________
|n | = “V(-7)J + (-7)2 = 7.<2. Ans.

and its components along x-axis and y-axis are 
respectively (-7) and (-7). Ans.

• Example 3. Show that the points (2, -1, 3), 
(3, -5, 1) and (-1, 11, 9) are collinear.

Sol. Let A 3 (2,-1,3). Bs (3,5, 1),
« C a (-1. 11.9).

Clearly, AB =OB-OA

= (3f-5/-i-<)-(2i' -;+3iC)

= (3-2)r‘ + (-5+l)y+(l-3)if 

= i-4j-H

and AC = OC + OA

= (-f + I \j + 9t)-(2i- j+ 3t)

= (-l -2) f + (l I + I)/ + (9-3)£

= (-3/ + 12/ + 6£) = -3(t - 4/ - 2X)

AC = -3AB
The two vectors arc parallel but A is common to 

both. Hence the points A, B, C must be collinear.
Example 4. If a is a non-zero vector, find a scalar 

k such that I ka I = 1.
Sol. | ka | = I (Given)

I* Ila I =i

1*1

(•.• a *6 (Given) =t> | a | = 0]

( .• |x| = X where X>0 => x=±X]
Example 5. Find the terminal point of the vector 

I’Q whose initial point is P (2, 3) and components
along x andy direction are 1 and 2 respectively. 

Sol. Let the coordinates of the terminal point Q be
(x, y). Then components of the vector PQ along x and 
y directions are (x - 2) and (y - 3) respectively.

Therefore, x - 2 = I orx = 3 
and y - 3 = 2, or y = 5

(by the given conditions) 
Hence, the terminal point O is (3, 5). Ans. 
Example 6. Find all the values of X such that

(x, y, z) * 0 and (1 + / + 3k) x + (3/ - 3/ + k) y + 
(—4/ + 5/) z = X (Lx + jy + kz) where i, j, k are unit 
vectors along the co-ordinate axis.

Sol. The given relation can be written as 
((I - X)x + 3y - 4zJ / + |x - (3 + X)y + 5z]/

-»■ [3x + y - Xz] k = 0
=> (I - X) x + 3y - 4z = 0 

x - (3 + X) y + 5z = 0
3x + y - Xz = 0

Since (x. v. z) * (0. 0.0) i.e the above equation will 
have non-trivial solution if

-IX 3 -4
I -(3 + X) 5 
3 1 -X

=> X’ + 2XJ + X = 0 or X(X + I )J = 0

Hence X = 0. -1. -1. Ans.
Example 7. Show that the three pojnts A, B, C 

with position vectors -2a + 3b + 3c,a + lb + 3c,la -c 
are collinear.

Sol. Let O be the origin of reference

Then OA = -2a + 3b + 5c,

OB = a + 2b + 3c

OC = la- c 

AB =OB-OA

= (a + 2b + 3c) - (-2a + 3b + 5c)

1



or AB = 3a - h - 2c ...(/)

Also AC=OC-OA

= (7a - c) - (-2a + 3h + 5c)

= 9a - 36 - 6a

or AC = 3 (3a - b - 2c)

AC =3 AB ...(//)

(it) Shows that the vectors AC and AB have the 
same or parallel supports.

But these vectors have a common initial point A, 
proving thereby that AC and AB have the same support. 

A, B. C are collinear. Hence proved.
Example 8. If the mid-points of the consecutive 

sides of a quadrilateral are joined, then show by 
vector method that they form a parallelogram.

Sol. Lcla,b,c,d, be the 
position vector of the 
vertices A, B, C, D of the 
quadrilateral ABCD. Let P, 
Q. R, S be the mid-points of 
the sides. Then their 
position vectors are 
respectively.

1 . 1 . 1 -(a+6),-(6 + c),-

a p

Fig. 3.22.

(c +d), (d + a)

Now PQ = position vector of Q - position vector of 
P

= 2 + c)-~ 2 + = 9 ” fl)

Similarly, SR = (c - a)

.-.PQ = SR => PQ = SR and also PQ II SR. 
Since a pair of opposite sides arc equal as well as

parallel, PQRS is a parallelogram.
Example 9. ABCD is a parallelogram and P is

the point of intersection of its diagonals, O is the 
origin. Prove that

OA + OB + OC + OD = 4OP.
Sol. •.• P is the mid- point of AB

op.5**55
2

or 2OP = OA + OC ...(/)

Again, P is the mid-point of BD

or 2OP = OB + OD ...(ii)

Adding (/) and (ii), wc get

2OP + 2OP = OA + OC + OB + OD

or 4 OP = OA + OB + OC + OD.
Example 10. Three vectors of magnitude a, 2a, 

3a, meet in a point and their directions are along the 
diagonals of three adjacent faces of a cube. Find 
their resultant.

Sol. Let the vectors of magnitudes a, 2a, 3a act 
along OP, OQ. OR respectively. Then vectors along

+ 2a | J—— | + 3a k 4- /
n

= ^(4i + 3y+ 5A)

I R I = "y y (16+ 9+25,= So. A ns.
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Example 11. Find the position vector of the 
centroid of the AABC when the position vectors of 
its vertices are (1,3,0), (2,1, l),(0,-1,0) respectively.

Sol. The position vectors of A, B and C relative to 
an origin O arc

OA = 7 + ;+ o£, OB = 2i+j + £. OC = Qi-j + 0<

If G be the centroid of the triangle, the position of 
the centroid is

p +2 + 0 3+1-1 0+1+0)
I 3 ’ 3 ’ 3 J

i.e. OG = t + 7 + - £. Ans.

Example 12. Show that the vectors 

a = 3^3 i - 3/', b = 6j and c = 373 i + 3/

form the sides of an equilateral triangle.

Sol. a+b +

= 2^3i + 2j =c.

Since ' a + b = c

and | a | = V(3V3): + (-3)2

= V2T+9 = -736 = 6

|ft | = 70 + 36 = 6

|?| =V(3V3)J + (3)J 

= 727 + 9 = V36 = 6
* I *“ . *

Hcncc a,b,c form the sides of an equilateral 
triangle.

Example 13. Let a, b, c be the position vectors 
of three points A, B, C. If three numbers a. P. y(not 
ail zero) can be found such that

an + PZ? + = ft
and a + P + y = 0
show that the points A, B and C are collinear.

Sol. eta + PZ? + •)€ = 0 
or an + Pft = - ...(/)

Also a + p = -y (•.• a + P + y=0)
...(ft)

an + Pft = (a + P) c
{from (t) and (tt)]

art + Pft
or c =-------—

a+ P

=t> C divides the join of A and B in the ratio P : a. 

A, B and C are collinear.

Example 14. Show that the points with position 
vectors t + 2/. 3t - 2/, and 2/ are collinear.

Sol. Let A. B, C be the points with the given position 
vectors

.-. OA = f + 2j, UQ = 3i-2j, OC = 2i 

Now AB = OB - OA

= (3/-2/)-(f + 2/) = 2;-4/

AC = OC - OA = 2i - (1 + 2j) = i - 2/

AB =2AC

Hence, the vectors ?\B. AC having the same initial 

point A arc parallel. It follows that A. B, C are collinear.

Example 15. If a = (2. 6), b = (5, 15) and c = (4,
12), find X if 2a + 3ft = Xc.

Sol. Two vectors arc equal if and only if their
corresponding components arc equal.

Now 2n + 3ft = 2(2. 6) + 3(5. 15)
= (4. 12)+ (15. 45) = (19, 57) 

and XF = X(4. 12) = (4X. 12X)

(4X, 12X) = (19, 57)

19
=s> 4 A. = 19, or X = — •

4

Example 16. If the vectors 2i+pj + fc and
-5t + 3j + are collinear, find the values ofp and q. 

Sol. Since, the given vectors 2i + pj + £ and
-5t + 3j + q£ arc collinear. we have 2i + pj + £ = a 
(-5/ +3y + q£) for same values of X.

=> (2 + 5a) i’+ (p - 3a)/ + (I - 7a) £ =0

=> 2 + 5a = 0, p - 3a = 0, I - qa = 0

a I
and q = — 

a
-5
2

Hcncc.
-6

P = y ™d Ans.
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ADDITIONAL PRACTICfe EXERCISE 3 (a)

1. Show that the three points A(6, -7, -I), 
B(2, -3, 1) and C(4, -5. 0) and collinear.

'2. Show that the "three points A(l, -4, -2). 
B(2, -2, 1) and C(0. 2. - 1) are collinear.

3. Show Lhal the three points A(3, -5. I),
B(-1, 0, 8) and C(7, -10, -6) arc collinear.

4. Show that the three points A(2, -4. 1).
B(4, 4, 3) and C(3, 0, 2) are collinear.

5. Show that the three points A(4, 5. -5),
B(0, -11,3) and C(2. -3. -1) arc collinear.

6. Find the lengths of the sides of the triangle ABC 
whose vertices hav^-position vectors A(3. 4, 5), 
B(4, 3, 2), C(3,-6,-3).

7. Find a unit vector parallel to the sum of the 
vectors :

a = 2/ + 4;- 5k, b - i +'2j + 3£

8. Define zero Vector. What can you say about its 
direction ? For any three vectors, a. b and c. 
prove that

a + (h + c) = (a + h) + c.
9. Show that the points given by i - 2j + 3C 

2i +• 3/ - 4k, -Ij +■ 10*. are collinear.
10. Show that the three points whose position 

vectors are A(-2, 3. 5). B(l, 2, 3), C(7, 0,-1) 
arc collinear.

11. If A, B. C are points with position vectors 
2/ + 4/ - k, 4i + 5j + k and 3/ + 6j - 31. show that 
the AACB is right angled.

12. Show that any three vectors in the same plane 
arc linearly dependent i.e. if a. b, c arc three 
vectors, show that there exists ex. p, y not all 
zero such that aa + $b + yc =0. What about 
vectors more than three in number ?

13. Show that in 3 dimensional space, three vectors
• arc linearly independent if and only if they do
• not lie in a plane.

14. If A, B, C have position vectors (2. 0. 0), 
(0, 1,0), (0, 0, 2), show that AABC is isosceles.

15. If the vectors a, b, c, d represent the consecutive 
sides of a quadrilateral, show that the necessary 
and sufficient condition that the quadrilateral be 
a parallelogram, is that a +- c = 0 or /> + <7 = 0.

16. Find the magnitude of the vector a =2i - 3j + f.
17. Find the distance between the points A(2, 3, I) 

and B(- 1.2, -3). using vector method.
18. Show that the points A(2. -1. 1). Bf I. -3. -5) 

andC(3, -4.-4) arc the vertices of a right-angled 
triangle.

19. If AB = 2/ + J - 3k and the co-ordinates of A are 
(1.2. - I). find the co-ordinates of B.

20. Find a unit vector parallel to the sum of vectors 
a =2i +4j - 5k and b = t + 2j + k.

ADDITIONAL SOLVED EXAMPLES 
SECTION —B 

[4 marks questions]

Example 1. Four points A, II, C, D with position 
vectors a, b, c, d respectively arc such that

3n - /> + 2? - 4J = (I.

Show that the four points are coplanar. Also, 
find the position vector of the point of intersection 
of lines AC and BI).

[C.D.S.E. 1995, Delhi (Set I, 11, Ill)]
Sol. It is given that a, b.'c.d arc the position vectors 

of the points. A, B, C. D respectively.

Now. OA =r7, OB = /,’. OC = f, OD = Zf 

AB =OB-OA = h-«

BC =OC-OB=c-h 

CD =OD-OC=7-c

The given points will be coplanar if AB. BC and CD 
arc coplanar.

But 3n - b 4 2c - 4d =0 (Given)
=3 3n + 2c = /? + 4d

3fl + 2c b + 4d
=> ----------- =---------

5 5

3a + 2 c b + 4d
3 + 2 "T+7

1 H S represents the position vector of a point lying 
on the join of A and C which divides AC in the ratio 
3:2.

R.H.S. represents the position vector of a point lying 
on the join of B and D which divides BD in the ratio 
1:4.'

Since L.H.S. = R.H.S.
They represent the same point i.e.. the point of

intersection of AC ami BD.
Since intersecting lines arc coplanar. therefore the 

points A. B. C. D arc coplanar.
Also, position vector of the points of intersection is

3a + 2< b + 4d



Example 2. Show that a quadrilateral is a 
parallelogram if and only if its diagonals bisect each 
other.

Sol. Let ABCD be the 
given parallelogram whose 
diagonals AC and BD inter­
sect at point P.

Let DP : PB = m}: m2 and 
AP = m3 AC. where zn,, zn2 
and my are positive real 
numbers.

P lies on DB. therefore.
by section formula Fig. 3.23.

AP =
zn2 AD -4- zn, . AB

Also

m2 + m,

AP = my AC
= zn3 (AB + BC) 
= m3 (AB + AD) 

From (i) and (ii), we get 
' znj AD 4- AB

.0)

..(H)

or, » .,

or

or

+ zn,
• i. !

rtij AB 4- zn}AD

- nt, j Ad +
m.

m2 + m /
AB = 0

As AD and AB are not parallel and zero vectors.

m2+ m

zn,
m2 + zn,

zn,

-m3 = 0 and

= zn, and
m,

zn,
zn2 + m, m2 + m,

m2 + zn,

m2 + zn,
= zn,

m, = zn.

- nij = 0

zn, _ zn2 1 

3 m2 + m2 2zn2 2

Hence the diagonals of the parallelogram bisect 
each other. . . ■■

Conversely: If the diagonals bisect each other, then 
AB = AP + PB = PC + DP = DC * '

antfV^ -AD = AP -+ PD = PC + BP = DC 
i.e. AB and DC are parallel and equal,
and AD and BC are parallel and equal.- .. #

Hence, ABCD is a parallelogram. Proved.
Example 3. Prove that the straight line joining 

the mid-points of the two non-paralfel'sides of a 
trapezium is parallel to the parallel sides and equal 
to half of their sum. \T.B. Misc. Ex. Q. 10}

Sol. Let ABCD be a 
trapezium in which AB II 
DC. Let E, F be mid-points D 
respectively of the Iwo^ 

non-parallel sides BC, AD.
Take A as the origin of 

reference.
:. Position vector of A 

is O. Fig. 3.26.

Let b,d be the position vectors of B. D respectively 
with A as the origin of reference, so that

AB = b, AD = d ...(»)

Since DC II AB there exists a scalar t such that

DC = r.AC i.e., DC - t.b .(ii)

.•. Position vector AC of c is given by

AC = AD + DC
(By Triangle law of addition]

or AC = d+t.b (From (i) and (n)]
Since E is midjpoint of line joining B. C with 

position vectors b,d + t.b respectively.
By mid-point of formula.

Position vector of

_b + (d + t.b) _</+(! + t) b 
*" 2 " 2_ ...(iii)

Again.since Fismid-point ofline joining A. D with 
position vectors 0, d respectively.

.'. By mid-point formula,

0 + d _ d
Position vector of F = .(/v)

FE = Position vector of E - Position vector of F 

d + (l+r)6 d

[From (iii) and (rv )J

FE = ^(1 + r)b

or FE=^(l+z)AB [From (/')]

which shows that FE II AB and hence to DC. Proved.
Example 4. "The mid-points of two opposite 

sides of a quadrilateral and the mid-points of the 
diagonals are the vertices of a parallelogram" —
Prove using vectors. \TB. Misc. Ex. Q. II]



Sol. Let the position vectors of the vertices B, C, D 
of the quadrilateral ABCD referred to A as origin be b, 
c,d respectively.

Fig. 3.27.

Let E and F be the mid-points of the diagonals AC 
and BD. Let M and N be the mid-points of the sides 
AB and DC. Join NF. NE, ME and MF.

Now p.v. of M = ^fc and p.v. of N = (c + d)

Also p.v. of E = ~ c and p.v. of F = - (b + cT)

MF = p.v. of F-p.v. of M

= |(/> + <f)-^ = ^ J •••(')

ME = p.v. of E - p.v. of M

= ^c-^Z> = ^(c-Z>) ...(»)

EN = p.v. of N - p.v. of E

= + = ...(in)

and FN = p.v. of N - p.v. of F

= (c + rf) - (Z> + rf)

= ^(c-Z>) ...(iv)

From (i)and (in), MF = ENi.e. MF and EN are equal 
and parallel.

From (if) and (iv), ME=FN i.e. ME and FN are 
equal and parallel.

Hence ENFM is a parallelogram.
Example 5. 1 If the sum of two unit vectors is a 

unit vector, prove that the magnitude of their 
difference is \3.

OA = AB = OB = I

Let AC = - b. then AC^= I AC I = I -h I = I /? I = 1. 
Since OA = AB = AC, then by Geometry ABOC is

a right triangle, rt. Zd at O.
a - K = fl + (-£) = OA + AC = OC

I a -bI =IOCI = OC 

Now BC2 = OB2 + OC2

OC = a/BC2 - OB2

or OC = V22- 12 = \U - 1 =

Hence the magnitude of their (two unit vectors) 
difference is V3.

Example 6. D, E, Fare the mid-points of the sides 
of a triangle ABC. For any point O show that

OA + OB + OC = OD + OE + OF.
|7’.R Misc. Ex. Q. 23]

Sol. Let a. b, c be the position vectors referred to 
O of the vertices A, B, C of the triangle ABC.

Then OA = n, OB = A and OC = c

i.e. OA + OB+ OC = n+ />+c. ..,(/)

Also let D, E. F be the mid-points of the sides AB, 
BC and CA.

Then OD = position vector of D

= (P-v- of A + p.v. of B)

= (a +/>).

Similarly OE = - (b + c) and OF = - (c + a)

.-. OD + OE + OF = (a + b) + (b + c) + (c + a)

= a + b + c = OA + OB + OC, from (i) 
Hence proved.



Example 7. What is the geometric significance 
of the relation

|S + b| = |S-b|?

SoL Let a = AB and ft 
b = AD. Complete the paral­
lelogram ABCD. Join AC and 
BD. (b)

AD = AB + BC

= AB + AD

[•.• BC = AD]

= a + b . | a + b | = | AC |

Again DB = DA + AB

= -AD + AB = AB - AD =a - b 

|fl-b|=|DB|

Bui | a + b | = | a - b | 

I AC| =|DB|

(Given)

AC = DB

i.e., diagonals of the parallelogram arc equal.
The parallelogram is a rectangle (by Geometry)

and hence a ± b.

Example 8. Prove that the straight line joining 
the mid-points of the diagonals of a trapezium is 
parallel to the parallel sides and half of their 
differences.

Sol. Lcla,b,c,d be the 
position vectors of the 
angular points A, B, C. D 
respectively w.r.t. any 
origin of the trapezium 
ABCD whose sides AB and 
DC arc parallel.

Let i be the unit vector 
in the direction of the paral­
lel sides AB and DC.

~ ' ...(«)

or

Hr. 3J0.

AB = ABi and DC = DC/ 
where AB and DC are scalars.

Let P be the mid point of diagonal AC and Q be the 
mid-point of diagonal BD.

p.v. of P = (a + c) .

p.v. of Q =-(b+d) respectively.

PQ = p.v. of Q - p.v. of P

1 1 
= -{b+d)--(a+c)

= ^{b-a)--{c-d)

= jAB-^DC = j(ABi-DCi)

= (AB - DC) i

This shows that the line PQ is parallel to the unit 
vector i i.e. parallel to the parallel sides AB and DC. 
Also PQ is half of the difference of AB and DC.

Hence proved.
ca> Example 9. If a, b are the position vectors of A, 
B respectively, find that of a point C in AP produced 
such that AC = 3AB ; and that of a point D in BA 
produced such that BD = 2BA.

Sol. Let 0 be the origin 0, 
of reference.

Let a, b be the position 
vectors of A. B 
respectively.

AB = OB - OA

= b-a ...(i) r ig.
(i) Since AC = 3AB (Given)

AC = 3AB = 3fb-a) [Using (i)|
Now in AAOC,

OC = OA + AC

= a + 3 (b - a) = 3b -2a

Hence the position vector of C is 3b - la.
(ii) It is given that BD = 2BA

BD = 2BA = - 2AB = - 2(b - T) = 2(« - b)

FIr.JJI.

[•.• From (i) AB = b - a]
In AOBD.

OD = OB + BD

= b + 2(a - b) = 2a - b 

Hence the position vector of D is 2a - b.



Example 10. The position vectors of four points 
A, B, C, D are a, b. 2a + 3b, a - 2b respectively. 
Express the vectors AC, DB, BC and CA in terms of 
a and b.

Sol. Let O be the origin of reference.
We are given the position vectors of four points A,

OC =2o+3b, OD = a -2b 

(z) AC = OC - OA = la + 3b - a = a + 3b 

(iz) DB = OB - OD = b - (a - 2b) = b - a + 2b

= 3b - a

(iii) BC = OC-OB = 2a + 3b= 2/7 +2b

(zv) CA = —AC = - (a + 3b)

Example 11. Show that 
the line segment joining the 
mid-points of two sides of a 
triangle is parallel to the 
third side and is half its 
length.

Sol. Let A of AABC be 
considered as the origin of
vectors. Let C„ B, be the mid-points of sides ?\B, CA 
respectively.

Then AB = AB,, ^AC = AC,,

Now, C^! = C,A - B,A

QB, = CA - BA = (CA - BA)

= (CA + AB) = CB.

The above equality shows that C,B, and CB have 

the same direction ; in other words. C,B, II CB.

Further. C,B, = | C,B( | = ; I BC | = BC.

Exnniplc 12. The points 1), E, F divide the sides 
BC, CA, All of n triangle in the ratio 1 : 4, 3 : 2 and 
3 : 7 respectively. Show that sum of the vectors 
AI). BE, CF is a vector parallel to CK where k 
divides AB in the ratio 1 : 3.

Sol. Let a. b. c be the position vectors of the points 
A. B. C respectively.

Then by the question, we have

r —- 1 .c + 4.b c + 4b
pv.orD=OD = -?7^ = —

p.v. of E = OE =
3.o + 2.c 3o + 2c

3 + 2 5

r_ — 3.b + 7.a 3b + 7a
p.v. of F = OF = —- -------- =------------' 3 + 7 10

rtz AC >^+3.o b+3a 
rv.ofK =0K = -r7T- = -T-

----  —• -— c + 4b _ c + 4b - 5o
Now AD = OD - OA = —- ------o=-----------------

3o + 2c — 3a + 2c - 5b
-b =BE = OE - OB =

5

—■ — 3 b + la - 3b+7o-IOc 
CF =OF-OC = ——------ c=-

1010

---- —• —• c + 4b - 5o 3o + 2c - 5b
AD + BE + CF =---------------- +-------------------

3b + 7o - 10c
10

= To(3" + h ...(/)

and
— b + 3o - b + 3a - 4c

10 f 3o + b - 4c
10

= ^(AD + BE+CE) |Using (;)] 

Hence AD + BE + CF is parallel to CK.



Example 13. If a and b are two vectors 
represented by OA and OB, and if C is a point in the 
line AB $uch that AC : CB = zn, : zn2, that is zn, AC 
= zn„ CB, where zn, and zn, are positive real numbers 
then,

mji + m.b 
c = ()C = -------- -•

zn, + zn2

Proof. From Fig. 3.34 
OA = OC + CA 

Therefore, zn, OA = zzi2 OC + 
zn, CA, since zn2 is a positive 
real number. ...(f)
Also, OB « OC + CB 
or, zn, OB = zn, OC + zn0 
CB, since zn, is a positive real 
number. ' ...(«)

Adding (/) and (if), we get
Flg3J4.

By symmetry, we see that this point alsp lies on the 
other two medians.

Thus the medians of a triangle are concurrent. Also 
the position vector of the point of concurrence, is 1/3 
(a. b, r); a, b, c being the position vectors of the vertices 
of the triangle.

Ihc point of concurrence of the medians of a triangle 
is called its centroid.

Example 15. a, b, c, d arc the vectors forming the 
consecutive sides of a quadrilaternl. Show thnt a 
necessary and sufficient condition that the figure 
be a parallelogram is that a + c = 0 and this implies 
6 + d = 0.

Sol. ABCD is a quadrilateral.
AB = h, BC = b, CD = F

and DA = d

or

or

zn2 OA 4- zn, OB = (zn2 + zn,) OC + zzi2 CA 
+ zn, CB

But zzi, AC = zn, CB,
zn2 CA + zn, CB = 0

Hence, from (iff), we get
zn, OA 4- zn, OB = (zn2 + zn,) OC 

zn, OA + zn, OB
c = OC =

zn2 a 4- zn, b

.(»0

Note : 
AB, then

zn, + zn, zn, + zn.

If zn2 = «i„ that is. if C is the mid-point of

or

OA + OB = 2OC
OA + OB _a + b 

2
c = OC =

Example 14. Show that the medians of a triangle 
are concurrent.

Sol. Let the position 
vectors of the vertices A. B,
C of a triangle ABC with 
respect to any origin be a. 
b, c.

The position vectors of 
themid-points D. E. Fofthc 
sides arc

I

Fig. 3.35.

- 2 2 + respectively.

Position vector of the point G dividing AD in ihc 
ratio 2 : 1 is

2 . j (6 4- c) 4- I ,fl |

2 4- I
= - (fl 4- /z 4- r) ..(»)

AB + BC = AC = n 4- /z 

Also AC + CD = AD

(« 4- ft) + c = - d

fl +/l +C 4-d =0 ...(/)

Now if ABCD is a parallelogram, then, AB and DC 
are parallel and equal.

.'. AB = - CD. .'. a = -c or « + r = 0 

Hence the condition is necessary. Also with the help
«f (i), we get in this case

b + d = 0.

Sufficients. Since «+c=0. .*. a= — c.

AB = -CD

AB =DC
Thus AB and DC arc parallel and equal.

When a + r = 0. we have from (i), /z + d = ().

h = - d.

BC = -DA, .'. BC = AD.
Hcncc. ABCD is a parallelogram.
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Example 16. Show that points 
a + 2£ + 3c,-a + 2Z-4c, 3a + 3c,2n + 3b + 10c

are coplanaf, a, b,c being any three non-zero, 
non-coplanar vectors.

Sol. Let the four points in order be A. B, C, D and 
let 0 be the origin. Then

AB = OB - OA = - 2d - 7c

AC =OC-OA = 2n -2b

AD = OD — OA = a + b + ~lc.

The given points will be coplanar if AB, AC, AD 
are coplanar. In that case we can find scalars x and y 
such that

- la - 1c = x(2a - 2b) + y(a + b + 7c)

=> - 2 = 2x + y, 0 = -2x + y, -7 = 7y
The values x = - 1/2, y = -1 satisfy all the three 

equations. Thus we can express one vector AB as linear 
combination of the other two vectors AC and AD.

.*. AB, AC, AD are coplanar and hence the given 
points are coplanar.

Example 17. Find by vector method the 
perimeter of the triangle whsoe vertices are the 
points (3, 1, 5), (-1, -1, 9) and (0, -5, 1).

Sol. Let the vertices A, B and C of a triangle ABC 
be the points (3, 1, 5), (-1, -1. 9) and (0, -5. 1) 
respectively. Then the position vectors of A. B and C 
referred to (0, 0, 0) as origin arc

OA =3f+/ + 5jC; 0B = -f-/ + 9(

and OC=-5;+£
AB = p.v. of B - p.v. of A = OB - OA

= (-Z-/ + 9<) - (3/ + / + 5<)

.'. The required perimeter = AB + BC + CA 

= 6 + 9+ <6? = 15 + <6L

Example 18. Write dow n the equation of the line 
through the points P(x„y„ z,) and Q(x2,y2, Z2).

Sol. The position vectors of P and Q are respectively 
OP = x, i +y{j +z, T

OQ =Xj i +y2; +z2*

If R is nny point with position vector
OR =xi +yj + zk

then there exists a real number X such that 
PR : RQ = X : 1. Then

x/' + y/ +jk' = OR

xi '' + J'i / +Z}k' + X (Xj (' +y2/ + z2 P)

x, + Xx2
Hence x =------- —,

1 +X
X

«•<’ J-x' =T+x(Xj_x')’

X
z-z* - ] +x(zi_zi) 

Eliminating X. we get

x“xi v->.

1 +X
Jl+M'; Z, + Xza 

= I + X -1 ~ I + X

z-z.
x2 xi >'l >'| Zj Z| I

which is the equation of the line PQ since any R(x,y, 
z) therein satisfy these equations.

Example 19. Find the unit vector in the direction 
of the vector r, - r2, w here r, = i + 2y - r2 = 
3i+j-Sfc.

Sol. Let r = rf - r,

= = -4,f-2j -t-4(
Similarly. BC = OC - OB = (-5y+<) + (-f-/ +9<)

and CA =OA-OC = (3«'+/ + 5()-(-5y+<)

= 3t + 6j + 4&
/. AB = | AB| = <(-4)J + (-2)J + 4J 

= <16 + 4+16 = 6
BC = | BC | = <12 + (—4)2 + (-8/ = <1 + 16 + 64 = 9 

CA = | CA | = <3J + 6J + 43 = <9 + 36 + 16 = <6?

= (r+2)-Z:)-(3r!, + 7-5()

= (I -3)/' + (2 - l)/ + (-l +5)( 

r = - 2i +y'+4/;

I T | = <(-2)2 + (1 )* + 42 = <4+1 + 16 = <2?

.'. a unit vector in the direction of vector r

r -2i +j + 4f 
I r | ~ <2?

-2 f 1 f 4 r 
- + "7= J + —f=.k.<21 <21 <2?



ADDITIONAL PRACTICE EXERCISE 3 (b)

1. Show dial thefour points A. B.C, D with position
veCtors a,b,c,d respectively such that 
3a - 2 b + 5c - = 0, arc coplanar. Also, find
the position vector of the point of intersection of 
the lines AC and BD.

2. Show that the four points P, Q, R, S with position 
vectors p,q,r,s respectively such that 
5p — 27 + 6r - 9.r = 0, arc coplanar. Also find 
the position vector of the point of intersection of 
the lines PR and QS.

3. Show that the fourjaoints A. B,C, D with position 
vectors a,b,c,d respectively such that 
3a + 4h - 5c - 2d = 0 arc coplanar. Also, find 
the position vector of the point of intersection of 
the lines AB and CD.

4. Show that' the four points M. N. R. S with 
position vectors m, n, r, s respectively such that 
2zu 4- 3n - 4r - j = 0 are coplanar. Also, find 
the position vector of the point of intersection of 
the lines MN and RS.

5. In a regular hexagon /\BCDEF. prove that
AB + AC + AD + AE + AE = 3AD.

6. If two concurrent forces arc represented bv
XAO and p. OB prove that their rcsuilant is 
(X + p) + OC. where C divides AB such that 
XAC = pCB. [M. Imp ]

7. Prove that
(/') | a 4- b | £ | a | + | b |

(») |a|-|b|£|a-6|

(hi) |a-£|£|a| + |fc|.

8. If a and b are the vectors forming consecutive 
sides of a regular hexamon ABCDEF express 
the vectors CD, DE, EF. FA, AC. AD, AE and 
CF in terms of a and b.

9. ABCDE is a pentagon. Prove that
ab + bc + cd + 5e + ea = o.

10. Prove that the sum of all the vectors drawn from 
the centre of a regular octagon to its vertices is 
the zero vector.

11. Find the coordinates of the point which divides 
the line joining (x,, y,, z,). (jt2, y2, Z2) in the ratio 
m : /.

12. Show that the three medians of a triangle meet 
at a point called the centroid of the triangle which 
trisects each of the medians.

13. I). E. F arc the mid points of the sides of a 
triangle ABC. Show that for any point O.

OA+OB + OC = OD + OE + OF.

14. D. E, F arc the middle points of the sides BC, 
CA. AB respectively of a triangle ABC. Show 
that
(/) EF is parallel to BC and half of its length.

(ii) The sum of the vectors, AD, BE. CF is zero.
(iii) The medians have a common point of 

trisection, i.e.. they arc concurrent.
15. ABCD is a parallelogram and P is the inter­

section of the diagonals ; O is any point. Show 
that

OA + OB 4- OC + OD = 4OP.

16. Prove that the straight line joining the mid-points 
of he diagonals of a trapezium is parallel to the 
parallel sides and half their difference.

17. The sides of a parallelogram arc 2/ +4) - 5iC and 
/ + 2j + 3k. Find the unit vectors parallel to the 
diagonals.

18. If the position vectors of P. Q. R, S arc
2i + 4<. + 3^3j 4- 4(*. - 2^3j 4- (. 2t 4- (

prove that RS is parallel to PQ and is two-third 
of PQ.

19. P(2, - I. 3). Q(8. 5. -6) and R(4, I. 0) arc the 
vertices of a triangle. Show that PQ = 3PR and 
the direction cosines of QR arc

-2 -2 -3
Vi7‘ Vl7‘ Vl7

20. If the position vectors of P and Q arc 2/ + 3y + 7( 
and 4»—3y-4iG respectively, find PQ and 
determine its direction cosines.

21. Show that the three points having position 
vectors a - 2b + 3c, -2a + 3b + 2c, -8a + 13b 

arc collincar. whatever be a, b, c.

22. Show that the vectors (a - 2b + 3c), 
(a - 3h + 5c) and (-2a 4- 3h - 4c) arc coplanar 
where a. b. c arc non-coplanar.

23. Show that the vectors (2a -6 4- 3c). (a + b - 2c) 

and (a + b - 3c) are not coplanar.
24. Show that the vectors (2/ -7 4- £),(/ - 3) - 5iC) 

and (3i - 4y - 4() arc coplanar.
25. Prove that the points with position vectors

(-7*7^). (4f + 5/ + <). (3/4-97*+ 4<) and
(-4/ +47 4- 4)C) arc coplanar.
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MATHEMATICAL MODELING

G Ravindra
RIE(NCERT), MYSORE

A mathematical model is a simplified mathematical representation of a real 

situation with a mathematical system (a model is something which represents 

something else). Although a real situation involves a large number of 

variables and constraints, usually a small fraction of these variables and 

constraints truly dominate the behaviour of the real system. Thus the 

simplification of the real system should primarily concentrate on identifying the 

dominant variables or constraints as well as other data pertinent to problem 

solving. The assumed real system is abstracted from the real situation by 

identifying dominant factors (variables, constraints etc) that control the 

behaviour of the system and such a system always serves as a data for 

mathematical modeling. A mathematical model is robust if small changes in 

variables lends to a small change in the behaviour of the model.

The set of natural numbers with usual addition and multiplication form a good 

mathematical model of a reai situations concerned with counting process. 

Vectors are excellent mathematical models that predict and explain many 

physical phenomena with perfect accuracy. The concept of direction which is 

so vague in the physical world is precisely explained by identifying the 

conceDt of vector as that of location or coordinate system. (Such an 

identification is guaranteed by the famous result that every finite dimensional 

vector space is isomorphic to Euclidean space R"y We will discuss in greater 

details some more models in a later section.

Mathematical models, are normally thought of as instrument for selecting a

good course of action from the set of courses of action that is covered by the

model (here a course of action could be a strategy of selecting a content or

some such thing). However the models have another very important use:

they can be used heuristically (that is an instruments of discovery). They

provide an effective tool with which one can explore the structure of a problem 
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and uncover possible course of action that were previously overlooked. For 

example vectors as models have lead to discovery of several outstanding and 

useful results in the vectors space theory. The models concerned with 

drawing of implication diagram (Venn diagram) of given concepts give rise to 

some very interesting conjectures and their solution later. A good 

mathematical model presents many features or many predictors of the data; 

that is, a good mathematical model is one in which many dependent variables 

are expressed through functions.

Types of models:
There are three types of models which are commonly used: iconic, analogue, 

and symbolic.

Iconic models are images; they represent the relevant properties of the real 

situations. For example, Photographs, maps, model aeroplane, drawings of 

some mathematical objects etc. Iconic model of the sun and its planets in 

planetarium or model of a field map is scaled down where as a model of atom 

is scaled uo. Iconic models are generally specific, concrete and difficult to 

manipulate for experimental purposes.

Analogues use one set of properties to represent another set of properties. 

For example graphs are analogues that use geometric magnitudes and 

location to represent a wide variety of variables and the relationship between 

them. Contour lines on a map are analogues of elevation. Bar diagrams are 

analogues of some statistical information. Flow chart is an analogue of some 

logical sequence. In general analogues are less specific, less concrete but 

easier to manipulate than iconic models.

Symbolic models use symbols, numbers to represent variables and

relationship between them. Hence they are the most general and abstract

type of models. Linear programming model, simple harmonic motion model 
«

are some of the examples of symbolic models. Symbolic model are most 

widely used and result oriented, and the other models (iconic and analogue)
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are sometimes used as initial approximations which are subsequently refined 

in to a symbolic model. Symbolic models take the form of mathematical 

relationships (usually equations or inequations) that reflect the structure of 

that which they represent.

Process of Modeling
The process of modelling is depicted in the following figure.

ASSUMED § 
REAL SYSTEM

1

Formulation MODEL

Interpretation

Deduction

MODEL
CONCLUSIONS

The first step is formulation of the model itseif. This step calls for identification 

of assumptions that can and should be made so that the model conclusions 

are as accurate as expected. The selection of the essential attributes of the 

real system and omission of the irrelevant ones require a kind of selective 

perception which is more an art than a science and which cannot be defined 

by any precise methodology.

The second step is to analyse the formulated model and deduce its 

conclusions. It may involve solving equations, finding a good suitable 

algorithm, running a computer program, expressing a sequence of logical 

statements - whatever is necessary to solve the problem of interest related to 

the model.
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The final step, interpretation involves human judgement. The model 

conclusions must be translated to real world conclusions cautiously without 

discrepancies between the model and its real world referent.

Mathematical Modeling in contrast to experimentally based Scientific 
Method.
The following figure depicts the process of scientific method.

Here first step is development of a hyoothesis which is arrived at generally by 

induction following a period of informal observation. An experiment is then 

devised to test the hypothesis of the experiments, if the result contradicts the 

hypothesis, the hypothesis is revised and retested The cycle continues until 

a verified hypothesis or 'theory' is obtained The first result of the process is 

Truth, Knowledge or Law of Nature. In contrast to model conclusions theories 

are independently verifiable statements about factual matters. Models are 

invented; theories are discovered. Thus modeling is very important but 

certainly not unique method to deal with complicated real world.

Some mathematical models.

1. (a number theoretic model)

In a party of people with atleast two persons, we are always assured of atleast 

two persons who know same number of persons in the party.

Here the real situation is the party of people in which a person may have an 

acquaintance with another person. The conclusion is that there are atleast 

two persons having the same number of acquaintances in the party We now 

proceed to model the situation as follows;
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Let Pi, P2............ Pn be the persons in the party and let dj be the number of

persons known to Pj in the party. Here once the identification of the variables 

dj is done, the rest follows by contrapositive argument.

If the conclusion is wrong then there is a set S of n-1 persons in the party 

such that each has distinct number of acquaintances and each knows atieast 

1 and atmost n-2 members in S. That is, each number dj corresponding to a 

member in S in unique, and atleast 1 and atmost n-2. This amounts to 

getting n-1 distinct integers in the set {1, 2............ n-2}, a contradiction.

Thus we arrived at the model conclusion by logical sequence of arguments.

2. (a maxima - minima model)

Suppose an open box is made from a rectangular piece of tin a sq.mts. by b 

sq.mts. by cutting out equal squares at each corner and folding up the 

remaining flaps. What size square should be cut out so that the box will have 

maximum volume ?

We first draw analogue of the given situation as a prelude to construction of 

symbolic model (see the following figure).

Analogue of the given situation:

Volume of the open box = V(x) = x(2-2x).(v-2x) 

Surface area = ab-4x2



First we identify the most significant variable in the given situation Let x be 

the length of a side of any of these four squares (all of which are of equal 

area). The objective is to find a value for x which maximizes V(x) = x(a-2x) 

(b-2x). V=O and V”<0 imply that the square of dimension 

(a+b+x/a2 + b2-ab )/6 be cut out so that the box has maximum volume.

Here we note that maximization of surface area ab-4x2 need not imply 

maximization of volume V(x)=(a-2x)(b-2x).

Applying the same method to the cutout squares, we can make new open 

boxes with optimal utility. Thus, this model provides a method and solution to 

make open boxes with optimal use of given rectangular tin sheet

3. Graphs (Networks) as Mathematical Model:
A graph (or network) is a non-empty set V together with an irreflexive and 

symmetric relation E on V. The elements of V are marked as vertices and 

the elements of E are marked as edges (not necessarily straight) joining the 

vertices in a pair belonging to E. Two vertices are adjacent if they are joined 

by an edge. For example, if V ={a,b,c,d} and E={(a,b), (a,d), (b,d), (b,c)} the 

pictorial representation of the graph is as that in the following figure 1.

Since the graphs are the most generalized algebraic structure, they often 

work as excellent models of many real situations. The following examples are 

just three of those several situations which are easily modeled as graphs.
6



(i) Shortest path problem: Suppose that we have a map of the form shown 

in the above figure 2 in which the letters A-L refer to towns which are 

connected by roads. If the lengths of these roads are as marked in the 

diagram what is the length of the shortest path from A to L?

There are several methods which can be used to solve this problem. Possibly 

the simplest of these is to make a model of the graph by knotting together 

pieces of a string whose lengths are proportional to the lengths of the roads. 

In order to find the shortest path we hold the knots corresponding to A and L 

and pull tight and measure the distance corresponding to the tight strings. 

However there is a more mathematical way of approaching this problem using 

graph theory.

(ii) Scheduling Problem: Consider a collection C={C,} of course being 

offered by a major university. Let T be the time interval during which course 

C, is to take place. We would like to assign courses to classrooms, so that no 

two courses meet in the same room at the same time.

We treat C, as the vertices of the graph G in which C, and C, are joined by an 

edge if and only if Tj and Tj have not empty intersection. We colour the 

vertices of G such that no two vertices joined by an edge have the same 

colour. Here each colour corresponds to a classroom. For such graph (called 

interval graphs) there is an efficient algorithm for colouring its vertices with 

minimum number of colours. In fact for such graphs the minimum number of 

colours is equal to the ma,ximum number of mutually adjacent vertices.

T9
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(iii) Shortage of Chemicals Problem: Suppose Ci, C2.................. Cn are

chemical compounds which need to be refrigerated under closely monitored 

conditions. If a compound c, must be kept at a constant temperature between 

L and V, the problem is to find minimum number of refrigerators needed to 

store all the compounds ?

Let G be the interval graph with vertices C1.C2............... cn and connect two

vertices by a line whenever the temperature intervals of their corresponding 

compounds intersect. It is not difficult to verify that the intervals (f. V) satisfy 

The Helly property (A family of subsets of a set X is said to satisfy the Helly 

property if pairwise non-empty intersection of members of S imply total non 

empty intersection of the members of S).

If Q is a clique of G, then the time intervals corresponding to its vertices will 

have a common point, say t, by Helly property. Therefore a refrigerator set 

at a temperature t will oe suitable for storing the chemicals representing the 

vertices of Q. Thus a solution to the minimization problem will be obtained by 

finding minimum clique cover of G. (A ciiaue is a graph in which any two 

vertices are joined by a iine In fig.1, the sub graphs on {a.b.d} and {b,d,c} 

will provide a minimum clique cover).

Mathematical modeling plays a great role in teaching Mathematics

Some of the most important components of teaching a concept in 

mathematics are:

(i) Motivation for the concept (ii) Simplification of the concept (iii) Problem 

solving.

Motivation for learning a mathematical concept may be within the 

mathematics itself or outside the mathematics and a real world situation. For 

instance, it is very difficult to choose an example of a infinite set from a real 

world situation; so in such a situation the set of natural numbers can be taken 

as a motivating factor for the concept of 'infinite sets’. On the other hand a
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great deal of real world motivate and exemplify several concepts like vector, 

derivative, integral etc.

By simplication of a concept C we mean breaking of the concept C into 

simpler sub concepts or more precisely it is identification of meaningful 

restrictions f on C such that Cf (the restricted C) has a simpler characterization

than that of C. Once a concept is simplified into Ci, C2..... Ck, one is naturally

tempted to find various inter-relations among the sub concepts C( and that is 

how the concept C in particular and mathematics in general becomes richer.

Content in mathematics can be analysed into content proper (what to teach) 

and its inner organization, the latter being most closely related to teaching 

methods. Teaching methods can be analysed into presentation of the subject 

matter (use of mathematical models etc) and organization of class room work, 

the former being most closely related to content and mathematical modeling. 

The analogue model of this para is as follows:

Content

Content proper Organisation < 

(what to teach) of content

■> Teaching Methods

Presentation Organisation

of content of classroom work
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TEACHING MATHEMATICAL CONCEPTS

PROF. K. DORASAMI

The study of mathematics deals with certain objects such as Natural 

numbers. Circles-, Triangles, Functions and Proof.

In learning about these mathematical objects, we are concerned with 

what these objects are. For example,

1. What an angle is. how to call whether or not something is a rectangle, 

what is the definition, of .a parallelogram.

2. What are the relations among mathematical objects.

When we learn what an object is, we are learning a concept of that

object. •

When we teach students what an object is, and how to identify it, we 

are teaching a concept of that object.

Concepts are the most basic learnable objects and the first things 

learned by young children.

By means of concepts, other concepts and other kinds of subject

matter are learned.

A concept is the meaning of a term used to designa:e the concept. 

According.to Hunt, Marin, and Stone (1966), “A concept is a decision

rule which, when applied to the description of an object, specifies whether or



not a name can be apolied". Thus a student who knows the definition of a 

circle as the locus of points in a plane from a given point in the plane has a 

rule that can be used to tell whether any given object is to oe called a circle.

Moves in Teaching a Concept

Some concepts are taught, for others the term designating the 

concepts are used.

For example, a teacher who had deliberately taught a concept of a 

finite set might not teach a concept of an infinite set but wouid simply use the

term.

1. Defining

Because most concepts in mathematics are precise, definitional moves

can be used.

Definition is an eiegant move since it employs minimum language. But 

the very'elegance may be a block to learning.

Definitions are of:en written in the form (1) is a (2) such that (3).

The first space is filled by the term being defined, the second space is

filled by a term denoting a superset in which the set of objects denoted by the 

term defined as included,-and third space is filled by one or more conditions 

that differentiate.the set of objects denoted by the term defined from all the 

other subsets of the superset.

2. Status a Sufficient Condition or Sufficient Condition Move

It is the form in which a characteristic or a property of an object is

stated that identifies it as a sufficient condition.
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A' rhombus is an equilateral parallelogram. Being an equilateral 

parallelogram is sufficient for being rho'mbus.

The sufficient condition is more clear in the statements.

"If a quadrilateral is an equilateral parallelogram, it is a rhombus '.

"If a parallelogram is a square, it is a rhombus’. Other forms are:

A triangle is a right angled triangle provided that it has one right angle.

The logic of the move of sufficient condition enables a student to find 

examples of objects denoted by a concept, assuming such an example exists.

3. Giving One or More Examples

Examples are objects denoted by the concept i.e. members of the set 

determined by the concept.

Examples clarify concepts because they are definite, specific, and if

well chosen, familiar.

Teachers frequently elicit examples of concepts from students to 

decide whether the students have acquired the concepts.

Examples cannot be given for every concept. For example, even prime 

number greater than 2, greatest integer and for self-contradictory concepts 

like square circle, six:sided pentagon.

4. Giving an Example Accompanied by a Reason Why it is an Example

Accompanying an example with a reason that it is an example is an

effective move because the reason is a sufficient condition.

This move is helpful to slow learners, because the logical connection is 

made explicit by supplying a reason.
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4x" + 9y^ = 36 is an ellipse because it is of the form a2x2 + b2/ = a2b2 

40 is an even number since it is divisible by 2.

5. Comparing and Contrasting Objects Denoted by the Concept

By comparing objects of the concept being taught with objects with

which students are familiar, a bond of association can be established between

familiar and less familiar.

In teaching a concept of parallelogram, the teacher may compare it 

with non-parallelogram (trapezium).

Comparison points out similarities. But since objects compared are not

identical, a contrast identifies some of the differences, if not all.

If a teacher has taught a concept of equal set and then teaches a 

concept of equivalent set, the next step may be contrast these two concepts

in order.that the students do not miss the distinction between them.

6. Giving a Counter Example

A counter example is an example that disproves a false definition of a

concept:

Two kinds of countey examples are possible for an incorrect.definition.

1. Give a number (an example) of the set determined by the term defined 

that is not a member of the set determined by the defining expression.

2. Given a member (an example) of the set determined by the defining 

expression that is not a member of the set determined by the term defined.

Though this kind of move is effective in sustaining thinking and 

ultimately facilitating comprehension of the desired concept, students may
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feel that the teacher was badgering and embarrassing them. Teachers have 

to exercise good judgement when deciding how frequently to use counter

example moves.

7. Stating a Necessary Condition

If two sides are parallel, a quadrilateral is a parallelogram. This 

statement indicates the absence of a necessary condition for a quadrilateralz

to be a parallelogram.

One form of the definition of a parallelogram. With the necessary

condition is,

If both pairs of opposite sides are parallel, a quadrilateral is a 

parallelogram.

Another form in which a necessary condition is stated uses only if.

Example: A quadrilateral is a parallelogram only if both pairs of sides 

are parallel.

A necessary condition move enables a student to identify examples of 

objects not denoted by a concept.

8. Stating a Necessary and Sufficient Condition

This move is used, if a condition by which objects can be denoted by a 

concept is both necessary and sufficient condition. One form for this is the 

explicit use of the terms necessary and sufficient, as

It-is both necessary and sufficient that a parallelogr im be equilateral for 

it to be a rhombus. Another form is the use of if ard only if. Thus the 

statement is equivalent to,
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A parallelogram is a rhombus if and only if it is equilateral.

The definition in terms of necessary and sufficient condition proceeds 

by subsuming the set of objects to be defined from all other subsets of the 

superset. Thus, a definition of a rhombus might be;

A parallelogram having pair of adjacent, congruent sides is a rhombus.

The definition implies that there are two conditions necessary for an 

object to be a rhombus:

1. being a parallelogram.and

2. having a pair of adjacent congruent sides. The combination of these two 

necessary condition is sufficient.

But for some students, the necessary and sufficient conditions in' the 

above statement may not.be clear. For them, the teacher can make use of if 

and only if form.

A sufficient condition move enables a student to identify examples and 

a necessary condition move enables students to identify non-examples of a 

concept. A combination of these enables students to discriminate both 

examples and non-exampies of a concept.

An object not in the set determined by a concept is a non-example of 

the concept.

9. Giving Non-examples

Like the move of giving examples, giving non-examples helps to clarify 

a concept. Definition of a concept following examples and non-examples of 

the concept is a common move for a teacher.
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10. Giving a Non-example Accompanied by a Reason Why It Is a

Non-example

This move is similar to that of giving an example together with a reason 

that is an example. The reason that accompanies the non-example is the 

failure to satisfy a necessary condition.

Its logic is that of conditional reasoning,

“If a quadrilateral rs not a parallelogram, it is not a rhombus. This 

quadrilateral is not a parallelogram. Therefore it is not a rhombus”.

Strategies of Teaching a Concept

A strategy is defined as a temporal sequence of moves.

So, theoretically, there are thousands of strategies for teaching a 

concept, of which some are logically impossible.

Examples of Some Strategies of Teaching a Concept

1. Definition - Example - Example with a reason

' Non-example with a reason

2. Example - Non-example - Comparison and Contrast - Characteristic - 

Definition - Example with a reason - Non-example with a reason.

In such strategies, the definition identifies the necessary and sufficient 

conditions, examples clarifies them and reasons reinforce necessary and

sufficient conditions.

Use of Concepts

1. Knowledge of a concept helps in classifying given objects into examples 

and non-examples of the concept.
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Since we can classify, we can discriminate. For example, a student 

who has concept of rhombus can pick out rhombus from other quadrilaterals.

2. Knowledge of concepts heips in communication.

Communication breaks when people do not have the knowledge of

certain concepts.

A definition of a term tells you both how to use the term and also how 

to avoid using it.

Example: A rhombus is .an equilateral parallelogram.

This definition tells that a rhombus means, ‘'an equilateral

parallelogram’’. And if the students do not have the con cept of an equilateral 

parallelogram, the teacher can think of the definition -

An equilateral parallelogram is a four sided figure whose sides are line 

segments having the same length.

3. Concepts helps in generalisation.

4. Concepts help in discovery of new knowledge.
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What is Action Research?

It is a problem-solving approach which helps a 
practitioner to perceive, understand ana assess 
the situation, and it further facilitates a 
systematic analysis and working out plausible 
solutions for the unsatisfactory conation. With 
this, dfferent alternative solutions can be tried 
out and finally an intervention can be worked 
out with which the problem can be solved 
sansfactonry.

STEPS IN THE ACTION RESEARCH

1. Perception of the Problem/dissatisfied state
2. Analysis of the Procrtenvassatisfied state.
3. Understanding the dynamics I causes.
4. Development of propositions (Tentative 
theory).

5. Prioritizing proposition.



6 Development of Acton Hycomesis.

7 Planning for Intervention
8 Execution of intervention

9 Evaluation of Intervention
10 Decision (Reflection. Explanation and 

Understanoinc of Aooon)

Planning fgrAction Research

What to plan?

■ Tme
■ human resources and matenals
■ ColiaDorators
■ Tools and techniques
■ Intervention activities
■ Collection of evidence

Action Hypothesis
■ It includes the proposed 
intervention stated as capable 
of minimizing the problem or 
elevating the situation from 
dissatisfactory condition to a 
satisfactory condition.

Why is planning necessary?

flaming is necessary for tne following reasons: It
■ c>ves dree bon to the AR study.
• enooies advance preparations.
• enstres optimal efficiency.
■ faaltates achieving economy of time and effort.
■ minimises ad-hoc decisions, digressions and 

wastage.
■ erabies monitoring of the study.
■ enstres smooth sailing of the study.



Aspects ofJPIanning

■ Concern
■ Subjects
■ Objectives of the study
a Forming theory/Propositions -Pnontization 
a Action Hypothesis 
a Intervention strategies 
a Scheduing of activibes/tasks 
a Listing and procunng resources 
a Anticipated problems and contingency plan

What techniques can be used to 
gather evidence in AR studies?

■Interview 

■Video-Recording 

■Observation 

■Tape Recorder

Tools and techniques in AR
What kinds of tools?

■Achievement test 
■Diagnostic test 
■Psychological tests 
■Questionnaires 
■Interview schedules 
■Checklists

Execution of the Intervention

■ Execute the intervention as 
planned.

■ Keep ail the precautions in mind.
■ Note down/record all intended 

processes.
■ Terminate each session smoothly.



What next?
■Collection of evidence/data
■ Scoring and tabulation
■Graphical representation of 
data

EVALUATION OF THE EFFECTIVENESS 
OF THE INTERVENTION

■ Wnat kind of data do we need to evaluate the 
effectiveness or tne intervention?

- Comorefiensive
(Both Qualitative and Quantitative)

- Dependable
- Relevant
- Objective
- Multiple Sources

Graphical representation of data Evaluation, Reflection, Decision 
Making

■ Bar Diaaram Tne data/inrormation that is in descriptive

■ Histogram
form (word form) are qualitative data.

■ Polygon The data that are expressed in the form of
numbers which lend themselves for

■ Pie Diagram

14

further manipulation are quantitative data.
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Analysis and Interpretation

In Analysis we organize data and subject it to 
needed manipulation to elicit meaning. Analysts 
means categorizing, ordering, mampdating 
and reading meaning to facilitate discussion and 
interpretation.

At the Interpretation stage, we draw pertinent 
inferences in the context of the Action 
Hypothesis. This leads to decision making.

Reflection

■ Is the new Practice effective?
■ Should I continue with my old practice?
■ Is the solution to the impending problem 

effective?
■ Did the intervention bnng about 

improvement to a satisfactory level?
■ Is there a scope for enhancing my 

competence further?

Descriptive statistics only!!
No Inferential statistics in AR

■ Descriptive measures are apt for intact 
groups studied in Action Research.

■ The measure(s) descnbe the group 
studied only.

■ Inferential statistics has no place in AR as 
samples are not studied.

Decision Making

■ Shall I terminate the intervention?
■ Shall I not effect a cnange in the existing 

practice?
■ Shall I incorporate the new tested intervention 

in my functioning?
■ Shall I try another strategy?
■ Are there more effective ways of achieving the 

goals?
■ What changes should I make in the next spiral?



Characteristics of AR

■ It is a smali scaie intervention made by a 
practitioner.

■ AR is undertaken in a specific context. The 
findings are NCF GENERALIZABLE,

■ AR is a reflective practice that enhances 
one's own efnaencv.

■ AR is practitioners privilege.
■ AR proceeds in a spiral(s).

Contexts of Action Research

■ All Professions and professionals
■ In Education /Teachers too.

■ (1) Classroom level
■ (2) HM- School level
. (3) CRC, BRC, BEO, DEO,... CPI 
• (4) Teacher-Educators
■ (5) Educational planners, managers, 

acffnirustrators

WHY ACTION RESEARCH7 
It is because it;

improves one's own professional skills, 
improves the learning environment 
enhances the quality and/or quantity of 
desired results.
solves an immediate problem.

< provides local-specific solutions 
« facilitates overall effectiveness of practice

of a profession.

A change towards higher level of 
performance is frequently short lived; 
after a 'shot in the arm', the practice

returns to previous level.....A
successful change includes, therefore, 

three aspects:

1. Unfreezing the present level
2. Moving to the new level, and
3. Freezing the practice at new level

z



W should I Conduct Action
Research?

■ Are you a professional?

■Let us all hope that we 
all become professionals 

and reflective in our

> Do you destre to rrprove your professional skik’
■ Are you dissatisfied wth what you have been done: > 
a Do you want to be more effect/ye ti your 

fricOonrtg?
a Do you want your action to yteid btffeUZSUAs’ 
a Do you want to worfr systematically addressrtq

a problem on hand?
a Are you unhappy the status quo?
a Do you want, as a professional, to c rebate yotr 

actKOt objectively?

a

pursuits

a

If your answer is 'YES'

aThen you will start seriously 
thinking about Action 
Research and you will 
remain a 'Reflective

Practitioner'.

aThank you

5 28
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SIGNIFICANCE OF VALUE EDUCATION

The problem of value education of the young Is assuming Increasing 

prominence In educational discussions during recent times. Parents, teachers 

and society at large have been concerned about values and value education
• .fl 1'*** ’ < '•> r'*5,Tl

of children. National policy on Education (NPE) 1996 and revised NPE 1992
-i • r'*JJ>OV Off' ?9’’Grn J13H*"-"

has given all importance to the promotion of Value Education in Schools.
. . . ■

Education Is expected to play a major role In promoting national development 

in all its ramifications. At the same time, it should bring harmonious 

development of all the faculties towards adequate preparation for life. The 

present situation in India demands a system of education, which, apart from 

strengthening national unity, must strengthen social solidarity through 

meaningful and constructive value education.

The worldwide resurgence of Interest In value education has been 

explained as the natural response of the modem Industrialized societies to the 

serious erosion of moral values in all aspects of life and the crisis of values 

experienced in modem times.

It is now commonplace to say that sweeping political, economic and 

social changes have overtaken human civilization during the past few 

centuries arid these have been largely responsible for the predicament of 

modern man. The factors such as personal greed, meanness, selfishness, 

indifference to others’ interests and laziness also have brought about large- 

scale corruption in almost all spheres of life - personal and public, economic 

and political, moral and religious. We can achieve a better moral standard in 

our democratic way of national life if we become more industrialized and thus 

overcome mass poverty and the general feeling of insecurity which gives rise 

to greed.

1



We are witnessing a tremendous value crisis throughout the world 

today. A lackadaisical attitude towards value and Its Institutions Is ubiquitous 

everywhere around the globe. As the vitality of human belief in values is 

dying out in every' land, the younger generation has started to pooh-pooh the 

unique religious epics of antiquity and religious institutions, giving room for 

corrosion of godliness and erosion of spiritual and moral values. As a result, 

the mind of man has been laciniated and divided into small fractions and 

fragments which makes the value content of human life a diminishing factor In 

modem times.

The reappearance of barbaric qualities of selfishness, clashes and 

conflagration and other destructive forces which are burning the society, give 

clear indication of the degenerating process of human society. Now, there is 

an urgent need for a great effort to revive and reform the values of human life 

and to rejuvenate the foundation of the new civilization.

Concerted efforts and continuous dependence on good books and 

institutions will give students sterling and inspiring qualities of concentration, 

infinite love, justice, honesty, purity, selfishness, wisdom, . faithfulness, 

humility, forgiveness, mercy, trustworthiness, respect for others, obedience, 

sincerity and a host of other virtues which are sine qua non to build the 

equipment of life. This should be the central theme of value education. 

Whatever be the cause of the present value crisis, there is no gain - saying 

the fact that the weakening of moral values in our social life is creating serious 

social and ethical conflicts. It is this changing context - the declining moral 

standards in personal and public life on the one hand, and the national 

ideological commitment to the values of democracy, socialism, secularism 

and modernization on the other - that constituted the driving force behind the 

recommendations stressing the importance of value education in educational 

institutions.
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While there Is general dissatisfaction with the fall In moral standards of 

both young and the old and disenchantment with the disregard to moral 

values witnessed in personal and public life, there has been no concerted 

attempt on the part of the society to address itself squarely to the problem of 

value education. Unfortunately, education Is becoming day by day more or 

less materialistic and the value traditions are being slowly given up. A 

modem Indian is being educated mainly with the bread and butter aim of 

education; as a result most of cur graduates run after money, power and 

comforts, without caring for any type of value.

The degeneration in the present day life, the demoralization of public 

and private life, the utter disregard for values, etc. are ail traceable due to the 

fact that moral, religious and spiritual education has not been given due place 

in our educational system.

The Education Commission of 1964-66 says that ‘a serious defect in 

the school curriculum is the absence of provision for education in social, 

moral and spiritual values'. In the life of the majority of Indians,- religion is a 

great motivating force and is intimately bound up with the formation of 

character and the inculcation of ethical values.

A national system of education that is related to life, needs and 

inspiration of the people cannot afford to ignore this purposeful force. Value 

crisis of the present day life is baffling the minds of educators and the 

educands as well. The effect of the value crisis on present day life is 

witnessed in the following :

• The democratic ideology that has been accepted by our country is yet to 

be actualized in the form of social and economic democracy as to realize 

democratic values guaranteed by the Constitution of India.
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• The individual is becoming a prey to the contradictory values and is 

being convened as a consequence Into an extreme radical, a 

reactionary, a skeptic or cynic.

• The present Indian educational system is reflecting more or less 

borrowed ideologies and philosophies and the national values are 

relegated to the back.

• The teacher-educators and teachers are not being clearly oriented to 

the national values and ideas, ideal and ideologies that they have to 

inculcate in the students. Hence, they are not in a position to play their 

role as value educators.

• The student community is drowned in neck-deep poverty, ignorance 

and unhealthy surroundings. Hence, they are not in a position to 

comprehend the real values of our contemporary India.

• Our curriculum does not reflect human values and the value system, 

hence our schools and colleges have become examination centers and 

not value centers.

The problem with value education, it appears, is that while everybody is 

convinced of its importance, it is not clear as to what if precisely means and 

what it involves. In our educational reconstruction, the problem of an 

integrated perspective on values is pivotal, for Its solution alone can provide 

organic unity for all the multifarious activities ,of a school nr college curriculum 

programme. An Inteorated education c-an provide for Integrated Growth of 

personality and integrated education Is not possible without Integration of 

values.

In value education, as in any other areas of education, what is asked of 

the teacher is a total commitment to the development of rational autonomy in 

both thought and action.

It should be noted that the most important aspect of value education 

consists .not in unwilling adherence to a set cf rules and regulations but in the
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building and strengthening of positive sentiments for people and Ideals. Value 

education should prepare Individuals for participation In social life and 

acceptance of social rules. What Is more Important In value education Is that 

schools should provide a healthy climate for sharing responsibilities, 

community life and relationships.

The new National Curriculum Framework for School Education (NCFCE) 

prepared by NCERT gives uppermost importance to Value Education in 

schools. NCERT has been contributing richly to the area of Value Education 

by way of organizing inservice education courses for key level persons, 

preparation of instructional materials, etc. The RIE, Mysore under the 

Coordinatorship of Dr Prahallada has brought out a SSS page material titled 

"TREASURE TROVE OF VALUES’ which consists of Anecdotes, Fables,

Stories, Legends, Biographies and Folk Tales related to values which will be 

of great use at primary stage.

Also, 115 page Package on Value Education has been brought out by 

RIEM consisting of importance cf Value Education, approaches to Value 

Education, Lesson Planning in Value Education. The package wiil be useful 

for the teachers for the inculcation of values at primary school stage.

Regional Nodal Centre on Value Education at RIEM

The NCERT, New Delhi has been identified by the MHRD (Department 

of Education). Government of India as the nodal center for strengthening 

value education in the country at school level. Subsequently, a National 

Resource Centre lor Value Education (NRCVE) has been set up in order to 

plan and implement programmes on value oriented education. NCERT, Mew 

Delhi has launched a National Programme for Strengthening Value Education. 

This programme has been visualized as a national level initiative to sensitize 

parents, teachers, teacher educators, educational administrators, policy 

makers, community agencies etc. about the need for promotion, of vaiue
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oriented education. The focus of the programme is on generating awareness, 

material development, teachers training, development of school programmes, 

promotion of research and innovations in the area of education of human 

values and development of a framewbrk of value education for the school

Sweiorri j Oivi I I.

In this context, a Regional Nodal Centre (RNC) has been set up at the 

RIE, Mysore from September 2002 which will be responsible for linkages 

networking, monitoring and follow up etc. at the State, District and grassroot 

level for implementation of value education programmes. The Centre will take 

up the responsibility of organizing National Consultation and Regional 

Workshop on Value Education with focus on strategies of awareness 

generation, matenal development and teachers training. The RNC comprises

of representatives drawn from SCERTs, lASEs, CTEs, DIETs, NGOs, School 

Eoards, Bureau of Textbooks and eminent professionals/educationists from
tiie southern states.

Dr N N Prahallada 
Reader in Education
Donir»pI I r»e+»f i i+ts nf

Education (NCERT) 
Mysore 570 006

6



THREE DIMENSIONAL GEOMETRY

1 . Lines in Space

2. Planes anc Sphere

by
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THREE DImEHSICHmL GEOMETRY

The applications of vector algebra in three cimensional 
geometry are given in these lecture notes. Ahe reader is requested 
to learn the techniques of vector algebra to see how the coordinate 
geometry can be made simple with the help of vectors. He is also
requested to translate these results to the Cartesian form also.

The derivation of the formula for the shortest distance between 
two lines in space may be read only by keeping the teaching aid 
(aiscussed in the lesson) by the side, so that the concepts may 
become more clear.

Thera will be two parts cn the applications of vectors; the 
first will ceal with the lines in space while the second with the 
planes.

I. Lines in Peace :
that the position vector of 
is given by

unit vectors in three 
cocrciraates of the point

Lenoth of a vector: i«e have already seen
, . 3any point P m the 3-dimensional space R'

-t
r = xi + yj + zk where i,j,k are the 

perpendicular directions and x,y,z are the 
P. The position vector

r = xi + yj + zk

can also be written as r = (x,y,z) 

The length of the vector r is given by
|r| = >/ + z'

Distance Formula :

From the triangle 0.^3,
it is clear that 
—s. —*r
AB =03 - QA.

8

This is the way to express any
vector —>
If Ort = r1 and OB = r2
where r = (x,y ,z) and r^ = (x

—> —f —s
Then, r = = r,> - 'V



-A>
= 1 r - r l x2

= \A x2_x1 * (y2"Y1 ) ^z2 _

This is callee the distance formula.

Section Formula : tie find the position vector of the point which 
divides the line joining two given points in the given ratio.

Let h and c be any two points in the 3—dimensional space whose 
position vectors are a and b respectively. Let P be tne point 

which divioes the Line segment mB such that AF i ^3 = r?.:n. V<e 
wish to find the position vector r of tne point P. Without loss 

generality, we can assume that 0 is the origin.

a = x,i + y,j + z,k 

b = x2i -r y2j + z2k

Let r = xi + y j -»■ zk
Since p divioes aB in the ratio m:n, we have

*2 = £•
P3 n

Here m/n is positive or negative according as, P divides AB

internally 
From the a 
i.e. n (r 
or (n+m)

or r =

or externally. 
Pove, we get n.
- "a ) = m. (b - r)
r = m b - n "a
n a + m b

n + m

m. PB

This is called the section formula in the vector form.
If we substitute the Cartesian coordinates

r = xi + yj + zk
£ = x,i + Y,j + z,?.

b = xi + y j + z~k z 2 z
in the above result, ano compare the coefficients of i,j,k, we get



X
mxQ + nx^ 

m+n
v = my2 + ny ] 

m+n
mz2 + nz 1 

2 = m+n

which is the section formula in the Cartesian cooroinates.

Middle Point :

From the section formula, it is clear that the pcsiticn vector of 
the midcle point of the join 
of two points with position 
vectors a and b, is given by

a + br = —------

Components of a vector :

in the figure,
CM - r cos ?
anc ON = r sin6

where is the angle that the 
vector r makes with x-axis.

X

Direction Ratios of a Vector :

Irr = ai+-bj + ck, then a,b,c are called the a irection 
ratios of the vector r.

+>
Direction cosines : If is the angle that the vector r make s with 
the x-direction, then

-5
r . icos»y =

= (ai-t-bi + ck) . i

t')



Similarly if p anc y are the angles that the vector, 
y—direction and z—direction respectively, then

r makes

cos p Cu)

and cos >< =
.2 2 + b + c

If cos o( = £ , cos c = m and cos £• = n, then

r ' T
i l,m,n are caliec cirecrion cosines.;

If v;e add the squares of (i) , (ii) and (iii), v/e get
,2 2.2.1 + m + n =1

Therefore, the relation between the cirection ratios anc 
direction cosines is

he

/y o + b

e
I i.D

Parallel vectors have eoual direction ratios :

Let v^ = ai + bj ck and if vo is a vector parallel to v^ , 

v^ = for some scalar .

then

Then, vai + b j + \ ck

Hence the direction ratios of v^ are a a.. y 

or a p h ? c •

Like caraiiei vectors have ecual direction cosines :

If v1 = a X + D j -r c k
—■> - s —5 . —*

and v^ is a vector parallel to v,, then vn = A v.z. r i 2 l

ai + /»bi + / ck
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The direction cosines of the are

2 = r
I V, I

•m - k. T) -
ism

Similarly the direction cosines of the
\o^

1 A1-*. I

i.e.
I A ’J, \

a
i i^.i

>5 

I A’j, I

C

)X I

Also, it is clear that unlike parallel vectors have equal (and 
opocsite sign) direction cosines.

Example:
1. for the vector r = 2i + 2j - k, the direction ratio is 2:2:-1

2 2-1ano the crrection cosines are —— , ----- ,-----
lrl M lrl

, 2_ 2_ xi
3 ’ 3 9 3

It means that the vector r = 2i + 2j - k makes the following angles 
with i direction, j direction and k direction respectively.

cos"' ( j cos"1 t 3 ) cos"1 ( - )

2. The vectors 2i + 2j - k ana 4i + 4j - 2k have the same direction 
ratios and direction cosines. (They are parallel).

3. The vectors 2i + 2j - k and '-4i —ij + 2k have the sane direction 
ratios. They have airection cosines equal in magnitude but opposite 
in sign. (The vectors are unlike parallel vectors).

4. Show that the points a(2,3,4), B(-1,2,-3) and C (—3 , 1,-10) are 
collinear.
There are several ways of answering this question: we can show that 
the area of the triangle ABC is zero or we can also show that

| Zc 1 = | BC | = 2 | AC |

But it is easier to show that the direction ratios of AB and SC are 
equal (or proportional).



Direction ratios cf AE are (-1,-2): (-2-3) : (-3-4) 
i.e. -3:-1 : -7

Direction ratios of EC are also -3:-1:-7.
Hence AE is parai_ei to "§2, snowing that a,E,C are collinear.

^ncle between rh.e vectors : The ancle between the vectors can oe 
founc out by acclyina the formula

-r
a |b I CCS

a . b

Vectorial Eouaticn of a line in Lcace :

Vie find the vector equation of the 
iine z\B wnich passes through a given 
fixed point ,, anc is parallel to a 

given iine L?.‘, (veccor b).

lake any point C, as origin of 

reference. Let a oe the position
—“z»

vector of the giver, point z\, let o oe any vector parallel to the given 

iine ,xB.

Let r, be the position vector of any point P on the given iine 
V.e have

r = C?
—> 
/ d"= Oa *

— a ■+• nF
The vector , being parallel to the vector b, must be of the form —

zvF = t b for some suitable scalar t.

Therefore,
r = a i- t b

is the recuirec ecuation of the straioht line



Cartesian For?, : To gee the Cartesian fern of the above equation,
we can substitute the cooroinates of the points 
or put r = xi + yj + zk

1 = a]i + a2j + a3k
—A
b = b1i * b^j + bqk

Then we get

xi + yj + zk = (a1 i + a, a~k ) + t (b. i + bo j i- bqk)

Hence, (comparing coefficients of i,j,k), we get

x - a y - a, z - a.

3

The cartesian ecuaticn of the line is

x - a.i
~b~;----

y - a, z - a^

Equation of the straight line through given two points :
We 'wish to fina the equation of 
the straight line which passes 
through the two given points A 
and 3.

take any point 0 as origin. Let a and b be the position vectcr s 
of the points A ana 3 respectively.
i hen the line m3 is parallel to the vector b - a. It passes through 
h.. Hence the ecuaticn of the line m3 is given by

where A is a parameter.A( b-I)= a +

Cartesian Form : The cartesian form of the above equation is 
obtained by putting

r = xi + yj + zk 
a = a«,i + a2j + a3k 
b = b^ + b^j -t- b3k

and comparing the coefficients.
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xi-ryj + zk = £ °2:-oJ + 2 3k ~ b2J' * b2k) ”

( £ - 1 4 £oj 4- £~k) }

= ► a2J

Hence we aet
X-£ «

- a^k - z\ —a 1 )i + (b^-a„)y -r (b^-a^)

y—a.
z\

kt

C 4 — £ 4I I

The cartesian form of the eauation is

X-i
c1 al r^-a,

T • ! • • . . .,3Linearly rnceoer.cent vectors m H :

are said to be linearly
beina scalars,

L-efinition: Three vectors a , b, c in
inaepenaent if o. a + / b + }f c = 0, 0/
implies o - Z5 4 y 4 0. "^ke vectors are said to be linearly
aepenoent if they are not linearly inaepencent. In other v.crcs,

—* “■"* —■*>
the vectors a, b, c are said tc be linearly dependent if there 
exists some non zero scalars p , y such that a *.$ b 4 r c = 0

For example, tne vectors a = (1,2,1) b = (2,2,5) c = (<,7,7) are
linearly dependent ( cK =2, 6 =1, ?f=-1 ) . Let the vectors 
a = (1,2,1) anc b = (2,2,5) are linearly independent.

Theorem: n necessary anc sufficient condition for three points with
—| -* —>5

position vectors a , b , c to be collinear is that there exists 
scalars 0/ 3 , y not ail z ero, such that

-4c{ a 4 p b 4 y c = 0 

Proof: (Sufficiency par.)

Let there be scalars oC , p , y not all zero, such that 
c^a4(&b4yc =0, t ,G -t h - O

without loss cf generality, v.e take 7£ / 0.
Then c/ 4 3 z - y pH 3

I-. is given that .

=> * a Ii z, = - r c.



c.
- y

d

—>
Here we have shown that c is the position vector of the point £ 
which civides the line joining the points A (with position vector "a)
and the point B (with position vector b) in the ratio 3 •

J ' •
Thus the points A, 3 and C are coliinear.

Necessarv p,.r Let the points A, 3, C be coliinear. The

Then T = ; t Po.

position vectors of 3, C are T, b, c respectively.

We can assume that the point C divides the line segment A3 in 
the ratio o( • p

rj? >L
-t p

Put r 3
Then we get , —> _ -*«, —5 J ol a t ~y tf j t P , *3 C ;O S«L *+|‘f ^-O .

Hence the proof.

Note: 1. We have proved that if the points A,3,C are coliinear then,
the vectors a, b, c are linearly dependent. In other words, if the 
vectors are linearly independent then the points need not be coliinear.

2. It is easy to see that the vectors a and a are coliinear as well 
as linearly independent.

3. If a and b are two non zero non coliinear vectors, then they are
linearly independent. For, if they are linearly dependent, then there 
exists non z ero scalars p such that a + 6 6 = 0.

If o( O then a = ~ ? 5
<X

which indies that a and b are coliinear, contrary to Ol1T- „ x ,Z M uUr assumption.



£. In the sene way we can prove that if a, b, c are three non
zero non coplanar vecrcrs, then they are linearly inaepencent.

^ncle petv.eer. any two lines :

Let rk = £, - zb1
and r?j = a, b.

be any two straight lines 
be fccnc out as fci-ows :

space. Then the angle between them can

The angie between r. and ro is equal to the ancle between b^ cn~ b,

But fc, . b2 = |b,J |t2| cos 6 
b. . b_

ccs h$ =
1

■ anc rZis the angie between •
The aocve method can oe apciiec even if the equations are in the 
Cartesian form.

indicate that the twoLore: The angie calculated above Goes not i
isnoc In fact, the angie > is the anciestraight lines intersect, 

between the uirecticns cf b. anct _

Skew Lines : in the plane, whenever two st.aicnt lines are not
parallel, then they intersect at some point. But the situation is
cifferent in the space. There can oe straight lines which are
neither parallel ncr intersecting. Such lines co not lie in a
sincie olane; anc are called skew lines.

.3Lefiniti'-n: 1 wo straight lines in which are net coplanar are called 
skew lines.

Lefiniticn: The length cf the common perpendicular to the skew lines
is called the shortest cistance between the skew lines.

Note: The teacher can make the iceas of skew lines clear with the
help of a teaching aia aescribea here: Take two rods AB and CL.
Tie one end of a tnreac tc a point F on AB and the other end to a 
point c on CL. Hole the rods mB and CL at different levels and make



w

pq perpendicular to both AS anc CD. (AB anc CD need not be 
parallel). New |pq| is shortest distance between the lines

To find an e xore s sion for the shortest a is t anc e

Let the skew lines be
r, = a, £

A

anc r^ = ao b, £,

Since PQ is perpendicular to both 
b1 and bQ, it is clear that PQ 
is parallel to b, x b^

The unit vector n along PQ is riven by 
— b. x h1n =

I b1xb2 I

Let Pq = d n where d is the shortest distance between the given 
two skew lines.

Let S anc T be any two points with position vectors a^ anc a^ 
on the lines m3 anc CD respectively. If 9 is the ancle between 
PQ and ST, then PQ = ST cos

This can be reaiizec by taking the projection of ST along the 
direction of Pq.

Then
cos 9 PC . ST

|PC|
-o

dn . (=2 - a,)
d |ST| 

d (b1xb2) (a2 - a1 )
b, x b I d |iT|

__ (b1xb2)
|b,xb2|

(a2 - a1}

|ST|



c = PC = ST Cos
_ (b1xfc2) . (a2-a,)

lb1 x fc2 I
(The distance a is tc be taken

• • (A)

as Dcsitive)

Solve: Examples:
1. Find the shortest distance between the vest; 

i + j + /\ (2i + j + k)
rs

‘V *and r2 = 2i + j - k + k1 (2i _ 5j -h 2k)

Ans: Here in this problem, 
= i +T - - - j ,
= 2i + j - k,

b, = 2i t j + k
bo = 2i - bj - 2k

Substituting these values in the formula (n)
_ (b,xfc ) . (a,-a.)a =

1 b, x b2 I

figure is the shortest distance
between the lines



13

d = (a2 - a]) sin T 

3ut we know that

f Cl i — CL, ) x
111

• ..(1) from the triangle ABC.

Hx-s, j\£- 8.r
1 A i

3 ince d 
values

d =

is always considered to be positive, 
of sin C in (1 ) , we get

(a2-a,)
a2~a1

(a2-a,)
b
b|

substituting the

b

M
(4)

2. Find
_ rs

and ro = 
distance

the angle between the

(i-j + 2k) +^(2i -r 4j 
between them.

pair of lines r'1 = 4i-j -r^(i+2j-2k) 

- ak). Also find the shortest

nns: Note that the lines are parallel to the vector i-r2j - 2k 
and hence the angle between them is zero. Both are of the form

Jl = a, + / b 

r2 ~ a2 + b

hence this problem cannot be solved by the method we adopted for 
problem 1. Now we use the result (2) •

d = \-fbT x (a2-a1}

\ (j 2 j - 2k) x (i-j + 2k) ” (4i-j) ]
\ 1i+2j-2k)|

_ ) (i+2j-2k) x (-3i + 2k) j 
“ I 3
=«/3 i (4) + j (6-2) + k(6) |

= -PbQ 
3



3. rind the shortest distance between the pair of lines

r = i-j - k + (2i-j) and
r = 4i - k + (2i + 3k)

Also fine whether they intersect.

«ns: Substituting in the formula (1), we can see that the shortest
cistance is

c = X i2i-3k? . (31--)
' I b, x b2 I

_(-3i -9i + 2k ) . (3i-j)
I fc, x b2 I

-9 + 9
9Z

= 0
The given lines do intersect.

4. Determine whether the following lines intersec 
x—1 V4-1

x-1
□

v-2
1 ,2 = 2

ans : x he first set of equations can be written as (when we take 
the common ratio as X )• 
x = 2 a- 1 r = xi + yj + zk
y = 3 \ -1 = ( i-j) + X (2i+3j+k)-------------- z' >
z = X<

Similarly the second set of equations con be written as 
x = 5 ft -1
y = 1/f +2

z = C'< +2 r = (-i + 2j + 2k) (5i + j) ——------
Dow as m exercise (2) above, we can show that the shortest distance 
d between the lines (1) and (2) is not zero. Hence they do not 
intersect.



5. rind the angle between the pair of lines with direction racios 
1 ,1 12 and J 3 — 1 , •■yu — 1 , 4.

Ans: The vector equation of the 1st l_ne is given by 
r^ = 1i + 1j + 2k

and the second line is given by

r2 = (J"3 -1) i + (- J3-1 ) j + 4k

The angle between the two lines is given by

I I I ” I1-11 l-2l
(i-j+2k) . (,,<3-1)1 + (—’3 -l)j + 4>)

lr,l lr2l
J 3-1 -r - Ca - 1 + 3

= 7 2

rtssionments Seif Test :

1 . r inc the angle between the pair of lines wncse direction racaos
i) 1,2,-2; 2,4,-i
ii) 5,-12,13; -3,4,5
iii) 1,2,1; 2,1,-1

2. Determine whether the following pairs of lines intersect :
i) r1 = 3i + 2j - 4k + >(i + 2j + 2k)

and r^ = 5j - 2k -r (3i -t- 2j + 6k)

ii) X+4 v_1 z+3
3 = 5 “4

and x+1 
1

z-5
21



3. Find the anci e between the lines

i) r, = 3i 4- 2j - 4k + A (i •*- 2j -
and ro = bj - 2k + *(2i + 2j 4- 6k)

ii) x— _ v- 41 _ cx-n X - 1
1 1 2 i

4. Find the shcrtest distance bet we
cirection rat ios are

1,2,-2 anc O / z, — •

5. Find the shertest distance be tw

= i+j + k ~ /> (3i-j)
and rc = 4i - k m (2i + 3k)

'u _ <r
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P L J J £ :

M plane is completely determined by any one of the following ;
i) Three non collinear points.
ii) n line and a point net on the iine
iii) Two intersecting lines
iv) Distance of the plane from the origin anc a normal vector 

to the plane.
v) m point on the plane anc a normal vector to the plane.

Here we fine vector equation of the plane for some of the above 
cases.
1. Fine the vector equation of the plane thro .gh a given point 

and perpendicular to a given direction

Let A be the given point with 
position vector a, through which 
the plane ErGH passes. Let "m be £
the direction which is perpenci- 
cuiar to the plane ErGH.

we want to find the ecuation of the plane 

Let P be any arbitrary pcint cn the plane,

1 • H
? /

A
I A1 \

ErGH.
-o

whose oosition vector is r.

= r — a

The plane is perpencicuiar to m

is the vector equation of the plane ErGH.
Example: Equation of the plane passing through the point (a^,b,,c^) 
anc perpendicular to the iine with direction ratios a, 3, C is given by

(r - (a^i + b,j + c^k) . (ni + Bj + ck) = 0

If we wish to have the Cartesian equation, then take 
? = xi + yj + zk

we get
(x-api + (y-b^j + (z-c^k . (Mi + Bj + ck) = 0

1. e. A(x-a^) * 3 ('.-t^) + 0(2-^) = 0
is the equation of the required plane.

2. Find the vector equation of the plane perpencicuiar to a given 
direction and at a given cistance from the origin:



Given that the plane EFGH is 
perpendicular to n, and the 
ci stance ON = d from the origin. 

Consider the vector NF.—* -9
NF = r - d n
nlso NP is perpendicular to n - “*• —♦
Therefore, NP . n = 0

i.e. (r - an) . n = 0
’ —*> —* Tr . n = c i Since n . n = 1

is the required ecuation.

Cartesian equation ;

and n = li + mj + nk,
Put r = xi + yj + 3k 

then we have (xi + yj -r 3k)

i.e. 1 x -h my t nz = d j is the required equation 

the direction cosines of the normal to the plane

(lit mj + nk) = 

where l,m,n are

3. Equation of the plane passing through given point and 
perpendicular to the given direction’.

The plane passes through the point 
A (position vector a) and perpenai- 

cular to the direction n .

Lei F be any arbitrary point on the
plane, with position vector r.

«•>
Then is Deroencicular to n civen

r—~~;~-----------
(r - a) . n = 0

This is the required equation.

4. Equation of the plane passing 
parallel to two given lines?

Let a be the position vectc r of
the point through which the
plane passes. Let b and c be the
vectors parallel to aB and hC .
Let P be any arbitrary point on the
plane (position vector r).

—-r- —*
Then, OP — Om + /\P.
This can be written as________________

r = a + t b +

through given point and

©



n

where t and p are some scalars.

5. Equation of the plane through three given points :

Let a , b, c be the position
vectors of three given points
A,0,C on the plane EFGH.
Then AS = b - a

AC = c - a
if P is any arbitrary point on the plane, 
whose position vector is r, then

r = a + t (b - a) + p ( c - a)
where t and p are some scalars.

r = a-t-t(b-"a)+p(c-a) 
is the required equation.

Example: Find the equation of the plane through the points
A (2,2,-1), 3(3,4,2), C(7,0,5)

Ans: r = a + t(b - a) + p(c - a) is the equation.

To find the scalars t ano p we can follow the following method ; 
(x,y,:) = (2,2,-1) + t(1,2,3) + p(5,-2,7)

t + 5p = x-2 
2t - 2p = y-2 
3t + 7p = z+1

Solving any two equations for t and p ano substituting in the 
thiro equation, r?e get

5x + 2y - 3z - 17 = 0
which is the required equation of the plane. (See the textbook 
for an alternative methco).

Angle between two planes :
L et r . n<J -

Let a plane P ano let r . n^, = d^

be another plane C where n1 and n^ are perpendicular to the planes 
P and Q.
Then the angle between the planes P and Q is the angle between 
their perpendiculars. If P is the angle between P and C, then



cos & =

The planes are parallel if = n,

nficle pexweer, a line anc a olane :

Let r = a + z\ b
be the line v.hich makes

= Cand perpendicular if n 1 ” n2

an ar.cle C 
r . n = c

with the olane

/

From the figure, it is clear that

cos <r = -—1——
' _ |b>

Since p - — <x>

V/e have Sin b = Cos p
*-*■ .-A

Sin b = -n—
I b I

where E' is the ancle between the line and the plane.

Distance cf a point from a Plane :

A «

O

/
I
i



Let 1^ be the plane ana P be the given point. v<e wish to fine the 
perpencicular distance from P to 1^.

Consider a plane 1^ through the point P and parallel to the 
plane 1 .

If r . n = d is the equation of the plane 1 , tn.en
-- -a -n

(r - a) . n = 0 is the equation of the olane lc 
(because the unit vector n is perpendicular to 1 also}. The 
equation of lo can also be written as

r . n = a . n
-a

This means that a.n is the peroendicular cistance of the plane 1^ 
from the point C.

Therefore, the cistance from P to the plane 1^
= the aist ji ce between the two parallel planes
= Cl’. - cri
= a . n - d

The cistance from P to l^ = |

Alternative Method :

Let a be the position vector of 
the given point ana let

r . n = a .... (1)
be the equation of the plane 1.. 
we want to fine the aistance rtL 
where L is the foot of the perpen 
dicular from a on 1^ .

The equation of the line 
given by r = a + t n....(2)

through
where

A and normal the plane 1^ is 
t is scalari

To fina the position vector of the point L, we solve (1) ana (2).
i.e. At the point of intersection of this line with the plane, we have

(a -r t Ja ) . n = q 
r a - nso that t



The position v e c r c r z: L is given by
— o • n

n2
n

The ler.orh Zvl

~ - a . n n - a !

r* _ X n I , for = I n | 2 = 1

Solved -xercises :

1. Show thar rhe lore 1 whose vector equation is
r = x_i - I; - 2k) + )\(i-j-r-k) 

is parallel re rhe olane r . (i + 5j + k) = 5 
and fine the oisrar.ee oerween them.

r\ •
Ans: If is rhe angle oerween the line anc the plane,

r
then

Sir. J =9 - i- -
J 1£

+ k) = Q
J 27

P = 0. They are parallel. 

The disrance = I a . n - o

= . 2i-I; -2 k). ( i+b_i+k )
J27*

= 10
J 27

V 27

oisrar.ee


2. Show that the plane whose vector equation is 
r . (i + 2j - k) = 3

contains the line whose vector eciuation is

r = i + j + (2j + j + 4k)

Ans: Sin p = • U+2j -k?L XXX
= 0

Hence the Line ano F lane are parallel.
The distance = I • n “ d I

= (i+j ) . (i+2j-k) 3
jT 7T

1+2 3
jy ■JlT

= 0
Hence the line Lie s on the plane.

3. Finci the vector equation of the line passing through (3,1,2)
and perpenaicular to the plane "r . (2i - j + k) = 4O
Find also the point of intersection of this line and the plane.

Ans: The plane is r . (21 - j + k) =4 .
Hence n = 2l - j + k is perpendicular to the plane. The line has to 
pass through the point (3,1,2).
Hence the equation of the line is r = (3i+j+2k) + J\(2i-j+k)
The point of intersection of the line and the plane will be given by 
solving r . (2i - j + k) = 4 ...(1)

r = (3i + j + 2k} + > (2i-j+k) ....(2>

Substituting (2) in (1), we get 

4 = 6-1 + 2 + > (4+1+1)

X = - y2

The point of intersection is
(3i + j + 2k) + (-V2) (2i - j + k)

= (2, | , j )•



SPHERE
Definition: ihe set of all points in th e space, each of which is
at a constant distance a(>0) from a fixed point C is called a 
sphere.

The fixed point D is called the centre and the constant distance 
’a' is called the radius of the sphere.

Central form of a sphere

Let c be the position vector cf 
the centre of the sphere, of 
radius a > 0.
Let r be the position vector of
any arbitrary point P on the sphere.
Then, |CP | = a ’/o

\ |Position vector of P - Position vector of C.| = a

This is the vector equation of the sphere in the central form. 

Cor 1: In particular
Ir| = a is the equation of the sphere whose centre

is the origin and radius is a.

Cor 2:

= (x-^)i + (y-^2)j + (z-£3) k

3
2

is the equation of the sphere with centre (c., co, cq) and radius a4- W



3

Diameter form of the sphere :
Let a, b be the position vectors 
of the extremities a and 3 of the 
diameter aB of the sphere. Let r 
be the position vector of any 
point P on the surface of the sphere.

——> J»
Then, /\P = r - a 

BP = r - b 0

It is clear from geometry that 
AB . BP = 0 

(r - a) . (r . bJ = 0

which is the equation of the sphere whose diameter is the join of 
a (a) and 3(b).

Cartesian Form :

Let and B(x^,yo,zo) be the extremities of the
diameter aB of the sphere. Let P(x,y,z) be any point on the 
surface of the sphere. Then,

r - a = (x-xp i + (y-y^j + (z-z^k

"r - b = (x-x2)i + (y-y2)j + (z-z2) k

(r - a) . (r - b) = 0 
becomes______________________________________ _

(x-x^ (x-x2) + (T-yp (y-y2) + (z-z^ (z-z2) = 0

which is the Cartesian equation of the sphere whose diameter is the 
join of the points (x^y^z^ and (x2»y2,z2) .

Solved Examples :
1. A plane passes through a fixed point A Show that the
locus of the foot of perpendicular to it from the origin is the 
spheife x +y +z ",/x - py = 0



r11
. 1

/ L_
— 0 /

= 0

tier, of the sphere
3 in 4 unit s .

\, O
J ‘ \ )

N ./ •

Ans:
Let F(x,y,z) be tne feet of the 
perpendicular from C on the plane.
QP = (xi t yj + 3k)
Pz-. = £x- * )i -r (y_ 4 )j - (z-r )k 
CP J. ?r-. can be written as

(x.- i+zk). (x-«')i + <v-/P) j -r (z - 2r ) k
1. e. x^-y"—- x <A - y/S -z < = C

i

2. prove that the racius cf the circular sec
| r ’ = 5 cut off by the plane r . (i-;-rk) = 

Ans: The given sphere is |r; = 5.

The centre is the origin anc the radius is 5.

Tne given plane can be written as 

r . (i > j -r k) _ s

Hence the distance of tne plane from 
the centre is p=3.
i.e. |CN| = 2________

1 n + /
Then UP I = v CP^ - C;.‘^

= '/b2-32 -------

= 4 units

3. Prove that the plane x+2y+2z = 15 cuts the sphere 
2 2 2x +y'+z^-2y—-z -11 =0 in a circle. Fino the centre anc 

racius cf the circle.

nns: i he equation of the sphere is x +yz+zz-2y—4z-11 = 0
Its centre is (0,1,2) and racius r = 4.
The uistance of the plane from the centre of the sphere is

P = 0+2+4-15

1+4+4
f 4= 3

ter.’. The plane cuts the sphere in circle



z

Then,
radius of the circle is 
= MP______

-“O
X

Let ( J. T) be the coordinates of M- N lies on the plane 

< + - i s' - o

Also CM is parallel to the normal to the plane.

_ Ld__ y-2 _= k1 “ 2 " 2 

o/ = k, = 2k + 1 , = 2k+2

Substituting these values in the above, v/e get 

k + 4k + 2 -» 4k + 4 - 15 = 0

k = 1
<A = 1, =3, y =4

Hence the centre C U»3,4)

and the radius is 7.



PROJECTS IN MATHEMATICS

Prof N M Rao

1. Area of the Circle

Objective : To find the area of the circle by using the area of small sectors.

Description :
\

Take a circle of radius r. Consider a sector of the circle of arc length 1 and divide

The total area of the sector of arc length 1 = n ( '/: rb)
= Yz r (nb)
= */2rl 
since 1 = nb

In the same way, the area of the circle = Yz rc. where c is the circumference of the circle.

Area of the circle = Yz rc
= Yz r (2 it r)

Pentagonal Numbers

Objective : To enable the students to acquire the knowledge of pentagonal numbers.

Description:

Numbers can be represented in certain patterns. One of the patterns is by 
representing the dots. The below shown are the pattern of pentagonal numbers.

1



*

X x. .

\ /
• • — • •

• •

1 5
2 2

1.5.12.22,..... are called pentagonal numbers. These pentagonal numbers are obtained by
adding triangular numbers and square numbers. The pattern thus formed with these 
numbers are

:ii igular Numbers

1
J
6
10

Square Numbers 
1
4
9
16
25

Pentagonal Numbers 
1
5
12
22
9

pictorially they can be represented as

A *

I

*-- •---• --- «

• •

2 _c1+4 e-ie

he bindis can be pasted on chan paper and the patterns of the pentagonal 
nurr rs can be enjoyed by the students.

The students can be asked to guess the next pentagonal numberand verify it 
afterwards by adding the corresponding triangular and square numbers.
The students can also be asked to find a formula to represent the triangular, 
square and pentagonal numbers



3. Tetrahedral Numbers

Objective : To enable th students to acquire the knowledge of the development of fifth 
tetrahedral number through Pythagorean, triangular numbers.

Procedure :

The first six Pythagorean numbers are 1,3,6, 10. 15 and 21. They are represented 
as follows:

*

•
4i

\ •
•
*

•
4 •

•
•
•

•

• •

• •

•
•
•

•
•
•

•
• •

• • • • •
• • *— « *- t * • 4 • • • • • • • * • • • • • «

TT T2 T3 T4 75 76

(1 + 2) ( 1 + 2 + 3) ( 1-2-3-4! ( 1- 2-3-4-S) (1 +2 +3+4 + 5+6

- t. = 3 = 5 — * 2 = 15 = 21
Look at the pattern down below and the series in the fourth line :

1 1 1 1 1 1 1
2 3 4 5 6 7 8 The Natural Numbers
3 6 10 15 21 28 36 The Triangular Numbers
4 10 20 35 56 84 120 The Tetrahedral Numbers

The tetrahedral number is buiit up from Pythagorean, triangular
follows :

• — •--- •---- •-----«
\/\/\/\/

• ■ — •---•--- •
\/\/\/•--- •--- «

\/\/\/
•---- •
\/

10 1

L; (l+3)=4; (l+3+6)=10; (1-3-6-10)=20; (1+3+6+10-15)=35

3



Taking clue from the above table, a model of the tetrahedral numbers is formed by 
keeping the patterns one upon the other as follows :

1. Keep one ball on the top step.
2. Below that, keep a step having three balls.
3. Next step contains 6 balls.
4. Next lower step contains 10 balls.
5. The fifth step contains 15 balls.

Now the complete model contains 15 - 10 - 6 - 3 - 1 =35 balls - A tetrahedral 
number is built up from triangular numbers. Similarly any tetrahedral number
can be built up as the sum of triangular numbers.

The students can be asked to prepare a vertical modei of the above. They can also be 
asked to guess a formula to find tetrahedral numbers.

4. Path of Pursuits

Objective: To find the paths of four ants placed at the comers of the square, each one
moving in the direction of the ant in front of it. (This path is called the path pursuits).

Take a piece of stiff card board and mark a square ABCD of side 10 cm. .Mark 
the point Ai on AB at '/: cm distance from A. Similarly mark B,. C] and D; at '/: cm 
from B. C and D respectively. Now mark A; at a distance of'/: cm from Aj. on the line 
AiBi. Bn at ’/: cm from Bi on the line B,Cj and so on. Continue in this way until the 
center of the square is reached. These envelopes are known as curves of pursuit. Since 
they are the paths which four ants originally placed at the comers of the square, would 
follow' if they w'erc always to walk in the direction of the ant in front of them.



1. Can you stitch the path of pursuits on a black coloured cloth using white 
thread ?

2. Where is the point at which all four ants meet each other in the end ?
3. Read the chapter on envelopes and evolutes (geometry) to understand the 

significance of this path.

5. Building Trignometrical Tables

Objective: A simple device can be constructed by the students that will enable them
to make their own table of trigonometric ratios for the sine and cosine.

- x

j.
4.
5.

6.

Draw a line down the center of the strip.
Attach one end of the strip to the center of the circle.
At the other end of the strip. 10 cm from the point where it is attached to the 
circle, make a small hole and attach a piece of thread.
At the opposite end of the string, attach a weight to serve as a plumb line.

The strip OB can be rotated around the point O so that OB makes different angles 0 
with x-axis. The hanging plummet BD cuts the x-axis at the point C. Count the number 
of spaces of length of the cord BC. Since hypotenuse is fixed at 10 cm. we can easily 
determine sine ratio. Sin 9 = BC/10. As we change the angle by moving the cardboard 
strip, we can observe the change in the value of sin 9. Similarly the value of cos 0 can 
also be read by counting the number of spaces of horizontal axis OA. Cos 9 = OC/10.



From this we can get the value of tan 0. cot 0, sec 0 and cosec 0. There may be 
some error in counting the lengths of BC and OC. Therefore, students are asked to 
compare these values of sin 0, cos 0, etc. with the standard values given in the 
trigonometric tables.

6. Solids of Revolution

Objective: To show that various geometrical figures when revolved around a
particular axis give various solids.

How to use this aid
\

The teaching aid consists of a motor and various objects of following shapes :
a) circular
b) parabolic
c) triangular or angular
d) square or rectangular

The objects are fixed to a pen refill, that should be attached to the motor which rotates 
about its axis. We get the following solids of revolution.

AKC op tw£ 
■p L_ A

03 - RE. TILL.

Mc-rc
PA R.ABOLOI&

J



Path of the Moving Chord Inside a Circle

Objective : To illustrate that, the path of the moving chord of constant length inside a 
circle is a circle and to find out the radius of this inner circle.

PQ is a chord of constant length which moves inside the circle of a radius R, centred at 
the point A. What is the path of PQ ? The students can move the stick PQ inside the 
circle and convince themselves that the path of the moving chord PQ of constant length 
inside a circle in a circle. They can repeat the experiment and verify the above fact. It is 
also clear that the center of the new circle is aiso A. What is the radius of this inner 
circle?

To find the radius of the inner circle see Fig. (2). 
In which BD = a (length of the chord)

AB = R (radius of the outer circle)
AC = r (radius of the inner circle)

By Pythagoras theorem,

AB' = AC2 + BC2

1. What happens if the length of the chord PQ is equal to the diameter ot the 
bigger circle ?

2. What happens if the length of the chord PQ is equal to the radius ot the bigger 
chord?

7



8. Conic Sections

Objective: To show that when a right circular cone is cut in four specific wavs we set
conic sections namely (1) circle, (2) parabola, (3) ellipse and (4) hyperbola.

• Hold the model and chart side by side, disjoint the right circular cone at the 
place marked ‘1’ and see that the edge of the surface is a circle i.e. w'e get a 
circle by cutting the right circular cone perpendicular to its axis by a plane.

• Similarly disjoint the cone at the place marked ‘2’ and see that the edge of the 
surface is a parabola, i.e. when we cut the cone parallel to one of its side we 
obtain parabola.

• Disjoint the cone at the place marked ‘3’ and see that the edge of the surface is 
an ellipse, i.e. when we cut the cone at an inclined angle we get ellipse.

9. Logic Box

Objective:To enable the students to understand the conjunction ( A) and Disjunction
(v) of two statements and draw their truth tables.

P A Q = P and Q (Conjunction)
P v Q = P or Q (Disjunction)

How to use the Teaching Aid :

1. Connect the batter)’ to the circuit. The circuit is now ready to operate.
2. The Ps and Qs switches, are connected in the series circuit. The circuit is 

given by



(i) When the switches Ps and Qs are both switched on the light is on 
(TAT = T).

(ii) When either of the switches are off the light is off (T A F = F).
(iii) When both the switches are off, the light is off (F A F = F).

The truth table for the given “And” circuit is :

Ps
____
Qs Ps A Qs

T T . T
T F F
F T F
F F F

This is called the conjunction.
3. Now see the disjunction (v) circuit.

Pp and Qp are connected in parallel circuit. The circuit is shown as

-So

(i) When both Pp and Qp are switched on, the light is on (T v T = T).
(ii) When either Pp or Qp are switched on, the light is on (T v F = T).
(iii) When both Pp or Qp are switched off, the light is off (F v F = F).

The truth table is given by

Pp Qp Pp vQp
T T T
T F T
F T T
T F F

The 'OR.’ circuit is off only when both Pp and Qp are off. This is called the 
disjunction of P, Q (Read as P or Q).

1



Verify whether the following statements are true or false :
1. (Conjunction) : Either 2 + 3 = 6 and 4 + 5 = 9.
2. (Disjunction): Either 2 + 3 = 6 or 4 + 5 = 9 

Justify your answer using the logic box.

10. Magic Square

Problem

Prepare a magic square by putting the given numbers between 1 and 20 in the 
holes of given 3x3 box such that sum of columns, rows and diagonals should be 21.

Solution

The least sum from 3x3 magic square will be 15. a multiple of 3. Let the sum be 
“a”. To find the numbers in the magic square first subtract 15 from “a” divide by 3 and 
add 1.

C will occupy the position of z2. Tne number at x3 will be c + 1. Similarly y2 = x3 + 3,
Z; = y2 - 3 (x3 + 6). From these four numbers we get z3 = a - (zj + z2), x2 = a - (z2 + y2), 
zj = a - (x2 x3), v3 = a - (x3 - z30.

t , 21 - 15Here the given sum is 21. From (1) z, = ---- -----  +1 = 3
3

x3 =3+1=4, y2 = 4 + 3 = 7, Zj = 7 + 3 = 10 or 4 +6=10,
z3 = 21 - (10 + 3) = 8, x2 = 21 - (3 + 7) = 11, y,= 21 - 16 = 5
x, = 21 - (11 + 4) = 6, y3 = 21 - (4 + 8) = 9.
Therefore, a magic square of sum 21 is as follows:

6 11 4
5 7 9
10 3 8

This method can be applied for any 3x3 magic square.



1. Students are advised to try to form a different magic square in which the sum 
is 21.

2. Form a magic square of sum 15.

11. Model of a3 - b3

Objective : This model is to illustrate that

aJ - = ( a - b) a" + ( a - b) ab + (a - b) b:
= (a - b) (a‘ + ab + b~)

Model : There are thrde wooden blocks of the following dimensions as shown :

(i) (a - b) x a x a

(ii) (a - b) x a x b

(iii) (a - b) x b x b

The three wooden blocks can be arranged in such a way that the complete 
assembly looks like aJ - bJ, i.e. a small cube of volume b' has been removed from cube 
of volume aJ units.

Il



The students are requested to assemble the wooden blocks and convince 
themselves about the result:

(a-b) x a x a + ( a-b) xax bj( a-b) x b x b 
= (a - b) a' ~ (c — b)ab - (a - b)b‘
= (a - b) (a‘ + ab + b‘)
= aJ + a“b + ab“ — a2b - ab" - b'
= a3 - b3

12.. Envelopes

Objective: To enable the students to understand the locus of a point and envelope of a
set of lines.

Analysis : A set of points obeying a ruie is called locus and a set of lines obeying a
rule is called an envelope.

Experiment :

Cut a hole whose radius is the diameter of a one rupee coin, in a piece of 
cardboard. Roll the coin, without slipping, round the hole. What is the locus of

(a) the center of the coin ?
(b) a point on the circumference ?

Answer :
(i) If B is any point on the coin, then the locus of B is the diameter of the hole.
(ii) If BE is the diameter of the coin, the locus of E is the perpendicular diameter 

of the hole.
(iii) The locus of A. the center of the coin, is a circle.
(iv) The envelope of BE is an astroid.

L-



13. Tangrans

Objective : To form the geometrical shapes of squares, rectangles, hexagon, 
trapezium, etc. from the given pieces and to improve the mental ability of students.

Construction:

1. Take a square cardboard ABCD of side length 20 cms.
2. Draw the diagonal segment AC as shown in the figure.
3. The points E and F are mid points of AB and BC respectively. Draw

EF. ,
4. G is the midpoint of EF. Draw GD.
5. Construct the line segment EH perpendicular on AC from the point E.
6. Draw a line segment GI, from the point G parallel to BC to cut the line

By cutting along the lines as shown in the Figure, we get tan gram pieces.

How to use

Take out all the seven tan gram pieces. Ask the learner to arrange the given
pieces.

(i) to form a square

(ii) to form a rectangle

13



(iii) to form a hexagon

Objective : This is a wooden model to show that the marbles flowing through a series 
of nails in the form of Pascal’s triangle, will settle down in the shape of a Normal 
Probability Curve.

1
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How to use it

The nails are fixed on a wooden board according to the Pascal’s Triangle as 
shown in the figure. Above the nails, a metal box is fitted to pour the marbles uniformly. 
As we pour the marbles in the metal box. they come and settle in the columns in the form 
of normal probability curve as shown.

Columns i 2z 3 7 8
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Principle

When we pour the marbles at the top, at the first nail, half of the marbles will flow 
by the left side of the nail and half the marbles will flow by the right side of the nail as 
shown :

The marbles coming to left nail in the second row will have two equal 
possibilities to go to the 3rd row, 'A to the left and % to the right. Similarly the marbles 
coming to the right nail in the second row will have two equal chances to go to the 3rd 
row, % to the left of it and 'A to the right of it. Hence in the second row, the marbles flow 
will be as follows : 'A in the left, ‘/< + 'A = Vz in the center and 'A in the right. Similarly in 
the third row, the marbles flow as follows : 1/8, 3/8. 3/8 and 1/8. If we continue in this 
way, in the eight row marbles flow as follows:

1 8 28 56 70 56 28 8 1
256’ 256’ 256’ 256’ 256’ 256’ 256’ 256’ 256

In other words, if we pour 256 marbles from the top. then in a normal case, the 
number of marbles setting in each column will be as shown below.

15. Relation between the volume of sphere and volume of cube, constructed from 
the sphere

Objective: To see the relation between the volume of the original sphere and the
volume of the interior of the simple cube constructed from the sphere.

How to use:
Take a sphere of radius ‘R’ and cut the sphere into eight equal parts as shown

below:

b



coT i nTc Foul?

Join them from the raverse direction to form an object similar to a cuboid as 
shown below . Note that there will be some empty space in the middle of this cuboid.

The comparison is between the voiur... or tne sphere and volume of the interior 
(empty space) of the constructed simple cube.

Volume of sphere = — z R:
3

Volume of cube = (2R)3 = 8RJ

Volume of the interior empty space of = 8R? - R-.
3

oz r . , , 8tf3 - (4/3) nR3
% of emprv space in the cuoe =---------- ---------------- x 100

(4/3) xR3

= ' x ioo

Note that this expression is independent of R.
The percent of empty space remains the same, even if the diameter of the sphere changes.

If



16. Pythagoras Theorem (Perigal’s Dissection Method)

Objectives: To show that in a right angled triangle ABC, AC' = AB2 + BC2 where AC 
is the hypotenuse, by the Perigal’s Dissection Method.

Procedure :

There is a wooden model and a chart. In the chart.

ABC is the given right angled triangle. BCRS is the square on the side BC. 0 is 
the point of intersection of the diagonals BR and CS. Draw a line parallel to AC through 
0. Also draw a line perpendicular to AC through 0. They divide the square BCRS to 
four parts 1,2.3,4 as shown in the figure.

a, b, c. d are mid points of AC, CP, PQ and QA respectively. Draw lines parallel 
to the line AB through a and c. Draw lines perpendicular to the line AB through b and d. 
These four lines divide the square ACPQ into five parts 1,2,3,4 and 5 as shown.

There are five plastic cut pieces which are congruent to the shapes 1.2,3,4 and 5.

Place these plastic pieces numbered 1,2,3 and 4 on the square on BC and piece 
numbered 5 on the square on AB as shown in the figure.

Now place the same five pieces on the square on the hypotenuse AC. The five 
places exactly fit in the square on the hypotenuse (the areas are equal).

The above method justifies that

AC2 = AB2 + BC2 

Remember that it is not a proof.

17



The teachers and the students are welcome to give a mathematical proof for the Perigal’s 
method.

17. Pythagoras theorem (Bhaskaracharya’s Dissection Method)

Objectives: To show that in a right angled triangle ABC. AC' = AB' - BC' where AC 
is the hypotenuse, by Bhaskaracharya’s Dissection Method.

ABC is a right angled triangle. ACPQ is the square on the side AC. Draw lines 
parallel to AB from the vertices Q and C. Also draw lines parallel to BC from the 
vertices P and A, and hence divide the square ACPQ into four triangles congruent to the 
triangle ABC and a square in the center w'hose side length is (BC - AB) as shown in the 
figure.

Now,

Area of the square ACPQ
= 4 (1/2 x AB x BC) + (BC - AB)2
= 4 (1/2 x AB x BC) + BC2 + AB2 - 2BC . AB
= 2 AB. BC + BC2 + AB2 - 2AB . BC
= BC2 + AB2

.-.AB2 + BC2 = AC2



By keeping the wooden pieces in the appropriate places, the students can convince 
themselves that the result is true.

Now try to give a complete mathematical proof for Bhaskaracharva’s method.

18. Pythagoras Theorem (Chau Pei’s Dissection Method)

Objectives: To show that in a right angled triangle ABC, AC' = AB2 + BC2 where AC 
is the hypotenuse, by using the expansion of the expression (a + b)2:

This teaching aid cbnsists of a chart and some wooden cut pieces.

In the right angled triangle ABC, the lengths of the sides are a. b respectively while tne 
length of the hypotenuse is c.

Take a plastic square piece PQRS of side length a - b as shown in the figure.

Then TUVW is a square whose side length is c.

Area of PQRS = (a + b)"
= a2 + b2 + 2ab (1)

Area of PQRS = Area of the square TUVW - 4 (Area of the triangle PVW) 
= c-+ 4 (1/2 x a x b)
= c2 + 2ab (2)



From (1) and (2)
a" + b: + 2ab = c" - 2ab
a - b = c
AB2 - BC2 = AC2

Bv keeping the plastic pieces in the appropriate p aces, the students can convince 
themselves that the result is true.

The students can also be asked to prove mathematically that the four triangles are 
congruent to each other. Probably this method was adopted by the Chinese 
Mathematician Chou Pei (AD 40). Please see the book “History of Mathematics’ by 
Smith.

19. Fibonacci Sequence

Objective: This is a model, to show the physical meaning of the 'FIBONACCI
SEQUENCE’.

The Fibonacci sequence is 1. 1,2. 3, 5. 8. 13, 21, 34, 55, 89.......

The Problem :

The problem can be stated as follows. A man brought a pair of rabbits and bred 
them. The pair produced one pair of offspring after one month and a second pair of 
offspring after the second month. Then they stopped breeding. Each new pair also 
produced tow more pairs in the same way and then stopped breeding. How many new 
pairs of rabbits did he get each month ?

zt>



Let us write down in a line, the number of pairs in each generation of rabbits.

1. First we write the number 1 for the single pair we started with (1 new pair).
2. Next we write the number 1 for the pair they produced after a month (1 new 

pair).
3. The next month, both pairs produced. So the next number is 2 (2 new pairs).
4. Now the original pair stopped producing. The first generation (1 pair) 

produced 1 pair. The second generation (2 pairs) produced 2 pairs. So the 
next number we write is 1 + 2 or 3. (Total 3 new pairs).

5. Now the first generation stopped producing. The second generation (2 pairs) 
produced 2 pairs. The third generation (3 pairs) produced 3 pairs. So, the 
next number we write is 2 + 3 or 5. (Total 5 new pairs).

6. Each month, only the last two generations produced. So, we can get the next 
number by adding the last two numbers in the line.

7. The numbers we get in this way are called Fibonacci numbers.

Reference : Land - Language of Mathematics

20. Circling a Square

Objective: This chart can be used to explain “How to construct a circle whose area is
equal to the area of the given square using a scale and compass only”, (approximately 
equal).

How to use it

1. In the above figure, “circling a square” ABCD is a square which is to be 
transformed into a circle so that their areas are equal.

2. AC and BD are the diagonals of the square intersecting at 0.



3. EW is a line passing through M. O and N, where M and N are the midpoints 
of AD and BC respectively.

4. With ‘O’ as center and OA as radius, a circle is drawn such that it intersects 
EW at E.

5. EM is divided such that EP = 2PM.
6. With ‘O’ as center and OP as radius another circle is drawn. The area of this 

circle is approximately equal in the area of the square ABCD.

Reference : Indian Mathematics and Astronomy by S. Balachandra Rao.

Note : The above problem, “Constructing a circle whose area is equal to the area of the 
given square” had remained unsolved for centuries in the history- of Mathematics. Tne 
above method of construction is given by the ancient “Indian Mathematicians'* in “Sulva 
Sutra”.

21. Squaring a circle

is the diameter of the circle.
2. PO is bisected at H and OR is trisected at T nearer R.
3. TQ is drawn such that TQ ± PR and a chord RS is placed such that RS = TQ.
4. ‘P’ and ‘S’ are joined and OM and TN are drawn parallel to RS.
5. A chord is drawn such as PK = PM and a tangent PL is drawn to the circle at

P such that PL = MN. RL. RK and KL are drawn.



6. A point 'C' is marked on RK such that RC = RH and CD is drawn such that 
CD is parallel to KL, meeting RL at D. Now a square is constructed on RD. 
Area of this square is equal to the area of the circle PQR approximately.

Reference: Indian Mathematics and Astronomy by S. Balachandra Rao.

Note : The above problem “Squaring a circle”, i.e. to construct a square whose area is 
equal to the area of the given square using a scale and compass, had remained unsolved 
for centuries in the history of Mathematics. But ancient Indian Mathematicians solved 
the above problem in “Sulva Sutras”. The above method of construction is given by 
“Srinivasa Ramanujan”.

\
22. Buttons and Beads Puzzle

Objective: To improve the mental ability of students
Needed : Cardboard, string, two buttons and two beeds

How to prepare it :



Insert the string through the two beads and insert one end of the string, through 
hole A and attach a button larger than the hole. In the same direction, thread the other 
end of the string through hole C and attach a button as in figure 2.

How to use it

The string is looped through hole B. as in figure 3. Now to loop it back under 
itself as in figure 4. the loop is first threaded up in hole A and cover the button and then 
likewise in hole C. Now the puzzle is ready for someone to try to undo the loop and get 
the beads together.

23. Quadratic Equation Solver

Objective : To enable the user to solve quadratic equations.

How to use it :
The aid consists of three scales namely A. B. C of which the scale B can be

moved.

Step 1 : Move sliding scale B so that 0 (zero) on it coincides with 6 (six)
(coefficient of x) on scale A.

Step 2: Note corresponding reading on scale C which is 9 (nine).
Step 3: Subtract 8 (eight) (constant term or equation) from 9 (nine). The result is
1 (one).
Step 4: On scale C search the position of number 1 (one). There will be 2 (two)

positions on scaie C where you find 1 (one).
Step 5 : Note the corresponding two readings on scale B. They are - 2 and —4.

Hence, -2 and -4 are the solutions of the equation x2 - 6x + 8 = 0.

Reference: Teaching of Mathematics by S K Aggarwal.



24. Four Colour Theorem

Objective : This is a model to show that the four colour theorem fails to hold in a 3- 
dimension object.

Analysis :

There is a celebrated theorem called ‘four colour theorem' which states that four 
colours are sufficient to colour any map in the plane in such a way that the neighbouring 
states do not get the same colour.

Model

A cylindrical hole is constructed in the center of a sphere (football). A horizontal 
line is drawn around the sphere to make it into two semi-spheres. The horizontal line is 
connected to the two poles in four different places as shown in the figure. Now the 
sphere has five regions each having a common boundary with all the remaining four 
regions.

Therefore, this model requires five colours.

1. Does it disprove the four colour theorem ? (If not, why?).
2. Can you produce a map in the plane, which actually requires four colours ?

25. Euler’s Formula V + F = E + 2

Objective: To show that the Euler’s formula ‘Vertices + Faces = Edges - 2’ is
satisfied by al the convex polyhedra.



Teaching Aid:

This reaching aid consists of a vertical stand in which all the five regular 
polyhedra (tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron) made 
from thermacol and fixed. There are some other convex polyhedra also.

Procedure

The children will have to count the number of vertices, faces and edge of each one 
of these objects and make a table to find the relation between them.

Name No. of 
Faces

No. of 
Edges

No. of
v ertices

V + F E + 2

i 1- Tetrahedron 4 6 4 | 4 + 4 6 + 2
I 2. Hexahedron 6 12 8 8 + 6 12 + 2
, 3. Octahedron 8 - -

4. Dodecahedron 12 - - - 1-
5. Icosahedron 20 30 12 32 J-

Can you produce a polyhedra which does not satisfy the Euler's formula ?

26. Tower of Hanoi

Objective : It is a puzzle called Tower of Hanoi for high school students to develop 
the inductive reasoning.

Puzzle :

Three vertical rods are iixed on a metallic plate. On one end of the rods, five 
discs of different sizes have been inserted, the largest disc being at the bottom, in the 
decreasing order of size.

You will have to put all the discs on any other rod, replacing one at a time and not 
placing a larger disc on a smaller disc. How' many trials are needed to replace all the five 
discs ?

Howr to do

Children can try by taking two discs first. They will see that the number of trials 
needed are3. They can repeat this experiment by increasing the number of discs.



At last they can see that if the number of discs are n, then the number ot trials 
required to replace them is 2n- 1.

27. Interchanging the Railway Wagons

Problem :

There is a railway line along AB and a slanting line S is connected to AB as 
shown in the figure. The length of the shunting place S will be sufficient for the wagons 
W] and W2, but will not be sufficient for the engine E to move. Using the engine E. 
interchange the positions of the wagons W| and W2.

The children can find the answer to this questions, themselves, by moving wagons 
W] and W2 through the engine E to different directions. Repeated trials will heip to 
improve their thinking and reasoning powers.

28. Elliptic Carrom Board

Objective: To enable the students to experience a geometrical property of ellipse.

Carrom Board :

An elliptic carom board is prepared, in which the two foci Si and S2 are marked. 
Keep one carom coin each at S, and S2. The coin at Si is pushed to hit any side or the 
wall of the board. After hitting the wall, the coin Si will hit the coin at S2 and throw it 
away.



Reason

The perpendicular PR to the wall of the ellipse at any point P divides the angle Sj 
PS: equally. Hence the angle of incidence SiPR and the angle of reflexion RPS2 are 
equal.

1. What happens if the pcint P is on the iine SjS: ?
2. What happens if the point P is on the perpendicular bisector of the line S|S; ?



BUSINESS MATHEMATICS

Dr B S P Raju

Sinking Fund

Sinking fund is a kind of reserve by which a provision is made to

a) reduce a liability i.e. redemption of debentures or repayment of loan,
b) replace depreciating assets,
c) renew a lease,
d) replace wasting assets i.e. mines.

Let the amount of debt be A; E be the installment amount to credit to sinking fund and 
‘r’ be the interest rate per annum in decimal form that accrues to sinking fund.

Let us consider the case for 3 years.

At the end of the first year, the amount in S.F. (Sinking Fund) is Rs.E.

At the end of II year, this becomes E (1 + r) rupees, (by compound interest formula).

At the beginning of III year, he adds another E rupees so the amount in S.F. is 
E(1 +r) + E.

At the end of III year, this becomes 
{ E (1 -+-r) + E} { 1 + r}

At the beginning of the IV year again he adds E Rupees.

Hence S.F. = [ { E (1 - r) + E } { 1 + r} ] + E.

But this is equal to A.

i.e. E(1 +r)2 + E(l +r) + E = A.
E { 1 + (1 +r) + (l + r)2 = A.

, E- --------------?
1 + (1 +r) + (l + r)2

But 1 + (1 + r) + (1 + r)"

1+r)3 -l'
----- ------- r
1 + r-l

1



= 1
[(1+r)3 -l'

------------- rr

E = .Ar
(l-r)3 - 1

In genera] for n years,

A

1 + (1 +r) + (1 + r)2 + (l + r)3+...+ (1 + rn)

A A
f( l + r)n - l"l

[ 1 + r-l J l r J

A r
(1+r)” - 1

Problem :
A mortgage of Rs. 10,000/- is due in 5 years. It calls for interest payments of 8% 
payable annually to the creditor. What is the annual payment ? The debtor decides to 
make equal payments at the end of each year for 5 years into a sinking fund 
investment that earns 4% compounded annually, to accumulate Rs. 10,000/- in 5 years. 
What is the annual payment to the sinking fund, construct a sinking fund schedule.

. 10.000 x1x 8 ..
Interest ------------------- = 800 - pavable annually.

100

Installment for pavment to sinking fund = E =---- --------
(l+r)n-l

10000 X 0.04 _ 400
(1 + 0.04)’ -1 " 0.2166528

= 1846.272



Period Interest at 
4%

Payment to 
Sinking 

Fund

Increase in
S.F. Col.

2 + 3

Amount in 
S.F.

Book Value 
of Debt

0 — — 10,000
1 0 1846.272 1846.272 1846.272 8.153.728
2 73.85088 1846.272 1846.272 + 

73.85088 = 
1920.1228

1846.272 + 
1920.1228

3766.3948

6233.606

oJ 3766.3948
4

* 100 • 
15065579

1846.272 1846.272 +
150.65 =

1*996.9277

5763.3225 4236.678

4 230.5329 \ 1846.272 2076.8049 7840.1274 2159.873
5 313.60509 1846.272 2159.877 10000 0000

1. In order to purchase new carpeting and furniture, the Healys decided to 
deposit Rs.50/- in a S.B. account at the end of each month for 2 years. 
How much will they have available at that time, if the interest rate is 5% 
compounded monthly.

Problems on Partnership

X starts a business on 1st January 1987 with Rs.5000/-.
Y joins on 1st May 1987 with Rs. 10,000/-.
On T‘ July, Z comes in as a partner with Rs. 15,000/-.
And on the same date, X contributes Rs.5000/- and Y contributes Rs. 10.000/- 
as further capital.
The profits for the year ended 315t December 1987 amounted to Rs. 16,000/-. The 
partners agree to share the profits in proportion of their capitals. Find their profits.

X : 5000 for 12 months 
5000 for 6 months

5000 x 12 = 60.000 
5000 x 6 = 30.000

90.000

Y: 10,000 for 8 months 
10,000 for 6 months

10000 x 8 = 80.000 
10000 x 6 = 60.000

1.40.000

Z : 15.000 for 6 months 15000 x 6 = 90,000

Their profits should be 90 : 140 : 90 i.e. 9 : 14:9

9X's profit is 16,000 x — = 4,500/- 
32

Y’s profit is 16,000 x = 7,000/- 
32



9
Z's profit is 16.000 x = 4,500/-

j j

Admission of a Partner

1. Change in the profit sharing ratio.
Ex: If A, B and C are partners sharing in the ratio 6:5:3 and later they admit D fc

- share. What is the new and sacrificing ratio ?
8

Solution : Old ratio is 6 : 5 : 3

D's ratio is - (given). 
8 \

A's, B's and C's combined snare in the new firm =

. ... 6 ■■ 67 6A will get —th of the remaining — x — = —.
14 ~ 14 8 16

i 7 5B will get — of the remainin g —
14 ~ 14 8 16

3 7 3C will get — of the remainin g —
~ 14 14 8 16

6 3 2New profit sharing ratio — 
.16 ' 16

:— :— i.e. 6 
16 16

6 6 48 - 42Sacrificing ratio of A is — -
14 16 112 1

5 5Sacriticing ratio of B is — - —
14 16 112

J - 24-21 3Sacrificing ratio of C is-----
14 16 112 112

6 j
Sacrificing ratio = — : - : —= 6:5:3.

- 112 112 112



Goodwill

Goodwill is the attracting force, which attracts the customers towards products of the 
firm. It is the value of customer's confidence in the business. It is an intangible and 
invisible asset.

Goodwill = Actual profit earned - Normal profit.
Goodwill = Certain number of times the average profit.

Ex : A and B are equal partners in a firm. Their capitals show credit balances of 
Rs. 18000/- and Rs. 12000/- respectively. A new partner C is admitted with l/5!h share 
in the profits. He brings Rs. 14000/- for his capital. Find the value of goodwill of the 
firm at the time of C’s admission.

Solution : For 1/5^ of share C contributes Rs. 14000/- (given).
Full capital of the new firm = 14000 x 5 = 70,000/-.
But combined total capital of the three partners = 18000 + 12000 + 14000 = 44000.
.'. Total value of firm’s goodwill = 70000 - 44000 = 26000.

Adjustment of Capital

Ex : A, B and C have been sharing their profit and loss in the ratio of 6: 5 : 3. They 
admit D to a l/8’n share. D brings Rs. 16000/- for his share of capital. All the partners 
decide to make the balance of their capital accounts in the profit sharing ratio, 
calculate their capital.

Solution : Combined share of A, B and C in the new firm

, 6 „ 7 6 7 6A s new snare — of - = --  X
14 8 14 8 ~ 16 '

5 7 5B’s new share = --  X
14 8 " 16 '

3 7 JC’s new share = --  X
14 8 “ 16'

_ 7
8 ~ 8 ' .

6 5 3New profit sharins ratio amons A. B. C and D is — : — : — 
16 16 16

— = 6:5:3:2. 
16

For 1/8^ share, the new partner D brings Rs. 16,000.

Total capital of new firm will be 8 x 

A’s capital in new firm = 1.28.000 x

B’s capital in new firm = 1,28.000 x

C’s capital in new firm = 1,28,000 x

16,000 = 1.28,000/-.

— =48.000/-.
16

— =40.000/-.
16

— =24.000/-.
16



D’s capital in new firm = 1.28,000 x
2

16
16,000/-.

On the Retirement or Death of a Partner

Ex : If A. B, C and D are partners sharing in the ratio of 6 : 5 : 3 : 2. D retires from 
the firm. Calculate the new ratio after D’s retirement.

Combined share of A, B and C (after excluding D).

= ,-2 = ll
16 16

a- - f 14 .A s snare out of — is—.
16 16

6

A's share out of 1 is yy14
6 16 

” 16 X 14
16

_6_
14

||!,y B’s snare is —.
14

C's share is —.
14

XT --653 New ratio is — : — : —.
14 14 14

Gain in ratio :

A's gain = New share - old share

6 6 _ 6 
14 16 ~ 112'

B's eain =---- .
112

C's sain = —.
112



Bills of Exchange

Definition :

A bill of exchange is an instrument, an unconditional order, signed by the 
maker, directing a certain person to pay a certain sum of money only to or to the order 
of a certain person or to the bearer of the instrument.

Discounting of the bill :

The drawer may wait for the entire period of the bill to receive its payment. If 
he is in the immediate need of funds, he can- get the bill discounted with the bank. 
The drawer transfers the possession and also the ownership of the bill. The bank 
charges certain interest, here known as discount for the period it has advanced the 
amount. On due date, the Dank will present the bill to the drawer and receive the 
payment.

Discount is always charged for a period between the date of discounting and 
due date.

Ex : A draws a bill on B for Rs.3,000/'- on January 1, 1994 payable after 3 months. 
The bill is discounted by A, as he is in the immediate need of funds. Calculate the 
discount in the following cases :

a) The bill has been discounted at 12% on January 4.
b) The bill has been discounted at 12% on February 4.
c) The bill has been discounted at 12 % on March 4.

12 3a) Discount = 3000 x ---- x — = 90.
100 12 
p D

b) Discount = 3000 x —— x — = 60.
100 12

12 1c) Discount = 3000 x -----x — =30.
100 12

Retiring a bill under rebate :

Payment of the bill is generally made after the expiry7 of the specified period. 
The drawee may make the payment of the bill even before the date of maturity of the 
bill. In case of receiving payment of the bill even before the due date of the bill, the 
drawer allows certain discount, here known as “rebate” as a customary' trade practice.

Ex : .Ansar accepts a bill drawn by Azar for Rs.8000/- on March 15, 1999 payable 
after 4 months. According to the trade practice in the industry cash rebate at 6% p.a. 
is allowed. Calculate the amount of rebate in the following cases.

a) Ansar makes payment on April 18, 1999.
b) Ansar makes payment on May 18, 1999.
c) .Ansar makes payment on June 18, 1999.

7



Solution

a) Rebate 8000 x x— = Rs.l20/- 
100 12

6 2
b) Rebate 8000 x ----  x — = Rs.80/-

100 12

c) Rebate 8000 x —— x — = Rs.40/-.
100 12

Depreciation :

Depreciation means a fall in the quality', quantity or value of an asset.

I. Factors that cause depreciation

1. Wear and tear due to actual use.
2. Efflux of time - mere passage of time will cause a fall in the value of 

an asset even if it is not used. Ex. A patent right acquired on lease for 
10 years loses 1/10 of its value for every' year, even if it is not actually 
used.

3. Obsolescence - a new invention or a permanent change in demand 
may render the asset useless.

4. Accidents - when a fixed asset is damaged by an accident, naturally it 
loses its value.

Except a few cases like land and paintings, all assets depreciate.

Generally, depreciation is used only in respect of fixed assets (are those that 
are not meant to be sold but are meant to be utilized in the firm's business). Ex. 
Machinery. Patents. Buildings and goodwill.

II. Need for providing depreciation

1. To assess the profit correctly. Cost of the fixed asset used up in the 
period should be treated as cost or expense.

2. To estimate the value of the assets possessed by the firm.
3. The amount so kept out of profits for depreciation will be made 

available for the replacement of the asset when its life is over.

Factors for calculating depreciation :

1. The cost of the asset
2. The estimated residual scrap value at the end of its life.
3. The estimated number of years of its life. (Not the actual but the number 

of years it is likely to be used by the firm). A machinery may be capable 
of running for 30 years, but say. due to new inventions, it will be in use 
only for 10 years; then the estimated life is 10 years and not 30 years).
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Methods of calculating depreciations :

a) Straight line Method or Fixed Percentage on Original cost or Fixed 
Installment Method

Cost - Estimated Scrap Value 
Estimated Life

Note : In the case of companies, the scrap value is assumed to be 5% of the original 
cost of.the asset.

This method is useful when the service rendered by the asset is uniform from year to 
year.

Example 1: A company purchased a lathe machine in the year 1995-96 at a cost of 
Rs.40,000/-. At the end of its estimated life of 10 years, it is expected to give 
Rs.5000/- when sold as scrap. Calculate the annual depreciation value.

40,000 - 5,000 35,000 „ ,
-------------------- = -------- = j.oOO/- per vear

10 10

Example 2 : A firm purchased machinery for Rs.22,500/- on 1.1.1998 and spent for 
its installation Rs.2,500/-. Its life was estimated to be 4 years with a scrap value of 
Rs.5000/-. Calculate the amount of depreciation.

Purchase cost of the machinery 
Installation charges (to be regarded as cost 
of the machinery)

Rs.22,500/- 
Rs. 2.500/- 
Rs.25,000/-

Scrap vale of the machinery at the end of : Rs. 5.000/-
its life

Depreciation of the machinery : Rs.20.000/-

Depreciation for each year is 20.000
4

= Rs.5,000/-.

b) Written down value method :

In this method, the percentage of deprecation is fixed, but it applies to the 
value at which the asset in the beginning of the year.

Example : At the rate of 10%, what is the amount of depreciation in the third year, if 
the cost of the machinery in the beginning is Rs.20,000/-.

Depreciation for the 1st vear 20.000 x = 2,000/-.
100



/. Cost of the asset in the beginning of 2nd year is 20.000 - 2.000 = 18.000/-.

Depreciation for the 2nd year 18.000 x = Rs. 1.800/- 
100

Cost of the asset in the beginning of 3rd year is 18.000 - 1,800 = 16.200/-.

Depreciation for the 3rd vear 16.200 x = Rs. 1,620/-.
100

Uses : Depreciation in earlier years will be heavy, but will be light as the asset gets 
old. Repairs on the other hand are light in the earlier years and heavy later.

The total of the two - depreciation and repairs - will be roughly constant.

c) Sum of the Digits Method:

The amount of depreciation for each year is calculated by the formula :

Remaining life of the asset (including the current vear) _ .------------ ---------------------------------- --------------- ------  x cos t of the asset
Sum of all the digits of the life of the asset in years

Example : For an asset costing Rs.50,000/-, Life is estimated for 10 years.

What is the amount to be provided for depreciation in the first year and also in second 
year ?

Solution : Sum of all the digits of the life of the asset in years is 
1+2 + 3+ 4 + 5 + 6 + 7+8-9+10 = 55.

.Amount of depreciation for the first year = — x 50,000 = 9091.
Q

.Amount of depreciation for 2nd vear = — x 50,000 = 8181.
55

J) Depletion Method: This method is used in the case of mines, quarries, etc. 

Depreciation is calculated per tonne of output.

Example : Cost of mine is Rs.20,00,000 and it is estimated that the total quantity of 
mineral in the mine is Rs.5,00,000 tonnes.

The depreciation per tonne of output is

20,00,000
5,00.000

= Rs.4.



If the output for the first year is 40,000 times, 
then, the depreciation is 40.000 x 4 = Rs. 1.60,000/-.

If the output for 2nd year is 60.000 tonnes.
then the depreciation is 60.000 x 4 = Rs. 2.-0,000/-.

e) Machine Hour Rate Method

Effective life of machine may be 20.000 hours.

Example : An asset which costs Rs.45.000/- has a useful life of 24 years and a 
salvage value (Trade-in-value) of Rs.3000/-. What will be the depreciation expense 
for the first (1st) year, the 10th year and the 24th year if the sum of year’s digit method 
is used ?

.Ans: Rs.3,360/-; Rs.2.100--; Rs.140/-.
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ANNUITY

TYPES
OF
ANNUITY 
(by date of 
payment)

Meaning : .An annuity is a series of equal periodic payments or deposits with the
interest on each one being compound interest.

ORDINARY ANNUITY : Payments are made at the 
end of the payment intervals.

ANNUITY DUE : Payments are made at the 
beginning of the payment intervals.

DEFERRED ANNUITY : Payments are made at the 
end of the payment intervals but do not start until after 
a designated period of time.

Example for Ordinary Annuity

Find the amount of an ordinary annuity- of five deposits of Rs.1000/- each 

made at the end of each year for 5 years, if the interest rate is 4% compounded 

annually.

1000 2000 3000 4000 5000

4

The first deposit of Rs. 1000/- is for 4 years;

The second deposit of Rs. 1000/- is for 3 years;

The third deposit of Rs. 1000/- is for 2 years;

The fourth deposit of Rs. 1000/- is for 1 year;

and fifth receives no interest.

/. S = 1000 (1.04T- 1000 (1.043 + 1000 (1.04)2 + 1000 (1.04)- 1000

= 1000 (1.1698586) ± 1000 (1.1248640) + 1000(1.08160) +

1000(1.04)—1000 

= 5416.32



Example for Annuity Due

If a payment of Rs.100 today and a like payment at the end of each year for 5 

years, how much will be on deposit at the end of 6 years, if the interest rate is 5% 

compounded annually.

100 100 100 100- 100 100

100 100 100 10O 100 100

The first deposit of Rs.100/- is for 5 years..

The second deposit of Rs.100/- is for 4 years.

The third deposit of Rs. 100/- is for 3 years.

The fourth deposit of Rs.100/- is for 2 years.

The fifth deposit of Rs.100/- is for 1 year.

The sixth deposit of Rs.100/- is for 0 years.

Example for Deferred Annuity

I deposited a sum of Rs.5000/- in TISCO on l5t January, for secured premium notes. 

The company agreed to pay me back at the rate of Rs.2000/- ever)' year for about 5 

years from the beginning of 1st January 1996.

FORMULA TO FIND THE AMOUNT OF ORDINARY ANNUITY

Let P stands for the Principal;

r for interest rate per annum expressed in decimal form 

n for number of years the money is left in deposit, and 

A for amount or principal plus interest.

The first instalment paid at the end of 1st year will be in deposit for (n-1) years. 

By using the compound interest formula this amounts to P(1 + r)n’’.
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HI1-' the second instalment paid at the end of 2nd year amounts to P(1 - r)"'2 *.

A = P(l+r)n-' + P)l+r)n'2 +.... + P(l+r) + P
= P {(l+r)"'1 + (l+r)"'2+ .... +(l+r) + 1 }

= P { 1 + (1 + r) + (1 + r)2 +..............+ (1 + r)"'2 + (1 + r)"'1}

(writing in reverse order)

p /fl{(l + r)“ -1} }
- p <f(l+r)’ -l{

l+r-l J - r

(bv usins summation of G.P. 
\ '

formula)

For annuity done A = P (l + r)”*1 - 1 - P.
r

PRESENT VALUE OF AN ANNUITY

The inverse of finding the amount of an annuity' is finding the present value of

the annuity.

Present value of an annuity is the amount of money to be deposited in the 

beginning so that one can withdraw a fixed amount of money at the end of each year 

for n-years. at which time the original investment and the interest (earned 

compoundly) exhausted completely.

Example : At age 21 Ram receives an inheritance of 20 equal annual payments of

Rs.2000/- each, the first payment coming due at age 22. If money is worth 4% 

compounded annually, what is the cash inheritance at age 21 ?

Tne cash inheritance is the present value of annuity.

FORMULA TO FIND THE PAYMENT VALUE OF ANNUITY

Let p is the present value, it is same as Principal,

r is the interest rate per annum expressed in decimal form,

E is the amount that can be withdrawn at the end of every year.

10
F‘P

2
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Consider the case for two years only.

At the end of the 1st year, the amount becomes 

p(l +r)

But ■/ E rupees is withdrawn, the principal at the beginning ot the second year is pi 1 

+ r)-E.
So by the end of 2nd year,.this becomes {p (1 -Hr) - E} {1 + r}

But this is equal to E.

/. {p(l+r)-E} { l+r}=E

i.e. p(l +r)-E = E(l +r)'1 

p(l + r) = E (1 + r)'1-s-E 

= E { 1 + r)-' + 1 }

• • P = {(1 +r)’2 + (l -r)'1 }

Consider the case for 3 years.

0 I 2* 3
I-------------------- i-------------------- 1--------------- :—pj? p* R*

At the end of 1st year, the amount becomes p(l - r).

E rupees is withdrawn, the principal becomes

p(l + r) - E.

By the end of 2nd year this becomes 

{p(l+r)-E} { 1+r}

■/ E rupees is again withdrawn, the principal becomes 

[{p(l+r)-E} { 1 +r}]-E
By the end of 3rd year, this becomes

[{p(l+r)-E} { 1 + r} - E ] [ 1 + r ]
But this is equal to E.

.• [{p(l+r)-E} {l-Hr}]-E[l+r]=E 

=> I { p(1 + r)-E} { 1 + r} - E ] = E(1 + r)'1 

=> [{p(l+r)-E} { l+r}] = E(l+r)''-E



=> p(l + r)-E = E (1 -r)'2 + E(l - r)'1 

=> p (1 + r) = E (1 - r)‘2 + E (1 + r)'1 - E 

=> p = E { (1 -h r)‘? - (1 + r)'2 + (1 + r)*1 }

Similarly for n years, we can derive
p = E {(1 + r)'1 - (1 + r)"2 + (! + r)’U..........- (1 + r)’n }

The expression within the brackets is sum of n terms of a G.P. with

a = (1+r) and r = (1 + r)'

.,ri-{(l + r)- }"
(1 + r)'p = E <

l-(l + r)‘

='E (1-r)
1 - (1 + r)'" f

1
1 -r r

= t 1 + r - 
1 + r

= E (1 + r)'1 (1-r) [l-(l+r)'"]

p = E
1 -(Ur)
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G. Ravindra
Regional Institute of Education (NCERT), Mysore

ABSTRACT
this article an attempt has been made to discuss the effectiveness of 

Venn Diagrammatic Representation Approach (VDRA) in Teaching-Learning 
of Math ema tics

Introduction

Mathematics plays a central role in Science and Technology. The Numbers, 

which are so fundamental to Mathematics, encompass all disciplines of study and 

all walks of life. The Pythagoreans (around BC 540) literally worshipped the natural 

numbers and they believed that the entire Universe was made up of these numbers. 

Mahavira(AD 850) stressed the importance of Ganita (Mathematics) in all the three 

Worlds. But this subject of supreme importance also seems to pose almost 

insurmountable difficulties for the great majority of the students.

Is Mathematics difficult?

Several studies have observed that many of the students at school level find 

mathematics a difficult subject and large number of students fail in this 

subject. Mathematics is difficult not because of abstraction, as has been generally 

perceived, it is because of precision. Mathematics is difficult because, unlike any 

other discipline, it demands complete precision (King, 1992)4. One of the vast areas 

of the world of contemplative beauty is mathematics and this alone is sufficient 

reason for the study of mathematics. However, there is one comment that the 

inadequacies in teaching of mathematics have created the gap between the 

scientific community and the rest of the humanity, and thereby hamper the growth 

of our society. Thus there is a need for overcoming the inadequacies in teaching of



Mathematics. Any model of teaching of mathematics should ensure that 

mathematics is taught the way mathematics is and mathematics is learnt the way 

mathematics is.

Teaching is a great art

Taking an active role in the learning process of the child is one of the 

greatest joys of teaching. Teachers have natural curiosity to observe how children 

grow and discover the world around them. Teachers feel that they want to be 

there, to help and play an important role in facilitating their learning. This is a 

tremendous job. One of the basic teaching functions is to "check for 

understanding"(Rosenshine, 1983)6. Similarly " assess student comprehension " 

(Good A Grouws, 1979)2 as one of their instructional behaviours for effective 

mathematics teaching. Shavelson (1979)' argued that it is important for the 

teacher to estimate the " states of mind" of their students and that these 

estimates provide essential information for deciding what and how to teach.

The way mathematics is being taught is going through a dramatic change. 

The introduction to the study of "Numbers and numeration^' starts when the 

children begin to gather objects and then form groups or sets. Soon they need a 

way to describe the numbers of objects in the sets. To begin with, these 

descriptions are verbal - they count by saying the names of numbers as objects are 

singled out. Symbols for numbers are eventually introduced and then they learn to 

write numbers. It is most likely that children learn maths today by beginning with 

real-life problem or situation that needs to be solved. They are given freedom to 

use techniques that might be uniquely theirs. The premise is that children as well as 

teachers are most likely to remember the things that they grapple with and resolve. 

To-day Maths curriculum is so different from what we were taught. What was 

emphasised then is not emphasised now. New names have been given to old
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procedures, and some procedures that took forever to master are no longer taught 

because a calculator can provide the answer at the push of a button.

The mathematics teacher while developing the problem solving ability among 

students, often follows two basic steps (Hayes,1981)3: problem representation and 

problem solving. In the problem representation, a problem is converted from a 

series of words and numbers into an internal mental representation of the relevant 

terms. In problem solutions, operations are performed so as to deduce a solution to 

the problem from the internal mental representation.

Bertrand Russell (1917)1 rightly points out "Mathematics is the study of 

assertions of the form 'p implies q‘, where p and q are each statements about 

objects that live in mathematical world". Thus mathematics is a study of Sets 

where a set is identified with a 'precise property', a property that is true or false, 

not both. But strangely the Sets do not find the right kind of importance in the 

teaching learning process of mathematics in school education. In the process of 

making mathematics more functional, the most fundamental element of 

mathematics 5et" \s not used properly as it should have been.

With these in mind, an attempt was made to study the Role of Venn 

Diagrams in Teaching and Learning of Mathematics

Venn Diagram and its importance

John Venn£ introduced Venn diagrams in 1880. A Venn diagram represents 

pictorially interrelations among sets (well defined properties) each of which is 

denoted by a closed region without holes. Though there are other diagrams like line 

diagram, directed graph, etc. to illustrate relationships, Venn diagram has an 

advantage of space over th&others.
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Given two well defined properties p,q, the possible relations between them can be 

represented by Venn diagram in one of the following ways.

a) Empty or Non-empty

b)

P and q (which in non-empty) 

Some of p is q

c)

Rationale

The author while doing mathematics, and while teaching mathematics at 

different levels (graduates and post-graduates) gained adequate experience of

4



Venn diagrams. This experience of more than two decades made him believe that 

Venn diagrams could best be employed in:

• Better understanding of mathematics because of their visual effect;
• Providing clarity in teaching-learning of mathematics;
• Finding inter-relations among mathematical properties holistically and 

accurately, and better analysis of the properties;
• "Conjecturing" as a consequence of natural creation of some new portion 

in Venn diagram ( For Example - See Annex -1). This Venn diagram 
motivated the author5 to conjecture C\ and C2.(See dotted lines in the 
diagram) and these conjectures are unsolved problems for more than two 
decades.

Keeping these observations in mind, the author tries to present the salient 

features of the two simple studies involving the use of Venn Diagrammatic 

Approach (VDRA) in teaching -learning of Mathematics.

Experiment- J

It was the purpose of the study to determine the direct effect of Venn 

Diagrammatic Representation Approach training on student teachers and to assess 

the transfer of training to them. The training focussed on different components 

involved in Venn diagrams - like encoding of information, inferring and mapping the 

relationships before applying them to specific problem situations establishing the 

emptiness or non-emptiness of a section of the Venn diagram. The author himself 

gave training during this period. Students were given frequent opportunities to 

practice and apply the related components in varied contexts.

The second session of the training programme was for the students to apply 

successfully the components involved in establishing the relationships. A typical

exercise given was - " Draw and Justify Venn Diagram of the ............ . .... At the

end, the author asked students ” Is Venn diagram useful in teaching learning of 

mathematics? If 'Yes', why?'' A summary of 110 responses received is given below:
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AH agreed that the Venn diagrams are useful in teaching learning of
mathematics. The reasons given by them are -

• Venn diagrams are better tools for understanding because of their 
visual effect;

• Venn diagrams being pictorial representations convey accurate 
meaning what words cannot (A picture worth thousand words'). The 
concepts explained through Venn diagrams are better retained for 
longer duration;

• Venn diagrams are self-explanatory; convey the meaning at a glance, 
have no language bias and easily understood by all types of students;

• Through Venn diagrams, abstract ideas are grasped easily and are 
kept at the concrete level of understanding;

• Relations between two or more concepts can be more easily and 
effectively learnt by Venn diagrams than by using symbols;

• Venn diagrams will reduce the verbal explanation of teachers and 
students and the school students feel happy to draw Venn diagrams;

• l/e/7/7 diagrams help students to solve problems on sets more 
accurately end with better confidence and thereby reducing the 
m is takes/errors;

• |/ez7/7 diagrams develop power of reasoning;
• With Venn diagrams, one can simultaneously inter-relate many 

properties;
• One can get new results from the basic elements of Venn diagram.

Experiment -2

The purpose of the experiment-2 was to investigate the questions raised in 

the experiment-1. Specif ically, the investigation was designed to address the issues 

of influences of age and ability on direct effect of training. The training was 

administered in two sessions, focussing on the component processes involved in 

Venn diagram.

Lessons (related to Maths and life - See examples in Annex-2) were taught 

to three different terminal groups(Grades V, X and XII) separately by author 

spending one hour per day for two days in case of X and XII and 40 minutes per day 

for three days for V Standard. V and X grade students did not have any idea of
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Venn diagrams earlier and the lessons to them included a brief introduction on Venn 

diagrams.

Sample

The sample for the studies is students of Regional Institutes of Education, 

Bhopal and Mysore and Demonstration Multipurpose School (DMS) attached to 

RIE,Mysore. The samples particularly for Experiment -2 consisted of 33 fifth 

Grade students, 48 tenth Grade students and 21 twelfth Grade students from DM5 

and these students were new entrants. The data for the analysis come from the 

pre-test, post-test information and other information gathered during the 

intervention programme. These data were collected on separate occasions. The 

students age ranges from 10 years (Grade- V) to 20 years (undergraduates).

Result

Though the author aid not carry out a rigorous research, still felt it is worth 

sharing these with his fellow professionals. Some of the experiences he had during 

the processes and different stages of experiments have been very briefly given.

Grade
Pre-test Post-test

t df PMean SO Mean SD
V

N=33 2.61 1.68 5.81 2.44 7.62 32 0.00

X
N-48 3.40 2.31 5.71 3.48 5.32 47 0.00

XII
N=21 8.24 4.67 16.61 4.96 5.17 20 0.00

The t- values in the above table clearly show that significant difference 

between the pre-test and post-test scores implying that VDRA has definite 

influence on the performance of the students at all levels.
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These data suggest that VDRA, in teaching of mathematics, offers a more 

positive view of students' learning than that through mere verbal statements.

Implications

For text-book writers

The findings of these studies give a clear direction for the textbook writers 

to include Venn Diagrammatic Representation Approach (VDRA) wherever 

they are appropriate and also to reduce the verbal statements by 

introducing Venn Diagrammatic Representations.

For Teachers

While transacting mathematics content, VDRA is quite helpful in making 

their ideas clear and also helps in vivid presentation of the content by 

reducing the verbal statements. It is necessary for them to focus on 

different components of VDRA (both separately and collectively) giving 

adequate opportunities for the students to make mathematical 

representations and think all plausible relationships while solving any of the 

mathematical problems.

For Students

The method help in better understanding and also encouragesto go for higher 

order thinking processes like conjecturing, problem solving; decision- making 

and creativity.

8



For Evaluators

From the point of view of the evaluator, the study suggests that marking 

and scoring is much more objective and easier -because of clear visibility of 

sections of Venn diagram representing relationships.

Conclusion

Considering the vital role that Venn diagrammatic Representation Approach 

(VbRA)plays in Mathematics learning, this approach can be effectively used in the 

classroom instruction.
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Annexure -2.
1. Examples of the content selected for VDRA:

Find inter-relations (mathematical) among the following:
(a) South Indians, Indians and Kannada speaking people
(b) Similar triangles, congruent triangles, equilateral triangles, right angle triangles,

quadrilaterals and Polygons

2. VDRA expectations for (a) and (b)

(b)

Note: Provide, to complete justification, one example for spaces(Gcps) 1,2.3,4,5,6,7,8- f

3. An example of creativity shown by the child of V grade during Experiment -2
KSP - Kannada Speaking People 51 - South Indians I - Indians

l I



APPENDIX 1

By Prof, Shamanna

Session

On

Managerial Skills for Teachers

Date : 20-06-2003

MAIN AREAS:

1. Doing Vs getting things done. The critical role of Teachers in 

improving quality of education.

2. Achieving Excellence is a function of sharpening Managerial skills.

3. Kaizen-Japanese Tool.

4. Planning - Coordinating - Communicating.

5. Learning as a collaborative process.

6. Team work.

7. Characteristics of Teachers.

8. Changing Role.



IMPROVING QUALITY OF EDUCATION

A. Role of a Teacher

1. Develop team spirit and enthusiasm for learning

2. Promoting discipline and commitment

3. Setting an example

4. Managing change - Change agent

5. Effectiveness and efficiency.

B. Characteristics of a Faculty Member

1. He is hard working and regular in his habits.

2. He has excellent character and gives importance to professional

ehtics.

3. He has good knowledge of the subject

4. He is highly motivated and works with team spirit

5. He has genuine concern for his students and has good

communication skills.

6. He has an open mind and is flexible in teaching methods in the class

room

7. He gives importance to quality, excellence and promoters positive

attitudes with students

8. He has good knowledge the problems of students and rules and

regulations



DOING THINGS

GETTING THINGS DONE

1. COORDINATION

2. COMMUNICATION

. PLANNING

4. INSPIRING

5. SOLVING PROBLEMS

6. TEAM WORK SKILLS

co



PROCESS OBSERVATION

GROUP DYN/VMICS

Observers Task
(You are required to observe carefully and make N (TES on the following questions)

1. Observe the process of communication in the Group - What they talk is less 
important How they talk is more important

2. Make brief notes regarding your impression and observations you will have to 
share your impressions and provide honest feed back to them later.

3. Observed the non-verbal communications - Gestures, facial expression and the 
posture while they are discussing.

4. You may prepare yourself to answer briefly the questions listed below:
a. How did the group make the decisions?

By concensus?
By majority?

b. How did it solve the conflict
c. Do you think the group was effective? Give reasons.
d. Did the group members were listening to each other?
e. Did the group have a leader?
f. Who dominated the discussions?
g. What suggestions you have to improve their performance? For specific 

individuals? For group?

Important

You will be invited to share your comments and give feed back to group 
members. Please give brief and frank comments with a view to help members 
improve their performance.

Notes
j.

FCShamanna Ph.D (USA)
Training and Management Consultant 
No. 141, 15th Cross, Anikethana Road, 

Kuvempunagar, Mysore - 570 023 

E-mail :profshamanna@yahoo.co.in 

Tel. (R) 344479 (0)547619

mailto:profshamanna%40yahoo.co.in


Complete each of the following statements by eliding the most 
appropriate choice.

1. Messages are the most easily understood when:
(a) you use your full command of the language.
(b) they are sent in terms the receiver understands.

2. Complex information is more easily understood when you:
(a) improve clarity by using specific examples and analogies.
(b) tell the listener to pay careful attention.

3. Key concepts are better remembered when you:
(a) use repetition to reinforce them.
(b) express yourself clearly.

4. Organizing a message before transmitting it:
(a) often takes more time than it is worth.
(b) makes it easier to understand.

5. The sender can determine the receiver's understanding by:
(a) asking if he or she understands.
(b) asking the receiver to report what he or she heard.

6. Listening is more effective when you:
(a) concentrate on the sender and what is being said.
(b) anticipate what the speaker is going to say.

7. Understanding is easier when you:
suspend judgment until the sender finishes the message, 

(assume you know the senders position and judge accordingly.

8. Understanding can be improved by the listener:
(a) periodically paraphrasing the message back to the sender.
(b) Interrupting to express f-eelings and emotions.

9. Good listeners:
(a) have their response ready when the sender stops talking.
(b) ask questions when they don't understand.

10. Sending and receiving are both enhanced when:
(a) the parties maintain good eye contact.
(b) the parties are defensive and challenge one another.

Encourage team members to review communications skills using this same 
exercise..Then compare notes and discuss how to improve. This will be 
another cooperative step in building a stronger team effort.



SEPARATE FACT FROM INFERENCE

Read the narration carefully which follows. Then see how well you can distinguish a FACT 
from an INFERENCE

Shama, a buyer with the XYZ company, was scheduled for a 10 0'clock meeting in Singh's 
office to discuss the terms of a large order On the way to that office, the buyer slipped on a freshly 
waxed floor and as a result received a badly bruised leg. By the time Singh was notified of the 
accident. Shama was on the way to the hospital for X-ray. Singh’called the hospital to enquire but 
no one there seemed to know anything about Shama. It is possible that Singh called the wrong 
hospital.

Examine the statements below. Without discussion, put a tick mark against each statement, as 
to whether it is a fact or an inference (in the Personal Choice Column)

Statements
Persona! Choice . Group Choice

Fact Inference Fact Inference

1. Mr. Shama is a buyer

2- Shama was supposed to meet with 
Singh.

3. Shama was scheduled for a 10 0' 
clock meeting

4. The accident occured at the XYZ
company

5. Shama was taken to the Hospital for 
X-Ray.

1

6. No one at the hospital which Singh 
called knew anything about Shama.

9

7. Sing had called the wrong hospital.

Now discuss your personal choices with the group, and enter group choices in the appropriate 
column.



Appendix 2

A model lesson plan
By prof. K. Dorasami

hEGIONaL INSTITUTE OF EDUCATION, ,-..YSORtf 6

Name of the Student Teacher:

Name of the Co-operating teachei: 

Name of the Co-operating School ;

Class : IX
Subject: Mathematics 
Course: Algebra 
Unit : Matrices 
Topic : Identity Matrix 
Date
Time ;

INSTRUCTIONAL OBJECTIVE:

At the end of this lesson, a student will be able to
1. define an identity matrix
2. state the characteristics of an identity matrix
3. cite examples of identity matrix (or) identify identity matrices from the given matrices
4. relate identity matrix with other types of matrices
5. state the condition for a matrix co bd (or not to be) an identity matrix.

TEACHING POINTS

An identity matrix is a sc.ua^e matrix having principle Diagonal elements as one and 
non diagonal elements as zero.

PREVIOUS KNQNLtbGE
1. a square matrix is a matrix with equal number of rows and columns.
2. Symmetric matrix is a sequence matrix whose transpose is the given matrix.



Expected Learning Outcomes Sequential Learning Activities 
with inbuilt Evaluation

□ lack board wo.r I

Gives a counter example 
to show that the defining 
expression is not the 
definition of square 
matrix.

Introduction
1. T: (Surveys the whole class and seeks the

class attention)
In t ie last class wr- learnt about square 
m atrix. What is a square? matrix?..

2. S(): Square matrix is a matrix in v hich rows
and columns are equal.

3. T : Sr said that if a matrix has equal rows
and columns, then it is a square matrix.
Can someone give a square matrix in which 
the rows and columns are not equal.
(S^ raises his hand) Yes S^ ?

4. 3 : / 1 2 3\
4 5 6

\ 7 8 9 f
5* T : Good. It is a square matrix. When is a

matrix said to be a square matrix. S-can you?J}
6. S^j If a matrix has same number of rows and

columns then it is a square matrix.
7. T ; Very good. Now we are going to learn about

a special kind of square matrix c?,.’ led an 
Identity Matrix (writes the concept nune 
on the board). This is an important idea 
as we will be making use of it later in our 
study on properties of matrix multiplication.

3
6
9

ILLNTITY Matrix



Lxpected L arning Outcome a JeqiK-ntial Learning Activities with 
Inbuilt LVclui'tiop

k±YPAPJ£HLfe.P-t- P.PPPPRt
Let us consider the matrices (writes a set cf 
matrices on the chalk board). The matrices 
labelled as I are identity matrices, others 
arc square matrices that arc not labelled as 
identity matrices.

bhat is it that identity matrices have in common 
that aoes not occur in metrics that are not 
identity matrices? Look at th- t lem nts. S^?

B 1c. c 1: b o a rcl W o r 1

0
0
1

0
1
0

0
5
0

0 X 
0
5 )

o ompares and contrasts the 8. w 
examples and n3n examples 
t.nd identifies the 
characteristics of identity ’ T 
matrix.

The principal diagonal elements are one 
and othur are zero.
Very goodl The name identity matrix which 
we have been using for this group (indicates 
the identity matrices on chalk board) means a 
square mcitrrx in which the diagonal elements 
are zero.
Now consider the matrix (writes a matrix with 
diagonal e-lem-nts as three and non d iagonal 
elements as zeros). bhy is not this an 
identity matrix?... .8.?

0 0 \ 
3 0
0 3/



• 4 •

Expected Learning Outcomes

Give s reason (lack of 
necessary condition) for 
the square matrix as the 
non-example of id. ntity 
matrix.

Lecogniscs n.n examples 
and gives s.eason for a 
square matrix to be a non. 
example of identity 
mat ri x .

Sequential Learning /activities with inbuilt 
Eveluat ion

10. S^j The diagonal tltnh nts arc not one in
this matrix. So it is not an identity 
matrix .

11. T: O.K. Ar- there matric. s with diagonal
elements as one which re not identity 
matrices? 'why? (a number of pupils 
rais" their hand) Yc u S4 ?

12. Sz: Va can have square matrices with dia­
gonal r ’ernents as one <nd non diagonal 
elements as non zero. Bucaus*. a matrix 
to be identity matrix it must also have 
zero as the non diagonal el nunts.

13. T: Hight. V<e have seer. that t h. re arc two
con.itions nece ssary for a sc uare matrix 
to be an.'identity matrix, (writes them 
on the board).

nc_viS’iL PPP _ hynl.u^gtip n
bhr.t is an identity matrix?.... S
Lhat attributes will you fine in all identit y 
matlices ?
An identity matrix is a kino of ______________
matrix ?
Lhat similarities and differences do you find 
between identity matrix and symmetric matrix ? 
Today we learnt that identity matrix is a 
kind oi symmetric matrix (and represents the 
conceptual hierarchy among the concepts discussed 
so far).

Bo a ck board v.ork

1. a. a square matrix docs 
not have one as diagonal 
element, it is not an 
identity matrix.

2. If it does not have non 
diagonal elements as 
zero, it cannot be an 
identity matrix.

Matrix

he c t a ng x e Ma 11i x

K°w Column

Square
Matrix

Symmet ric 
Matr ix
Id ont ity 
Matrix



APPENDIX 3

MATHEMATICS FOR AESTHETIC REASONS

Compiled by

Prof. G. Ravindra

• The famous FOURS: Cognitive (Truth), Metaphysical (Reality), Ethical 

(Justice), Aesthetical (Beauty).

• “Beauty is truth, Truth -is beauty” - that is all ye know on earth, and all ye 

need to know (John Keats).

• Mathematicians do mathematics for aesthetic reasons.

• One of the vastest areas of world of contemplative beauty is mathematics. 

This alone is sufficient reason for study of mathematics (King, 1992).

• Mathematics possesses not only truth but supreme beauty - a beauty cold 

and austere, like that of a sculpture without appeal to any part of weaker 

nature, sublimely pure, and capable of stern perfection such as only the 

greatest art can show (Bertrand Russel).

• Mathematicians know beauty when they see, it for that is what motivates 

them to do mathematics in the first place. And they know where to find

truth'.

• Despite an objectivity that has no parallel in world of art, the motivation

and standards of creative mathematics are more like those of art than of



science. Aesthetic judgements transcend both logic and applicability in the 

rankings of mathematical theorems: beauty and elegance have more to do

with the value of a mathematical idea than does either strict truth or

possible utility (Lynn Steen, Ex-President of the Mathematical Association 

of America).

• To create consists precisely in not making useless combinations and in 

making those which are useful and which are only a small minority.

Invention is discernment, choice . . . The useful combinations are

precisely the most beautiful, I mean those best able to charm this special 

sensibility that all mathematicians know, best of which the profane are so 

ignorant as often to be tempted to smile at it. (Henri Poincare. The 

Foundation of Sgemu, 1929).

• Our present system of mathematics instruction which turns on the concept 

that mathematics is best presented through emphasis on its value as 

scientific tool. We can overselves do no harm, by trying another aoproach 

by presenting to our students early on those characteristics of 

mathematics'which in Poicare’s words contain “this character of beauty 

and elegance and which are capable of developing in us a sort of aesthetic

emotion".

• The ideas brought fourth from the Unconscious and handed over to the 

conscious invariably possess the stamp of mathematical beauty 

(Poincare).



APPENDIX 4

QUESTIONNAIRE TO TEST CREATIVITY IN 
TEACHING AND LEARNING

By
Dr. (Mrs.) Kalpana Venugopal

Lecturer in Education 
RIE, Mysore

1. I give notes for exercises following the lessons.

Always/Sometimes/Never

2. I encourage students to take a few topics in the syllaous as 

seminars/assignments.

Always/Sometimes/Never

3. The home assignments are mostly the textbook exercises following the 

lesson.

Always/Sometimes/Never

4. I try to employ multisensory/direct experience approach in teaching.

Always/Sometimes/Never

5. I permit students to give their examples/anecdotes/explanatior in the 

course of my teaching in the class.

Always/Sometimes/Never

6. I do not like to waste time on discussing any issues which come up during 

the course of the classwork.

Always/Sometfmes/Never

7. I believe in the maximum use of the school laboratories by the students.

Always/Sometimes/Never

8. While solving problems I wait for students to arrive at the solutions 

themselves.

Always/Sometimes/Never



9. The students feel free to ask any question/seek clarification during the 

course of teaching.

Always/Sometimes/Never

10. I welcome their ides/suggestions regarding any.asoect of the subject

Always/Sometimes/Never

11.1 make sure that at the end of any discussion/argument, my point of view 

is final.

Always/Sometimes/Never

12. I do not make a value'judgement concerning a student's interpreration of 

an aspect.

Always/Sometimes/Never

13. I feel humiliated when a student is able to give additional information/solve 

a problem quicker than me.

Always/Sometimes/Never

14. I do not believe in their imagination going wild.

Always/Sometimes/Never

15. I keep my self updated with the latest information in my area.

• Always/Sometimes/Never

16. I cannot supply information beyond that which is available in the textbook.

Always/Sometimes/Never

17. I accept and encourage students to discover something new/different on 

their own.

Always/Sometimes/Never

18. I praise frequently.

Always/Sometimes/Never

19. At the end of a lesson I give a few open ended questions as class/home 

assignment.

Always/Sometimes/Never

20. The test papers I set include questions from the lesson exercises.

Always/Sometimes/Never

2



21.1 set a few analytical/application questions which need not be covered in 

the syllabus.

Always/Sometimes/Never

22. I expect students to answer the questions in the examination frnrn the 

notes I have given.

Always/Sometimes/Never

23. I do not set individual goals for the less abied children.

Always/Sometimes/Never

24. I am unable to give students a personal feedback about their 

performance.

Always/Sometimes/Never

25. I am innovative in engaging my students in some activities in my area.

Always/Sometimes/Never

26. I am able to identify the hidcen talents in students.

AI way s/S o m eti m e s/N e ve r

27. I encourage students to interpret their experiences through various media.

. Always/Sometimes/Never

28. I am able to motivate students in various school activities.

Always/Sometimes/Never

29. I allow students to express their feelings.

Always/Sometimes/Never

30. I enable students to apply knowledge gained, to their daily living.

Always/Sometimes/Never

31. I cannot show courtesy to students.

Always/Sometimes/Never

32. I am successful in getting students to assume responsibility.

Always/Sometimes/Never

33. I involve students in planning/consultation in classwork which nvolves 

them.

Always/Sometimes/Never

3



34. I cannot admit a mistake before students when results show I am wrong.

Always/Sometimes/Never

35. I help pupils accept.one another.

Always/Sometimes/Never

36. I make each student feel he has a contribution to make.

Always 'Sometimes/Never

37. I help students feel that they belong.

• Always 'Sometimes/Never

38. I let students know that I nave confidence in them.

Always/Sometimes/Never

39. I cannot become a part of the group when they work in groups.

Always'Sometimes/Never

40. I let pupils know I like them.

Always/Sometimes/Never

4



PRE-TEST

1.

2.

J.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Draw and justify the Venn diagrams of the following :

i) one-one function
ii) onto function
iii) constant function
iv) continuous function
v) polynomial function

“'No relation is also a relation”. How do you justify this statement ?

Prove that lim — = 0. 
n - « n

What logical difficulties do you find in teaching complex number as
x + iy, (x, y s R, i" = -1)? Explain.

Does zero vector have direction? Justify your answer.

“If 2 is not a prime number, then 2 is an even number". Write the inverse of the 
proposition.

x
Define f(0) so that f(x) = ------- . . becomes continuous at x = 0.

i -

The sum of two numbers is 48. Find the numbers when their product is maximum.

> x sin x , Find I -------- ;— ax
1 -rCOS' x

If a manufacturer's total cost function C is

C = — + 2.x, then find 
25

i) average cost function
ii) marginal cost function

If P is a probability function then show that P(<$>) = 0.

Prove or disprove : If P is a probability function and P(A) = 0 then A = <j>.



POST-TEST

1.

2.

3.

4.

5.

6

7.

8

9

10.

Draw and justify Venn Diagram of the following : (i) Continuous functions, 
(ii) Differentiable functions, (iii) one-one and onto functions.

If N is the set of all natural numbers then construct a one-one function 
from N x N into N by using fundamental theorem of Arithmetic.

For any natural number n, prove that 2n > n without using principle of 
mathematical induction.

Prove or disprove :
If r is rational and x an irrational, then r.x is an irrational number.

T' VExplain why no part of the hyperbola — - = 1 lies between the lines
a' b'

x - a = 0 and x + a = 0.

Find the present value of an ordinary annuity of 24 payments of Rs.100/- 
each made monthly and earning interest at 9% per year compounded 
monthly.

Three forces 5p. 5p and 10p act along the sides AB, BC and CA of a given 
equilateral triangle ABC Will the system be in equilibrium ? Why ?

Find the aegree of tne differential equation

A determinant is chosen at random from the set of all determinants of 
order 2 with elements 0 or 1 only. Find tne probability that the determinant 
chosen is non-zero.

There are 10 pairs of shoes in a cupboard from which 4 shoes are picked 
at random. Find the probability that there is atleast one pair.



21-DAY TRAINING PROGRAMME FOR MATHEMATICS PGTs OF NVS 

02-06-2003 to 22-06-2003 

PROVISIONAL TIME TABLE

Day & Date 9.00 am-
9.30 am

9.30 am- 
11.00 am

11.30 am- 
1.00 pm

2.00 pm- 
3.15 pm

3.30 pm- 
5.00 pm

5.00 pm- 
5.30 pm

Monday
2-6-03

• Registration and 
Inauguration

Identification 
of difficult 

areas
BCB

Pretest
BCB

NMR Library
BSPR

•■ * |
Tuesday

3-6-0.3
Reporting 

of previous 
day's work

GR BSPR . NBB BCB Library
BSPR

Wednesday
4-6-03

-do- GR NMR . NBB BCB Library
BSPR

Thursday
5-6-03

-do- DB • NMR DB NBB Library
BSPR

Friday
6-6-03

-do- NMR DB NBB GR Library
BCB

Saturday
7-6-03

-do- NMR DB NBB BCB Library
BCB

Sunday
8-6-03 •BCB NMR

GROUP WORK 
BSPR | DB DB

------ ----  . — »

Monday
9-6-03

Reporting 
of previous 
day’s work

GR NBB BSPR NMR Library
BCB

I
Tuesday
10-6-03

-do- KD NMR NBB DB Library
BCB

Wednesday 
11-6-03 ‘

-do- KD BSPR . DB NBB Library
NMR

Thursday
12-6-03

-do- KD NMR NNP MVG Library
NMR

Friday
13-6-03

-do- DB MVG NNP NMR Library
NMR

Saturday
14-6-03

-do- DB BSPR MVG NBB Library
DB

Sunday
15-6-03

<-----  GROUP WORK ------ -------------------------------- *
■

Monday
16-6-03

Reporting 
of previous 
day’s work

BSU CGV BSPR MVG Library
BSU

Tuesday
17-6-03

-do- BCB DB MVG BSU Library i
BSU



Wednesday
18-6-03

-do- DB BSU BSPR MVG Library
BSU

i Thursday 
19-6-03

-do- • GTN ASNS BCB BSPR- Library
BSU

Friday
20-6-03

. -do- BSPR KV NMR KD Library
DB

Saturday
21-6-03

-do- S S NMR BCB . Library
DB '

Sunday
22-6-03

-do- Post-test
BCB

BCB BSPR BSU Valedictory
I

Venue: Chemistry Lecture Theatre
11.00 am to 11.30 am and 3.15 pm to 3.30 pm - Tea Break 
1.00 pm to 2.00 pm - Lunch Break

GR G.Ravindra Meaning of Mathematics, Logical Thinking.
Venn diagrams, Problems on continuous functions
and Mathematical Modelling

KD K. Dorasami Teaching of concepts in Mathematics, Evaluation in
Mathematics

NMR N.M. Rao Statics, 3D Geometry, Mathematics Laboratory

DB D. Basavayya Prcbabiliy, Statistics, Computers

NBB N'.B. Badrinarayana Dynamics

BSPR B.S.P. Raju Commercial Mathematics, Vectors

BSU B.S. Upadhyaya Mathematical Logic, Boolean Algebra

CGV C.G. Venkatesha Action Research
Murthy

NNP N.N. Prahallada Value Education

ASNS A.S.N. Rao Sindhe Higher Order Thinking

KV Kalpana Venugopai Creativity in Teaching and Learning, Adolescent
Psychology

MVG M.V. Gopalakrishna Conic Sections, Advanced Level Problem Solving

BCB B.C. Basti • Calculus, Differential Equations

GTN G.T. Narayana Rao Popular Talk

S Shamanna Popular Talk



REGIONAL INSTITUTE OF EDUCATION, MYSORE-570 006

DEPARTMENT OF EXTENSION EDUCATION

Twenty-One Day Training Programme for PGTs in Mathematics for 
Navodaya Vidyalayas

1. Rakesh Kumar Sinha
PGT Maths
JNV Ministry of HRD 
(Department of Education)
Hansdiha, Dumka 
'Jharkhand
814 145'

2. Rani Mathew C.
JNV Minicoy
Lakshadweep

3. Bidyadhar Sahu
JNV Bagudi
Balasore
Orissa

4. Seshanooj Sarkar
Alirajpur'
District Jhabua
Madhya Pradesh

5. Abdhesh Jha
PGT (Maths)
JNV Rothak West- 
Sikkim
PO Naya Bazaar
Sikkim
737 121

____________________



6. Pradyumna Kumar Moharana
JNV, Kherigadevat
Essagash, Guna
Madhya Pradesh
473 375

7. Mahesh M.
JNV, Chikmagalur District
Karnataka
577 112

8. Vijaya Naithani
JNV. Chara
District Udupi
•Karnataka (Hyderabad Region)
576 112-

9.

I

Ravindra Kumar Rudra
PGT (Maths)
JNV. Manpur District
Indore
Madhya Pradesh .
453 661

10.i P.S Rajput
JNV Panghata
Narwar District 
•Shivpuri
Madhya-Pradesh
473 865

i 11- A.S. Rawat 
'JNV, Shyampur 

j District Sehore
Madhya Pradesh .
466 651



12. Sasi Kumar, D.
PGT (Mathematics)
JNV, Mahadevpur
Lohit District
792 103'
(Transfered to JNV, Hassan, Karnataka)

13. -P. Sundara Kumar
JNV, Canacona
South Goa
Goa
403 701

14. V.B. Vaidya
A/P: Navegaon Banah
District Gondia
Maharastra
441 702'

15. Asokan N.M.
JNV Almatti D S
Bijapur District
Karnataka
586 201 I

16. V. Nagarajan
JNV, Selukate
Wardha
Maharastra
442 001

•

17. Y. Ranga Rao
JNV Narayanpur Taluk Basavakalyan
Bidar
Karnataka

I

•



18.

I

V. Srinivas Rao
JNV, Yenigadale District
Kolar
Karnataka
.563 156

19. V. Ramakrishnaiah
JNV, Doddaballapur
Bangalore (Rural)
•Karnataka
561 203

20. Gopinath Meethale Veetil
JNV, Tamenglong
Manipur
795 141

21. Prabhash Chandra Jha
Tinsukia. JNV
Assam
786 126

22. P. Mary Janet Daisy
JNV. Hondrabalu
Chamarajanagar District
Karnataka

23. Umadevi Himirika
JNV Panchavati 
.Rangat. Middle Andaman
Andaman and Nicobar Island

24. Mary Thomas
JNV, Nalbari 
•Bartala P.O.
Nalbari District
Assam
781 138



25. K. Parva'thi
JNV Khurai
Sagar district
Madhya Pradesh
470 117

26. Sanjay Kumar Jena
JNV, Pailapool- 
Cachar
Assam

27.

i

Manoj Kumar Singh
JNV, Rangia, Kamrup
P.O. Jamtola
District Kamrup
Assam

28. Rakesh Kumar Singh
JNV Kharedi •
District Dahod
Gujarat
389 151

29. Vinod Kumar Tiwari
JNV Chandra Kesar Dam
District Dewas
Madhya Pradesh

30. Umesh Chandra Jhankar
JNV Belpada
District Boiangir
Orissa
767 026.



1 31. Krishna Kumar Mishra
JNV, Knumbong
Imphal, West 
•Manipur
795 113.

32. Sucy Stanly
JNV Mayannur

I

i

!■

Trichur District
Kerala
679 105

I
33. Adobe Ganesh Mahdavrao 

(Khedgaon)
Taluk Dindori

I

II
District Nasik I
•Maharastra
422 205.

II
o/ M. Lokanadham

1

JNV, Chikkajogihally
•District Bellary
Karnataka

>

583 126

35. Rajesh Kumar
JNV, Akkalkuwa

_______

District Nandurbar
Maharastra

.


