INSERVICE TRAINING PROGRAMME IN MATHEMATICS FOR THE PGTs OF NVS

02-06-2003 to 22-06-2003

REPORT

Academic Coordinator

B.C. BASTI

REGIONAL INSTITUTE OF EDUCATION, MYSORE
(NATIONAL COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING, NEW DELHI)
JUNE 2003

PREFACE

The 21-day training programme in Mathematics for the PGTs of NVS, New Delhi was held in RIE. Mysore from 2 nd $1022^{\text {nd }}$ Jume 2003.

The programme was arranged at the request of NVS, New Delhi. The main objective of the programme was to enrich the content level of the teachers as per the revised curriculum.

The present volume contains a detailed report as well as some enrichment material other than the ones given in the training programme to be used in the classroom transactions. I am extremely happy to place on the record that all the participating teachers took great interest in learning new ideas and that they were very punctual in their schedule of training.

I am grateful to Prof. J.S. Rajput, Director, NCERT, for having selected RIE, Mysore as the venue for the programme. My thanks are also to authorises NVS. New Delhi for not only providing funds for the programme but also deputing Mr. Palaniappan, Principal, NVS, Mandya as a liaison officer from NV'S.

I am indeed thankfil to Prof. G. Ravindra. Principal, RIE, Mysore, for giving fill cooperation and guidance to conduct the programme. I also wish to thank all the resource persons and gruest lecturers who have greatly contributed and shared their valuable experiences with the participants.

My thanks are also to my colleagnes in Mathematics Department for their support, guidance and participation, both during planning and conduct of the programme. I wish to thank my colleagnes in other sections and departments for their cooperation.

Lastly, I express my thanks to the administrative and accounts staff for their help in making the programme a grand success.

ABOUT THE TRAINING PROGRAMME

Need to upgrade periodically the professional competence of teachers at all levels in general and senior secondary teachers in particular cannot be overemphasised. In order to improve the capabilities of the teachers in content and pedagogy, the NVS arranges inservice training of teachers at various levels in the form of orientation and refresher courses. In recent times, introduction of career advancement schemes have made it obligatory for the plus two level teachers to undergo refreshers courses of three weeks duration. Hence there is a felt need for a training or enrichment package designed to cater to the special needs of plus two level teachers. The present programme was held at RIE, Mysore from $2^{\text {nd }}$ to $22^{\text {nd }}$ June 2003 for P(GTs in Mathematics of NVS. The programme was planned and implemented by the Mathematics section of DESM of RIE. In addition to the Mathematics faculty, faculty members from the Department of Education also worked as resource persons. Guest lectures and popular talks were arranged using the expertise of external resource persons of eminence.

The main objectives of the training programme was to
(i) enrich the content competency of teachers so that they can execute the revised curriculum with greater confidence.
(ii) make the teachers aware of recent thrust areas in the field of education so as to improve their professional competence and
(iii) make them familiar with certain skills and strategies required for effective teaching in the present day classrooms.

The programme consisted of four lecture sessions per day and compulsory reference work in the library at the end of each day. The topics for the lecture sessions were included after identification of difficult areas, identified in a special session on the very first day. The topics covered were as mentioned below:
(i) Calculus (Differential and Integral)
(ii) Differential Equations
(iii) Statics and Dynamics
(iv) $3 D$ Geometry
(v) Probability and Statistics
(vi) Computers (with hands on experience)
(vii) Mathematical Logic
(viii) Boolean Algebra
(ix) Teaching of Concepts in Mathematics
(x) Evaluation in Mathematics
(xi) Conic Sections and Advanced Level Problem Solving
(xii) Value Education
(xiii) Action Research
(xiv) Creativity in Teaching and Learning
(xv) Commercial Mathematics
(xvi) Linear Programming
(xvii) Mathematical Modelling
(xviii) Mathematics Laboratory

Pre-test and Post-test were conducted for the teachers to study the impact of the training programme.

To sumup varieties of experiences were provided to the participants in order to enhance content enrichment and professional competence. It is hoped that the programme has sufficiently motivated the teachers which is also revealed by the Pre-test and Post-test conducted during the programme.
B. C. BASTI

Academic Coordinator

LIST OF RESOURCE PERSONS

I. RIE Faculty
Prof. G. Ravindra
Prof. K. Dorasami
Prof. N.M. Rao
Prof. D. Basavayya
Dr. B.S.P. Raju
Dr. B.S. Upadhyaya
Mr. B.C. Basti
Dr. N.N. Prahallada
Dr. C.G.V. Murthy
Dr. A.S.N. Rao Sindhe
Dr. (Mrs) Kalpana Venugopal

II. External Resource Persons

Dr. N.B. Badarinarayana
Mr. M.V. Gopalakrishna
Dr. G.T. Narayana Rao
Dr. Shamanna

TABLE OF CONTENTS

Sets, Relations and Functions

Mr. B.C. Basti

Mathematical Induction

Limits, Continuity and Differentiation
Mr. B.C. Basti

Differential Equations
Mr. B.C. Basti

Linear Programming
Dr. G. Ravindra

Probability
Dr. D. Basavayya

Problems in Probability
Dr. D. Basavayya

Probability (Objective Type Questions)

Vectors
Mr. B.C. Basti

Mathematical Modelling
Dr. G. Ravindra

Prof. K. Dorasami

Action Research: A Conceptual Analysis
Dr. C.G.V. Murthy

Significance of Value Education
Dr. N.N. Prahallada

Three Dimensional Geometry
Dr. N.M. Rao

Projects in Mathematics
Dr. N.M. Rao

Business Mathematics
Dr. B.S.P. Raju
Use of Venn Diagrams in Teaching-Learning of Mathematics
Dr. G. Ravindra
Appendices

1. Session on Managerial Skills for Teachers

Prof. Shamanna
2. A Model Lesson Plan

Prof. K. Dorasami
3. Mathematics for Aesthetic Reasons

Compiled by Prof. G. Ravindra
4. Questionnaire to Test Creativity in Teaching and Learning

Dr. (Mrs.) Kalpana Venugopal
Pre-test and Post-test

Time Table
List of Participants

Introduction : an overview.

In this write up (Instructional material) an attempt has been made to discuss the important concepts of 'sets relations and functions. Although these concepts are as old as man's history of civilization, formal introduction of these concepts into mathematics has been very recent. Through the use of these concepts one gains an understanding of the structures and patterns that occur in Mathematics. Pedagogically it has been widely accepted that the concept of sets greatly helps unification of several branches of Mathematics at the school level.

The topic of 'sets' invariably finds a place in the school curriculum all over the world. As an introduction to modern or the so called new Mathematics and as a "language", its importance is accepted.

Sets - Preliminaries

The words, class 'collection' 'assemblage' are synonemous because they convey the idea of a 'set'. Intuitively a set is a 'collection' of objects. The objects may be physical objects, numbers, any kind of symbols or even ideas.

In Mathematics, the term 'set' is used to mean a 'well-defined' collection of objects. Why do we insert the adjective 'well defined' in the description of the term 'set'? Let us study a few examples of 'collections' of objects.

Ex. 1. All states in the Indian Union
Ex. 2. All rivers of Karnataka
Ex. 3. All multiples of the nnmber 7
Ex. 4. Some interesting hooks
Ex, 5: The, students of that class
Ex. 6. The collection of all circles having a given point as their centre

Ex. 7. The good films produced in Bombay in the year 1981

A scrutiny of the 'collections' given in the above list reveals that in the case of examples $1,2,3,6$, there is no difficulty in identifying the objects present in each collection. Whether an oiject is in the given set or not can be clearly judged in these cases. But the collections in examples 4,5 and 7 have been described by the words like 'interesting' 'that class' and 'good films'. These descriptions render the sets 'ambiguous'. We are unable to identify clearly the objects of these collections.

Hence the collections in examples $1,2,3,6$ are 'well defined' \therefore they are examples of sets. Where as those in examples 4, 5, 7 are Not weil defined collections.

A set is therefore a well defined collection. The following collections are well defined.

1. The set of all lines passing through a given point.
2. The set of all two legged animals.
3. The set of all primes less than 14 .

Each of the above is an example of a well defined collection because in these cases the basic requirement that "given anv object what so ever and a set, it must be possible to determine whether or not the object is in the set in question' is satisfied.

Exercise :

which of the following collections are sets?
a) Rational numbers.
b) The students studying this book.
c) The paintings in Salarjung Museum
d) The contents of little boys' pockets
e) The ripe oranges

Notation and representation of sets

It is customary to denote sets by capital letters, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ etc. The objects in a set are called 'members of the set' or 'elements of the set', The 'elements' of any set are usually denoted by small letters a, b, cetc.

If ' a ' is an elemant of A then we write $a \in A$ read as (a belongs to A). The notation $a \notin A$ indicates that ' a ' does not belong to A.

There are two ways of representing a set.
I. In the first method we make a list of all the members of the set, separating them by commas, and we enclose them within 'braces' or flower brackets. This method is called roster method or tabular form.

Ex. 1. The set A of all numerals on the dial of a clock can be represented by roster method as

$$
A=(1,2,3,4,5,6,7,8,9,10,11,12)
$$

Ex. 2. The solutions of the equation $x^{2}-5 x+4=0$ are listed as the set $(1,4)$ using roster method.
Ex. 3. The set of all days of the week by roster method of representation becomes
(Sunday, Monday. Tuesday, Wednesday, Thursday, Friday, Saturday).
II. The second method of designating a' set is called 'rule method' or 'set builder form'. In this method, a rule or a common property of all the elements is stated.

For example, to represent a set B of all even. numbers, we use the letter x (usually) to represent an arbitrary element and write

$$
\mathrm{B}=(x / x \text { is even }) .
$$

Which reads
" B is a set of all x such that x is even".
If S is the set of all elements x with the properly p by set builder method we write.
$S=\{x / x$ has the property $p\}$
Here the property p is called the defining property.
Ex. 1. $N=(1,2,3,4,5 \ldots \ldots$. in the set builder from $\mathrm{N}=(x / x$ is a natural number).

Ex: 2: $C=$ set of all capital cities in Europe in thè set builder form

$$
C=[x / x \text { is a capital city in Europe }]
$$

Exercise : Express the following sets in (1) roster form (2) set builder form.
a) All integers between -5 and +5
b) Solution of $x^{2}-3 x+2=0$.
c) All equilateral triangles in a plane.
d) All plays written by Shakespeare.
e) All noble laureates from India.

At this stage we mention two important rules in the representation of sets.

1) The order in which the elements are listed in a set is immaterial, since we are interested in the set as a whole.

$$
\text { fur ex: } A=[2,5,3,6,4]
$$

this set can as well be written as

$$
A=[2,3,4,5,6]
$$

Similarly the set $[2,0,1]$ is the same as the set [$\bullet, 1,2]$.
2) Each element of a set is listed once only.

Example 1. Let the scores of five students in an examination be given by

$$
57,81,81,75,44
$$

The set representing these scores is

$$
S=[57,81,75,44]
$$

Note that in S the score 81 is, listed once only, even though if appears twice in the original list.

Ex. 2: $[1,1,2.2,5,7]$ is the same set as $[1,2,5,7]$.

Q: Why should duplication or reptition be avoided while listing the elements in a set ? give reason.

Finite sets, infinite set, Empty set.
Consider (1) the set $[5]=\mathrm{A}$
(2) $\mathrm{B}=[a, e, i, o, u]$
(3) $\mathrm{C}=[x / x$ is an integer $]$
(4) $\mathrm{D}=$ The set of all stars of first
magnitude
Let us examine each of these sets as to the number of elements it has.

The set A has a single slement in it. We call this set a "singleton". This set has the least number of elements.

The set B has five elements in it. It's elemets can be counted as 5 .

The set hough has a large number of element; has only a finite number of elensents.

The set C has infinitely many elements in i meaning that, the process of listing its elenents wil never end. Another example of a set with infinitely
 atmatio

It is clear that sets may be of any size in so far as the number of elements are concerned.

In the above examples, A, B, and D are flnite sets while C is an infinite set.

Frequently we even find it convenient to consider a set containing no elements, such as, the set of all points at which two parallel lines intersect.

Ex. 2 The set of all common factors of 3 and 7,
Ex. 3. The set of even primes greater than 5 and less than 20.

These set are all sets with no elements, in them. Such a set is referred to as empty or nult set. Null set is denoted by the symbol ϕ or $\}$.

Subsets and Equal sets ; Equivalent sets:

If every element of set A is also an element of the set B then A is called the subset of $B . A$ is a subset of B if and only if.

For all $x, x \notin A r x \in B$. We denote this relationship by $A \subset B$. W'e write ' A is contained in B or $B \supset A(B$ contains $A)$.

$$
\therefore A \subset B \rightarrow \text { for all } \mathrm{x} \times \in A \leftrightarrow \rightarrow \mathrm{x} \in B
$$

Ex. 1. $A=[\mathrm{x} / \mathrm{x}$ is i. Counting number $]$ ie $A=\{1,2,3,4 \ldots$ S.... $\}$
$B=\{3,5,7 \quad \ldots\} \quad C^{\prime}=[5,10,15,20 \ldots \ldots$. $D=[2,4,6,8 \ldots \ldots .1$

Observe that $B, C \& D$ are subsets of A. The sets B, C, D are constructed by selecting the elements from A.

For all x ie $\forall x x \in B \rightarrow x \in$ ie $B \subset A$

$$
\begin{aligned}
& \text { f } x \in x \in C \rightarrow x \in A \text { ie } C \subset A \\
& \text { Fx } x \in D \rightarrow x \in A \text { ie } D \subset A \\
& \text { Ex. } 2: \quad \Lambda=[1,2,3,10,11]
\end{aligned}
$$

$B=[10,11]$. Here $B \subset A \because$ all the elements of B are elements of A. But A has some elements that are not found in B.

In this example B is called a proper subset of A.

$$
\begin{aligned}
& \text { Ex. 3. Let } A=[5,6,7,8,10], B=[5,6,7,8] \\
& C=[7,8,9], D=[5], E=[10] .
\end{aligned}
$$

Here B, C, D, E are all proper subsets of A \because Not all elements of A are in B or C or D or E. It is important to note that

1) Every set is a subsét of itself
2) Null set is a subset of cvery set

Though these statements surprise us, they are the direct consequences of the definition of a subset for,

1) $A \subset A \rightarrow$ for all $x x \in A \rightarrow x \in A$ which is always true. Hence $\mathrm{A} \subset \mathrm{A}, \mathrm{A}$ is an Uniproper subset of A .
2) $\phi \subset \mathrm{A} \rightarrow$. Every element of ϕ is also an element of A. Trouble would arise if there is some element in ϕ which fails to be in A. Since ϕ has no
elements at all the requirement of a subset is trivially satistied for ϕ, Hense ϕ とA. \% In fact" ϕ is a subset of "every set." ϕ is an improper subset' of any 'set \ll Note that ϕ and the given set itself are the two improper subsets of any given set $>$.

Ex. $A=[0,1,2]$. Let us list all its subsets.
$[0][1][2][0,1][0,2][1,2]$ are the proper subsets of A and
$[0,1,2]$ and ϕ are its improper subsets.
Equal sets: Two sets are said to be equal if they have idenitcally same elements-
$A=[1,2,4]$ and $B=\left[1,2,2^{2}\right]$ are equal sets $A=B$.

Ex. 2, $A=[!, 2,2,1]$ and $B=[1,2]$ are identical sets or epual sets, $A=B$.
11
Ex. 3. Let $[1,5,6]=\mathbf{A}$

$$
[6,1, .5]=\mathrm{B}
$$

These are equal sets. Here every clement of A is an element of B . ie. $\mathrm{A} \subset \mathrm{B}$ and every element of B is also an element of A ie. $B \subset A$.

From this example we note that $A=B$ if $A \subset B$ and $B \subset A$

$$
\mathrm{A}=\mathrm{B} \text { if } \mathrm{A} \subset \mathrm{~B} \text { and } \mathrm{B} \subset \mathrm{~A}
$$

Here A and B are equivalent, because their elemenits can be matched or a oné-one correspondence is possible between their elements:

As in ex. 3 here also, A and B are eqivalent. In Ex. 3 \& $4, A$ and B being infinite sets, we donot ask "Do they have same number of clements? inslead we set up a one-one Correspondence for the elements of A and B and decide that these sets are equivalent. Are all equal sets equivalent ? the answer is obviously 'Yes'.

Cardinal numbers and Infinite sets:

The concept of 'counting numbers' or 'natural numbers' as a set, was developed b?cause of man's desire to compare sets of various objects. Consider a set of ten books, a basket of ten apples, a pack of ten wolves-all these sets bave 10 objects in them. This fact as we know, is arrived at, by the counting process.

1\% What is the principle underlying the process of counting? Recall, that counting involves a 'matching process' or setting up a 'one-to-one correspondence'

Equivalent sets :

Fig. 1
Ex. 1. $\mathrm{A}=[$ Rama, Krishna, Christ] $B \doteq$ [Seetha, Radha, Meera $]$
Here, A and B are not equal sets but, A and B have both three elements in them. We say A and B are equivalent sets. ie, the elements of these sets can be matched

$$
\text { Ex. 2. } \begin{aligned}
A & =\text { The cricket team from England } \\
B & =\text { The Cricket team from India. }
\end{aligned}
$$

Note that the players are different in each team but A and B have same number of players
$\therefore A$ and B are equivalent sets.
Ex. 3. $\mathrm{A}=[1,2,3,4$.
$B=[3,6,9,12 \ldots \ldots .$.
A and B are infiinte sets.
We can match the elements of A and B or set up a one-one Correspondence between the elements of and A B as shown here.
between elements of the given set and the elements or some standard counting set. The set of natural numbers ' N ' is the standard counting set.

The set $\mathrm{A}=[a, b, c, d, e]$, has 5 elements in it because A is equivalent to the set.
$N_{5}=[1,2,3,4,5]$ which is the subset of N. We say 5 is the cardinal number of this finite set A. Note that A is equivalent to N_{6}.

$$
\text { If } A=\left[3,3^{3}, 3^{3} \ldots \ldots \ldots3^{n} .\right]
$$

We know that here A is equivalent to the finite subset $N_{n}=[1,2,3 \ldots \ldots \ldots n]$ of N. So the cardial num ${ }^{-}$ ber of this finite set A is ' n '. A is equivalent to n_{n}. If two finite sets are equivalent they have the same cordinal number.

It is now clear that the cardinal Number of any finite set is a specific natural number.

Infinite sets have a special property which makes them interesting to study.

We have seen that two finile sets are equivalent iff they contain same number of elements.

Ex. 1: Now let $\mathrm{N}=[1,2,3 \ldots \ldots \ldots . .]=.[x / x \in N]$

$$
\left.\begin{array}{r}
\mathrm{E}=[2,4,6 \ldots \ldots \ldots]=[x / x=2 n, \\
n \in N
\end{array}\right\}
$$

sets

N and E are equivalent sets. Note that E , here is a proper subset of N . ie. not all elements of N are
elements of E. We can still set up a one- One correspondance between N \& E

$\therefore \mathrm{N}$ is equivalent to E
Clearly, the infinite set N is equivalent to its proper subset E of even numbers.

$$
\text { Ex. } \begin{aligned}
2: . \mathrm{I} & =[0, \pm 1, \pm 2, \pm 3 \ldots] \\
\mathrm{P} & =[-1,-2,-3 \ldots \ldots] \\
\mathrm{Q} & =[0,1,3,5,7 \ldots \ldots \ldots . .]
\end{aligned}
$$

Note that I is an infinite set and

$$
\mathrm{P} \subset \mathrm{I} \quad \mathrm{P} \text { is a proper subset of } \mathrm{I}
$$

$\mathrm{Q} \subset \mathrm{I} \quad \mathrm{Q}$
$\therefore I$ is equivalent to P (its proper subset) I is equivalent to Q (its proper subset)

This property of " a set being equivalent to a proper subset of itself" is characteristic of 'Infinite sets'. So we state.
$\leftrightarrow A$ set is infinite, if it is equivalent to a proper subset of itself, otherwise it is finite $>$.

The cardinal humber of the standard counting set N does not correspond to any finite natural number, as N is an infinite set. The cardinal number
of N is sometimes denoted by α (alpha null). All infinite sets which are equivalent to the set N have the-same cardinal number α (alpha null).

The idea of cardial numbers was first developed by Georg Cantor in a remarkable series of articles published in 1872. Prior to Cantor's study of infinite Msets, athematicians used the symbol ∞ indiscriminately to indicate the 'number' of elements' in all kinds of infinite sets. Cantor's work revolutionised the concept of 'infinity' in mathematics.

Exercise :

(1) How many elements are in [$a, a, a, a, a]$
(2) Can there be unequal empty sets? Explain.
(3) Extend the definitions of union and intersetion ton sets. n-finite + ve integer).
(4) Find all subsets of $[0,1,2]$.

State whether each statement is correct ?
(a) $[1,4,3]=[4,3,1]$.
(b) $[4] \in[(4)]$
(c) $[4] \subset[(4)]$
(d) $[\phi]$ a subset of every set
(e) $[1,2,3,1,3,2] \subset[1,2,3]$.
(5) State whether following sets are finite or infinite
(a) Set all lines parallel to $\mathrm{X}-a x$ is
(b) Set of all circles through the origin (.00)
(c) The sut of all animals living on Earth

Venn diagráms and Universal set.

To understand the relationships among sets, as also properties of sets, we often use simple diagrams called Venn diagrams. These are strictly schematic representations. Although they cannot be used to prove statements, they are excellent visual aids to verify important set relationships. In these diagrams sets are represented by circular areas.

Ex: The concept of $A \subset B A \neq B$ is shown in the venu diagram as

Fig 2
Ex. 2 :

Fig 3
This diagram illustrate the $1-1$ correspondence between the sets

$$
\mathrm{A}=[1,2,3] \text { and } \mathrm{B}=[a, b, c]
$$

A is equivalent to B.

Universal set: In any discussion on sets, all sets under investigation will very likely be subsets of a fixed set. We call this set 'Universal set' or 'Universe of discourse'. We denote this by set U.
ex: 1 Any study about population of human beings, will have the set of all human beings in this world as the Universal set.

$$
\text { Ex: 2: If } \begin{aligned}
\mathrm{A} & =\text { the set of rectangles. } \\
\mathrm{B} & =\text { the set of all circles } \\
\mathrm{C} & =\text { The set of all triangles }
\end{aligned}
$$

the Universal set for these sets is the set of all plane figures.

In a Venn diagram, Universal set U is usually represented by a rectangle. All the subsets of the Universal set are shown as circles in this rectangle.
For Ex. 3 the venn diagram is shown here.

Fig 4.

Exercise : Let $Q=[x / x$ is a quadrilateral $]$
$H=[x / x$ is a rhombus $]$
$R=[x / x$ is a rectangle $]$
$S=[x / x$ is a square $]$
Decide which sets are the proper subsets of others. Draw Venn diagrams to illustrate their relationships.

Exercise 2 : Draw Venu diagram to illustrate the sets,
$A=$ The set of all boys in your state
$B=$ Set of all boys in your school
$\mathrm{C}=$ The sa of all boys in your mathematics class

OPERATIONS ON SETS

In arithmetic we are taught how to add, subtract and multiply numbers. What exactly in done in each of these processes? Recall that for each pair of numbers x and y, We assign a, number $x+y$ called the sum of x and y, a number $x-y$; called the difference of x and y-and a number $x y$, called the product of x and y, Chis process of assigning (associating) a number with a pairi of numbers is nothing but 'binary operation' on numbers. In fact the fundamental operations on numbers are all binary operations'.

Let us extend the idea of 'operation to sets. We wish to construct new sets from the given sets, while
there are various ways of assigning a 'new set' to a given pair of sets, we in this section, discuss three important ways of constructing new sets by devising binary operations called

1) Union
2) Intersection
3) difference of sets. We later see that these operations have certain properties similar to the usual operations of arithmetic.

Union of sets

Fig 5.
Consider

$$
\begin{aligned}
& \mathrm{A}=[1,2,5] \\
& \mathrm{B}=[a ; n, m, o]
\end{aligned}
$$

Let us form the set $\mathrm{C}=[1,2,5, a, n, m, o]$
Note that C is the set of all those elements which are either in A or B or both, In other words.

$$
C=[\mathrm{x} / \mathrm{x} \in A \text { or } \mathrm{x} \in B]
$$

Note that we have used 'or' in the inclusive sense.

We refer to C as the 'Union' of A and B, and we write

$$
C=A \cup B \quad(A \text { union } B)
$$

Refer to the Venn diagram Fig 6

Shaded portion represents $A \cup B$
Ex. 2: Let $A=[1,2,3,4,5]$

$$
B=[1,2,3,8,6]
$$

easily, $C=A \cup B=[1,2,3,4,5,8,6]$

$$
\begin{aligned}
\because A \cup B & =C \text { satisfics the property } \\
C & =[\mathrm{x} l \mathrm{x} \in A \text { or } \mathrm{x} \in B]
\end{aligned}
$$

Fig 6.
Shaded portion in fig 6
represents $A \cup B$.
Ex. 3: Let $A=[a, b, c]$

$$
B=[a]
$$

Herc. $A \cup B=[a, b, c]=A$ itselt

The shaded postion in $A \cup B$ is fig 2.1 (c)

Fig 7.
We now define $A \cup B$ the union of any sets A and B

$$
A \cup B=\{x / x \in A \text { or } x \in B\}
$$

If $A=N$ (set of nat. numbers), $B=\left\{\mathrm{x} / \mathrm{x}=\mathrm{x}^{2}, \mathrm{x} \in N\right\}$
then $A \cup B=A$.
Union of sets as a binary operation on sets. To each pair of scts A and B, a set called $A \cup B$ is assign. ed such that

$$
A \cup B=[x / x \in A \quad \text { or } \quad x \in B]
$$

Remarks: By the definition of 'union' the following properties directly follow.

1) The set $A \cup B$ is identical with the set $B \cup A$
2) The set $A \cup B$ comtains the set A as well as B ie. $A \simeq A \cup B$
$B \in A U B$
3) If $A \subset B$ as we have already seen $A \cup B=B$ itself
4) The union of any set with itsel is the given set itself ie, $A \cup A=A$
Exercise
5) What is $A \cup B$ if either A or B is an empty set?
6) For what choice of sets do we get $\mathrm{AUB}=\phi$?
7) Give an example of a set $A \cup B$ such that $A \cup B$ is equivalent to A or B
8) Write the venn diagram to represent the set A UBUC for sets A, B, C

Intersection of sets.

Intersection of the sets is another binary operation on sets. To each pair of sets A and B , we assign a set called 'Intersection of the sets A and B, (denoted by $\mathrm{A} \cap \mathrm{B}$), according to the requirement that

$$
A \cap B=\{x / x \in A \text { and } x \in B\}
$$

$\mathrm{ie} A \cap B$ Consists of all the elements that are of common to the sets A and B . The shaded portion in the following Venn diagram represents $A \cap B$ in each case.

Fig 8.
In fiig 2.2 (a) absence of common elements in A and B explains why there is no shaded portion to represent $A \cap B$. The sets A and B in this case do not interscet........ $A \cap B$ is a null set. We call such sets A and B as disjoint sets. Note that the sets in 2.2 (b) and 2.2 (c) are not disjoint sets.

Ex. 1 : Let $\mathrm{A}=[1,2,3,4 \ldots \ldots]$

$$
\mathrm{B}=\left[0, \frac{1}{2}, \frac{1}{3}, \frac{3}{3} \ldots \ldots . .\right]
$$

these are both infinite sets. They have no common elements between them.
Obviously $\mathrm{A} \cap \mathrm{B}=\{\mathrm{x} / \mathrm{x} \in \mathrm{A}$ and $\mathrm{x} \in \boldsymbol{B}\}=\phi$ (empty set)
$\therefore A$ and B are disjoint sets.
Ex. 2, $A=\{x / x$ is a perfect square $\}$
$B=\{x / x$ is an even number $\}$
$\mathbf{A} \cap \boldsymbol{B}=[\mathrm{x} / \mathrm{x}$ is a perfect square and x is an even number] Observe that $A \cap B$ is not empty \because some perpect squares like $4.16 \mathrm{etc}, \in \mathrm{A} \cup B$

Note the following consequences of the definition of the set $A \cap B$

1) The set $A \cap B$ is equal to the set $B \cap A$
2) $\mathrm{A} \| \mathrm{A}$ is always $=\mathrm{A}$ itself
3) $A \cap B$ is a subset of A, ie $A \cap B \subset A$
$A \cap B$ is a subset of B, ie $A \cap B \subset B$
4) If $A \subset B$ then $A \cap B=A$ it self
5) If A and B are disjoint, i, $A \cap B=\phi, \phi$ is a subset of every set and \therefore of A and B.
Exercise : 1) For any sets A, B and C Find using Venn diagrams the set $(A \cap B) \cap C$ and the set $A \cap(B \cup C)$

$$
\text { 2.) } \begin{aligned}
\text { Let } \quad & \\
& =[1,2,3,4] \\
B & =[2,4,6,3] \\
& =[3,4,5,6]
\end{aligned}
$$

Find (a) $A \cap B$, (b) $A \cap C$ (c) $B \cap C$ © $\mathrm{H} \cap \mathrm{B}$ 。

The difference of sets A and B :
The difference $A-B$ of the set A and B is a set such that

$$
\begin{aligned}
& R=A-B=[\quad x / x \in A \text { but } x \in B] \text { we could } \\
& \text { also say }
\end{aligned}
$$

(read A minus B) $A-B=[x \in A$ and $x \in B]$
In the Venn diagrams that follow $A-B$ is given by the shaded are, a

Fig 9 .
Ex. 1. $\quad A=[5,6,9,16], \quad B=[5,6]$ $A-B=[9.16]$

Ex. $2 \quad \mathrm{~A}=\{\mathrm{x} / \mathrm{x}=2 \mathrm{x}, \quad n \in N\} \equiv\{2,4,6,8 \ldots \ldots . .$.

$$
\begin{aligned}
\mathrm{B}=\{\mathrm{x} / \mathrm{x}=3 \mathrm{n} \quad n \in N\} \equiv & \{3,6,9,12 \ldots \ldots, \ldots\} \\
\mathrm{A}-\mathrm{B}=[2,4,8,10,14 \ldots \ldots . . .] \equiv & {[x / \mathrm{x}=2 n \text { but }} \\
& \mathrm{x} \neq 3 n, \quad n \in N]
\end{aligned}
$$

For any set A the difference set $U-A$ is the difference of the universal set and A is called the complement of the set A in U ie complement of $\mathrm{A}=\mathrm{U}-\mathrm{A}$.

We write $\quad A^{1}=U-A$

Fig 11.
The shaded postion of the diagram (Fig. 11) represents A^{1} the complement of A

$$
\therefore \quad A^{1}+[x / x \in U \text { and } x \in A]
$$

Example: Let $U=[1,2,3,4 \ldots \ldots \ldots .$.

$$
A=[2,4,6,8 \ldots \ldots \ldots \ldots]
$$

$$
\text { then } A^{\prime}=[1,3,5,7 \ldots \ldots \ldots \ldots]=U-A
$$

Remark : 1) For any set A
$A \cup A^{1}=U$ the universal set
2) U^{1} the complement of the universal set $=\phi$
3) ϕ^{1} the complement of the empty set is the universal set U.
4) The set A and its complement A^{1} are always disjoint in $\mathrm{A} \cap \mathrm{A}^{1}=\phi$

We can use Venn diagrams to understand some simple relationships among the operations of union, intersection, difference of sets and complements.

1) $\mathrm{A}-\mathrm{B}, \mathrm{A} \cap \mathrm{B}$ and $\mathrm{B}-\mathrm{A}$ are mutually disjoint.
the corresponding diagram are

Fig 12.
from these diagrams we have
$A-B, A \cap B$ and $B-A$ are mutually disjoint sets.
2) $\mathbf{A}-\mathbf{B}=\mathrm{A} \cap \mathrm{B}^{1} \quad$ Let us draw Venn diagrams

Fig 13.
(i). Shaded area in the diagram (a). is A-B Horizontally shaded area in the diagram (b) is the set B^{1}. The double hatched (shaded) area in the figure (b) is the set $A \cap B^{1}$ From figs (a) and (b), we have

$$
\mathrm{A}-\mathrm{B}=\mathrm{A} \cap \mathrm{~B}^{1}
$$

Fig (c)

Fig 14.

3) If $\mathrm{A} \subset \mathrm{B}$ then $\mathrm{B}^{1} \propto \mathrm{~A}^{1}$

horizontally shaded area in diagram (c) is the set B^{1}

Fig 15.

Yertically shaded postion of fig (d) represents the the set A^{1}.

From the two figures it is clear that B^{1} is contained in A^{1} ie the region of B^{1} is included in the region of A^{1} Exercises: Verify by the drawing the Venn diagrams the following set theoretic relations.

1) $(A \cap B) U(A-B)=A$
2) $(\mathrm{A}-\mathrm{B}, \cup \mathrm{B}=\mathrm{A} \cup \mathrm{B}$
3) $(\mathrm{A}-\mathrm{B}) \cup \mathrm{B}=\phi$
4) $\mathrm{A}-\mathrm{B}=\mathrm{A}-(\mathrm{A} \cap \mathrm{B})$

Use of Venn diagrams and knowledge of sets in solving some problems :

Venn diagrams illustrate the relationships that exist among given sets. Many verbal statements can be conveniently translated into statements about sets and represented in Venn diagrams,

Ex: This statement,

"All men are intelligent" can be rewritten using language of sets as
a'The set of all men is a subset of the set of all intelligent beings' we can now use Venn diagrams to represent this idea as in fig 2.4 (a)

$$
\xrightarrow[\text { All men }]{\text { Intelligent beings }}
$$

There are some problems which can be solved using the language of sets and Venn diagrams. In these problems, we restate the problem as a statement about seis, and study these sets using Venn diagrams.

Example :

Prohlem: In a group of 40 students who drink tea or coffee or both, 26 drink tea of whom 16 drink tea but not coffee. How many drink coffee but not tea?

We recognize the different stits of students as

$$
\begin{aligned}
& A=\text { set of students who drink coffee } \\
& B=\text { set of students who drink tea. } \\
& \qquad\left(B \text { has }{ }^{\prime} 6\right. \text { elements). }
\end{aligned}
$$

then $\quad A \cup B$ the set of all student drink coffee or tea or both.

From the data $A \cup B$ has 40 elements in it.
$B-A$ is the set of students who drink tea but not coffee.

It is given that $B-A$ has 16 elements. we have to find number of elements in $A-B$. In fig (a) (AUB) i_{s} horizontally hatched area)
$\therefore \quad(A \cup B)-B$ is the set of all those who are strictly coffee drinkers they are $40-26=14$ in number, ($A \cup B$) $-B$ is the double hatched area of fig (b) The set ($A \cup B$) - B is the same as the set $A-B$; the horizontally hatcbed area in fig c.
$\therefore \quad$ A-B, the set of all who drink coffee but not tea contains 14 elements.

From the diagrams $(A \cup B)-B=A-B$

$=A \cup B$

$\square=(A \cup B)-B$

$\Rightarrow=A-B$

Fig 16.
In the same problem if we want to find how many students drink both tea and coffee ie. we want the number of elements in the set $\mathbf{A} U B$ What is the answer?

Exercises: Solve problems given in the exercise 3.4 chapter 3, of the Text book of Maths. VIII standard

$$
\begin{array}{lll}
\mathrm{x} & \mathrm{x} & \mathrm{x}
\end{array}
$$

Use of Venn diagrams \& sets in testing the validity of arguments in Logic :

What is an argument? An argument is an assertive statement. An argument, therefore, is true
or false but not both. Argument occurs in a reasoning process. Every argument contains two parts, First. part is called premises. Permises is made up of a number of statements. Second part of argument is called conclusion. Conclusion is a single statement.

An argument is of the form

Conclusion $\therefore S$.
Which means that the statements $S_{1}, S_{2} \ldots \ldots . . S_{n}$ of the premises lead to the conclusion S. If the conclusion S is arrived at logically from the premises, then the argument is said to be valid. If the conclusion does not logically follow from the premises, we say the argument is invalid.

Consider the example of an argument :
$S_{1}:$ Some animals are elever
$S_{2}:$ Man is an animal

$\therefore S$ Man is clever

Here the statements S_{1} and S_{2} are both true but the conclusion S does not logically follow from the premises $\left(S_{1}\right.$ and $\left.S_{2}\right)$. Therefore the argument is invalid.

Let us use Venn diagrams to test this argument.
Let A: The set of all animals
B : The set of all clever animals we know that A and B are related by the statement S_{1} of the argument.

By S_{1}, B is a proper subsect of A . By S_{z} it is clear that the set of all men is a subset of the set of all animals. Refer to the diagram.

The conclusion of the argument is valid only when the "set of all men" interesects the "set of all clever animals." But the diagram shows that the set of Men is disjoint with "the set of all clever animals" \therefore the argument is tested by Venu diagrams and it is found to be invalid.

Ex. 2 : Consider the argument

$$
S_{1} \text { : ivo student }
$$

Premises $\left\lvert\, \begin{aligned} & S_{3}: \text { John is an artist } \\ & S_{3}: \text { All artists are lacy }\end{aligned}\right.$
Conclusion \therefore John is not a student
When we display in a diagram the relationships
that occure a mong the sets available in this argument we get the following Venn diagram.

From the diagram it is clear that 'no artist is a student'. \therefore the conclusion of the argument is justified, \therefore Argument is valid

Exercises: Jest the validity of the argument;

1. S_{1} : All lawyers are wealthy
S_{2} : Poets are temperamental
S_{3} : Raghava is a lawyer.
S_{1} : No temperamental person is wealthy
\therefore Raghavan is not a poet.
$2 S_{1}$: All students are lazy
S_{2} : No body who is wealthy is a student
\therefore Lazy people are not wealtby.
2. S_{1} : No college professor is wealthy
S_{3} : Some poets are wealthy

Some poets are colloge professors

A comparison of set operations with number operations :

We recall the usefulness of Venn diagrams in visualising set relationships.

It will be instructive to verify the following properties of the binary operations 'Union' and 'Instersection' of sets by Venn diagrams. In the following, 'addition' of numbers is compared with 'Union' of sets. 'Multiplication' and 'Intersection' are compared as operations.

Like number operations, 'Union' and 'Intersection' are both commutative and associative operavions, since

1. $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cup \mathrm{A}$ 1. $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
2. $(A \cup B) \cup C=A \cup$ 2. $A \cap B) \cap C=A \cap$
$(B \cup C) \quad(B \cup C$
For universal set U and the null set ϕ we have.
3. $A \cup \phi=\phi \cup A=A \quad 3^{1} \quad U \cap A=A \cap U=A$

Compare the roles of ϕ and \mathbf{U} here with those of corresponding numbers O and l.w.r.t. 'addition' and multiplication respectively. Recall;
$a+o=0+a=a \forall$ numbers $a, \quad a \times 1=1 \times a, \forall a \in \mathrm{R}$
4) $A \cup A=A \quad \forall$ Sets $\left.A, 4^{1}\right) \quad A \cap A=A \quad A$ sets A

We have no anologous property in number ope-
rations for, $\dot{c}+a=a$ need not be ture ex cept when $a=0$

$$
a \times a=a \text { also is not generally true }
$$

${ }^{\text {a }}$ This additional property in set operations is called 'idempotence".

5) $\phi \cap A=A \cap \phi=\phi$ for all sets

This property of the set ϕ is comparable with that of the number O w.r.t. multiplication in our number.system.

$$
a \times o=o \times a \text { for numbers } a \text {. }
$$

6) The operations of union and intersections distribute over each other, since

$$
\begin{align*}
& A U(B \cap C)=(A \cup B) \cap(A \cap C) \text { and } \tag{1}\\
& A \cap(B \cap C)=(A \cap B) U(A \cap C) \tag{2}
\end{align*}
$$

Whereas we have single distributive law for numbers. We know multiplication alone distributes over addition. The distributive law of number system compares with the distributive law (2) of sets ie.

$$
a(b+c)=a b+a c \forall \text { numbers } a \cdot b \cdot c
$$

The reason for altempting to compare set operations with number operations is that all our new operations and new Mathematical systems find their inspiration or motivation from the properties of number operations. Sets form a 'mathematical system' and hence we can study sets as a 'Mathematical system in its own right.

Relations and Functions

Every one is familiar with the idea of relations as a form of connection", between two or more hings. Relation is a concept which permeates everyday life We commonly hear of such relations as 'the husband 8f" 'ffriend of' 'is to the left of', 'is taller than', is the sagessize, as' "is petween'. A quick scrutiny of elementary Mathematics makes it evident to us that after all Mathematics is a study of a veriety of spatial and quantitative relationships. Flementary 'Geometry studies such relations as 'is parallel to', 'is collinear with', is 'congruent to', 'is similar to'. Where as 'Arithmetic is dominated by the relations like 'is equal to 'is a factor of' "is greater than' 'is a product of'.

Mathematicians study the concept of 'relation' andits properties in an abstract way.

In this section let us study 'relation' and the beatate , concept of 'function' as Mathematical concepts.

Ordered pairs, Product sets, Graphs.
In the study of operations on sets, we were interested in construction of new sets and their properties. A more elaborate and useful way of construc. ting a new set from a given pair of sets is by the 'ordered pairs' of elements.

The concepts of 'ordered pair' and 'ordered triple' are not new to us. Recall that points in a plane
are represented by ordered pairs of numbers. The ordered pair $(5,4)$ and the urdered pair $(4,5)$ represent two different points in the plane. Idea of 'ordered pairs' is basic to Analytical Geometry'Ordered pairs' play vital role in the construction of Mathematical systems.

Intuitively, an orderd pair consists of two elements a and b where a is called first component and b is called the second component. We denote this ordered pair as (a, b).

Orderd pairs (a, b) and (b, a) are difforent.
Example: The rational number $\frac{2}{3}$ is represented by the ordered pair $(2,3)$.
$(3,2)$ represents the rational number $\frac{3}{2}$.
The ordered pairs $(a, b)=(c, d)$ if

$$
a=c \text { and } b=d
$$

We know that ordered pairs can be plotted graphically.

Ex. \&. Sketch the graph of all ordered pairs $(\mathrm{x}, \mathrm{y}) \mathrm{x}, y \in Z$ (Integers) \& satisfying the property $0<x<5$ and $y<4$.

Fig 18
This graph shows all the orderd pairs (x, y) of integers subject to the condition that $0<x<5$ and $y \leqslant 4$

The graph is made up of infinitely many discrete points.

Product Sets: (Lartesian Proqucts).
Ex : Let $\mathbf{A}=\{1,2,3,4$,

$$
B=\{8,6\}
$$

The cartesian product $\mathbf{A} \times \mathbf{B}$ of these two sets is the set of ordered pairs

$$
\begin{aligned}
\mathrm{A} \times \mathrm{B}= & \{(1,8),(2,6),(3,8),(3,6),(1,6),(2,8),(4,8) \\
& (4,6) .\}
\end{aligned}
$$

'We read $\mathbf{A} \times \mathrm{B}$ as ' A cross B '

Ex. 2. The product set $\mathrm{A} \times \mathrm{B}$ of the sets udauw. $A=\{1,4\}, B=\{3, \%$, $\}$
$\mathbf{A} \times \boldsymbol{B}=[(1,3),(1,2),(4,3),(4,2)]$
$\mathbf{A} \times \mathbf{B}$ is graphically shown as thes et of 4 (dots) discrete points.

Fig 20
Let $U=[1,2,3]$
miDraw the graph of $U \times U . U \times U$ is a discrete set of ${ }^{\prime}$.(dots)'points in the carteisan plane.
Ex. 3 :

Fig 21

We define the cartesian product of any two sets A and B:

$$
\mathrm{A} \times \mathrm{B}=[(a, b) / a \in A \text { ahd } b \in B] .
$$

In general $A \times B \neq B \times B \times A$
for

$$
\mathbf{B} \times \mathbf{A}=\{(b, a) / b \in \mathrm{~B} \text { and } a \in \mathbf{A}\},
$$

Every ordered pair of numbers ($x \cdot y$) belongs to the set $R \times R$, where R is the set of reals. To any ordered pair (x, y) of numbers, there corresponds a point in the cartesian plane. 1 herefore cartesian plane is nothing but the set of all ordered pairs of $R \times R$.

Any set of ordered pairs of numbers or cartesian product of any two sets is always a subset of $R \times R$.

Exercise :

1. If $\mathrm{A}=[6,8], \mathrm{B}=[5,3] \mathrm{C}=[3,4]$.

Find (a) $A \times(B \cup C)$, (b) $A \times(B \cap C)$,
(c) $(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C})$
2. Graph $S=[(x, y) / 2 x-3 y=6] . \quad x, y \in Z$.
3. If the universal set
$\mathrm{U}=\{(5,5),(4,1),(1,2),(8,3),(0,0)\}$
Using $(i$ as given
a) Find $[(x, y) / \mathbf{x}>y]$
b) Find $[(x, y) /(x+y)=5]$
c) Find $[(x, y) / x$ is even]
d) Find $[(x, y) / \pi=4 y]$

Relation as a set of Ordered Pairs:

Ex. 1: Cousider the sets of names of men and thoir respective native places.

$$
\begin{gathered}
\mathbf{A}=[\text { Rama, Rahim, Govinda, Srihari }] \\
\mathbf{B}=[\text { Mysore, Gulbarga, Hassan, Melkote }]
\end{gathered}
$$

A and B are connected by the relation 'is a native of ${ }^{*}$ this can be illustrated in a diagram.

Fig 22
We can express the relation between the elements of A and B as a set R of ordered pairs.
$\mathbf{R}_{1}=$ (Rama, Mysore), (Rahim, Gulbarga)
(Govinda, Hassan), (Srihari, Melkote)
'his set of ordered pairs R completely expiesse. the relation in question.

IE. 2: Consider $A=[1,2,3]$

$$
\mathrm{B}=[2,4,6]
$$

Let the relation be "is the double of". The related elements in these two sets are thl's relation $1 \& 2,2 \& 4,3 \& 6$ is given* by "the bett of 'ordered pairs

$$
\mathrm{R}_{8}=[(1,2),(2,4),(3,6)]
$$

Ex. 3: Write the set of all ordered pairs, ofiseloments,

$$
\begin{aligned}
& A=[3,9 ; 12,] \\
& B=[4,10,2,12]
\end{aligned}
$$

Using the condition 'is greater than'. Obvipuslye $R_{3}=\left[(3,2),(9,4),\left({ }^{\prime}, 2\right),(12,4), 12,1,0\right),(12,2,2) ’^{\prime \prime}$ R the set of ordered pairs describes the felation in each example given above. We \therefore generafies $\leqslant A$ relation from a set $A-$ to a set B sisa set of ordered pairs $>$.

Refer to the examples 1,2,3 in above Relation R from a set A to set B in each of the above examples eonsists of the ofdered pairs of only related elements. In each case if we compute $A \times B$ then we realize that R has only some elements of $\mathrm{A} \times \mathrm{B}$.

In Ex. $1 \mathbf{A} \times \mathbf{B}$ has 16 elements in it.
$R_{1}=[(R, M),(R, G),(G, H),(S, M)]$ is on ly,, subset ie. $\mathrm{R}_{1} \subset \mathrm{~A} \times \mathrm{B}$
In Ex. $2 \mathrm{~A} \times \mathrm{B}=\left\{\begin{array}{l}(1,2),(1,4),(1,6)(2,2)(2,4) \\ (2,6)(3,1)(3 ; 4)(3 ; 6), \cdots,\end{array}\right\}$
Where as

$$
\begin{aligned}
& R_{2}=[(1,2),(2,4),(3,6)] \\
& \therefore \quad R_{z} \subset A \times B
\end{aligned}
$$

In Ex $3 \mathrm{~A} \times \mathrm{B}$ consists of 12 ordered pairs．
$\mathbf{A} \times \mathbf{B}=\left[\begin{array}{lllll}(3,4) & (3,10) & (3,2) & (3,12) & (9,4) \\ (9,2) & (9,12) & (12,4) & (12,10) & (12,2) \\ (9,12,12)\end{array}\right]$

where as the relation $\mathrm{R}_{3}=\left[\begin{array}{c}(3,2)(9,4)(9,2)(12,4) \\ .(12,10)\end{array}\right)$

$$
\left.x=2)_{!}\right]
$$

The Vertical ：line consists of all point whose－x coordinate $=2$ and y_{s} coordinate varies tver the set R

This vertical line is af e giant of the relation

$$
\mathrm{R}=[(\mathrm{x}, \mathrm{y}) / \mathrm{x}=2] \text { 领 give }
$$

 we have the generalization．
diva ginny relation ifyovies two sets，say A and B ． lencalitis called binary fekationis．a．．．．
2) Relation is from set A to set B.
3) Rolation is a set of ordered pairs of related olements.
4) Relation is a subset of the Cartesian product $A \times B$
5) All binary relations (it involues two sath A \& B) determine subsets of $R \times R$

Graphs of relations :

1) Let $\mathrm{A}=[2,3,4] \quad \mathrm{B}=[3,4,5,6]$

Sketch the graph of the relation from A to B given by $R=[(x, y) / x$ divides $y]$
㒼 (ynow $R \subset A \times B$ and $R=[(2,4)(2,6)(3,3)$
$(3,6)(4,4)\}$

Fig 23.
The 自ve (dots) points evnstitute the graph of fe relation R.

The set of all points indicated by $(\underset{\sim}{x})$ along wift the dotem constitute the points in the set $A \times s$.

Let R be the relation in the set of real numbers defined by $y<x+1$. Graph of the relation R gives the set of all points in the shaded areas.

Fig 24.
The line $\mathrm{Y}=x+1$ is shown by dotted line to show that it does not belong to the graph. The graph of the relation R. ie.

The shaded area consists of the point below the line $Y=x+1$

Domain Range and Inverse relation :
Let R be a relation from the set A to set B . R is a binary relation (Why?. Recall that R is a set of ordered pairs and that $R \subset A \times B$.

The inverse relotion R^{-1} is also a set of ordered pairs.

$$
\mathrm{R}^{-1}=\{(b, a) /(a, b) \in \mathrm{R}\},
$$

The inverse relation R^{-1} Consists of those ordered pairs obtained by reversing the elements of (componets of) ordered pairs of R.
$\rightarrow \mathrm{Ex}:$ If $\mathrm{A}=[1,2,3] \quad \mathrm{B}=[a, b]$
and: $\mathbb{R}=[(1, a)(2, b)(3, a)]$ is a relation from $[$ to $]$ then $\mathrm{R}^{-1}=[(a, 1),(b, 2),(a, 3)]$ is the inverse relation of R. .

Exercise :

1. Write the cartesian product of $[1,2,3]$ and [3, 4, 5]. Display it graphically. .
2. Let $\left.\mathrm{R}=[\mathrm{x}, y) / \mathrm{x} \in R, y \in R, \mathrm{x}^{2}+y^{2}=16\right]$. Sketch this relation in a Graph.
3. Let R be a relation in the set of N drfined by $2 x+4 y=15$. Describe this set in the set builder form. Find R^{-1} sketch the relrtion graphically.

Let R be a relation from A to B. The domain of the relation R is defined as the set of all first elements (first components) of the ordered pairs that belong to:R:

We know that $R<A \times B$
$\mathrm{D}=$ Domain of $\mathrm{R}=[a /(a, b) \in \mathrm{R}]$.
The range E of the relation R is the set of all second components (second elements) of the ordered pairs that belong to R.
Range, $\mathrm{R}=\mathrm{E}=[b /(a, b) \in R]$.
Example: Let relation

$$
\mathrm{R}=[(3,1),(4,5,)(6,7,)(10,11,)(3,13)]
$$

The domain D of R has all the first components of the ordered pairs in R

$$
\begin{aligned}
& \therefore \quad D=[3,4,6.10 .8] \\
& \text { Range } \quad E=[1,5,7,11,13]
\end{aligned}
$$

The inverse relation $R^{-1}=[(1,3)(5,4)(7,(1)(11,10)$ $(13,8)]$

Assignment :

Sketch the following product set in a diagram by shading the appropriate once.

1) $[-3,3] \times[-1,2]$
2) $[-3,1] \times[-2,2]$
3) $[2,3] \times[-3,4]$

Suppose AB C have 3, 4 and 5 elements respectively, how many elements are there in
-1) $\mathrm{A} \times \mathrm{B} \times \mathrm{C}$
(ii) $\mathrm{B} \times \mathrm{A} \times \mathrm{C}$
(iii) $\mathrm{B} \times \mathrm{C} \times \mathrm{A}^{\prime}$?
4) Let $\mathrm{A}=\mathrm{B} \cap \dot{\mathrm{C}}$ which, if any of the following is tore?

1) $\mathrm{A} \times \mathrm{A}=(\mathrm{B} \times \mathrm{B}) \cap(\mathrm{C} \times \mathrm{C})$
2) $\mathrm{A} \times \mathrm{A}=(\mathrm{B} \times \mathrm{C}) \cap(\mathrm{C} \times \mathrm{B})$
3) Verify whether the relation
$(S \times W) \cap(S \times V)=S \times(W \cap V)$ holds by taking $S=[a, b] \mathrm{W}=[1,2,3,4,5] \quad \mathrm{V}=[3,5,7,9]$
4) If $\mathrm{S}_{1}=[(\mathrm{x}, y) / \mathrm{x} \subseteq R, \mathrm{y} \in R, y \geqslant-\mathrm{x}+1]$
and $\quad S_{2}=\left[(x, y) \quad \mid \quad \mathrm{x} \in R, y \in R, x^{2}+y^{2} \leqslant 25\right]$
Graph the relations S_{1} and S_{2} the set $S_{1} \cap S_{2}$.
5) If the Universal set $U=[1,2,3,4,5]$ list the order pairs of the following relations in $\mathrm{U} \times \mathrm{U}$.

$$
\begin{aligned}
& \mathrm{R}_{1}=[(\mathrm{x}, y) / \mathrm{x} \times y \text { is even }] \\
& \mathrm{R}_{2}=[(\mathrm{x}, y) / \mathrm{x}-y=6 \mid \\
& \mathrm{R}_{3}=[(\mathrm{x}, y) / \mathrm{x}>2 \text { and } y=3]
\end{aligned}
$$

8) Find the domain, range and the inverse relation for $R_{1} R_{2} R_{3}$ in problem 7 .

Functions :

The word function was first introduced by Descartes in 1637. He used this word to mean the positive integral power x^{n} of a variable x . Leibnitz associated this term with curves. Bernoulli (16671748) regarded a function as made up of a varible and constants. Euler (1707-1783) regarded a function as an equation involving variables and constants. The Eulerian concept of a function was used until Fourier studied this concept in connection with Trigonometric series.

Function concept is refined by the use of set theory. Function is a special kind of relation between two sets of elements.

Fig 25.
Consider the two sets
Ex. 1: $A=[1,2,3,4,5,6]$

$$
\mathbf{B}=[2,4,6,8,10,12,1,3,5,7,9,11]
$$

Let us define a relation R for A to B the relation
$R=\{(1,2)(1,6)(2,8)(4,8)(5,10)(7,9)]$

See fig 25
In this set R The are two ordered pairs $[1,24$ and [1,6] in which the first component is thes ame namber 1

$$
\begin{equation*}
\text { Ex. } 2: \text { Let } R=[(1,3) \quad(2,3) \quad(3,8) \quad(4,6)(5,6) \tag{6,6}
\end{equation*}
$$

In this relation R, no first component of any ordered "pair repeats more than once,"eventhough thore are three ordered pairs
$(4,6),(5,6)(6,6)$ with same ascons component 6 .
Refer: to fig 16

Fïg 2ú.

Ex. 3: Consider the relation R

$$
R=[(1,1),(2,9),(2,3),(3,3),(4,3),(4,9),(5,7)
$$

Domain of $\mathrm{R}=[1,2,4,5]$ As an ss?
$\cdots \cdots \quad-\quad 11,2,5]$
[4. 1] wit blunge of $R=[\mathrm{k}, 99,3,7$ (44]:
 ponent) is related to 3 and 9 ie . we have $(4,3)^{7},(4,9)^{2}$
 (
(2,9$),(2,3)$ in R and $(5,7),(5,4)$ in R.
The The elements 4,5 of the, domain are repented In R. This is clear by diagrammentin

Among lie three examples given now. Ex. 1 and Ex. 3 have orated pairs whose first dimponentrepeats Where as in Ex: 2 no two order pairs have the same number for their first component.

Observe that the sets R in each of these example. forms a relatlori. But not all these relations are qualified to be called functions.

Definition: Function F is a set of ordered pairs. The set of all fiust components of the ordered pairs forms the domain D of F. The set of all second compments is called the range E of F or every $a \in D$ there exists $b \subseteq E$ such that

$$
(a, b) \in F
$$

Each element of D appears exactly once as the first element in the ordered pairs of F, t his condition rewritten becomes;

$$
\text { if }(a b) \leqslant F \text { and if }(a c) \subseteq F \text { then } b=c \text {, }
$$

Let us appiy this definition to the examples given in the beginning of this section Ex. 1 and Ex. 3 fail to satisfy the condition of the above definition. Hence they are not functions. Ex. 2 satisfies all the conditions of the definition \therefore this set represents a function. Exercise :

Which of the relations below are functions?
a. $\quad R_{1}=[(4,3),(4,15),(6,3),(8,9)]$

$$
\begin{aligned}
& R_{2}=[(4,9) \cdot(6,11) \cdot(8,3)] \\
& R_{3}=[(4,1),(4,2) \cdot(4,3)],
\end{aligned}
$$

b. Find those relations balow wich are not functions.

Fig. 28

Fig 29
Recall the differeuce betwe:n a function and a relation.

$$
\text { If } R=[(x, y) \in N \times N ; y=\mathbf{2 x]}
$$

is a relation. Is it a function? Yes it is a function because no two ordered pairs in R have the same first component. Every ordered pair in R is of the type ${ }_{]}$ $\left(n, Z_{n}\right)$ where $n \in N$. If $R=[(x, y) \in N \times N: x>y$ Is this relation a function?

It cannot be because R has ordered pairs like $(5,1),(5,2),(5,3),(5,4)$ in it. This cannot happen in a function.

Fanction as rule, Correspondence - Votations
The function of f given by

$$
f=\{(x, y) \in N \times N: y=x+5\} \text { can also be deno. }
$$ ted by

$$
\mathrm{f}: N \rightarrow N \text { defined by } f(x)=x+5
$$

If we just write $f: x \rightarrow x+5$ we know how the function is defined but we donot know how the domain is chosen.

Recall that the function f associates (assigns) with each element x of its domain exactly one clement y of its range. $f: x \rightarrow y$ or $f: x \rightarrow f(x)$ tells us that $f \mathrm{Con}^{-}$ sists of all ordered pairs $(x, f(x)) f.(x)$ is calied the image of x under f

Assignment ; 1) Given $S=[3,4,5] T=[x, y, z]$
a) Is $A=(3, x),(4, y)(5, x)$ a relation in $S \times T$
b) Is A a function from S to T ?
2) List the elements of the relation R which is, the inverse relation of

$$
A=[(0,-4),(1,4),(2,2),(3,4),(4,4)]
$$

a) Is A a function? b) Is R a function?
3) Graph the function $f: x \rightarrow y$ defmed by $y=x^{2}$ with its domain the set $[x:-2 \leqslant x \leqslant 2 \quad x \in R]$
4) Given that the domain of the function f defined by $f(x)=\sqrt{ } x$ is the set of reals; $0 \leqslant x \leqslant 2$, find f^{-1} and graph it.

Mathematical Induction

By B.C. Bast i

SYLLABUS : Introduction, Principle of Mathematical induction proving different types of problems of equality, inequality and divisibility by the method of principle of mathematical induction.

POINTS TO REMEMBER

1. Introduction : The word 'Induction' means the method of inferring a general statement from the validity of particular cases. We must be cautious here that in mathematics this kind of inference is not allowed, even when a huge list of particular cases have been verified. Mathematical induction is a principle by which one can conclude a statement for all positive integers; after providing certain related propositions.

Let us see an example to explain the need for our caution.

We know that the numbers $13,23,43,53,73$ etc. are prime numbers. And the numbers 33, 63, 93 etc. are composite. From these particular cases we formulate a general statement. A number of the form $10 n+3$ is prime. If n is not divisible by 3. Is this a true statement?

Even if there are hundreds of particular cases where this is known to be true, we can not conclude that this general statement is true.

If fact this statement is not true in general when the number 143 is of the form $10 n+3$ with $n=14$, but it is not a prime.

We say that 143 is a counter example to the statement.

Even when we do not have a counter example, we can not conclude that a general statement is true simply because it has been found to be true in all its particular cases that have been verified. We can at the best say that it is a reasonable conjecture. .
2. Preparation for Induction : A notation : consider the statements of the form
(i) n is divisible by 3 .
(ii) The number $10 n+3$ is prime.
(iii) $2^{n}>n$.

All these are statements concerning the natural numbers $n=1,2,3, \ldots$. We use the notations $\mathrm{P}(n)$ or $\mathrm{P}_{1}(n)$ or $\mathrm{P}_{2}(n)$ etc. to denote such statements. When we give values for $n=1,2, \ldots \therefore$. We obtain particular statements. If in the statement $P(n)$, we substitute $n=3$, the particular statement so obtained, is denoted by $\mathrm{P}(3)$.
3. Peano's Axioms: Let N be the set of natural numbers. Then the properties satisfied by N, known as the Beano's axioms are :

Axiom 1. $1 \in \mathrm{~N}$, ie., 1 is a natural number.
Axiom 2. For each $n \in \mathbb{N}$; there exists a unique natural number $n^{*} \in \mathrm{~N}$ called the successor of n.

Axiom 3. $1 \neq n^{*}, \forall n \in N$, ie., 1 is not the successor of any natural number.

Axiom 4. $\forall m, n \in N, m^{*}=n \Rightarrow m=n$, i.e., each natural number, if it is a successor, it is the successor of a unique natural number.

Axiom 5. Principle of finite induction (P.F.I.). If $S \subset N$ be such that
(i) $I \in S$ and
(ii) $m \in S \Rightarrow m^{*} \in S$, then $S=N$.

Note : Axiom I assures us that N is not a null set. ie., $N \neq \phi$. Axiom S is commonly known as the induction axiom or principle of mathematical induction.
4. Mathematical Induction: This principle of mathematical induction.

The principle of mathematical induction states:
Let $\mathrm{P}(n)$ be a statement involving the natural number n.
(a) If $\mathrm{P}(1)$ is true and
(b) If $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.

Then, we conclude that $\mathrm{P}(n)$ is true for $\forall n \in \mathrm{~N}$.
5. Working Rule : In order to prove that a statement $\mathrm{P}(n)$ is true for all natural numbers, we should verify

Step 1. $P(1)$ is true.
Step 2. Verify that $P(k+1)$ is true, whenever $P(k)$ is true.

The method of induction is a powerful tool for proving theorems in mathematics, first we prove the result for $n=1$. After that assuming the result to be true for $n=K$, we prove it to be true for $r=K+1$.

It should be kept in mind that both parts are absolutely necessary for the proof.

DEFINITION AND IMPORTANT RESULT ON CHAPTER 2

1. Mathematical Induction. The principle of mathematical induction states:

Let $\mathrm{P}(n)$ be a statement involving the natural number n.
(a) If $\mathrm{P}(1)$ is true and
(b) If $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true,
then, we conclude that $P(n)$ is true for $\forall n \in N$.
2. Working Rule. In order to prove that a statement $P(n)$ is true for all natural numbers, we should verify

Step 1. $\mathrm{P}(1)$ is true.
Step II. Verify that $\mathrm{P}(k+1)$ is truc, whenever $\mathrm{P}(k)$ is true.

The method of induction is a powerful tool for proving theorems in mathematics.

TEXT BOOK EXERCISE 2.1

TYPE-I
(SOLVED EXAMPLES)
Example 1. If $P(n)$ is the statement
" $n(n+1)(n+2)$ is divisible by 12 "
Prove that $P(3)$ and $P(4)$ are true but $P(5)$ is not true.
[T.B.Q. I]
Sol. $\quad P(n)$ is $n(n+1)(n+2)$ is divisible by 12 . $P(3)$ is $3(3+1)(3+2)$ is divisible by 12 .
i.e., $\quad 60$ is divisible by 12

It is true.
$P(4)$ is $4(4+1)(4+2)$ is divisible by 12
i.e., $\quad 120$ is divisible by 12

It is true.
$P(5)$ is $5(4+1)(5+2)$ is divisible by 12
i.e., $\quad 210$ is divisible by 12

It is not true.
PRACTICE EXERCISE 2.1 (i)

1. If $\mathrm{P}(n)$ is the statement " $n(n+1)(n+2)$ is a multiple of 6 " is it true ? [A.I.C.B.S.E. 1978 ; D.B. 1984]
2. If $\mathrm{P}(n)$ is the statement
"n(n+1) $(2 n+1)$ is divisibic by 6 " is it truc ?
[C.B.S.E. 1980]
3. If $\mathrm{P}(n)$ is the statement " $n^{3}+2$ is a multiple of 5 ". then show that $P(1)$ is not true.
4. Prove that $n(n+1)(n+5)$ is divisible by 6 for all $n \in \mathbb{N}$.
5. If $\mathrm{P}(n)$ is the statement " $n(n+1)$ is even" then what is $\mathrm{P}(4)$?

TEXT BOOK EXERCISE 2.1
 TYPE-II
 (SOLVED EXAMPLES)

Example 1. If $P(n)$ is the statement " n 2 >100 ".
Prove that whenever $\mathrm{P}(r)$ is true, $\mathrm{P}(r+1)$ is also true.

Sol. $\quad P(n): n^{2}>100$
$\therefore \quad P(n): r^{2}>100$
Now $P(r+1):(r+1)^{2}>100$
We know that

$$
r^{2}>100 \quad[\text { From } P(r)]
$$

Adding hoth sides $2 r+1$

$$
\begin{align*}
r^{2}+2 r+1 & >100+2 r+1 \\
(r+1)^{2} & >(100+2 r+1) \tag{i}
\end{align*}
$$

Also $100+2 r+1>100$ as $2 r+1$ is positive ...(ii)
$\therefore \quad(r+1)^{2}>100 \quad$ [From (i) and (ii)]
Hence $P(r+1)$ is true.
[J Example 2. If $\mathrm{P}(n)$ is the statement " 2 " $\geq 3 n^{\prime \prime}$ and if $\mathrm{P}(r)$ is true, prove that $\mathrm{P}(r+1)$ is truc.
[T.B.Q. 3]
Sol. $\quad P(n) ; 2^{n} \geq 3 n$
$\because \mathrm{P}(r)$ is true.
[Given]

$$
\text { Since } \begin{aligned}
2^{\prime} & \geq 3 r \\
\mathrm{P}(r+1) ; 2^{r+1} & \geq 3(r+1) \quad \\
2^{\prime} & \geq 3 r
\end{aligned} \quad[\text { From } \mathrm{P}(r)]
$$

Multiplying both sides by 2 , we get

$$
\begin{array}{rlrl}
& & 2^{2+1} & \geq 6 \\
r & >1 \\
\therefore & & 3 r & >3 \\
\Rightarrow & & (3 r+3 r) & >(3+3 r) \\
\Rightarrow & & 6 r & >(3 r+3) \\
\Rightarrow & & 6 r & >3(r+1) \tag{ii}
\end{array}
$$

From (i) and (ii) $2^{r+1}>3(r+1)$
Hence $\mathrm{P}(r+1)$ is true.
Example 3. If $P(n)$ is the statement " $2^{\text {h }}-1$ is an integral multiple of $7^{\prime \prime}$, prove that $P(1), P(2)$ and $P(3)$ are true.
[T.B.Q. 4$]$
Sol. $\mathrm{P}(n) ; 2^{3 n}-1$ is an integral multiple of 7 .
$P(1) ; 2^{3 \times 1}-1=7$, is an integral multiple of 7 .
[It is true]
$P(2) ; 2^{3 \times 2}-1=63$, is an integral multiple of 7 .
[lt is true]
$P(3) ; 2^{1 \times 3}-1=511$, is an integral multiple of 7
[It is true.]

PRACTICE EXERCISE 2.1 (ii)

1. Use the principle of mathematical induction to prove the following statements for all $n \in N$.
(i) $3^{2 n}-1$ is divisible by 8 .
(ii) $10^{2 n-1}+1$ is divisible by 11 for $n \in \mathrm{~N}$.
(iii) $3^{n}>2^{n}$, for all $n \in \mathbb{N}$
(iv) $2^{n}>n$.
(v) $7^{2 n}+\left(2^{3 n-3}\right) 3^{n-1}$ is divisible by $25, n \in \mathrm{~N}$
2. Prove by method of induction the following statements for all $n \in N$.
(i) For each natural number $n \cdot 6^{n+2}+7^{2 n+1}$ is divisible by 43.
(ii) Prove that $n^{2}>2 n \forall n \geq 3$, by using the principle of mathematical induction.
(iii) Prove by method of induction that $7^{2 n}-1$ is divisible by 48 , where n is a positive integer.
3. Use the principle of mathematical induction to prove each of the following statements :
(i) $10^{n}+3.4^{n+2}+5$ divisible by 9 .
(ii) $5^{2 n}-1$ is divisible by 24 for every natural number n.
(iii) $n^{4}<10^{n}$, where n is positive integer.
4. Use the principle of mathematical induction to prove each of the following statements:
(i) $2^{n}<3^{n}, n \in \mathrm{~N}$.
(ii) $(1+x)^{n}>1+n x$ for $n \geq 2$ and $x>-1$.
(iii) Let $\mathrm{P}(n)$ be the statement " $3^{n}>n^{n}$. Is $\mathrm{P}(1)$ true? What is $\mathrm{P}(n+1)$?

TEXT BOOK EXERCISE 2.1

TYPE-III
(SOLVED EXAMPLES)
Example 1. If $P(n)$ is the statement " $2^{\text {b }}-1$ is an integral multiple of $7^{\prime \prime}$, and if $P(r)$ is true, prove that $\mathrm{P}(r+1)$ is true.
[T.B.Q. S]
Sol. $P(n): 2^{3 n}-1$ is an integral multiple of 7
$\because Y(r)$ is true.
\Given!
$\therefore \quad$ " $2^{3 r}-1$ is an integral multiple of 7 ".
$P(r+1): 2^{4 r+1)}-1$ is an integral multiple of 7.
Consider $2^{9(r+1)}-1=2^{1 r+3}-1$

$$
\begin{aligned}
& =2^{3 r} \cdot 2^{3}-1 \\
& =8\left(2^{3 n}\right)-1 \\
& =8\left(2^{3} n\right)-8+7 \\
& =8\left(2^{3 r}-1\right)+7 .
\end{aligned}
$$

$\because 2^{\text {1 }}-1$ is an integral multipic of 7 , so $8\left(2^{\text {in }}-1\right)$ is an integral multiple of 7 . Also 7 is a multiple of 7 . Since sum of the two number which are integral multiple of 7 is also an integral multiple of 7 .

So $2^{3 r+11}-1$ is an integral multiple of 7 .
Hence $\mathrm{P}(r+1)$ is true.
Example 2. If $\mathrm{P}(n)$ is the statement that sum of the first n natural numbers is divisible by ($n+1$), prove that if $\mathrm{P}(n)$ is true, then $\mathrm{P}(r+2)$ is true.
[T.B.Q. 6]
Sol. $P(n): 1+2+3+4+\ldots+n$ is divisible by $(n+1)$.

$$
\Rightarrow \quad \frac{n(n+1)}{2} \text { is divisible by }(n+1)
$$

$\because \quad P(r)$ is true.
$\therefore \quad 1+2+3+\ldots+r$ is divisible by $(r+1)$
i.e.. $\quad \frac{r(r+1)}{2}$ is divisible by $(r+1)$.

Now $\mathrm{P}(r+2): 1+2+3+\ldots+(r+2)$ is divisible by $(r+3)$

Consider

$$
\begin{aligned}
& 1+2+3 \ldots+r+(r+1)+(r+2) \\
= & (1+2+3+\ldots+r)+(2 r+3) \\
= & \frac{r(r+1)}{2}+(2 r+3) \quad[U \operatorname{sing} P(r)] \\
= & \frac{r^{2}+r+4 r+6}{2} \\
= & \frac{(r+2)(r+3)}{2}
\end{aligned}
$$

which is divisible by $(r+3)$
Hence $P(r+2)$ is true.

PRACTICE EXERCISE 2.1 (ii)

1. Use the principle of mathematical induction to prove that the following statements for all $n \in N$.
(i) $1+2+3+\ldots+n=\frac{n(n+1)}{2}$
(ii) $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
(iii) $1^{\prime}+2^{\prime}+3^{\prime}+\ldots+n^{\prime}=\left[\frac{n(n+1)}{2}\right]^{2}$.
2. Show that if the statement

$$
\mathrm{P}(n): 2+4+6+\ldots+2 n=n(n+1)+2
$$

is true for $n=K$, then it is true for $n=K+1$ can we conctude that $P(n)$ is true for every natural number n ?
3. Use the principic of mathernatical induction to prove that the following statements for all $n \in \mathbb{N}$.
(i) Prove that: $1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}$

$$
=\frac{n(2 n-1)(2 n+1)}{3}, n \in \mathbb{N}
$$

(ii) Prove that : $1+4+7+\ldots+(3 n-2)$

$$
=\frac{n(3 n-1)}{2}, n \in \mathrm{~N}
$$

(iii) $1+3+5+\ldots+(2 n-1)=n^{2} \forall n \in \mathrm{~N}$.
4. Use the principle of mathematical induction to prove that the following statements for all $n \in N$.
(i) $a+(a+d)+(a+2 d)+\ldots+a+(n-1) d$

$$
=\frac{n}{2}|2 n+(n-\mid 1) d|
$$

(ii) $1.2+2.3+3.4+\ldots n(n+1)=\frac{n(n+1)(n+2)}{2}$
(iii) $2+2^{2}+2^{1}+\ldots+2^{n}=2\left(2^{n}-1\right)$
(iv) $2+6+10+\ldots+(4 n-2)=2 n^{2}$

TEXT BOOK EXERCISE 2.1

TYPE-IV

(SOLVED EXAMPLES)
Example 1. Given an example of a statement $P(n)$ such that it is true for all n.
[T.B.Q. 7]
Sol. Consider

$$
P(n): 1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

i.c.. sum ot lirst 11 natural number is $\frac{n(n+1)}{2}$
$P(1):$ L.H.S $=1$
R.H.S. $=\frac{I(1+1)}{2}=1 \Rightarrow P(1)$ is true
$P(2):$ L.H.S. $=1+2=3$
R.H.S. $=\frac{2(2+1)}{2}=3 \Rightarrow P(2)$ is true
$P(3):$ L.H.S $=1+2+3=6$

$$
\begin{aligned}
\text { R.H.S. } & =\frac{3(3+1)}{2}=6 \Rightarrow P(3) \text { is true } \\
P(4): \text { L.H.S } & =1+2+3+4=10
\end{aligned}
$$

$$
\text { R.H.S. }=\frac{4(4+1)}{2}=10
$$

Similarly for any value of $n \in \mathrm{~N}, \mathrm{P}(n)$ is true.
${ }^{5} 3$ Example 2. Given an example of a statement $P(n)$ such that $P(3)$ is true, but $P(4)$ is not truc.

17:B.Q 81
Sol. Consider $\mathrm{P}(n)$: " $3 n^{2}+n$ is divisibic by $3^{\prime \prime}$

$$
P(3): 3 \times 2^{2}+3=3 \times 9+3
$$

$$
=27+3=30 \text { is divisible hy } 3
$$

\therefore It is true.
Again $P(4): 3 \times(4)^{2}+4=48+4=52$ is divisible by 3. It is not true.

PRACTICE EXERCISE 2.1 (iv)

1. Verify that if $(2.1+1)+(2.2+1)+\ldots(2 n+1)$

$$
=n^{2}+2 n+11 \cdot n \in N
$$

is true for $n=m$ then it is also true for $n=m+1$ can we conclude that it is true for every $n \in N$?
2. Apply the principal of mathematical induction in prove that for all $n \in N$

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n-1)}{6}
$$

3. If $1(n)$ is the statement " $n(n+1)$ is ever" then what is $\mathrm{P}(7)$?
4. If $P(n)$ is the statement " n " $+n$ is divisible by 3 " (i) Is the statement $\mathrm{P}(5)$ is true?
(ii) Is the statement $P(6)$ is true?
|/mp. \mid
5. If $P(n)$ is the statement that the sum of first n natural numbers is divisible by $(n+1)$, prove that if $\mathrm{P}(r)$ is true, then $\mathrm{P}(r+2)$ is true.
6. If $\mathrm{P}(n)$ be the statement " $\mathrm{C}(n, r) \leq n$, for all $1 \leq r \leq n^{\prime \prime}$ is $\mathrm{P}(3)$ is true.

TEXT BOOK EXERCISE 2.2
 TYPE-1
 (SOLVED EXAMPLES)

Example 1. Prove that the following by the principle of induction : the sum of the first n natural number is $\frac{n(n+1)}{2}$.
|T.B.Q. I|
Sol. Let the given statement is $\mathrm{P}(n)$
i. $: \quad P(n): 1+2+3+\ldots+n=\frac{1}{2} n(n+1)$
when $n=1$. L.H.S. $=1$
R.H.S. $=\frac{1}{2}(1+1)=\frac{1}{2} \times 2=1$
L.H.S. $=$ R.H.S. $\Rightarrow P(1)$ is true.

Now assume that $\mathrm{P}(k)$ is true

$$
\begin{gathered}
\mathrm{P}(k): 1+2+3+\ldots+k=\frac{k(k+1)}{2} \\
\mathrm{P}(k+1): 1+2+3+\ldots+k+(k+1)=\frac{1}{2}(k+1)(k+2)
\end{gathered}
$$

We wish to prove $P(k+1)$ is true whenever $P(k)$ is true. Let us examine its L.H.S.

$$
\text { L.H.S. }=1+2+3+\ldots+k+(k+1)
$$

$$
\begin{aligned}
& =\frac{k(k+1)}{2}+(k+1), \text { since } P(k) \text { is true } \\
& =(k+1)\left(\frac{1}{2} k+1\right)=\frac{1}{2}(k+1)(k+2)=\text { R.H.S. }
\end{aligned}
$$

Thus $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
By the principle of mathematical induction, $P(n)$ is true for $n \in N$.
ISF Example 2. Prove the following by the principle of mathematical induction

$$
1+4+7+\ldots+(3 n-2)=\frac{n(3 n-1)}{2}
$$

[T.B.Q. 3]
Sol. Let the given statement be $\mathrm{P}(\mathrm{n})$
Now $\mathrm{P}(n): 1+4+7+\ldots+(3 n-2)=\frac{n(3 n-1)}{2}$
whenr $=1$,

$$
\text { L.H.S. }=1
$$

R.H.S. $=\frac{1(3 \times 1-1)}{2}=1 \times \frac{2}{2}=1$
L.H.S. $=$ R.H.S. $\Rightarrow P(1)$ is true.

Now assume that $P(k)$ is true

$$
\begin{equation*}
P(k): 1+4+7+\ldots+(3 k-2)=\frac{k(3 k-1)}{2} \tag{i}
\end{equation*}
$$

Now we shall show that $\mathrm{P}(k+1)$ is true

$$
\begin{aligned}
& 1+4+7+\ldots+(3 k-2)+[3(k+1)-2] \\
& \quad=(k+1)\left[\frac{3 k+3-1]}{2}\right] \\
& 1+4+7+\ldots+(3 k-2)+[3(k+1)-2] \\
& =
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3 k^{2}-k+6 k+2}{2}=\frac{3 k^{2}+5 k+2}{2} \\
& =\frac{3 k^{2}+3 k+2 k+2}{2}=\frac{3 k(k+1)+2(k+1)}{2} \\
& =\frac{(3 k+2)(k+1)}{2} \\
& =\frac{(k+1)[3(k+1)-1]}{2}
\end{aligned}
$$

Clearly, $\mathrm{P}(k+1)$ is true.
Hence $P(n)$ is true for all positive integers.
Example 3. Prove that the following by principle of induction $4+8+12+\ldots+4 n=2 n(n+1)$.
[T.B.Q. 5]
Sol. Let $\mathrm{P}(n): 4+8+12+\ldots+4 n=2 n(n+1)$
For $n=1 \quad$ L.H.S. $=4$,
R.H.S. $=2 \times 1(1+1)=2 \times 2=4$
L.H.S. $=$ R.H.S. $\Rightarrow P(1)$ is true.

Let $P(k)$ be true, then
$P(k): 4+8+12+\ldots+4 k=2 k(k+1)$
Now $P(k+1): 4+8+12+\ldots+4 k+4(k+1)$

$$
=2(k+1)(k+2)
$$

L.H.S. of $\mathrm{P}(k+1)=4+8+12+\ldots+4 k+4(k+1)$

$$
\begin{aligned}
& =2 k(k+1)+4(k+1) \\
& \quad[\text { Using } P(k)] \\
& =2(k+1) \times(k+2)=\text { R.H.S. }
\end{aligned}
$$

$\therefore \mathrm{P}(k+1)$ is true.
Hence by principle of mathematics induction $\mathrm{P}(n)$ is true $\forall n \in N$.

PRACTICE EXERCISE 2.2 (i)

1. Let $P(n)$ be the statement " n 2 $+n$ is even".

Then (a) $P(1)$ is the statement " 2 is even". It is true.
(b) If $\mathrm{P}(r)$ is true for some r, then to prove that $\mathrm{P}(r+1)$ is true.
2. Using the principle of mathematical induction prove that each of the following statements for every natural number n.
(i) $1+3+5+7+\ldots+(2 n-1)=n^{2}$
(ii) $1+2+3+\ldots+n=\frac{1}{2} n(n+1)$
(iii) $2+2^{2}+2^{3}+\ldots+2^{n}=2\left(2^{n}-1\right)$
(iv) $1.3+3.5+5.7+\ldots+(2 n-1)(2 n+1)$

$$
=\frac{n\left(4 n^{2}+6 n-1\right)}{3} \quad[1 m p .]
$$

[N.M.O.C. 1993 (Set B)] [A.I.S.S.E. 1985]
(v) $3.6+6.9+9.12+\ldots+3 n(3 n+3)$

$$
=3 n(n+1)(n+2)
$$

(vi) $x+4 x+7 x+7 x+\ldots+(3 n-2) x$

$$
=\frac{1}{2} n(3 n-1) x
$$

[A.I.S.S.E. 1980]
(vii) $(2.1+1)+(2.2+1)+(2.3+1) \ldots+(2 n+1)$ $=(n+1)^{2}-1$.
3. Using the principle of mathematical induction prove that for every nutural number n $2.3^{2}+2^{2} \cdot 3^{3}+2^{3} \cdot 3^{4}+2^{4} \cdot 3^{3}+\ldots+2^{n} \cdot 3^{n+1}$

$$
\left.=\frac{18}{5}\left(6^{n}-1\right) . \quad \text { I } I m p .\right]
$$

TEXT BOOK EXERCISE 2.2
 TYPE-II
 (SOLVED EXAMPLES)

EF Example 1. Prove the following by the principle of induction: $n(n+1)(n+2)$ is divisible by 6 , where n is a natural number.
[T.B.Q. 2]
[D.S.S.E. 1984, 1980] [A.I.S.S.E. 1978]
Sol. Let the given statement be $\mathrm{P}(n)$
$P(n): n(n+1)(2 n+1)$ is divisible by 6
Step 1. $P(1): 1(1+1)(2 \times 1+1)=1 \times 2 \times 3=6$ which is divisible by 6 .
$\therefore \quad P(1)$ is true.
Step 2. Let $P(k)$ be true.
$\therefore \quad \mathrm{P}(k): k(k+1)(2 k+1)$ is divisible by 6
$\mathrm{P}(k+1):(k+1)(k+1+1)(2 k+2+1)$

$$
=(k+1)(k+2)(2 k+1+2)
$$

$$
=(k+1)(k+2)(2 k+1)+2(k+1)(k+2)
$$

$$
=(k+1)(2 k+1) k+2(k+1)(2 k+1)
$$

$$
+(k+1)(k+2) 2
$$

$$
=k(k+1)(2 k+1)+2!(k+1)(2 k+1)
$$

$$
+(k+1)(k+2)]
$$

$$
=k(k+1)(2 k+1)+2[(k+1)
$$

$$
(2 k+1+k+2)\}
$$

$$
=k(k+1)(2 k+1)+2[(k+1)(3 k+3)]
$$

$$
=k(k+1)(2 k+1)+6(k+1)(k+1)
$$

$$
=k(k+1)(2 k+1)+6(k+1)^{2}
$$

From (i), $k(k+1)(2 k+1)$ is divisible by 6 and $6(k$ $+1)^{2}$ is divisible by 6 because 6 is one of its factor.

Hence $P(n)$ is divisible by 6 for all natural number n.
Example 2. Prove the following by the principle of mathematical induction

If $3^{2 n}$, where n is a natural number, is divided by 8 , the remainder is always 1 .
[T.B.Q. 4]
Using principle of mathematical induction prove that $3^{2 n}-1$ divisible by 8 for every natural number n. [Annual Exam. 1994]

Sol. Let the given statement be $\mathrm{P}(n)$

$$
P(n): 3^{2 n}=M(8)+1
$$

or $\quad P(n): 3^{2 n}-1=M(8)$
Step 1. When $n=1$, then

$$
\begin{aligned}
\text { L.H.S. } & =3^{2 \times 1}-1=3^{2}-1 \\
& =9-1=8=\mathrm{M}(8)
\end{aligned}
$$

$\Rightarrow P(1)$ is true.
Step 2. Let $P(k)$ be truc

$$
\begin{equation*}
P(k): 3^{2 k}-1=\text { Multiple of } 8 \tag{i}
\end{equation*}
$$

Now it is to be proved that $P(k+1)$ is true

$$
\begin{align*}
P(k & +1): 3^{2(k+1)}-1=M(8) \\
\text { L.H.S } & =3^{2(k+1)}-1 \\
& =3^{2 k} \cdot 3^{2}-1 \\
& =(9) 3^{2 k}-1 \\
& =9\left(3^{2 k}\right)-9+8 \\
& =9\left(3^{2 k}-1\right)+8 \\
& =M(8)+8 \tag{i}\\
& =M(8)+M(8)=M(8) \tag{ii}
\end{align*}
$$

Hence, $\mathrm{P}(k+1)$ is true.
Combining (i) and (ii) by P.M.I. P(n) is true for every natural number n.

Prove the following by the principle of mathematical induction.
Ex Example 3. The sum $S_{n}=n^{3}+3 n^{2}+5 n+3$ is divisible by 3 for any positive integer n. [T.B.Q. 8]

Sol. Let the given statement be $P(n)$

$$
\mathrm{P}(n): \mathrm{S}_{n}=n^{3}+3 n^{2}+5 n+3=\mathrm{M}(3)
$$

Step 1. When $n=1$, then

$$
\begin{array}{r}
n^{3}+3 n^{2}+5 n+3=(1)^{3}+3(1)^{2}+5(1)+3 \\
=12=M(3)
\end{array}
$$

$\therefore \quad P(1)$ is true.
Step 2. Let $P(k)$ be truc.
i.e.

$$
\begin{equation*}
P(k): k^{3}+3 k^{2}+5 k+3=M(3) \tag{i}
\end{equation*}
$$

Now it is to be prove that $\mathrm{P}(k+1)$ is true.

$$
\begin{aligned}
P(k+1): & (k+1)^{3}+3(k+1)^{2}+5(k+1)+3 \\
= & (k+1)\left[(k+1)^{2}+5\right]+3\left[(k+1)^{2}+1\right] \\
= & (k+1)\left[\left(k^{2}+2 k+1+5\right]\right. \\
& +3\left[k^{2}+2 k+1+1\right] \\
= & (k+1)\left(k^{2}+2 k+6\right)+3\left[(k+1)^{2}+1\right] \\
= & \left(k^{\prime}+3 k^{2}+8 k+6\right)+3\left[(k+1)^{2}+1\right] \\
= & \left(k^{3}+3 k^{2}+5 k+3\right)+(3 k+3) \\
& +3\left[(k+1)^{2}+1\right] \\
= & \mathrm{M}(3)+3(k+1)+3\left[(k+1)^{2}+1\right]
\end{aligned}
$$

[Using (i)

$$
\begin{equation*}
=M(3)+M(3)+M(3)=M(3) \tag{ii}
\end{equation*}
$$

$\therefore \quad \mathrm{P}(k+1)$ is truc.
Combining (i) and (ii) by principle of mathematical induction, we get $\mathrm{P}(n)$ is true for all positive integers.

PRACTICE EXERCISE 2.2 (ii)

Prove the following by principle of mathematical induction:

1. Prove that for $n \in \mathrm{~N} 10^{n}+3.4^{n+2}+5$ is 5 is divisible by 9 .
2. Prove the following by principle of mathematical induction.
Prove that $3^{2 n+2}-8 n-9$ is divisible by 64 for every nntural number n.
3. Use the principle of mathematical induction to prove that $n(n+1)(n+2)$ is a multiple of 6 for all natural number n.
4. Use the principle of mathematical induction to prove that $3^{2 n}+1$ is divisible by 8 for all $n \in N$. [N.M.O.C. 1994 (Set B)] [Imp.]
5. Use principle of mathematical induction prove that $10^{2 n-1}+1$ is divisible by 11 for all $n \in N$.
6. Use principle of mathematical induction,
(i) Prove that $8^{n}-3^{n}$ is divisible by 5 for all $n \in N$.
(ii) Prove that $4^{n}-3 n-1$ is multiple of 9 for all $n \in \mathrm{~N}$.
(iii) Prove that $9^{n}-8 n-1$ is a multiple of 64 for all $n \dot{\in}$.
(iv) Prove that $n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible by 9 for every natural number.
(v) Prove that $n(n+1)(n+5)$ is divisible by 6 for all $n \in N$.

TEXT-BOOK EXERCISE 2.2

TYPE-III
(SOLVED EXAMPLES)
Ef Example 1. If x and y are any two distinct
 [T.B.Q. 6]
Sol. Let the given statement be $\mathrm{P}(n)$
i.e., $\quad P(n): x^{n}-y^{n}=M(x-y), x-y \neq 0$

Step 1. When $n=1$

$$
x^{\prime}-y^{\prime}=x-y=M(x-y)
$$

$\Rightarrow P(1)$ is true.
Step 2. Assume that $\mathrm{P}(k)$ is true
i.e., Let $\quad x^{k}-y^{k}=M(x-y), x-y \neq 0$

We shall show that $\mathrm{P}(k+1)$ is true
i.e., $\quad x^{k+1}-y^{k+1}=M(x-y)$

Now $x^{k+1}-x^{2} y+x^{k} y-y^{k+1}$

$$
\begin{aligned}
& =x^{\prime}(x-y)+y\left(x^{k}-y^{k}\right) \\
& =\mathrm{M}(x-y)+y \mathrm{M}\left(x-y^{\prime}\right) \\
& =\mathrm{M}(x-y) \quad \text { [Using (i)] }
\end{aligned}
$$

$\Rightarrow \quad P(k+1)$ is true
$\therefore \quad$ By principle of mathematical induction.
$P(n)$ is true for ail $n \in N$.
PRACTICE EXERCISE 2.2 (iii)

1. By the principle of mathematical induction prove that

$$
\begin{aligned}
a+(a+d)+(a+2 d)+\ldots+ & {[a+(n-1) d] } \\
& =\frac{n}{2}\lfloor 2 a+(n-1) d \mid
\end{aligned}
$$

2. Using principle oi mathematical induction prove that

$$
a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(1-r^{n}\right)}{(1-r)}, r \neq 1
$$

3. Using principle of mathematical induction prove that $x^{\prime \prime}-a^{n}$ is divisible by $(x-a), \forall n \in \mathrm{~N}$.
[Imp.]
4. Prove by the principle of induction that $x^{2 n}-y^{2 n}$ is divisible by $(x-y)$, where n is a positive integer.

TEXT-BOOK EXERCISE 2.2
 TYPE-IV
 (SOLVED EXAMPLES)

ETF Example 1. Prove the following by the principle of induction

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

for every positive integer n.
[7:B.Q.8]
Sol. Let $\mathrm{P}(n): 1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
When $n=1$

$$
\begin{aligned}
\text { L.H.S. } & =(1)^{2}=1 \\
\text { R.H.S. } & =\frac{1}{6} \cdot 1(1+1)(2+1) \\
& =\frac{1}{6} \times 2 \times 3=1
\end{aligned}
$$

$\therefore \quad$ L.H.S $=$ R.H.S. $\Rightarrow P(1)$ is true.
Assume that $P(k)$ is true

$$
\text { i.e. } 1^{2}+2^{2}+3^{2}+\ldots+k^{2}=\frac{1}{6} k(k+1) k(2 k+1) \ldots(i)
$$

Now $P(k+1): 1^{2}+2^{2}+3^{2}+\ldots+k^{2}+(k+1)^{2}$

$$
=\frac{1}{6}(k+1)(k+2)(2 k+3)
$$

$$
\begin{aligned}
\text { L.H.S. } & =1^{2}+2^{2}+3^{2}+\ldots+k^{2}+(k+1)^{2} \\
& =\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2}
\end{aligned}
$$

[Using (i)]

$$
=\frac{1}{6}(k+1)[k(2 k+1)+6(k+1)]
$$

$$
=\frac{1}{6}(k+1)\left(2 k^{2}+7 k+6\right)
$$

$$
=\frac{1}{6}(k+1)\left[2 k^{2}+4 k+3 k+6\right]
$$

$$
=\frac{1}{6}(k+1)[2 k(k+2)+3(k+2)]
$$

$$
=\frac{1}{6}(k+1)(k+2)(3 k+3)
$$

$$
=\text { R.H.S. of } P(k+1)
$$

$\Rightarrow \mathrm{P}(k+1)$ is true.
\therefore By principle of mathematical induction, $\mathrm{P}(n)$ is true for $n \in N$.
Ex Example 2. Prove the following by the principle of induction

$$
\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{(2 n+1)}
$$

[T.B.Q. 9]
Sol. Let $\mathrm{P}(n)$ denote the given statement
$P(n): \frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$
For $n=1, \quad$ L.H.S. $=\frac{1}{1.3}=\frac{1}{3}$

$$
\text { R.H.S. }=\frac{1}{2 \times 1+1}=\frac{1}{3}
$$

L.H.S. $=$ R.H.S. $\Rightarrow P(1)$ is true

Let $P(k)$ is true then

$$
\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 k-1)(2 k+1)}=\frac{k}{(2 k+1)}
$$

$$
\text { Now } P(k+1): \frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 k-1)(2 k+1)}
$$

$$
+\frac{1}{(2 k+1)(2 k+3)}=\frac{(k+1)}{(2 k+3)}
$$

L.H.S. of $\mathrm{P}(k+1)$

$$
\begin{aligned}
& =\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 k-1)(2 k+1)} \\
& =\frac{k}{(2 k+1)}+\frac{1}{(2 k+1)(2 k+3)} \quad[\text { Using } P(k)] \\
& =\frac{k(2 k+1)+1}{(2 k+1)(2 k+3)}=\frac{2 k^{2}+3 k+1}{(2 k+1)(2 k+3)} \\
& =\frac{(2 k+1)(k+1)}{(2 k+1)(2 k+3)}=\frac{k+1}{2 k+3}=\text { R.H.S. }
\end{aligned}
$$

$$
\Rightarrow \quad \mathrm{P}(k+1) \text { is true. }
$$

Hence, by principle of mathematical induction, $\mathrm{P}(n)$ is true for all natural number n.

PRACTICE EXERCISE 2.2 (iv)

1. Use the principle of mathematical induction to prove the following statement for all $n \in N$.
(i) $1.2+2.3+3.4+\ldots+n(n+1)=\frac{n(n+1)(n+2)}{3}$
(ii) $\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{n(n+1)}=\frac{n}{(n+1)}$.
(iii) $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$.
(ii) $1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$.
(v) $1.3+3.5+5.7+\ldots+(2 n-1)(2 n+1)$

$$
=\frac{n\left(4 n^{2}+6 n-1\right)}{3} .
$$

2. Using principle of mathematical induction prove each of the following statements
(i) $1+2+3+\ldots+k<\frac{1}{8}(2 k+1)^{2} \forall k \in N$
(ii) $1^{2}+\left(1^{2}+2^{2}\right)+\ldots+\left(1^{2}+2^{2}+\ldots+n^{2}\right)$

$$
=\frac{n(n+1)^{2}(n+2)}{12}
$$

(iii) $\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 m-2)(3 m+1)}$

$$
=\frac{m}{3 m+1}
$$

(iv) $1.3 .5+3.5 .7+\ldots+(2 n-1)(2 n+1)(2 n+3)$

$$
=n(n+2)\left(2 n^{2}+4 n-1\right)
$$

TEXT-BOOK EXERCISE 2.2
TYPE-V
(SOLVED EXAMPLES)
Example 1. If a set has n elements, prove that it has 2^{n} subsets.
|T.B.Q. $10 \mid$
Sol. Let $\mathrm{P}(n): 1+2+3+4+\ldots=2^{n}$
For $n=1 \quad$ L.H.S. $=2^{\prime}=2$,
R.H.S. $=2^{\prime}=2$
$\therefore{ }^{2}+$ L.H.S. $=$ R.H.S. $\Rightarrow P(1)$ is true.
Let $\mathrm{P}(k)$ be truc, then

$$
P(k): 2^{\prime \prime}+2^{1}+2^{2}+\ldots+2^{\prime}=2^{4}
$$

Now $P(k+1): 2^{\prime \prime}+2^{1}+2^{2}+\ldots+2^{t+1}=2^{1} .2$ which is true also.

Hence by the principle of mathematical induction $P(n)$ is true for all values of n.

PRACTICE EXERCISE 2.2 (v)

1. Prove by using principle of mathematical induction

$$
7+77+777+\ldots+777 \ldots 7=\frac{7}{81}\left(10^{n+1}-9 n-10\right)
$$

a digits
2. Prove by using principle of mathematical induction

$$
\begin{aligned}
1.4 .7+2.5 .8+3.6 .9+ & \ldots n(n+3)(n+6) \\
& \frac{n}{4}(n+1)(n+6)(n+7)
\end{aligned}
$$

MISCELLANEOUS EXERCISE (SOLVED EXAMPLES)

Example 1. Prove by induction that the sum of the first n odd natural numbers is n^{2}. [T.B.Q. 1]

Sol. Let $P(n): 1+3+5 \ldots+(2 n-1)=n^{2}$
when $n=1$, L.H.S. $=1$

$$
\text { R.H.S. }=1^{2}=1 \Rightarrow P(1) \text { is true. }
$$

Let $P(k)$ be true
$\therefore \quad 1+3+5 \ldots+(2 k-1)=k^{2}$
We have to show that $\mathrm{P}(k+1)$ is true.

$$
\begin{aligned}
P(k+1): 1+3 & +5+\ldots+(2 k-1)(2 k+1)=(k+1)^{2} \\
\text { L.H.S. } & =1+3+5+\ldots+(2 K-1)+(2 k+1) \\
& =k^{2}+2 k+1 \quad[\text { Using } P(k)] \\
& =(k+1)^{2}=\text { R.H.S. }
\end{aligned}
$$

$\Rightarrow P(k+1)$ is true.
Hence $P(n)$ is true for all natural numbers n.
Ex Example 2. If we take any three consecutive natural numbers, prove that the sum of their cubes is always divisible by 9 .
[T.B.Q. 2]
Sol. Let three consecutive natural numbers be n. $(n+1) .(n+2)$.

Let $\mathrm{P}(n): n^{\prime}+(n+1)^{\prime}+(n+2)^{\prime}$ is always divisible hy 9

For $n=1, \quad \mathrm{P}(1)$ is a statement :

$$
\begin{aligned}
1^{\prime}+(1+1)^{\prime}+(1+2)^{\prime}= & 1+8+27=36 \\
& \text { which is divisible by } 9
\end{aligned}
$$

$\Rightarrow P(1)$ is iruc.
i.e.. $\quad k^{\prime}+(k+1)^{\prime}+(k+2)^{\prime}$ is always divisitle by 4

We have to show that $P(k+1)$ is true
i.e. $\quad P(k+1):(k+1)^{3}+(k+2)^{3}+(k+3)^{1}$,
is always divisibic by 9
Consider $(k+1)^{\prime}+(k+2)^{\prime}+(k+3)^{\prime}$

$$
\begin{aligned}
& =(k+1)^{\prime}+(k+2)^{\prime}+k^{\prime}+27+9 k^{2}+27 k \\
& =k^{\prime}+(k+1)^{\prime}+(k+2)^{\prime}+27+4 k^{2}+27 k
\end{aligned}
$$

Now $k^{\prime}+(k+1)^{\prime}+(k+2)^{\prime}$ is divisible by 9 hecause $\mathrm{P}(k)$ is true. Also $27+9 k^{2}+27 k$ is clearly divisible by 9 because every term contains 9
$\therefore \quad P(k+1)$ is ruc.
Hence $\mathrm{P}(11)$ is true for all natural numbers
5*. Example 3. Prove by induction the inequality $(1+x)^{n} \geq 1+n x$ wherever x is positive and n is a positive integer.

$$
x>-1(x \neq 0)
$$

|T.B.Q. . $1 \mid$
Sol. Let $\mathrm{P}(n)$ be the statement

$$
(1+x)^{n}>1+n x, x>-1, x \neq 0
$$

We have to prove the truth of $\mathrm{P}(n)$ for $n \geq 2$, so we start induction from $n=2$.
$P(2)$ is truc if $(1+x)^{2}>1+2 x$
If $1+x+x^{2}>(1+2 x)$
If $x^{2}>0$), which is true because x is a real nen-/ero number

Let $P(k)$ be truc

$$
\begin{align*}
& \therefore(1+x)^{1}>1+k x \tag{i}\\
& \text { From (i) } \quad\left.(1+x)^{1 \cdot 1}>(1+k \cdot 1)+1\right) \\
&=(1+x)^{1 \cdot 1}>1+1+k 1+k_{1} \\
&=(1+x)^{1 \cdot 1}>1+(k+1) \\
&(1+x)^{1 \cdot 1}>1+(k+1) x \\
& \therefore \quad
\end{align*}
$$

$\therefore P(k+1)$ is truc
\therefore By principle of mathematical inductuon

$$
P(n) \text { is true for } n \geq 2
$$

Hence $(1+x)^{n}>(1+n x), \quad n \geq 2$
Example 4. If $P(n)$ is the statement $n^{2}-n+41$ is prime, prove that $P(1), P(2)$ and $P(3)$ are true. Prove also that $P(41)$ is not true. How does this not contradict the principle of induction? |T.B.Q. $4 \mid$

Sol. Let $P(n): n^{2}-n+41$ is prime number
Then $P(1): 1^{2}-1+4 \mid=41$ is a prime number. It is true.
$\Rightarrow \quad P(1)$ is true.
$P(2): 2^{2}-2+41=43$, is a prime number, it is true.
$P(3): 3^{2}-3+41=47$, is a prime number, it is true.
$P(41):(41)^{2}-41+41=(41)^{2}$. is a prime number.
But $41 \times 41=1681$, which is not true so $\mathrm{P}(41)$ is false statement.

This does not contradict the principle of mathematical induction $P(41)$ has not been proved to be true.
US Example 5. Prove by induction that $(2 \pi+7)<$ $(n+3)^{2}$ for all natural numbers n. Using this, prove by induction that $(n+3)^{2}<2^{n+3}$ for all natural numbers n.
[T.B.Q. 5]
Sol. (i) Let $P(n)$ be the statement " $2 n+7 \leq(n+3)^{2 n}$
Then $P(1)$ is the statement

$$
" 2 \times 1+7 \leq(1+3)^{2} \text { or } 9 \leq 16 "
$$

which is true. Suppose $P(k)$ is true, then

$$
\therefore \quad 2 k+.7 \leq(k+3)^{2}
$$

$\mathrm{P}(k+1)$ is the statement " $2(k+1)+7 \leq(k+3)^{2 n}$
Now $2(k+1)+7=(2 k+7)+2$

$$
\begin{aligned}
& \leq(k+3)^{2}+2 \quad \mid \because P(k) \text { is true } \\
& =k^{2}+6 k+11 \\
& =\left(k^{2}+8 k+16\right)-2 k-5 \\
& =(k+4)^{2}-(2 k+5) \\
& <(k+4)^{2} \\
& \text { since }(2 k+5)>0 \text { for all } k \in N
\end{aligned}
$$

$\Rightarrow \mathrm{P}(k+1)$ is true
\therefore By'the principle of mathematical induction. $\mathrm{P}(n)$ is true for alt $n \in N$.
(ii) Let $\mathrm{P}(n)$ be the statement " $(n+3)^{2} \leq 2^{n+1 . n}$.

Then $P(1)$ is the statement " $(1+3)^{2} \leq 2^{10}$ or $16 \leq 16$ which is true.

Suppose $P(r)$ is true, then $(k+3)^{2} \leq 2^{* *}$

$$
\mathrm{P}(k+1) \text { is the statement " }(k+4)^{2} \leq 2^{\text {i. }} \text {.". }
$$

Now $\left.(k+4)^{2}=\mid(k+3)+1\right)^{:}$

$$
\begin{aligned}
& =(k+3)^{2}+2(k+3)+1 \\
& \leq 2^{1 \cdot 0}+(2 k+7) \\
& \leq 2^{10+3}+(k+3)^{2} \\
& \quad\left[\because 2 k+7 \leq(k+3)^{2} \forall n \in N \mid\right. \\
& \left.\leq 2^{20 \cdot 1}+2^{1+1} \quad \mid \quad P(k) \text { is true }\right] \\
& =2.2^{k+3}=2^{1+5} \Rightarrow P(k+1) \text { is true }
\end{aligned}
$$

By PMI Pen) is true for all $n \in N$
rf Example 6. Prove that for $n \in \mathbb{N}$
$10^{n}+3.4^{n+2}+5$ is divisible by 9 . |T.B.Q. o|
Sol. We shall prove the result by using principle of mathematical induction. Let $P(n)$ be the statement $" 10^{n}+3 \cdot 4^{n+2}+5$ is divisible by $4^{\prime \prime}$
when $n=1 \cdot 10^{n}+3 \cdot 4^{n 02}+5=11^{1}+34^{102}+5$

$$
=207=9 \times 23
$$

$\therefore \quad 10^{1}+34^{1.2}+5$ is divisitice by 9
$\therefore \quad$ Pl lis rue
leal Ilk) be true
$111^{2}+3.4^{102}+5$ is divisible by y
Lect| $101^{2}+3.4^{202}+5=9 M 1$
when $\quad n=k+1=1\left(0^{n}+3 \cdot 4^{n *}+5\right.$

$$
=10^{x+1}+3 \cdot 4^{x+1}+5
$$

$$
=10\left(100^{4}\right)+3.4^{1 \cdot 1}+5
$$

$=10\left(9 M-3.4^{102}-5\right)+34^{4 \cdot 1}+5 \mid$ by $(1) \mid$
$=90 \mathrm{M}-30 \cdot 4^{k} \cdot 16-50+3 \cdot 4^{k} \cdot 64+5$
$=9\left(0 \mathrm{M}=4^{2}(480-192)-4.5\right.$
$=9\left(10 \mathrm{M}-32.4^{4}-5\right)$
$=a$ multiple of 9
$\therefore 10^{101}+3 \cdot 4^{10102}+5$ is divisibic by y
$\therefore P(k+1)$ is true whenever $P^{\prime}(k)$ is so
\therefore By PMI. $\mathrm{P}(m)$ is true for $n \in \mathrm{~N}$
$\therefore 1()^{n}+3 \cdot 4^{n+2}+5$ is divisitice by 4 for all natural numbers
53. Example 7. Prove that $10^{3-1}+1$ is divisible by

Sol. Let

$$
a=11^{2 n-1}+1
$$

For $\quad n=1, a=10^{-1}+1=10+1=11$
As $\quad \frac{11}{i i}=1 \Rightarrow \mathrm{~T}(1)$ is true
Lect T(A) be true
ic.. $\frac{11}{10^{2+-1}+1}$
Let us consider a for $n=k+1$
Thus

$$
\begin{align*}
\| & =10^{2 / t \cdot 11-1}+1 \\
& =1\left(0^{2 k} \cdot 2-1+1\right. \\
& =10^{2 n-1} \cdot 10^{2}+1 \\
& =1(1)\left(10^{2 m-1}+1\right)-94 \\
& \frac{11}{10^{2 m-1}+1} \tag{i}
\end{align*}
$$

Now
and therefore

$$
\frac{11}{1(k)(1)^{2 m-1}+11}
$$

Also

$$
\frac{11}{99}
$$

$$
\therefore \quad \frac{11}{1\left(k \times 10^{2 m-1}+11-99\right.}
$$

$$
\frac{11}{a} \text { for } n=m+1
$$

$\therefore \quad \mathrm{T}(m+1)$ holds
Hence by principle of mathematical induction,

$$
\frac{11}{10^{2 n-1}+1} \quad \forall n \in \mathbb{N}
$$

Example 8. Prove that

$$
\begin{array}{r}
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}, n \in \mathrm{~N} \\
{[\text { T.B.Q. } 8] \quad[V . \operatorname{Imp}]}
\end{array}
$$

[A.I.S.S.E. 1983 ; P') Board. 1987
H.P. Board, 1988]

Sol. We shall prove the result by using P.M.I. Let $\mathrm{P}(n)$ be the statement

$$
\begin{align*}
& \\
& \quad \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1} \\
& \therefore \quad \text { ". } \quad P(1) \text { is true, if } \frac{1}{1.2}=\frac{1}{1+1}, \text { which is true } \\
& \therefore \quad \text { Let } \quad P(k) \text { be true } \\
& \therefore \quad \tag{i}\\
& \quad \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{k(k+1)}=\frac{k}{k+1} \quad \ldots \text { (i) }
\end{align*}
$$

Now $P(k+1)$ is true if

$$
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{(k+1)(k+1+1)}=\frac{(k+1)}{k+1+1}
$$

$$
\text { If } \quad\left(\frac{1}{1.2}+\frac{1}{2.3}+\ldots+\frac{1}{k(k+1)}\right)
$$

$$
+\frac{1}{(k+1)(k+2)}=\frac{k+1}{k+2}
$$

$$
\text { If } \left.\quad \frac{k}{k+1}+\frac{1}{(k+1)(k+2)}=\frac{k+1}{k+2} \quad \right\rvert\, b y \text { (i)| }
$$

$$
\text { If } \frac{1}{(k+1)}\left\{k+\frac{1}{(k+2)}\right\}=\frac{k+1}{k+2}
$$

$$
\text { If } \frac{1}{(k+1)}\left\{\frac{k^{2}+2 k+1}{k+2}\right\}=\frac{k+1}{k+2}
$$

$$
\text { If } \quad \frac{1}{(k+1)}\left\{\frac{(k+1)^{2}}{(k+2)}\right\}=\frac{k+1}{k+2} \text {, which is true }
$$

$\therefore \quad \mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is so
$\therefore \quad$ By PMI, $\mathrm{P}(n)$ is true for $n \in \mathrm{~N}$

$$
\therefore \quad \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{n(n+1)}=\frac{n}{(n+1)}, n \in \mathrm{~N}
$$

Example 9. Prove that

$$
1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

for every +ve integer n. [M. Imp.] [T.B.Q. 9]

Sol. Lct

$$
\begin{equation*}
P(n)=1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4} \tag{i}
\end{equation*}
$$

Putting $\quad n=1$, we have

$$
1^{1}=\frac{1^{2}(1+1)^{2}}{4}=1
$$

Thus $\mathrm{P}(1)$ holds
l.ct $\quad \Gamma(k)$ be true
i.e., $\quad 1^{3}+2^{3}+3^{3}+\ldots+k^{3}=\frac{k^{2}(k+1)^{2}}{4}$

We shall prove that $\mathrm{P}(k+1)$ is also true
Adding $(k+1)^{\prime}$ to both sides of (ii), we have

$$
1^{3}+2^{3}+3^{1}+\ldots+k^{3}+(k+1)^{3}=\frac{k^{3}(k+1)^{2}}{4}+(k+1)^{3}
$$

or $\mathrm{P}(k+1)=\frac{(k+1)^{2}}{4}\left[k^{2}+4(k+1)\right]=\frac{(k+1)^{2}(k+2)^{2}}{4}$
which is the same expression as obtained by putting $n=k+1$ is (i). Thus $\mathrm{P}(k+1)$ is true. Thus by principle of mathematical induction $\mathrm{P}(n)$ is true for every natural number.

MISC. PRACTICE EXERCISE, ON CHAPTER 2

1. Use the principle of mathematical induction to prove the following statements for all $n \in N$

$$
x+4 x+7 x+\ldots+(3 n-2) x=\frac{1}{2} n(3 n-1) x
$$

2. If $\mathrm{P}(n)$ is the statement the arithmetic mean of the numbers n and $(n+2)$ is the same as their geometric mean, prove that $\mathrm{P}(1)$ is not true. Prove also that if $\mathrm{P}(n)$ is true, then $\mathrm{P}(\mathrm{n}+1)$ is also true. How does this not contradict the principle of induction?
3. Using P.M.I., prove that $2^{n}>n$, for all $n \in N$.
4. Using P.M.I., prove that " $3 n>2$ ", for all $n \in \mathbb{N}$ ".
5. Use the principle of mathenatical induction to prove the following statements for all $n \in N$.

$$
\begin{aligned}
& 1.2+2.3+3.4+\ldots+n(n+1) \\
&=\frac{n(n+1)(n+2)}{3}
\end{aligned}
$$

6. Using P.M.I., prove that $1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)=\frac{n(2 n-1)(2 n+1)}{3}$
7. Use the principle of mathematical induction to prove the following statements for all $n \in \mathrm{~N}$.

ÁDDITIONAL SOLVED EXAMPLES SECTION-A
 [2 marks questions]

Example 1. If $P(n)$ in the statement " n ' $+n$ is divisible by $\mathbf{3 '}^{\prime \prime}$. Is the statement $\mathbf{P (3)}$ true? Is the statement $P(4)$ true ?

Sol. $P(n): n^{3}+n$ is divisibic by 3
$P(3): 3^{3}+3=27+3=30$, which is divisiole by 3 .
Hence the given statement is true.
Again $P(4): 4^{3}+4=64+4=68$.
which is not divisible by 3 .
Hence the given statement is not true.
Example 2. Let $P(n)$ be the statement $C(n, r) \leq$ $n!$ for all $\leq r \leq n^{\prime \prime}$. Is $P(3)$ true?

Sol. $\mathrm{P}(n){ }^{\prime \prime} \mathrm{C}(n, r) \leq \underline{n^{n}}$
$\therefore \quad \mathrm{P}(3)$ is " $(3, r) \leq|3 " \forall "| \leq r \leq 3 "$
Now $\quad C(3,1)=3 \leq 13$ $C(3,2)=2 \leq 13$ $C(3,3)=1 \leq \underline{13}$
$\therefore \quad \mathrm{C}(3, r) \leq 13 \forall 1 \leq r \leq 3$
Hence $P(3)$ is truc.
Example 3. (a) If $\mathrm{P}(n)$ is the statement " $n(n+1)$ is even", then what is $P(4)$?

Sol. Let $\mathrm{P}(n)$ be the statement " $n(n+1)$ is even" Then $P(4): 4(4+1)=20$, which is even.
$\therefore P(4)$ is even.
(b) Let $\mathrm{P}(n)$ be the statement " $3^{\prime \prime}>n^{\prime}$. What is $P(n+1)$?

Sol. $\mathrm{P}(n): 3^{n}>n$
$\mathrm{P}(n+1)$ is the statement " $3^{n+1}>n+1$ ".
Example 4. If $\mathbf{P}(n)$ is the statement " 9 " -8 - 1 is a multiple of $8^{\prime \prime}$, then (i) evaluate $P(1), P(3)$ and $\mathbf{P}(6)$, (ii) Is $\mathbf{P}(2)$ true ? (iii) Is $\mathbf{P}(3)$ false?

Sol. We have
$P(n): " 9^{n}-8^{n}-1$ is a multiple of $8 "$
(i) $P(1): " 9^{1}-8^{\prime}-1=0$ is a multiple of $8^{\prime \prime}$.
$P(3)$: " $9^{3}-8^{3}-1=216$ is a mutiple of $8^{"}$
$P(6): " 9^{n}-8^{n}-1=269296$ is a multiple of 8 "
(ii) When $n=2,9^{n}-8^{n}-1=9^{2}-8^{2}-1=16=8.2$.
$\therefore P(2): " 9^{2}-8^{2}-1$ is a multipte of 8 " is true.
(iii) $\mathrm{P}(3)$: "9 $9^{3}-8^{3}-1=216=8.27$ is multiple of 8 ".
$\therefore P(3)$ is not false.
Example 5. If $P(n)$ is the statement " $2^{n}-1$ is an integral multiple of $7^{\prime \prime}$, then prove that $P(5)$ is true.

Sol. When $n=5$

$$
2^{3 n}-1=2^{15}-1=32767=7.4681
$$

\therefore The statement $P(5): 2^{1191}-1$ is an integral multiple of $7^{\prime \prime}$ is true.

AIDITIONAI, PRACTICE, EXERCISF, 2 (a)

1. If $P^{\prime}(n)$ is the statemen: $n(n+1)(2 n+1)$ is an integral multipie of $\left(6^{\prime \prime}\right.$. Prove that $\mathrm{I}^{\prime}(2), \mathrm{P}^{\prime}(5)$ and $P(7)$ are true.
2. $1 f \mathrm{P}(n)$ is the statemen: " $12 n+3$ is a multiple of $5^{\prime \prime}$. then prove that $P(3)$ is false whereas $P(6)$ is true.
3. If $\mathrm{P}(n)$ is the statement $n{ }^{\circ}+2$ is a multiple of 5 ". then show that $P(4)$ is ro: true.
4. If $P(n)$ is the statemen:

$$
1^{3}+2^{1}+3^{3}+\ldots+r=\left(\frac{n(n+1)}{2}\right)^{2}
$$

then verify that $P(3), P(7)$ are hoth true.
5. Let $P(n)$ be the statement given in problem 4 above, what is $P(n+1)$?

ADDITIONAL SOLVED EXAMPLES
 SECTION-B
 14 marks questions)

Example 1. If $\mathrm{P}(n)$ is the statement that the sum of first n natural numbers is divisible by $n+1$, prove that if $P(r)$ is true, then $P(r+2)$ is true.

Sol. $P(n): 1+2+3+\ldots-n$ is divisibic by $n+1$
$\Rightarrow \quad \frac{n(n+1)}{2}$ is curisible by $n+1$
$\therefore \mathrm{P}^{\prime}(r)$ is true
$\therefore 1+2+3+\ldots+r$ is divisible by $r+1$.
i.e.. $\quad \frac{r(r+1)}{2}$ is divisible by $r+1$

Nou. $P(r+2): 1+2+\because-\ldots+(r+2)$ is divisible by $r+3$

Consider $1+2+3+\ldots+r+(r+1)+(r+2)$

$$
=(1+2+3+\ldots+r)+(2 r+3)
$$

$$
\left.=\frac{r(r \cdot 1)}{2}+12 r+3\right) \quad \text { |using } P^{\prime}(r) \mid
$$

$$
=\frac{r^{2}+r+4 r+6}{2}=\frac{r^{2}+5 r+6}{2}
$$

$$
=\frac{(r+2)(1)+2)}{2}
$$

"buch 小 dusithle hy $r+3$
Honce Per + 2) struc

Example 2. Write down the binomial expansion of $(1+x)^{n+1}$ when $x=8$. Deduce that $9^{n+1}-8 n-9$ is divisible by 64 , whenever n is a positive integer.

Sol. $(1+x)^{n+1}=(1+8)^{n-1}$

$$
\begin{aligned}
=1+{ }^{n+1} \mathrm{C}_{1} \cdot 8+{ }^{n+1} \mathrm{C}_{2} \cdot 8^{2} & +{ }^{n+1} \mathrm{C}_{3} \cdot 8^{3} \\
& +\ldots+{ }^{n+1} \mathrm{C}_{n+1} \cdot 8^{n}
\end{aligned}
$$

$$
\text { or } \quad \begin{aligned}
9^{n+1}=1+8(n+1)+{ }^{n+1} C_{2} 64 & +{ }^{n+1} C_{3} \cdot 8^{3} \\
& +\ldots+{ }^{n+1} C_{n+1} \cdot 8^{n}
\end{aligned}
$$

$$
\Rightarrow \quad 9^{n+1}=1+8 n+8+{ }^{n+1} C_{2} .64+{ }^{n+1} C_{3} \cdot 8^{3}
$$

$$
+\ldots+{ }^{n+1} C_{n+1} \cdot 8^{n}
$$

$$
\Rightarrow \quad 9^{n+1}-8 n-9={ }^{n+1} C_{2} \cdot 64+{ }^{n+1} C_{3} \cdot 8^{3}
$$

$$
+\ldots+{ }^{n+1} C_{n+1} \cdot 8^{3}
$$

R.H.S. has 64 as a factor of every term, so R.H.S. is divisible by 64.

Hence L.H.S. i.e., $9^{n+1}-8 n-9$ is also divisible by 64 .

Example 3. For every natural numbers n, prove by mathematical induction $4^{\prime \prime}+15 n-1$ is divisible by 9 .
[Roorkee Entrance. 1994]
Sol. Let $P(n)=4^{n}+15 n-1$.
We have $P(1)=4+15-1=18=9.2$
i.e., $\mathrm{P}(1)$ is divisible by 9 .

Now assume that for some positive integer $m, \mathrm{P}(m)$ is divisible by 9.11
i.e., $4^{m}+15 m-1=9 k$, where k is some integer

Then $P(m+1)=4^{m-1}+15(m+1)-1$

$$
\begin{aligned}
& =4.4^{m}+15 m+14 \\
& =4 \cdot[9 k-15 m+1]+15 m+14, \text { by }(i) \\
& =36 k-45 m+18 \\
& =9(4 k-5 m+2)=9 \text { some integer. }
\end{aligned}
$$

Thus $\mathrm{P}(m+1)$ is divisible by 9 if $\mathrm{P}(m)$ is divisible by 9 . But as already shown, $P(1)$ is divisible by 9 .

Hence by principle of mathematical induction $\mathrm{P}(n)$ is divisible by 9 for all positive integers n.

Example 4. Prove by the principle of mathematical induction that:
(a) $2+4+6+8+\ldots+2 n=n(n+1), \forall n \in \mathrm{~N}$.
[N.M.O.C. 1996, (Set A)]
(b) $1+3+5+7+\ldots+(2 n-1)=n^{2}, \forall n \in N$.
[N.M.O.C. 1996. (Set B)]
Sol. (a) i Let $P(n): 2+4+6+89 \ldots+2 n=n(n+1)$
Put $n=1, P(1)$:

$$
\text { R.H.S. }=1 \times(1+1)=1 \times 2=2=\text { R.H.S. }
$$

$\therefore P(1)$ is true.
Let us suppose that $\mathrm{P}(r)$ is true i.e.,

$$
2+4+6+8+\ldots+2 r=r(r+1)
$$

We shall prove that $\mathrm{P}(r+1)$ is also truc. i.e.,
$(2+4+6+8+\ldots+2 r)+(2 r+2)=(r+1)(r+2)$
Now. L.H.S. $=(2+4+6+8+\ldots+2 r)+(2 r+2)$

$$
\begin{aligned}
& =r(r+1)+(2 r+2) \\
& =r(r+1)+2(r+1) \\
& =(r+1)(r+2)=\text { R.H.S. }
\end{aligned}
$$

$\therefore P(r+1)$ is also true.
Hence, by the principle of mathematical induction the given statement is true for all natural numbers n.

Proved.
(b) Lct $P(n): 1+3+5+7+\ldots+(2 n-1)=n^{2}$

Put $n=1, P(1):$ R.H.S. $=(1)^{2}=1=$ L.H.S.
$\therefore \mathrm{P}(1)$ is truc.
Let us suppose that $\mathrm{P}(r)$ is true, i.e.,

$$
1+3+5+7+\ldots+(2 r-1)=r^{2}
$$

We shall prove that $\mathrm{P}(r+1)$ is also true, i.e.

$$
1+3+5+7+\ldots+(2 r-1)+(2 r+1)=(r+1)^{2}
$$

Now,
L.H.S. $=\{1+3+5+7+\ldots+(2 r-1)\}+(2 r+1)$

$$
=r^{2}+2 r+1=(r+1)^{2}=\text { R.H.S. }
$$

$\therefore P(r+1)$ in also true.
Hence, by the principle of mathematical induction the given statement is ture for all natural numbers n.

Proved.

ADDITIONAL PRACTICE EXERCISE 2 (b)

1. Prove $3^{2 n}-1$ is divisible by 8 for all $n \in \mathrm{~N}$.
2. Prove that $10^{2 n-1}+1$ is divisible by 11 for all $n \in \mathbb{N}$
3. Prove that $8^{n}-3^{n}$ is divisible by 5 for all $n \in N$.
4. Prove that $4^{n}-3^{n}-1$ is a multiple of 9 for all $n \in N$.
5. Prove that $9^{n}-8 n-1$ is a multiple of 64 for all $n \in N$.
6. Prove that $n(n+1)(2 n+1)$ is divisible by 6 for all $n \in N$.
7. Prove that $n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible by 9 for every natural number.
8. Prove that $n(n+1)(n+5)$ is divisible by 6 for all $n \in \mathbb{N}$.
9. Show that if the statement $P(n)$,

$$
2+4+6+\ldots .+2 n=n(n+1)+2
$$

is true for $n=k$, then it is true for $n=k+1$. Can we conclude that $P(n)$ is true for every natural number.
10. If $P(n)$ be the statement, "A.M. between n and $n+2$ is equal to G.M. between n and $n+2^{\prime \prime}$, prove that $\mathrm{P}(n)$ is not true for all natural numbers.
[Hint: $P(1)$ is not true.]
11. Using principle of mathematical induction prove the following for all $n \in \mathrm{~N}$.
(i) $(2.1+1)+(2.2+1)+(2.3+1)$

$$
+\ldots+(2 n+1)=(n+1)^{2}-1
$$

(ii) $2+2^{2}+2^{3}+\ldots+2^{n}=2\left(2^{n}-1\right)$
(iii) $3+3^{2}+3^{3}+\ldots+3^{n}=\frac{3}{2}\left(3^{n}-1\right)$
(iv) $5+15+45+\ldots+5 \cdot 3^{n-1}=\frac{5}{2}\left(3^{n}-1\right)$
(v) $1 \cdot \underline{1}+2 \cdot \underline{\mid}+3 \cdot \underline{\mid} \underline{3}+\ldots+n \underline{\mid}=\mid n+1-1$
12. Using principle of mathematical induction prove that $n\left(n^{2}+20\right)$ is divisible by 48 for every even natural number n.
[M. Imp.]
13. Use the P.M.1. to prove each of the following statements.
[V. Imp.]
(i) $1+2+3+\ldots+n<\frac{1}{8}(2 n+1)^{2}$
(ii) $1+4+12+\ldots+(3 n-2)=\frac{n(3 n-1)}{2}$
(iii) $4+8+12+\ldots+4 n=2 n(n+1)$
[Hint : $\mathrm{P}(k)+4(k+1)=2 k(k+1)+4(k+1)$ $=2(k+1)(k+2)=P(k+1)]$
(iv) $2.5+5.8+8.11+\ldots$ to n terms

$$
=n\left(3 n^{2}+6 n+1\right)
$$

(v) $1.3+2.4+3.5+\ldots+n(n+2)$

$$
=\frac{n(n+1)(2 n+7)}{6}, \quad \forall \quad n \in N
$$

14. Using the principle of mathematical induction prove that following statements :
[Imp.]
(i) $n^{2}-n-41$ is prime
(ii) Any natural number equals it successor i.e., $P(n): n=n+1$.
(iii) $11^{n+2}+12^{2 n+1}$ is divisible by 133 .
[Roorkee 1982]
(iv) $5^{n+2}-24 n-25$ is divisible by 576 .
(v) $1+2.2^{2}+3.2^{3}+\ldots+n \cdot 2^{n}=(n-1) 2^{n+1}+2$
(vi) $1+2 \cdot 2+3 \cdot 2^{2}+\ldots n \cdot 2^{n-1}=1+(n-1) 2^{n}$ (vii) $2^{n+1}>2 n>1$.

, ADDITIONAL SOLVED EXAMPLES SECTION-C
 [6 marks questions]

Example 1. ${ }^{\wedge}$ Prove by the principle of mathematical induction that
(a) $7^{2 n}+2^{3(n-21)} \cdot 3^{n-1}$ is always divisible by 25 , $\forall n \in \mathrm{~N}$.
[N.M.O.C. 1996 (Sel A)]
(b) $12^{n}+25^{n-1}$ is always divisible by $13, \forall n \in \mathbf{N}$.

$$
[\text { N.M.O.C. 1996. (Set B)] }
$$

Sol. (a) Let $P(n) \cdot 7^{2 n}+2^{\ln -3} \cdot 3^{n-1}$
Put $n=1 . P(1): 7^{2}+2^{3-3} \cdot 3^{1-1}=49+2^{\circ} \cdot 3^{0}$
$=49+1=50$ which is divisible by 25.
$\Rightarrow P(1)$ is truc.
Let us assume that $P(k)$ is true. i.e.,

$$
\begin{array}{ll}
& 7^{2 b}+2^{4-1} \cdot 3^{t-1} \text { is divisible by } 25 . \\
\therefore \quad & 7^{24}+2^{u-1} \cdot 3^{n-1}=25 r \text {, for some } r \in \mathrm{~N} \tag{i}
\end{array}
$$

Now, $P(k+1)=7^{2(k+1)}+2^{2(k+1)-3} \cdot 3^{(k+1)-1}$
$=7^{2 t} \cdot 7^{2}+2^{4-3} \cdot 2^{1} k^{-1} \cdot 3$
$=49.7^{2 t}+24.2^{2 t-3} \cdot 3^{4-1}$
$=(50-1) 7^{2 k}+(25-1) \cdot 2^{k-3} \cdot 3^{k-1}$
$=\left(50.7^{2 k}+25.2^{4-3} \cdot 3^{k-1}\right)-\left(7^{2 k}+2^{4-1} \cdot 3^{t-1}\right)$
$=25\left(2 \cdot 7^{2 t}+2^{2 k-3} \cdot 3^{t-1}\right)-\left(7^{2 k}+2^{3 k-3} \cdot 3^{k-1}\right)$
$=25\left(2.7^{2 t}+2^{k-1} \cdot 3^{t-1}\right)-25 r \quad$ [by $\left.(i)\right]$
$=$ Divisible by 25 - divisible by 25
$=$ Divisible by 25
$\therefore P(k+1)$ is also true.
Hence, by the principle of mathematical induction the given statement in true for all positive number n.

Proved.
(b) Let P(n): $12^{n}+25^{n-1}$

Put $n=1, P(1): 12+25^{1-1}=12+25^{\circ}$
$=12+1=13$ which is divisitite by 13 .
$\Rightarrow \quad P(1)$ is true.
Let us assume that $\mathrm{F}^{\prime}(k)$ is true i.e.,
$12^{t}+25^{t-1}$ is divisible by 13 .
$\therefore \quad 12+25^{t-1}=13 r$, for some $r \in N$
Now. $\mathrm{P}(k+1) 12^{t+1}+25^{(k+1)-1}$

$$
\begin{aligned}
& =12^{1} \cdot 12+25^{k-1} \cdot 25 \\
& =(13-1) \cdot 12^{k}+(26-1) \cdot 25^{k-1} \\
& =\left(13 \cdot 12^{k}+26 \cdot 25^{1-1}\right)-\left(12^{k}+25^{k-1}\right) \\
& =13\left(12^{k}+2.25^{k-1}\right)-\left(12^{k}+25^{k-1}\right) \\
& =13\left(12^{k}+2.25^{k-1}\right)-13 r \quad[\text { by }(i)] \\
& =\text { Divisible by } 13-\text { divisibic by } 13 \\
& =\text { Divisible by } 13
\end{aligned}
$$

$\Rightarrow P(k+1)$ is also true.
Hence, by the principle of mathematical induction the given statement is true for all $n \in \mathrm{~N}$. Proved.

Example 2. Prove by the principle of mathematical induction that :

$$
\begin{gathered}
6+66+666+\ldots+666 \ldots 6=\frac{2}{27}\left(10^{n+1}-9 n-10\right) \\
n \text { digits }
\end{gathered}
$$

|N.A1.O.C. $199.5($ Sel B) \mid

Sol. Let $P(11): 6+66+6667+\ldots+(6666 \ldots 6)$
"ligns

$$
=\frac{2}{27}\left(100^{\prime \prime \prime}-9 x-10\right)
$$

Basic step:
To prove: $\mathrm{P}(1)$ in truc
Proof: For $n=1$.

$$
\begin{aligned}
\text { R.H.S. } & =\frac{2}{27}\left(100^{2}-4 \times 1-10\right) \\
& =\frac{2}{27}(81)=6=T_{1}
\end{aligned}
$$

$\therefore \mathrm{P}(1)$ in truc.

Induction step:

Given $\mathrm{P}(k)$ is truc. Or
$6+66+666 \ldots+666 \ldots 6=\frac{2}{27}\left(10^{1+1}-9 k-10 \mid\right.$

$$
k-1 \text { digut }
$$

To prove: $P(k+1)$ is true i.e..
$6+66+666 \ldots+666 \ldots 6$
$k+1$ digits

$$
\left.=\frac{2}{27} \right\rvert\, 1\left(0^{2+2}-9(k+1)-10 \mid\right.
$$

Proof. L.H.S. $=6+66+666 \ldots+666 \ldots .6$ $k+1$ diguts

$$
=\frac{2}{27}\left[10^{t \cdot 1}-9 k-10\right]+6 \quad[11111 \ldots 1]
$$

$$
k+1 d k \|
$$

$$
=\frac{2}{27}\left[10^{k+1}-9 k-10\right]+\frac{6}{9}\left[10^{t+1}-1\right]
$$

$$
=\frac{2}{27}\left[10^{1+1}-9 k-10\right]+\frac{2}{27}\left[9.10^{k+1}-9\right]
$$

$$
=\frac{2}{27}\left[10^{x+1}+9.10^{x+1}-4 h-4-10\right]
$$

$$
=\frac{2}{27}\left[10^{4 \cdot 1}-9(k+1)-10\right]=\text { R.H.S. }
$$

$\therefore \mathrm{P}(k+1)$ is true.
Hence $P(n)$ is true.
Example 3. Prove the following by mathematical induction:

$$
1+5+9+\ldots+(4 n-3)=n(2 n-1) .
$$

- (Annual Exant. 1995]

Sol. Let $P(11)$ the the statement
$P(n): 1+5+9+\ldots+(4 n-3)=n(2 n-1)$ when $n=1$. :
$\Gamma(1): 1=1(2-1)=1$, which is true.
$\therefore P(1)$ is truc.
l.ct us assume that it is true for $n=k$.
i.c. $1+5+4+\ldots+(4 k-3)=k(2 k-1)$.

Now. we shall prove that it is true for $n=k+1$.

$$
\text { i.e. } \begin{aligned}
1+5+9 & +\ldots+(4 k-3)+(4 k+1) \\
& =(k+1)(2(k+1)-1) \\
\text { L.H.S. } & =(1+5+9+\ldots+(4 k-3)] \\
& =k(2 k-1)+4 k+1+(4 k+1) \\
& =2 k^{2}-k+4 k+1 \\
& =2 k^{2}+3 k+1 \\
\text { R.H.S } & =(k+1)(2(k+1)-1) \\
& =(k+1)(2 k+2-1) \\
& =(k+1)(2 k+1) \\
& =2 k^{2}+3 k+1
\end{aligned}
$$

L.H.S. $=$ R.H.S
$\therefore P(k+1)$ is also truc.
Hence, by mathematical induction, the given statement is true for all natural numbers. Proved.
${ }^{5}$. Example 4. Prove the following by the principle of mathematical induction: $\left(3^{2 n}-1\right)$ is an integral multiple of 8 .
(Anmual Exam. 1994]
Sol. Let $\Gamma(n)$ be the statement that $\left(3^{\text {in }}-1\right)$ is an integral multiple of 8 .

When $n=1$, then $3^{2}-1=9-1=8$ is an integral multiple of 8 . which is true.
$\therefore P(1)$ is true.
Now, suppose $P(k)$ is truc. i.e.. $\left(3^{2 k}-1\right)$ is an integral multipic of 8 .

Then. 10 prove that $\mathrm{P}(k+1)$ is also true.

$$
\begin{aligned}
3^{24211}-1 & =3^{24} \cdot 3^{2}-1 \\
& =3^{32} \cdot 9-1 \\
& =3^{34} \cdot 9-1-8+8 \\
& =\left(3^{2 k}-1\right) \cdot 9+8 \\
& =(\text { an integral multiple nf } 8)+8 \\
1 & \left(3^{34}-1\right) \text { is an integral multipic of } 81 \\
& =\text { an integral multiple of } 8
\end{aligned}
$$

$\therefore P(k+1)$ is also true. Hence, by the principle of mathematical induction. $P(n)$ is true for all natural numbers"

Proved.
Example 5. Prove the following by the principle of mathematical induction :

$$
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{m(m+1)}=\frac{m}{m+1}
$$

|Annual Exam. 1993]
Sol. Let $\mathrm{P}(\mathrm{m})$ te the statement

$$
P(m): \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{m(m t+1)}=\frac{m}{m+1}
$$

When $m=1$.
L.H.S. $=\frac{1}{1(1+1)}=\frac{1}{1.2}=\frac{1}{2}$
R.H.S. $=\frac{1}{1+1}=\frac{1}{2}$
L.H.S. = R.H.S
$\therefore P(1)$ is truc.
Let us suppose that the statement is true for $m=k$. i.e., $\quad \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{k(k+1)}=\frac{k}{k+1}$

We shall prove that the statement is true for $m=k+1$.
i.e., $\quad \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+$.

$$
+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)}=\frac{k+1}{(k+1)+1)}
$$

1.H.S. $=\left[\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{k(k+1)}\right]$

$$
+\frac{1}{(k+1)(k+2)}
$$

$$
\begin{aligned}
& =\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}=\frac{k(k+2)+1}{(k+1)(k+2)} \\
& =\frac{k^{2}+2 k+1}{(k+1)(k+2)}=\frac{(k+1)^{2}}{(k+1)(k+2)}=\frac{k+1}{k+2}
\end{aligned}
$$

R.H.S $=\frac{k+1}{(k+1)+1}=\frac{k+1}{k+2}$
\therefore L.H.S. $=$ R.H.S
$\therefore P(k+1)$ is also truc
Hence. by the prinerple of mathematical induction. the given statement is irue for all postlive imtegers m.

Proved.
Example 6. Using P.M.I., prove that

$$
3 \cdot 2^{2}+3^{2} \cdot 2^{1}+3^{1} \cdot 2^{4}+\ldots+3 n^{n} \cdot 2^{n-1}=\frac{12}{5}\left(6^{n}-1\right)
$$

Sol. $P(n): 3.2^{2}+3^{2} \cdot 2^{1}+3^{1} \cdot 2^{4}+,+3^{1} \cdot 2^{n+1}=\frac{12}{5}\left(6^{n}-11\right.$

$$
\begin{aligned}
P(1): 3.2^{2} & =\frac{12}{5}(6-1) \\
3 \times 4 & =\frac{12}{5} \times 5
\end{aligned}
$$

nr

$$
12=12 . \text { which is true }
$$

Suppose $P(r)$ is true.

$$
\therefore \quad 3.2^{\prime}+3^{\prime} .2^{1}+\ldots+3^{\prime} 2^{\prime \cdot}=\frac{12}{5}\left(5^{3}-1\right)
$$

$P(r+1)$ is the statement

$$
3.2^{\prime}+3^{\prime} \cdot 2^{\prime}+\ldots+3^{\prime} \cdot 2^{\prime}+3^{\prime} \cdot 2^{\prime}=\frac{12}{5}\left(6^{\prime \prime}-1\right)
$$

$$
\text { L.H.S }=3.2^{2}+3^{2} .2^{1}+\ldots+3^{\prime} .2^{\prime \prime}+3^{\cdot 1} .2^{\prime \prime}
$$

$$
=\frac{12}{5}\left(6^{\prime}-1\right)+3 \cdot 2 \quad \text { 1. } \quad P(r) \text { in } 2 \text { ruc }
$$

$$
=\frac{12}{5}\left(0-1+\frac{5}{12} \cdot 3 \cdot 2 \cdot 2\right)
$$

$$
=\frac{12}{5}\left(f^{\prime}-1+5 \cdot f^{\prime}\right)=\frac{12}{5}\left(0 . f^{\prime}-1\right)
$$

$$
=\frac{12}{5}\left(6^{\prime+1}-1\right)
$$

$\therefore P^{\prime}(r+1)$ is truc.
Hence hy the proneppe of mathematicall metuetom. $P(n)$ is truc for all natural numbers $l l$.
E* Example 7. Prove by principle of mathematical induction that
$1.4 .7+2.5 .8+3.6 .9+\ldots+n 1 n+3)(n+6)$

$$
={ }_{4}^{\prime \prime}(n+1)(n+6)(n+7)
$$

Sol. Lee $P(1)$ denote the given statement
P(m) $1.4 .7+2.5 .8+3.64+\ldots+n(n+3)(n+(1)$

$$
\begin{equation*}
=\frac{n}{4}(n+1)(n+6)(n+7) \tag{i}
\end{equation*}
$$

Step 1. For $n=1$

$$
\begin{aligned}
1 . H S & =1.4 .7=28 \\
K H S & =1(1+1)(1+6)(1+7) \\
& =\frac{2 \times 7 \times 8}{2}=28 \\
1 . H S & =\text { R.H.S }
\end{aligned}
$$

i.c.. P(l)心truc

Step II. Lee us suppese that P' (k) is true
$\therefore P(k): 1.4 .7+2.5 .8+3.6 .9+\ldots+k(k+3)(k+6)$

$$
\begin{equation*}
=\frac{k}{4}(h+1)(h+6)(k+7) \tag{ii}
\end{equation*}
$$

We shall show that $P(k+1)$ ss truc
1.HSWrat H

$$
\begin{array}{r}
=197+25 x+169++k(k+31(k+61 \\
+1 k+111 k+411 k+71
\end{array}
$$

$$
\begin{aligned}
& ={ }_{4}^{k}(k+1)(k+(1)(k+7)+(k+1)(k+4)(k+7) \\
& =(k+1)(k+7)\left[\begin{array}{l}
k \\
- \\
\hline
\end{array}\right) \\
& =\frac{(k+6)+6+4)(k+7)}{4}\left(k^{2}+6 k+4 k+16\right) \\
& =\frac{(k+1)}{4}(k+7)\left(k^{2}+10 k+16\right) \\
& =\frac{1}{4}(k+1)(k+7)(k+2)(k+8) \\
& =\frac{1}{4}(k+1)(k+2)(k+7)(k+8) \\
& =\text { R.H.S. } 10(P(k+1) .
\end{aligned}
$$

1.e., $P(k+1)$ is true.

Hence by principle of mathematical induction $P(11)$ is true for all $n \in \mathbb{N}$.
Er Example 8. Using the principle of induction, prove that

$$
\frac{n^{\prime \prime}}{5}+\frac{n^{\prime}}{3}+\frac{7 n}{15} \forall n \in N
$$

is a natural number.
Sol. Let $P(n)=\frac{n^{\prime}}{5}+\frac{n^{\prime}}{3}+\frac{7 n}{1.5}$
Pulling $n=1$. we get

$$
\begin{aligned}
& P(1)=\frac{(1)^{2}}{5}+\frac{(1)^{1}}{3}+\frac{7.1}{15} \\
&=\frac{1}{5}+\frac{1}{3}+\frac{7}{1.5} \\
&=3+5+7=1.5 \\
& 1.5=1
\end{aligned}
$$

which is a natural number.
$\Rightarrow P(1)$ is true.
Putting $n=2$, we gel

$$
\begin{aligned}
P(2) & =\frac{(2)^{1}}{5}+\frac{2}{3}+\frac{72}{15}=\frac{32}{5}+\frac{8}{3}+\frac{14}{15} \\
& =\frac{96+\frac{41)+14}{15}=\frac{150}{15}=10}{}
\end{aligned}
$$

which is a natural number \therefore Pl? is true
leet us now assume that $P(k)$ is a natural number.
Then $P(k+1)=\frac{(k+1)^{2}}{5}+\frac{(k+1)^{\prime}}{1}+\frac{7(k+1)}{15}$

$$
\begin{aligned}
& =\left[\frac{k^{4}+5 k^{4}+10 k^{3}+10 k^{2}+5 k+1}{5}\right] \\
& =\left[\frac{k^{3}+3 k^{2}+3 k+1}{3}\right]+\frac{7(k+1)}{15} \\
& =\left[\frac{k^{4}}{5}+k^{4}+2 k^{3}+2 k^{2}+k+\frac{1}{5}+\frac{k^{3}}{3}+k^{2}+k+\frac{1}{3}+\frac{7 k}{15}+\frac{7}{15}\right] \\
& =\left(\frac{k^{4}}{5}+\frac{k^{4}}{3}+\frac{7 k}{15}\right)+\left(k^{4}+2 k^{3}+3 k^{2}+2 k\right)+\left(\frac{1}{5}+\frac{1}{3}+\frac{7}{15}\right) \\
& \text { or } \quad P(k+1)=P(k)+\left(k^{4}+2 k^{3}+3 k^{2}+2 k\right)+P(1)
\end{aligned}
$$

Now $\mathrm{P}(1)$ is a natural number. $\mathrm{P}(k)$ is a natural number and $k^{3}+2 k^{1}+k^{2}+2 k$ is a natural number.
(\because The sum, product of natural numbers is a natural number)

$$
\Rightarrow P(k+1)=P(k)+P(1)+k^{4}+2 k^{3}+3 k^{2}+2 k
$$

is a natural number.
\therefore The truth of $\mathrm{P}(k) \Rightarrow$ the truth of $\mathrm{P}(k+1)$.
$\Rightarrow \frac{k^{2}}{5}+\frac{k^{2}}{3}+\frac{7 k}{15}$ is a natural number for all values of $n \in \mathrm{~N}$. Ans.

Example 9. By the method of mathematical induction, prove that $3^{n+2}+5^{2 n+1}$ is a multiple of 14 , for all positive integral values of n, including zero.

Sol. Let $\mathrm{P}(n)=3^{n+2}+5^{2 n+1}$
Let $n=0$, then $P(0)=3^{2}+5^{1}=9+5=14$, which is multiple of 14 .

Thus. two result is true for $n=0$.
Let $n=1$, then $P(1)=3^{n}+5^{3}=729+125=854=$ 61×14 which is a multiple of 14 . Thus the result is true for $n=1$.

Let us assume that the result is true for $n=k$. ie. $P(k)$ is a multiple of 14 . Now we can show that $P(k+1)-\Gamma(k)$ is also a multiple of 14 , then the principle of induction is applicable and the result is proved.

```
Now \(\Gamma(k+1)-P(k)\)
    \(=\left\{3^{24 \cdot} \cdot 11 \cdot 2+5^{2 k \cdot 11 \cdot 1}\right\}-\left\{3^{4+2}+5^{2 k+1}\right\}\)
    \(=3^{14 \cdot 2} \cdot 3^{3}+5^{2 k \cdot 1} \cdot 5^{2}-3^{4+2}-5^{2 k \cdot 1}\)
    \(=\left(3^{4}-1\right) 3^{4 \cdot 2}+\left(5^{2}-1\right) 5^{2 t+1}\)
    \(=(70)+10) 3^{34+2}+(14+10) 5^{2 n} \cdot 1\)
    \(=711 \cdot 3^{14 \cdot 1}+14 \cdot 5^{2 k \cdot 1}+10 \cdot 3^{14 \cdot 2}+10 \cdot 5^{2 n \cdot 1}\)
    \(=14\left(5 \cdot 3^{4+1}+5^{22 \cdot 1}\right)+10\left(3^{314 \cdot 2}+5^{3 \cdot 1}\right)\)
```

which is a multiple of 14 as 14 appears in the first expression and the second expression has ten assumed to he a multiple of 14 . Hence the result is true for all pusilise integral values of n.

Example 10. Using P.M.I., prove that " $n(n+1)(2 n+1)$ is divisible by $6 . "$.
Sol. Ie $P(n): n(n+1)(2 n+1)$ is divisible by n

Let $P(1)=1(1+1)(2.1+1)=1 \cdot 2 \cdot 3=6$ which is divisible by 6 .
$\therefore \mathrm{P}(n)$ is true for $n=1$.
Let us assume that $\mathrm{P}(n)$ is true for $n=k$.
$\therefore P(k): k(k+1)(2 k+1)$ is divisible by 6 .
Now we shall show that $\mathrm{P}(k+1)$ is truc, i.e.. $(k+1)$ $) k+2)(2 k+3)$ is divisible by 6 .

Now $(k+1)(k+2)(2 k+3)$

$$
\begin{aligned}
& =(k+1)(k+2)\{(2 k+1)+2\} \\
& =(k+1)(k+2)(2 k+1)+2(k+1)(k+2) \\
& =(k+2)[(k+1)(2 k+1)]+2(k+1)(k+2) \\
& =k(k+1)(2 k+1)+2(k+1)(2 k+1) \\
& \quad+2(k+1)(k+2) \\
& =P(k)+2(k+1)(2 k+1+k+2) \\
& =P(k)+2(k+1) 3(k+1) \quad \text { Using } P(k) \mid \\
& =P(k)+6(k+1)^{2}
\end{aligned}
$$

$6(k+1)^{2}$ is divisible by 6 .
$\therefore P(k)+6(k+1)^{2}$ being the sum of two divisible by 6 is aiso divisible by 6 .
$\therefore \mathrm{P}(k+1)$ is true.
\therefore By the principle of mathematical induction, $\mathrm{P}(n)$ is true for all positive integral values of n.

Example 11. Use the principle of mathematical induction to prove that $3^{2 n+2}-8 n-9$ is divisible by 64 for every natural number n.

Sol. $P(n)$ be the statement $3^{2 n+2}-8 n-9$ is divisible by $64^{\prime \prime}$.

When $n=1.3^{2 n+2}-8 n-9$

$$
\begin{aligned}
& =3^{2+2}-8.1-9 \\
& =81-8-9=64=\text { a multiple of } 64 .
\end{aligned}
$$

$\therefore \mathrm{P}(1)$ is true.
Le: $P(k)$ be true.
$\therefore 3^{\text {iz+2 }}-8 k-9$ is divisible by 64 .
When $n=k+1), 3^{2 n+2}-8 n-9$
$=3^{2(k+1)+2}=8(k+1)-9$
$=3^{2 k+2} \cdot 3^{2}-8 k-8-k$
$=(64 \mathrm{M}+8 \mathrm{k}+9) .9-8 \mathrm{k}-17$ [by (1)]
$=576 \mathrm{M}+72 k+81-8 k-17$
$=64(9 \mathrm{M}+k+1)$
$=$ a multiple of 64
$\therefore P(k+1)$ is true whenever $P(k)$ is so.
\therefore By P.M.I., $3^{2 n+2}-8 n-9$ is divisible by 64 for all $n \in \mathbb{N}$.

Example 12. For all positive integers n, prove that

$$
\frac{n^{9}}{7}+\frac{n^{5}}{5}+\frac{2 n^{3}}{3}-\frac{n}{105} \text { is an integer. }
$$

[I.I.T. 1990]

Sol. Let $P(n)=\frac{n^{3}}{7}+\frac{n^{2}}{5}+\frac{2 n^{1}}{3}-\frac{n}{105}$
For $n=1$.

$$
P(1)=\frac{1}{7}+\frac{1}{5}+\frac{2}{3}-\frac{1}{105}=\frac{15+21+70-1}{105}
$$

$$
=\frac{105}{105}=1 \text {. which is an inieger. }
$$

$\therefore P(1)$ is true
Now suppose $P^{\prime}(k)$ is an integer where $k \in N$
i.c.. $\operatorname{Lcl} P(k)=m, m \in I$

We have

$$
\begin{aligned}
& P(h+1)=\frac{(k+1)^{2}}{7}+\frac{(k+1)^{2}}{5}+\frac{2(k+1)^{1}}{3}-\frac{(k+1)}{11)^{5}} \\
& =\frac{h^{\prime}}{7}+\frac{h^{\prime}}{5}+\frac{3 k^{\prime}}{3}-\frac{h}{105}+\frac{1}{7}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left.\frac{1}{5}\right|^{\prime} C_{1} h^{2}+{ }^{\circ} C_{2} h^{\prime}+{ }^{\circ} C_{9} h^{2}+{ }^{\circ} C_{3} h+{ }^{\circ} C_{d}\right] \\
& +\frac{2}{3} \int^{\prime} C_{1} h^{2}+{ }^{\prime} C_{2} k+{ }^{\prime} C_{J} J=\frac{1}{105}
\end{aligned}
$$

$=m+\frac{1}{7}($ multiple of 7$)+\frac{1}{7}+\frac{1}{5}($ mulliple of 5$)$

$$
\left.+\frac{1}{5}+\frac{2}{3} \text { (multiple nf } 3\right)+\frac{2}{3}-\frac{1}{105}
$$

$=m+(a+$ ve integer $)+\frac{1}{7}+($ a pnsilive integer $)$

$$
+\frac{1}{5}(a+v e \text { integer })+\left(\frac{2}{3}\right)-\left(\frac{1}{105}\right)
$$

$=(m+1)+(a+$ ve integer $)\left[\frac{1}{7}+\frac{1}{5}+\frac{2}{3}-\frac{1}{1115}=1\right]$
= An integer.
Hence $P(k)$ an integer $\Rightarrow P(k+1)$ is an integer.
\therefore By mathematical inducuon ${ }^{\prime}(n)$ is an integer ior all $n \in N$

Example 13. Using mathematical induction, prove that

$$
\sum_{k=n}^{n} k^{2} C_{k}=n(n+1) \cdot 2^{n-2} \text { for } n>1 .
$$

Sol. Lel $P(n): S_{n}=\sum_{1=11}^{n} 1^{:}{ }^{n} C_{1}=n(n+1) \cdot 2^{n-2}$

$$
\begin{array}{cc}
& P(1): S_{1}=\sum_{k=1}^{n} k^{2} \cdot{ }^{\prime} C_{k}=1 \cdot(1+1) \cdot 2^{1-2} \\
\text { or } \quad\left(0+1^{2} \cdot C_{1}\right)=2 \cdot 2^{-1} \text { or } 1=1
\end{array}
$$

$\therefore P(1)$ is true
Let the statement be true when $n=m$.
Then, $\mathrm{P}(m): \mathrm{S}_{n}=\sum_{k=0}^{m} k^{2} \cdot{ }^{m} \mathrm{c}_{k}=m(m+1) 2^{m-2}$
Consider $P(m+1): S_{m+1}=\sum_{k=0}^{+1} k^{2}{ }^{m+1} C_{k}$

$$
\begin{aligned}
& =\sum_{k=0}^{m+1} k^{2} \cdot\left({ }^{m} \mathrm{C}_{k}+{ }^{m} \mathrm{C}_{k-1}\right) \\
& {\left[\because{ }^{n} \mathrm{C}_{r}+{ }^{n} \mathrm{C}_{k-1}={ }^{n+1} \mathrm{C}_{k}\right] } \\
& =\sum_{k=0}^{m+1} k^{2} \cdot{ }^{m} \mathrm{C}_{1}+\sum_{k=0}^{m+1} k^{2} \cdot{ }^{m} \mathrm{C}_{k-1} \\
\therefore \quad & \sum_{k=0}^{m} k^{2} \cdot{ }^{m} \mathrm{C}_{k}+\sum_{k=0}^{m+1} k^{2} \cdot{ }^{m} \mathrm{C}_{k-1}
\end{aligned}
$$

[\because First summation becomes meaningless for $k=m+1$ and second for $k=0$]

$$
=\sum_{k=0}^{m} k^{2} \cdot{ }^{m} C_{k}+\sum_{k=0}^{m}(k+1)^{2 m} C_{k}
$$

[Changing k into $k+1]$

$$
\begin{aligned}
& =S_{m}+\sum_{k=0}^{m}\left(k^{2}+2 k+1\right) \cdot{ }^{m} C_{k} \\
& =S_{m}+\sum_{k=0}^{m} k^{2} \cdot{ }^{m} C_{k}+2 \sum_{k=0}^{m} k \cdot{ }^{m} C_{k}+\sum_{k=0}^{m} C_{k} \\
& =S_{m}+S_{m}+2 \cdot\left(m \cdot 2^{m-1}\right)+2^{m} \\
& =2 S_{m}+2 m \cdot 2^{m-1}+2^{m} \\
& =2 m(m+1) 2^{m-2}+2 m \cdot 2^{m-1}+2^{m} \\
& =2^{m-1}(m(m+1)+2 m+2] \\
& =2^{m-1}\left(m^{2}+3 m+2\right) \\
& =2^{m-1} \cdot(m+1)(m+2)=S_{m+1}
\end{aligned}
$$

\therefore The statement holds for $n=m+1$.
Hence by the principle of mathematical induction, the result holds for $n \geq 1$.

${ }^{4} \mathbf{T}$ Example 14. Prove by principle of mathematical induction that

$1.3+3.5+5.7+\ldots+(2 n-1)(2 n+1)=\frac{n}{3}\left(4 n^{2}+6 n-1\right)$
Sol. $P(n)=1.3+3.5+5.7+\ldots+(2 n-1)(2 n+1)$

$$
=\frac{n}{3}\left(4 n^{2}+6 n-1\right)
$$

For $n=1$.
L.H.S. $=1.3=3$
and

$$
\text { R.H.S. }=\frac{1}{3}(4+6-1)=3
$$

Thus L.H.S. $=$ R.H.S. $=3$
For $n=2$.

$$
\text { L.H.S. }=1.3+3.5=18
$$

and

$$
\text { R.H.S. }=\frac{1}{4}\left(4.2^{2}+6(2-1)\right)=18
$$

$\Rightarrow \mathrm{P}(2)$ is true.
\therefore The relation holds for $n=1,2$.
Step I. Assume that the relation to be true for some positive integral value of n, say $n=k$, i.e.,
$P(k)=1.3+3.5+\ldots+(2 k-1)(2 k+1)=\frac{k}{3}\left(4 k^{2}+6 k-1\right)$

Add to each side the $(k+1)$ th term, viz., $(2 k+1)$ $(2 k+3)$, we have
$P(k+1)=1.3+3.5+\ldots+(2 k-1)(2 k+1)+(2 k+1)(2 k+3)$

$$
\begin{aligned}
& =\frac{k}{3}\left(4 k^{2}+6 k-1\right)+(2 k+1)(2 k+3) \\
& =\frac{1}{3}\left\{4 k^{3}+6 k^{2}-k+3\left(4 k^{3}+8 k+3\right)\right\} \\
& =\frac{1}{3}\left\{4 k^{3}+18 k^{2}+23 k+9\right\} \\
& =\frac{1}{3}(k+1)\left(4 k^{2}+14 k+9\right) \\
& =\frac{1}{3}(k+1)\left\{(4 k+1)^{2}+6(k+1)-1\right\}
\end{aligned}
$$

which is of the same form as (1) with $(k+1)$ in place of k. Therefore, the relation is true for $n=k+1$. If it is true for $n=k$.

Thus we see that if the given relation is true for $n=$ k then it is true for $n=k_{\text {. }}$ and therefore, by the principle of induction $\mathrm{P}(n)$ is true $\forall n \in \mathrm{~N}$.
tr Exampie 15. Prove by the principle of mathematical induction
$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+\ldots+n}=\frac{2 n}{n+1}$.
[N.M.O.C. 1994 (Set A)]
Sol. Let the given statement he denoted by $\mathrm{P}(n)$
Now $P(1)$ is true because when $n=1$

$$
\text { L.H.S. }=1
$$

and \quad R.H.S. $=2 / 2=1$
$\therefore \quad$ L.H.S. $=$ R.H.S

Let use assume that the result is true for $n=k$ ie.. $P(k)$ is true

$$
\therefore \quad 1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+\ldots+k}=\frac{2 k}{k+1}
$$

Adding $(k+1)$ the term, i.e. $\overline{1+2+3+\ldots+(k+1)}$ to both sides. we get

$$
\begin{aligned}
1+\frac{1}{1+2} & +\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+\ldots+1} \\
& =\frac{2 k}{k+1}+\frac{1}{1+2+3+\ldots+(k+1)} \\
& =\frac{2 k}{k+1}+\frac{1}{(k+1)(k+2)} \\
& =\frac{2}{(k+1)}\left[\frac{k(k+2)+1}{k+2}\right] \\
& =\frac{2(k+1)^{2}}{(k+1)(k+2)}=\frac{2(k+1)}{(k+2)}=\Gamma(k+1)
\end{aligned}
$$

Thus the given result is true for $n=k+1$. whenever it is true for $n=k$. Hence by the principle of induction it is true for all $n \in \mathbb{N}$
Ex Example 16. Prove by Mathematical induction that

$$
\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}
$$

Sol. Let $P(n)=\frac{1}{2}+\frac{1}{2^{3}}+\frac{1}{2^{4}}+\ldots+\frac{1}{2^{*}}$
Putting $n=1$, we get

$$
P(1)=\frac{1}{2}=1-\frac{1}{2^{i}}=1-\frac{1}{2}
$$

$\Rightarrow P(1)$ is true
Let $P(k)$ be true
i.e., $\quad \frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{1}}+\ldots+\frac{1}{2^{4}}=1-\frac{1}{2^{1}}$

We shall show that $P(k+1)$ is also true.
Now $+1 \quad P(k+1)=\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{1}}+\ldots+\frac{1}{2^{t}}+\frac{1}{2^{1+1}}$

$$
P(k)+\frac{1}{2^{t+1}}=1-\frac{1}{2^{k}}+\frac{1}{2^{t+1}}
$$

$$
\begin{aligned}
& =1-\left(\frac{1}{2^{1}}-\frac{1}{2^{1+1}}\right) \\
& =1-\left(\frac{2-1}{2^{1+1}}\right)=1-\frac{1}{2^{1+1}}
\end{aligned}
$$

$\Rightarrow P(k+1)$ is true
\therefore Using principle of mathematical induction, we can say $\mathrm{P}(n)$ is true for all $n=\mathrm{N}$
ie., $\quad \frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{1}}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}$.
Example 17. If x is not an integral multiple of 2π use mathematical induction to prove that $\cos x+\cos 2 x+\ldots+\cos n x=\cos \frac{n+1}{2} x \sin \frac{n x}{2} \operatorname{cosec} \frac{x}{2}$
[I.I.T. 1994]
Sol. Let $\mathrm{P}(n)$ denote the statement
$\cos x+\cos 2 x+\ldots+\cos n x$

$$
=\cos \left(\frac{n+1}{2} x\right) \sin \frac{n x}{2} \operatorname{cosec} \frac{x}{2}
$$

For $n=1$.
The L.H.S. of (I)

$$
=\cos x=\cos x \sin \left(\frac{x}{2}\right) \operatorname{cosec}\left(\frac{x}{2}\right)
$$

provided $\operatorname{cosec}(x / 2)$ exists ie., $x / 2$ is not an integral multiple of π

$$
\begin{aligned}
& =\cos \left(\frac{1+1}{2} x\right) \sin \frac{1-x}{2} \operatorname{cosec} \frac{x}{2} \\
& =\cos x \sin \frac{x}{2} \operatorname{cosec} \frac{x}{2} \\
& =\text { The R.H.S. of (} 1 \text {) for } n=1
\end{aligned}
$$

Thus $P(n)$ is true for $n=1$.
Now assume as our induction hypothesis that $\mathrm{P}(n)$ is true for some positive integer mise. (1) is true for $n=m$.

Then for $n=m+1$. then L.H.S. of (1)

$$
\begin{aligned}
= & (\cos x+\cos 2 x+\ldots+\cos m x) \\
& +\cos (m+1) x \quad[\because P(m) \text { is true }]
\end{aligned}
$$

$$
=\operatorname{cosec} \frac{x}{2}\left[\cos \frac{m+1}{2} x \sin \frac{m x}{2}+2 \cos (m+1) x \sin \frac{x}{2}\right]
$$

$$
=\frac{1}{2} \operatorname{cosec} \frac{x}{2}\left[\left\{\sin \left(m x+\frac{x}{2}\right)-\sin \frac{x}{2}\right\}\right.
$$

$$
+\left\{\sin \left(m x+\frac{3 x}{2}\right)-\sin \left(m x+\frac{x}{2}\right)\right\}
$$

$=\frac{1}{2} \operatorname{cosec} \frac{x}{2}\left[\sin \left(n L x+\frac{3 x}{2}\right)-\sin \frac{x}{2}\right]$
$=\left(\frac{1}{2} \operatorname{cosec} \frac{x}{2}\right) \cdot 2 \cos \frac{(m+2) x}{x} \cdot \frac{\sin (m+1) x}{2}$
$=\cos \left\{\frac{(m+1)+1}{2} x\right\} \sin \frac{(m+1) x}{2} \operatorname{cosec} \frac{r}{2}$
The R.H.S. of (1) for $n=m+1$
Thus $P(m,+1)$ is true if $P^{\prime}(m)$ is true and as already shown $P(1)$ is true. Hence by mathematical induction $\mathrm{P}(n)$ is true for all positive integers n.

Example 18. Prove that $n^{2}>2 n, \forall n \geq 3$, by using the principle of mathematical induction.

Sol. Let $P(n): n^{3}>2 n$.
Putting $n=3$, we have
and R.H.S $=23=6$
Thus the statement $P(3)$ is true
Let $n=4$, then

$$
\text { L.H.S }=4=10
$$

and \quad R.H.S. $=2.4=x$
Thus the tatement $P(4)$ is true as $4^{2}>\gamma$
Lie us assume the vatement be true for $11=$ m. ie. . $m^{\prime}>2 m$.
Now we thall show that $P^{\prime}(m+1)$ is also true.
Adding $2 m+1$ (1) buth sdes of (i), we have

$$
m^{2}+2 m+1>2 m+2 m+1
$$

or $\quad(m+1)^{:}>2(m+11+\{2 m-1)$
But. $2 m-1$ is a pusitive quantity for $m \geq 3$.
$\therefore \quad(m+1)^{-}>2(m+1)$.
\Rightarrow The result is true tor $m+1$ when it holds good lor $1=1 \prime$
\therefore Bythe principle of mathematical induction. $\mathrm{P}(m)$ strue tor all positive integral values of $11.1 \geq$?
E3. Example 19. Prove by the principle of mathematical induction

$$
1.2+2.2^{2}+\ldots+n .2^{2}=\left(n-112^{n-1}+2 .\right.
$$

Sol. Leit $P(11)=1.2+2.2^{2}+\ldots+1122$

$$
=(11-1) 2^{n}+2
$$

The result is true tor $11=1$ because

$$
\text { L.H.S }=1.2=2
$$

and \quad R.H.S $\left.=(1-1)^{106}+2=0\right)+2$
$\therefore \quad$ L.H.S $=$ R.H.S $\Rightarrow P(1)$ is truc
Let the result be true for $n=m$

$$
\begin{aligned}
& \therefore \quad P(k)=1.2+2.2^{2}+\ldots+k .2 \\
&=(k-1) 2^{4 \cdot 1}+2
\end{aligned}
$$

Adding $(k+1) 2^{*+1}$ on hoth sides, we have

$$
\begin{aligned}
& 1.2+2.2^{2}+\ldots+k \cdot 2^{2}+(k+1) 2^{k-1} \\
&=(k-1) 2^{k+1}+2(k+1) 2^{k+1} \\
&=2 k \cdot 2^{k \cdot 1}+2 \\
&=k \cdot 2^{1+2}+2
\end{aligned}
$$

This shows that the results is true for $n=k+1$, i.e. $\mathrm{P}(k+1)$ is true if $\mathrm{P}(k)$ is true. Hence by the principle of mathernatical induction. $\mathrm{P}(n)$ is true for all positive integral values of n.
of Example 20. Use the principle of mathematical induction to prove that

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2}>\frac{n^{1}}{3} . \quad n \in \mathbb{N}
$$

Sol. Let $\mathrm{P}(n)$ be the statement

$$
\begin{aligned}
& 1^{2}+2^{2}+3^{2}+\ldots+n^{2}>\frac{n^{2}}{3} \\
& P(1) \text { is truc, if } 1^{2}>\frac{1^{\prime}}{3}
\end{aligned}
$$

$$
\text { or if } \quad 1>\frac{1}{3} \text { which is true. }
$$

$\therefore P(1)$ is true.
Let $P(k)$ be true.

$$
\therefore \quad 1^{2}+2^{2}+3^{2}+\ldots+k^{2}>\frac{k^{1}}{3}
$$

L.et $\left.1^{2}+2^{2}+3^{2}+\ldots+k^{2}=p+\frac{k^{\prime}}{3}(p)>0\right)$

Now Pik + llos truc. if

$$
1^{i}+2^{2}+3^{2}+\ldots+(k+1)^{i}>\frac{(k+1)^{\prime}}{3}
$$

$11\left(1^{2}+2^{2}+3^{2}+\ldots+k^{2}\right)+(k+1)^{2}=\frac{(k+1)^{\prime}}{3}>0$
$11 \quad P+\frac{h^{\prime}}{3}+(k+1)^{:}-\frac{(k+1)^{\prime}}{3}>0$
$11 \quad \mathrm{P}+\frac{k^{\prime}+3 k^{2}+3+6 k-k^{2}-3 k^{2}-3 k-1}{3}>0$
|Using (i)|
$11 P+\frac{(3 k+2)}{1}>0$. which is true hecause P and $\frac{2 k+2}{1}$ and buth posilive.
$\therefore P(k+1)$ is true whenever $P(k)$ is so
By PMil. $P(n)$ is true for all $n \in N$. Ans.

ADDITIONAL PRACTICE EXERCISE 2 (c)

1. Prove by using principle of mathematical induction

$$
\begin{gathered}
7+77+777+\ldots+777 \ldots 7=\frac{7}{81}\left(10^{0+1}-9 n-10\right) \\
n \text { digits }
\end{gathered}
$$

2. Let $u_{1}=1, u_{2}=1, u_{n+2}=u_{n+1}+u_{n}$ for $n \leq 1$ use mathematical induction to show that

$$
\cdots u_{n}^{\prime}=\frac{1}{\sqrt{5}} \cdot\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

for all $n \geq 1$.
3. Prove that $x\left(x^{n-1}-n a^{n-1}\right)+a^{n}(n-1)$ is divisible by $(x-a)^{2}$ for all positive integers a greater than 1.
4. Using principle of mathematical induction prove that

$$
1+x+x^{2}+x^{3}+\ldots+x^{n}=\frac{1-x^{n+1}}{1-x}, x \in N
$$

Using the principle of mathematical induction. prove that :
5. $\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}$.
6. $2.1+3.2+4.2^{2}+\ldots+(n+1) 2^{n-1}=n .2^{n}$
7. $\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\ldots+\frac{1}{(4 n-1)(4 n+3)}$

$$
=\frac{n}{3(4 n+3)} .
$$

[N.M.O.C. 1994 (Set B)]
8. $3.2^{2}+3^{2} \cdot 2^{3}+3^{3} \cdot 2^{4}+\ldots+3^{n} \cdot 2^{n+1}=\frac{12}{5}\left(f^{n}-1\right)$.
9. $1.2+2.3+3.4+\ldots+n(n+1)=\frac{n(n+1)(n+2)}{3}$.
10. Using mathematical induction. prove that
${ }^{m} \mathrm{C}_{n}{ }^{n} \mathrm{C}_{k}+{ }^{m} \mathrm{C}_{1}{ }^{n} \mathrm{C}_{1-1}+\ldots+{ }^{m} \mathrm{C}_{k}{ }^{n} \mathrm{C}_{n}={ }^{-+{ }^{n} \mathrm{C}_{1}}$.
where m, n, k are positive integers, and ${ }^{r} C_{\varphi}=0$ for $p<q$.
11. Prove by induction that $2 n+7<(n+3)^{2}$ for all natural numbers n. Using this, prove by induction that $(n+3)^{2}<2^{n+3}$ for all natural numbers n. Prove each of the following by the principle of mathematical induction.
12. $1+4+7+\ldots(3 n-2)=\frac{1}{2} n(3 n-1)$.
13. $\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{(2 n+1)}$.
14. $\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 n+2)(3 n+1)}$

$$
=\frac{n}{(3 n+1)} .
$$

15. $1.3+3.5+5.7+\ldots+(2 n-1)(2 n+1)$

$$
=\frac{n\left(4 n^{2}+6 n-1\right)}{2}
$$

16. $1.4 .7+2.5 .8+3.6 .9+\ldots+n(n+3)(n+6)$.

$$
=\frac{n}{4}(n+1)(n+6)(n+7) .
$$

17. $1.3 .5+2.4 .6+3.5 .7+\ldots+n(n+2)(n+4)$

$$
=\frac{n}{4}(n+1)(n+4)(n+5) .
$$

Prove by using the principle of mathematical induction
18. $1.3+2.3^{2}+3.3^{3}+\ldots+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}$.
19. $2+2^{n}+2^{3}+\ldots+2^{n}=2\left(2^{n}-1\right)$.
20. $1+2+3+\ldots+n<\frac{1}{8}(2 n+1)^{2}$.
21. Prove ty the principle of mathematical induction that $5^{2 n}-1 \forall n \in N$ is divisible by 24 .
|N.M.O.C. 1993 (Set A) ; 1942 (Set A)]
22. Prove hy the principie of mathematical induction that $9^{\prime \prime}+15 n-1$ is divisition by for all n e N
[N.M.().C. 1992 (Sel B)|
23. If $\mathrm{P}(n)$ is the statement : the arithmetic mean of the numbers n and $n+2$ is the same as their ecometric mean, prove that $P(1)$ is not truc. Prove also that if $\mathrm{P}(n)$ is true, then $\mathrm{P}(n+1)$ is alse true.
24. If $n>1$. prove that

$$
n!<\left(\frac{n+1}{2}\right)^{n}
$$

25. By the principle of mathematical induction prove that for each not natural number n,

$$
1+2+3++4+\ldots+n<(2 n+1)^{2}
$$

26. For each natural number $n, 6^{n+2}+7^{2 n+1}$ is divisible by 43.
27. Prove by principle of mathematical induction

$$
S_{n}=n^{1}+3 n^{2}+5 n+3
$$

is divisible by 3 for any positive integer n.
28. Prove by the principle of induction that $x^{2 n}-y^{2 n}$ is divisible by $x-1$, where n is a positive integer.
29. Show that if the statement

$$
P(n): 2+4+6+\ldots+2 n=n(n+1)+2
$$

is true for $n=k$, then it is true for $n=k+1$ can we conclude that $P^{\prime}(n)$ is true for every natural number n ?
30. Prove hy mathematical inducturn that
$2^{\text {n }}>3^{\text {n }}$. forall $n \in N$

LIMITS CCNTINUIT AND DIFFERENTIATION

$=y$
Mニ．ミ．ご・BASTI

1. LIMITS

1.1 Int=oduction:

We live in a world of change - our values, ideals, hopes and institutions are undergoing constant change. It is interesting to note that certain changes are happening too rapidly, whie other changes are not occurring fast enough. This illustaates that, although the topic of change is important, often the concept of rate of change is more relevant. For example, in the study of population growth, it is not sufficient to know that the population changed by doubling. Wie need to know the rate at which this doubling took place. It is significant that at one time the coubling, of the world population took a thousand years, but now the doubling takes only few decades time. The mathematical tool for measuring rates of change is the concept of limits. The concept of limit is needed to pass from the average rate of change to the more useful concept of an instantaneous rate of change. Indeed it is this concept of the limit, that resulted in the invention of Calculus. It may be surprising to discover that Newton did not have a complete understanding of the limit. Many years later Cauchy put the concept of limit on a sound mathematical basis. In this section, the approach to the concept of limit is initially intuitive and later the mathematically elegant Cauchy epsilon-delta approach is given.

There are many topics in school mathematics through which 1imits can be illustrated. For instance consider the problem of finding circumference of a circle. The circumference of a circle can be taken as the limit of perimeter of inscribed regular polygon as the number of sides tend to infinity. Jeachers can also use the action of a bouncing ball. If $\left\{h_{n}\right\}_{n}=1,2, \ldots$ is a sequence of heights of the bouncing ball, then 0 is the limit of such a sequence.

1.2 Limit of a Function:

Consider the function $f(x)=\frac{x^{2}-4}{x-2}$ for $x \neq 2$. $f(x)$ is not defined at 2 because the direct substitution 2 for x results in $0 / 0$ which is an indeteminate form. Let us calculate the values of $f(x)$ for some values x that are very close to but unequal to 2 .

From the table it appears that if x is very close to 2 , then $f(x)=\frac{x^{2}-4}{x-2}$ is very near 4. We represent this statement in mathematical shorthand as,
limit of $f(x)=\frac{x^{2}-4}{x-2}$ as $x \quad x \quad f(x)=\frac{x^{2}-4}{x-2}$
approaches 2 is 4 or
Lim $f(x)=4$
$x \rightarrow 2$
1.98
3.98
1.99
3.99
2.01
4.01
2.02
4.02

Fig. 1

Now we can define $f(2)$ as 4. Here we have used the liait process to define $f(2)$ though originally $f(2)$ was not defined. It is possible to obtain Iim $f(x)$ without finding table of values. Since $f(x)=\frac{x^{2}-4}{x-2} \quad \frac{(x-2)^{2}(x-2)}{(x-2)}$ if $x \neq 2$
$=(x+2)$ if $x \neq 2$.
$\operatorname{Lim}_{x \rightarrow 2} f(x)=\operatorname{Lim}_{x \rightarrow 2}(x+2)=2+2=4$
Since limit of $(x+2)$ as x tends to 2 can be obtained by substituting $x=2$ in $x+2$.
Exercise: Find (i) $\operatorname{Lim}_{x \rightarrow 3} \frac{x^{2}-5 x+6}{x-3}$
(ii) $\operatorname{Lim}_{x \rightarrow 3} \frac{x^{2}-9}{x+3}$

Now we provide intuitive definition of limit of a function. Definition: If f is a real function defined on a set of real numbers and a in the domain, of f, then we say that limit of $f(x)$ as x a is a real number 1 if $f(x)$ is very close to 1 , whenever x is very close to a.

We write this as $\operatorname{Lim}_{x \rightarrow a} f(x)=1$
If such a 1 does not exist then we say that $\underset{x \rightarrow a}{\operatorname{Lim}} f(x)$ does not exi
exist. For instance $\underset{x \rightarrow a}{\operatorname{Lim}_{\rightarrow a}} \gamma x$ does not exist.
Next we shall introduce the idea of left hand limit and right hand limit of a function at a point. Let $f(x)$ be a function
defined as follows.

$$
\begin{aligned}
f(x) & =y 2 x+2 \text { if } x<2 . \\
& =x+4 \text { if } x \geqslant 2
\end{aligned}
$$

We shall examine whether $\underset{x \rightarrow 2}{\operatorname{Lim}} f(x)$ exists.

First suppose $x \rightarrow 2$ from the right side of $2(0=x \rightarrow 2$ and $x>2$)
and symbolically it is written as $x \rightarrow 2+$.
Then $\operatorname{Lim}_{x \rightarrow 2+} f(x)=\operatorname{Lim}_{x-2} x-4=2+4=6$
This limit is called as right hand limit of $f(x) \equiv t 2$.
Next suppose $x-2$ from the left side of 2 (oI $x-2$ and $x<2$)
and symbolically it is written as $x \rightarrow 2$-.
Then $\operatorname{Lim}_{x \rightarrow 2-} f(x)=\operatorname{Lim}_{x \rightarrow 2} \quad y_{2} x+2=y 2 x 2+2=3$
$\operatorname{Lim}_{x \rightarrow 2-} f(x)$ is called as left hand, Limit of $f(x)$ at 2 . $x \rightarrow 2-$

Thus $\operatorname{Lim}_{x \rightarrow 2+} f(x) \neq \operatorname{Lim}_{x \rightarrow 2-} f(x)$. In this case we say that $\operatorname{Lim}_{x \rightarrow a} f(x)$
does not exist. Because $\underset{x \rightarrow a}{\operatorname{Lim}} f(x)$ exists if and only if
$\operatorname{Lim}_{x \rightarrow a_{+}} f(x)=\operatorname{Lim}_{x \rightarrow a_{-}} f(x)$ mitten $\operatorname{Lim}_{x \rightarrow a_{+}} f(x)=\operatorname{Lim}_{x \rightarrow---} f(x)$, one of these values is taken as $\operatorname{Lim}_{x \rightarrow a} f(x)$. Earlier we got $\underset{x \rightarrow 2}{\operatorname{Lim}} \frac{x^{2}-4}{x-2}=4$. In this
case we notice that $\underset{x-2+}{ } \frac{x^{2}-4}{x-2}=\operatorname{Lim}_{x \rightarrow 2-} \frac{x^{2}-4}{x-2}=4$

The definition of limit given earlier is intuitive and suffers from shortcomings. In the first instance, it lacks mathematical rigour and further it is hardy useful in the development of theory of limits. We can examine more closely the idea of limit so as to arIive at Cauchy's mathematical definition.

Let us begin with Lim $(2 x+1)=7$. This means that when x is very close to $3,2 x+1$ is very close to 7 . Since "close to" is not mathematically defined so far, we have trouble in understanding what we mean by these words. Therefore, our first attempt to explain $\operatorname{Lim}_{x \rightarrow 3}(2 x+1)=7$ is unsatisfactory. In our second attempt to explain Lim $(2 x+1)=7$, we mean that the value $\mathrm{x} \rightarrow 3$ of $2 x+1$ can be made as near 7 as we wish to have it by making x near enough to 3. This leads us to the 'Cauchy definition' for limit of a function.

Definition: Lim $f(x)=L$ iff for every $\mathcal{C}>0$ however small there exists ${ }_{\delta}^{x}>0$ such that $|f(x)-L|<\mathcal{E}$ whenever x is such that $0<|x-a|<\delta$

Exercise: Use the above Cauchy definition of limit and show that $\operatorname{Lim}(2 x+1)=7$
$x \rightarrow 3$
Solution: Let $\varepsilon>0$ be any given number. Then we have to find δ such that $|(2 x+1)-7|<\varepsilon$ whenever $0<|x-3|<\delta$.
Now $|(2 x+1)-7|=2|x-3|$ iff $0<|x-3|<\varepsilon / 2$
Hence choose $\delta=E / 2$, so that $|(2 x+1)-T|<\varepsilon$
for $0<|x-3|<\delta=E / 2$.
$\operatorname{Lim}(2 x+1)=7$
$x \rightarrow 3$

Exercise: Use the Cauchy definition of Limit and show that $\operatorname{Lim}_{x \rightarrow 2}[y 2 x-4]=-3$

Solution: Let $\varepsilon>0$ be any given number.
Then $|(y 2 x-4)-(-3)|<\varepsilon$ Eff $|y 2 x-1|<\delta$

$$
\begin{aligned}
& |(y 2 x-4)-(-3)|<\varepsilon \quad \text { iffy } y 2|x-2|<\delta \\
& |(y 2 x-4)-(-3)|<\varepsilon \quad \text { iff } 0<|x-2|<2 \varepsilon
\end{aligned}
$$

Choose $\delta=2 \varepsilon$, so that $|(y 2 x-4)-(-3)|<\varepsilon$
whenever $0<|x-2|<\delta$
Hence $\operatorname{Lim}_{x \rightarrow 2}[y 2 x-4]=-3$
Now we shall illustrate the use of this definition of limit in proving some of the important properties of limits.

Theorem: $\operatorname{Lim} c=c$ (c is any constant)
(1.e. limit of a constant is constant itself).

Proof: Let $\hat{\varepsilon}>0$ be given.
Then $|c-c|=0 \quad V \times$ such that $0<|x-a|<\delta$ where $\delta>0$
can be any number. Because $|c-c|=0$ is always true for any x and
so in particular for x such that $0<|x-a|<\delta$
Lime $c=c$
$x \rightarrow a$

Theorem: If $\operatorname{Lim}_{x \rightarrow a} f(x)=L$ and $\operatorname{Lim}_{x \rightarrow a} g(x)=M$
then $\operatorname{Lim}_{x \rightarrow a} f(x)+g(x)=\operatorname{Lim}_{x \rightarrow a} f(x)+\operatorname{Lim}_{x \rightarrow a} g(x)=\operatorname{L+M}$
(ie. limit of a sum is sum of limits).

Proof: Let $\varepsilon>0$ be given. Then $\varepsilon / 2>0$.
Since $\operatorname{Lim}_{x \rightarrow a} f(x)=L$ and $\operatorname{Lim}_{x \rightarrow a} g(x)=M$. By definition of limit there exist $\delta_{1}>0$ and $\delta_{2}>0$ such that
$|f(x)-L|<\varepsilon / 2$ for $0<|x-a|<\varepsilon_{1}$ and
$|g(x)-m|<\varepsilon / 2$ for $0<|x-a|<\delta_{2}$
Let δ be the smaller of δ_{1}, δ_{2} then
$|f(x)-L|<\varepsilon / 2$ and $|g(x)-m|<\varepsilon / 2$ for $0<|x-a|<\delta$
Now $|f(x)+g(x)-(I+M)|=\mid f(x)-L)+(g(x)-H) \mid$
$|f(x)-i|+|g(x)-M|$
$<\varepsilon / 2+\varepsilon / 2 v \times$ such that $0<|x-a|<\delta$
$\operatorname{Lim}_{x \rightarrow a} f(x)+g(x)=\operatorname{L+A}=\operatorname{Lim}_{x \rightarrow a} f(x)+\operatorname{Lig}_{x \rightarrow a} g(x)$
On the same lines as acove some more results on the limits may be proved. These results are given at the end as exercises. Next we shall explain limits at inínity and in\# nite limits. Let $f(x)=y x$

Let us examine behaviour of $f(x)$ as x approaches zero from right side. The closer x is to zero, the larger $f(x)$ is. In other words, as $x \rightarrow 0+, f(x)$ goes on increasing without bound. In this case, we write $\operatorname{Lim}_{x \rightarrow 0} y_{x}=+\infty$ (Read ∞ as "plus infinity").

Similarly as $x \rightarrow 0-, f(x)$ goes on decreasing without bound and we wite $\operatorname{Lim}_{x \rightarrow 0-} f(x)=\operatorname{Lim}_{x \rightarrow 0-} y x=-\infty$
(Mead ' $-\infty$ ' minus infinity).

Here, ∞ is a symbol showing the phenomenon of growing larger and larger without bound. Simila=ly $-\infty$ is a symbol showng the phenomenon of decreasing without bound. Thus ∞ and - $+\infty$ are not numbers.

Next let us consider $\operatorname{Lim} y x$. As x grows larger and large $=$ the values of $y x$ are close to zero. Therefore, we write $\underset{x \rightarrow \infty}{ } \operatorname{Lim} y x=0$. Also as $x \rightarrow-\infty, \quad \gamma x \rightarrow 0$ and so we write $\underset{x \rightarrow \infty}{\operatorname{Lim} y x=0}$
However, we shall not attempt formal aefinitions of the above type of limits.

Exercises :

Use the Cauchy definition of limit to prove the following results. 1. If $\underset{x \rightarrow a}{\operatorname{Lim}} f(x)=L$ and $\operatorname{Lim}_{x \rightarrow a} g(x)=h$ then, show that

1) $\lim _{x \rightarrow a} f(x)-g(x)=L-M$
ii) $\operatorname{Lim}_{x \rightarrow a} f(x) \cdot g(x)=$ L. M
iift $\operatorname{Lim}_{x \rightarrow a} f(x) / g(x)=L / M$ provided $M \neq 0$.
2. If $\operatorname{Lim}_{x \rightarrow a} f(x)=L$ and $k a \quad$ constant, then show that

$$
\operatorname{Lim}_{x \rightarrow a} K f(x)=K . L .
$$

3. Domination Principle

Let $\operatorname{Lim}_{x \rightarrow a} f(x)=\operatorname{Lim}_{x \rightarrow a} g(x)=L$
Suppose $f(x) \leqslant h(x) \leqslant g(x) \quad \forall x$.
Prove that Lim $h(x)=L$

$$
x \rightarrow a
$$

4. Use $\underset{n \rightarrow \infty}{\operatorname{Lim}} y_{n}=0$ to prove that i) $\underset{n \rightarrow \infty}{\operatorname{Lim} y_{n}^{2}=0}$
ii) $\underset{n \rightarrow \infty}{\operatorname{Lim}} y n^{2}+n+1=0$
5. Given $h(x)=\frac{2 x^{2}-7 x+3}{x^{2}-2 x-3}$
Find i) $\operatorname{Lim}_{x \rightarrow 0} h(x)$
ii) $\operatorname{Lim}_{x \rightarrow 1} h(x)$
iii) $\underset{x \rightarrow-1}{\operatorname{Lim}} h(x)$
iv) $\operatorname{Lim} h(x)$

$$
x \rightarrow \infty
$$

6. Consider the infinite geometric series $a+a r+a r^{2}+\ldots+a r^{n-1}+\ldots$

If $S_{n}=a+a r+\ldots+a r^{n-1}$, define $S=\operatorname{Lim}_{n \rightarrow \infty} S_{n}$
If $|I|<1$, then prove that $S=a / 1-I$
7. Consider the circle of radius r. Use the formula for the area
$A=\pi I^{2}$ and show that the circumference C of the circle is
given by the formula $C=2 \pi \mathrm{r}$.
8. Evaluate the following :
i) $\operatorname{Lim}_{x \rightarrow 0}\left[\frac{(1+x)^{3}-(1-x)^{3}}{x+x^{3}}\right]$
ii) $\operatorname{Lim}_{x \rightarrow 0}\left[\frac{\sqrt{a+x}-\sqrt{a-x}}{x}\right]$
iii) $\operatorname{Lim}_{x \rightarrow 3}\left[\frac{1}{x^{3}}-\frac{1}{3^{3}} / x-3\right]$
9. Prove that $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{e^{x}-1}{x}\right)=1$
10. Show that $\operatorname{Lim}_{x \rightarrow 0} \frac{a^{x}-1}{x} \neq \log _{e^{a}}$

2. CONTINUITY AND DISCCRTINUITY OF FUNCTIONS

2.1. Closely related to the limit concept is the concept of continuity. We begin with the assumption that you have some idea of continuity. Ourpurpose is to lead you from an intuitively concept to an appropriate mathematical definition through a discussion that $p=i m a=i l y$ follows the historical development of continuity in mathematics.

Consider first the functions $f(x)=x$, and $g(x)=\frac{|x|}{x}$ for $x \neq 0$. We observe that the graph of $f(x)$ can be drawn with an uninterrupted stroke of the pencil, whereas the graph of $g(x)$ has a gap at 0 .

Intuitively we feel that the graph of $f(x)$ is continuous while the graph of $g(x)$ is not continuous as there is a gap in the graph at 0 . In fact $g(0)$ is not defined. Even if we define $g(0)=0$ still the Graph of $g(x)$ is not continuous. The reason is that $\lim _{x \rightarrow 0} g(x)$ does not exist. Hence one requirement for continuity of a function say $h(x)$ at a point ' b ' is that $\lim _{x \rightarrow 6} h(x)$ must exist.

$$
\begin{aligned}
f(x) & =x \text { if } x \neq 0 \\
& =2 \text { if } x=0
\end{aligned}
$$

Here $\operatorname{Lim}_{x \rightarrow 0} f(x)=0$. Even though $\underset{x \rightarrow 0}{\operatorname{Lim}} f(x)$ exists the graph of $f(x)$ is not continuous at 0 . The reason is that $\underset{x \rightarrow 0}{\operatorname{Lim}} f(x) \neq 2=f(0)$. If we alter the definition of f at 0 and deEine $f(0)=0$, then $f(x)$ becomes continuous at 0 . From these iliustrations we conclude that a funcion $f(x)$ is continuous at a point c if

1) $\operatorname{Lim}_{x \rightarrow c} f(x)$ exists,
ii) $f(c)$ is defined and
iii) $\operatorname{Lim}_{x \rightarrow c} f(x)=f(c)$

Now we are in a position to give the mathematical definition of continuity of function at a point.

Definition : Let $f(x)$ be a function defined in an interval containing the point x_{1}. Then f is said to be continuous at x_{1} iff i) $f\left(x_{1}\right)$ exists, ii) $\operatorname{Lim}_{x \rightarrow x_{1}} f(x)$ exists iii) $\operatorname{Lim}_{x \rightarrow x_{1}} f(x)=f\left(x_{1}\right)$. If any one of these three criteria is not met, then f is said to be discontinuous at x_{1}. Earlier we gave Cauchy definition for limit of a function. Now we shall use this to give anothe $=$ definition of (usually called epsilon celta definition) of continuity. Definition : Let $f(x)$ be a function defined in an interfal containing 'a'. If $f(x)$ exists then f is said to be continuous at a iff given $\varepsilon_{7} 0 \quad \exists \delta>0$ such that
$|f(x)-f(a)|<\varepsilon \varepsilon \forall x$ with $0<|x-a|<\delta$

2.2 Continuitv of a function on \bar{c} : interval

Let $f: I \rightarrow R$ (R being set 0^{\prime} all real numbers) be a function defined on an interval I. Then fis said to be continuous on iff f is continuous at every point of I. Thus \approx is not continuous on I iff $\exists x \in I$ such that f is not continuous at x. For instance consider the identity function $f(x)=x$ defined on any interval I, then f is continuous or I. Because if a is any point of I, then $f(a)=a$ and so $f(a)$ exists. hiso
$\operatorname{Lim}_{x \rightarrow a} f(x)=\operatorname{Lim}_{x-a} x=a$.
$\operatorname{Lim}_{x \rightarrow a} f(x)=a=f(a)$
f is continuous at a. But a is an arbitrary point of I. Hence f is continuous at every point of I and so f is continuous on I. Now we shall prove an important result on linits which is quite useful in deciding whether or not a given function is continuous at a point.

Let $f(x)$ be a function defined in an open interval containing a point 'a'. Ihen when $x \rightarrow a, x$ may approach 'a' through left side of a (or through those values of $x=0=$ which $x \rightarrow$ a) or x may approach a through right side of a. If x apf=oaches a from left side we
 side.

Theorem: $\underset{x \rightarrow a}{\operatorname{Lim}} f(x)=L$ (L is a real number)
if and only if $\operatorname{Lim}_{x \rightarrow a+} f(x)=L=\operatorname{Lim}_{x \rightarrow a-} f(x)$
Proof: First suppose $\underset{x \rightarrow a}{\operatorname{Lim}} f(x)=L$
Let $\varepsilon>0$ be given. Then $\equiv \delta>0$ such that
$|f(x)-L|<\varepsilon \quad$ whenever $0<|x-a|<\delta$
If $a<x<a+\delta$, then $0<|x-a|<\delta$ and so

$$
f f(x)--1<\varepsilon \text {. Hence } \underset{x \longrightarrow a+}{\operatorname{Lim}^{2}} f(x)=1
$$

Similarly, $\underset{x \rightarrow a-}{\operatorname{Lim}} f(x)=L$
Conversely suppose $\underset{x \rightarrow a+}{\operatorname{Lim}} f(x)=\operatorname{Lim}_{x \rightarrow a-} f(x)=L$
Let $\varepsilon>0$. There exists $\varepsilon_{1}>0$ such that if $a<x<a+\delta_{1}$
then $|f(x)-L|<\varepsilon$. Also $\equiv a \delta_{2}$ such that if $a-\delta_{2}<x<a$ then $|f(x)-L|<\varepsilon$

Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then if $|x-a|<\delta$
either $a<x<a+\delta_{1}$ or $a-\delta_{2}<x<$ a so that $|f(x)-I|<\varepsilon$

$$
\operatorname{Lim}_{x \rightarrow a} f(x)=L
$$

2.3 Discontinuous functions

Definition : A function $y=f(x)$ is said to be discontinuous at $x=a$ ff $f(x)$ is not cont nous at a.

The discontinuity of $f(x)$ at $x=a \operatorname{can}$ occur in any one of the following ways.

1. $\operatorname{Lim}_{x \rightarrow 2} f(x)$ does not exist.
2. $\underset{x \rightarrow a}{\operatorname{Lim}} f(x)$ exists but is not equal to $f(a)$.
3. $\operatorname{Lim}_{x \longrightarrow a} f(x)$ is infinite.

Now we shall illustrate these possibilities by means of some examples.

Illustration 1 : Let $f(x)$ be a function defined on [0, $\overline{2}$, as follows:

$$
\begin{aligned}
& f(x)=x \quad V x \in[0,1) \quad \text { As } x \text { approaches }: \text { Edom the left } \\
& =x+1 \quad V x \in(1,2] \\
& f(1)=3 / 2 \\
& \text { side (ide. } x \rightarrow i-\text {) we have } \\
& \operatorname{Lim}_{x \rightarrow 1} f(x)=\operatorname{Lim}_{x \rightarrow 1} x=1
\end{aligned}
$$

As x approaches 1 from right side, we have, $\operatorname{Lim}_{x \rightarrow 1^{+}} f(x)=\operatorname{Lim}_{x \rightarrow 1} x+1=2$

Thus $\operatorname{Lim}_{x \rightarrow 1_{-}} f(x) \neq \operatorname{Lim}_{x \rightarrow 1_{+}} f(x)$
In this case $\underset{x \longrightarrow 1}{\operatorname{Lim}} f(x)$ does not exist because if
it exists then $\underset{x \rightarrow 1^{-}}{\operatorname{Lim}} f(x)=\underset{x \rightarrow 1_{+}}{\operatorname{Lim}} f(x)=\operatorname{Lim}_{x \rightarrow 1} f(x)$
Such a discontinuity is called as ordinary discontinuity or
discontinuity of first kind of $f(x)$ at $x=1$.

Illustration 2

Let $f(x) x=x \quad \forall x \in[0,2]$ and $x \neq 1$

$$
=2 \text { if } x=1
$$

But $f(1)=2$.
Hence $\lim _{x \rightarrow 1} f(x) \neq f(1)$
Hence f is disconti nous at $x=1$.
But this discontinuity of f at $x=1$ can be removed by altering the value of $f(1)$.
Instead of defining $f(1)=2$ if we define $f(1)=1$, then f becomes continuous at $x=1$.

Hence this type of discontinuity of f is called as zanovable discontinuity.

Illustration 3

$$
\text { If neither } \underset{x \rightarrow a+}{\operatorname{Lim}_{x \rightarrow a-}} f(x) \text { nor } \operatorname{Lim}_{x \rightarrow a-} f(x) \text { exist then }
$$

$f(x)$ is said to have a discontinuity of second kine at $x=a$. For instance define a function f on $[0,1]$ by, $f(x)=+1$ if x is rational $=-i$ if x is irrational.

Then both Lin $f(x)$ and Lin $f(x)$ do not exist. $x \rightarrow y 2+\quad x \rightarrow y^{2}$

Hence t has second kind discontinuity at $x=y 2$.

IIlusさエatミon $~($

If one 0° the two Limits $\operatorname{Lim}_{x \rightarrow a+} f(x), \operatorname{Lin}_{x \rightarrow-i} \pm(x)$ exists while the othe＝does not exist then the point＝$x=$ a is called a point of mixes discontinuity for．

For instance define a function $f(x)$ or．i， 2 as＝flows ： $f(x)=x$ IO＝ $0 \leq x<1$
$f(x)=0 \pm \pm \dot{-s}$＝aさional $\} \forall x \in[1,2]$

I hen $\operatorname{Lim}_{x \rightarrow 1} f(x)=1$ but $\operatorname{Lim}_{x \rightarrow i-1} f(x)$ does not exist．
Hence f has mixed discontinuity at $x=1$ ．
 Is infinite then $f(x)$ is sail to have an infinite discontinuity at $x=a$ ．

Consider $f(x)=\forall x \quad \forall x \in(0,1]$
$=0 \pm x=0$
Then $\operatorname{Lim}_{x \rightarrow 0+} f(x)=0_{0}$ ．Inezefore，f has ar infinite discontinuity at $x=0$ ．

EXERCISES ：

1．Let $f(x)=\frac{2 x^{4}-6 x^{3}+x^{2}+3}{x-1}=x \neq 1$ ．
Is f continuous at $x=1 ?$
Explain the type of discontinuity f has at $x=1$ if f is
discontinuous at $x=1$ ．
2. Let $f(x)=\frac{x}{x^{2}-1}$

Then find out the values of x at which $f(x)$ is continuous.
3. Let $f(x)=\frac{x-|x|}{x}$ for $x \neq 0, f(0)=1$.

Examine the continuity of $f(x)$ at $x=0$.
4. Find the points of discontinuity of the function

$$
f(x)=\frac{x}{(x-2)(x-4)}
$$

5. If $f(x)$ is continuous at ' c ', then show that the re exists $\delta>0$, such that f is bounced on ($c-\delta, c+\delta$).
6. Give an example of a function defined on a closed interval such that the function is discontinuous at every point af that interval.
7. If $f(x)$ is a continuous function on $[a, b]$ then show that f is bounded on $[a, b]$.
8. If $f(x)$ is continuous on $[a, b]$ and $f(a)>0, f(b)<0$ then show that $f(x)=0$ for some $x \in(a, b)$.
9. Let $f(x)=2 x+1$ when $x<1$

$$
\begin{aligned}
& =3 \text { when } x=1 . \\
& =x+2 \text { when } x>1 .
\end{aligned}
$$

Show that $f(x)$ is continuous at $x=1$.
10. Let $f(x)=x$ when $0 \leqslant x<1$

$$
=3 \text { when } x=1
$$

$$
=2 x+1 \text { when } x>1
$$

Examine the continuity of $f(x)$ at $x=1$.
3. DERIVnTIVES

3.1 Introduction:

Newton anc Leibnitz had been able to scive independently the two basic problems viz. finding the tangent line to a curve at any given point and finding the area under a curve. Ihe tools that Newton and Leibnitz indepencentiy invented to solve these two basic problems are now called the 'de=ivative' and the 'integral'. Moreover, one of the great bonanzas of history is that the derivative and integzal mich were invented to solve two particular problems, have applications to a great number of different problems in diverse acacemic fields.

The power of calculus is dezived from two sources. First, the derivative and the integral can be used to solve a multitude of problems in many different academic disciplines. The second source of power is found in the zelevancy of the calculus to the Froblems facing mankind. mmong the present day, applications of the calcuius are the builcing of abstract models for the stuay of the ecology of populations, management practices, econowics and medicine.

3. 2 Gradient of a curve:

The gradient of a curve at any point is defined as the gradient (or slope) of the tangent to the eur ve at this point. in approximate value for the gradient of a curve at a point can be found by plotting the curve, cawing the tangent by eye and measuring its slope. Ihis method has to be used for a curve when the coordinates of a finite number of points are known, but its equation is not known. When the equation of a curve is known, an
accurate method for determining gradients is necessary so that we can further our analysis of curves and functions.

Consider first the problem of finding the gradient of a curve at a given point A. If B is another point on the curve (not too far from A), then the slope of the chord $A B$ gives us an approximate value for the slope of the tangent at A. The closer 3 is to A, the better is the approximation. In other words, as $B \rightarrow \dot{A}$, slope of chord $A B \longrightarrow$ slope of the tangent at A. Let us now consider an example where we can use this definition to find the gradient of a curve at a particular point of the curve.

For this purpose, we introduce the following symbolism. A variable quantity, prefixed by δ, means a small increase in that quantity,
δ_{x} is a small increase in x, δ_{y} is a small increase in y. here δ is only a prefix and it cannot be treated as a factor. Now consider the curve $y=x(2 x-i)$ and the problem of finding gradient at the point on the curve where $x=1$. If $x=1, y=1$, let A be the point (1,1). Let B be a point on the curve very close to A. Then x coordinate of B is $1+\delta x$ (where δx is very small or close to zero). y coordinate of $B=\left(1+\delta_{x}\right)\left[2\left(1+\delta_{x}\right)-1\right]$

$$
=(1+\delta x) \quad(2 \delta x+1)
$$

Slope of $A B=$ increase in $y /$ increase in x.

$$
\begin{aligned}
& =\frac{\left(1+\delta_{x}\right)(2 \sqrt{x}+1)-1}{(1+\delta x)-1} \\
& =\frac{2(\sqrt{x})^{2}+3 \delta x}{2 \delta x+3}
\end{aligned}
$$

As \equiv approaches $\mathrm{n}, \quad 5 \mathrm{x} \rightarrow 0$
Hence gradient of the curve at $\underset{B \rightarrow A}{\operatorname{Lim}}[$ slope of $A B]$

$$
\begin{aligned}
& =\operatorname{Lim}_{x \rightarrow 0}[2 \delta x+3] \\
& =3
\end{aligned}
$$

Now we found that the gradient of the curve $y=x(2 x-1)$ is 3 at the point on the curve where $x=1$. We will now derive \bar{a} function for the gradient at any point on the curve. Then we can fine the gradient at a particular point by substitution into this derived function. Instead of taking a fixed point on the curve, we shall take a as any point (x, y) on the curve. Let E be another point on the curve whose x coordinate is $x+\delta x$. Then B is the point $\left(x+\delta_{x},[x+\delta x][2 x+2 \delta x-1]\right.$
The slope of chord $A B=\frac{(x+\delta x)(2 x+2 \delta x-1)-x(2 x-1)}{x}$

$$
\begin{aligned}
& =\frac{2 x^{2}+4 x \delta x-2\left(\frac{\delta x)^{2}-d x-x-2 x^{2}+x}{\delta x}\right.}{=\frac{4 x \delta x-\delta x+2(-\delta x)^{2}}{d x}}
\end{aligned}
$$

$$
=[4 x-1+2 \delta x]
$$

Then the gradient at any point A on the curve $=$

$$
\underset{\delta x \rightarrow 0}{\operatorname{Lim}} 4 x-1+2 \delta x
$$

$=4 x-1$.

So the function $4 x-1$ gives the gracient at any point on the curve $y=x(2 x-1)$. We can now Eind the gracient of the curre at a particular point on $y=x(2 x-1)$ by substituting the x coorinate of that point into the function $4 x-1$. Thus the gradient of the curve at $x=1$ is $4.1-1=3$ which we ob=ained earlier.

The function $4 x-1$ is called the gracient function of $y=x(2 x-1)$ anc the process of deriving is called differentiation with respect to x. Since $4 x-1$ was derivec from the function $x(2 x-1)$, it is celled the derivative or derived function of $x(2 x-1)$. Symbolically we write, $d / d x[x(2 x-i)]=4 x-i$ where $d / d x$ stands for "cerivative w.r.t. x of". We also write $d y / d x=4 x-1$. Sometimes, we call $d y / d x$ as "differential coeffícient of y w.I.t. x^{n}. The above method of finding derivatives is called as "finding derivatives from first principles".

3.3 Ecuations of Tancents and Nomals :

Now that we know how to find the gradient of a curve at a given point on the curve, we can find the ecuation of the tangent or normal to the curve at that point.

Illustration 1

Find the equation of the tangent to the curve
$y=x^{2}-3 x+2$ at the point where it cuts the y-axis
$y=x^{2}-3 x+2$ cuts the y-axis where $x=0$ and $y=2$.
The slope of the tangent at $(0,2)=$ the value of $d y / d x$ when $x=0$.
$=\left[c / d x\left[x^{2}-3 x+2\right]\right]_{x=0}=\left[\begin{array}{c}2 x-3] \\ x=0\end{array}=-3\right.$
Thus the tangent is a line with slope -3 and passing through $(0,2)$.
So its equation is $y-2=-3(x-0)$.
Hence the desired equation is $y=-3 x+2$.

Illustration 2

Find the equation of the normal to the curve $y=x^{2}+3 x-2$ at the point where the curve cuts the y-axis.

As shown in the illustration 1 , the slope of the tangent
to the curve at $(0,2)$ is -3 .
Hence the slope of normal to the curve at $(0,2)$ is $y 3$.
Hence the equation of normal to the curve at $(0,2)$ is given by $y-2=y 3 x$ or $3 y=x-6$.

Exercises :

1. Differentiate the following functions w.I.t. x from fist principles.
i) $y=x^{2} \quad$ ii) $y=3 x^{2}$, iii) $y=y x^{2} \quad$ iv) $y=x^{3}+3$
v) $y=x^{2}-2 x+1$
2. Find the equation of the tangent to the curve $y=x^{2}+5 x-2$ at the point where this curve cuts the line $x=4$.
3. Find the equations of the normals to the curve $y=x^{2}-5 x+6$ at the points where the curve cuts the x-axis.
4. Find the coordinates of the point on $y=x^{2}$ at which the gradient is 2. Hence find the equation of the tangent to $y=x^{2}$ whose slope is 2.

23
5. Find the value of k for which $y=2 x+K$ is a nomad to $y=2 x^{2}-3$.
6. Find the equation ci the normal to $y=x^{2}-3 x+2$ innose slope is 2.
7. Find the equation of the tangent to $y=2 x^{2}-2 x$ whose slope is 1.
8. Find the equation of the tangent to $y=(x-3)(2 x+1)$ which is parallel to the x-axis.

24

```
AFPIECATIOWEOEDEEIVATIVES
```

1．Mean Value Theorem
2．Deニミveこive as fiate MeasureI

う．DiミミeこenさiEis anc uppIoximations

AFPLICATIC:IS C= MEAN VALUE THEOREM

The wean Value Theorem for derivative is of great importance in Calculus because, many useful properties of functions can be decuced from it. \therefore special case of this result known as Rolle's theorem was firs = saved by Michael Roller, a French mathematician in 1691. A formal statement of the Mean Value Theorem is given here for convenience.
(Ref: Th. 4.10 of the lex=book)

Statement : Let E se a real function, continuous on the closed interval $[a, b]$ ard differentiable in the open interval (a, b), then, there is \equiv point $C \in(a, b)$ such that

$$
\begin{equation*}
\frac{f(b)-f(a)}{D-a}=f^{i}(c) \tag{1}
\end{equation*}
$$

C is called a mean value.

fig. 1

26

Inこuミさively（1）can be interpreted thus－If we assume $f(=)$ to be the distance t＝avellea by a movingpaここicle at time t．Then the lezthand side of（1）represents the mean or average speed in the time interval a, b and the derivative $f^{1}(t)$ on Rho represents the instantaneous speed at time t．（1）asserts that at some instant C curing the motion of the pa＝こicle，the average speed is equal to the instantaneous speed．

Geometrically，（1）implies that the slope of the tangent at （C．$f(c))$ in $=$ ig．1．$\quad\left[\left(C_{1}, f\left(C_{1}\right)\right)\right.$ and $\left(C_{2}, f\left(C_{2}\right)\right.$ in $\left.f i g .2\right]$ ，is equal to the slope of the chord $P Q$ ．

This is seen in the figure by the fact that the chord $P Q$ is parallel to the tangent line at C（in Fig．1）（and at C_{1} and C_{2} in figure 2）．

There may be two or more mean values also on a given interval， depending on the graph of f．

F．1 though the M．V．Theorem guarantees that there will be atleast one mean value for a function whose graph is a smooth curve on a given interval，the theorem gives no information about the exact location of these mean values．he just know that the point C lies somewhere between／and b．Generally，an accurate location of C is difficult． Many useful conclusions can be drawn by simply knowing about the existence of atleast one mean value．

Some Consequences of Mean Value Theorem

1．A generalization of \therefore ．．V．Theorem can be obtained by consiaering the parametミic＝epresentation of a Euncこion whose graph is a smcoth curve on $[a, b]$

$$
\begin{equation*}
\text { Let } x=g(t), \quad y=f(t) ; a \leqslant t \leqslant b \ldots \tag{2}
\end{equation*}
$$

be the paramet＝ic form of the given function．

Slope of the chord joining the end points $(g(a) . \because(a \phi)$ ard
$(g(b), f(b))$ of the curve $=\frac{f(b)-f(a)}{g(b)-g(a)} \quad \ldots$
The slope of the tangent to the c veve the point C

$$
\begin{equation*}
=\frac{f^{1}(c)}{g^{\prime}(c)} \quad \ldots \tag{i}
\end{equation*}
$$

The mean Vaiue Theorem asserts that there always exisis a meen value C in（ $a . b$ ）for winch

$$
\begin{aligned}
& \frac{f(b)-f(\dot{p})}{g(c)-g(\dot{a})}=\frac{f^{i}(c)}{g^{i}(c)}-a<c<b \cdots(A) \\
& g^{i}(c) \neq 0 \\
& (\dot{A}) \text { is gefergec to a Caucry's i.i. } V \text {. Theo =em. }
\end{aligned}
$$

2．Alaenraic sian of the Ėごt derivative of a function gives useful infomation acout the benaviour of its grapn．Using i．！ean Value Theorem，the alçoraic sign of the derivative of a given function can be determined．

Theorem：Let f be continuous on $[a, b]$ and derivable in（ a, b ）， then，
a）If $f^{1}(x)>0 \forall x \in(a, b)$ ，then f is stこictiy increasing on $[a, b]$
b）If $f^{1}(x)<0 \quad \forall x \in(a, b)$ then f is $s=こ=こ こ さ y$ decreasing on $[a, b]$
c）If $f^{1}(x)=0$ bx (a, b) ，then f is a constant．
F＝OCE：（a）Fo＝any points x_{1} and x_{2} with $a \leqslant x_{1}<x_{2} \leqslant b$ ， the wean Value Theorem affliec to $\left[x_{1}, x_{2}\right]$ gives

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=f^{1}(c) ; \quad x_{1}<c<x_{2} \cdots(\text { (5) }
$$

Since $f^{1}(c)$ is given to be >0 and $x_{2}-x,>0$ ，wesee that $f\left(x_{2}\right)-f\left(x_{1}\right)>0$ implying that $f\left(x_{1}\right)<f\left(x_{2}\right)$ of is stzictiy increasing on［abb］．

Proof of（ D ）is left as an exercise．
P＝00f of（ $(=)$ ：put $x_{1}=a$ in（E）．
He get $\frac{f\left(x_{2}\right)-f(a)}{x_{2}-a}=f^{1}(c)$
Since $f^{1}(c)=0,(6) \Rightarrow f\left(x_{2}\right)=f(a) \quad \forall x_{2} \in[a, \bar{b}$
Hence f is a constant on $[a, b]$
Using this result，it is possible to determine the intervals of increase and decrease of functions．

The well－known sufficient condition for the existence of an extrema for a function also follows from the above theorem．

3．The Mean Value Theorem can be used to show that ：Any two integrals of the same derived function can differ aftmost by a constant．

Proof : Suppose $F(x)$ and $G(x)$ have the same derivative $f(x)$ over some interval $a \leqslant x \leqslant b$.

Consider $H(x)=F(x)-H(x) \ldots(1)$
Apply Mean value Theorem to $H(x)$ on $[a, c]$
where C is : $a \leqslant c \leqslant b$ to obtain
$H(c)-H(a)=H^{1}(\xi)(c-a), a \leqslant \xi \leqslant c$.
Since $H^{1}(x)=F^{1}(x)-G^{1}(x)=0$ by hypothesis, $x \in[a, b]$
$H(c)-H(a)=0$ and so $H(c)=H(a)$
$\Rightarrow F(c)-G(c)=F(a)-G(a)$ where
$F(a)-G(a)$ is a fixed quantity. Let $F(a)-G(a)=C$
since u is any value of x in $[a, b]$,
we have $\bar{B}(\varepsilon)-G(c)=C, \forall C \in[a, \bar{b}]$
$\therefore F(x)$ and $G(x)$ can differ by a constant C.
Now, $F(x)$ and $G(x)$ which are any two integrals of $f(x)$ can differ only by a constant C.

Lifferantials and Mean Value Theorem

Recall that the differential dy of a function $y=f(x)$ is defined by the equation

$$
d y=f^{1}(x) \cdot \Delta x=f^{1}(x) d x \text { for small } \Delta x \text {. }
$$

Here, dy is an approximate value of Δy, we know that, $\Delta y=f(x+\lambda x)-f(x) \quad .$.

Gar we improve this approximation？
Hear．Value Theorem helps us to answer this question．
fico，instead of consice＝ing x and $x+\Delta x$ let us consider $=$ any two values of x say，a and b ．

Inert we get $\Delta y=f(D)-f(a) \ldots$
and $a y=f^{1}(a)(b-a)$
Ei＿：．ее $a y \approx \Delta y, f(b)-f(a) \approx f^{-1}(a)(D-a)$
Can we now find an approximation to $f(b)-f(a)$ ，which is
上eこさe＝than $f^{1}(a)(b-a ; 2$

fig． 2
$\equiv=0 m$ the figure，$\frac{f(b)-f(a)}{b-a}$ ，is slope of chord $A B$ ．But by mean Vélue Theorem there exists a $c ; a<c<b$ ，such that slope of $\dot{r} \cdot \hat{S}=$ Slope of tangent at $(C, f(c))=f^{1}(c)$ ．

$$
\begin{array}{r}
\therefore \frac{f(b)-f(a)}{b-a}=f^{1}(c) \Rightarrow f(b)-f(a)=(b-a) f^{1}(c)- \tag{6}\\
\\
\\
a<c<b
\end{array}
$$

Cor＝a＝ing（5）and（6）we see that（6）results from（5）when we replace a Dy c in $f^{1}(a), c$ being the mean value．Also，（6）is an estimate ${ }^{\prime}$ $\dot{\Delta} y=f(b)-f(a)$ ．In fact（6）gives an exact expression for $\Delta y O=f(b)-f(a)$ ，whereas（5）gives a mere approximation to
$f(b)-f(a)$ or Δy. Hence we have proved that the approximation of Δy by the differential dy c an be bettered by using the 배an Value Theorem. For such an improved approximation of $\triangle y$, Δx need not be very small.
(5) If for a given function $y=f(x)$ derivable on (abb) ard continuous on $\left[a, b \underline{I}\right.$ we further assume that $f^{1}(x)$ is continuous on $[a, b]$, then f^{1} ought to attain its maximum an minimum values (bounds) atleast once on $[a, \bar{b}]$. By Mean Value Theorem, we have

$$
\frac{f(b)-f(a)}{b-a}=f^{1}(c), a<c<b \ldots(*)
$$

() now implies that $f^{1}(c)$ cannot exceed max. f^{1} nor can it be less than min. f^{1} on $[a, b \overline{]}$. So, we obtain Least value of $f^{\prime} \leq \frac{f(b)-f(a)}{b-a} \leq$ greatest value of f^{1} on $[a, b]$ or

$$
\begin{aligned}
& \operatorname{Min} f^{1}(x) \leq \frac{f(b)-f(a)}{b-a} \leqslant \operatorname{Max} f^{1}(x) \quad x \in[a \cdot 0] \\
& x \in[a, b]
\end{aligned}
$$

(i) can now be used to restate the Mean Value Ineorem as follows: The mean value of a continuous function on a closed interval must actually be a value attained by the function.
(1) can also be used to estimate the value of a function \equiv a given point when a and f^{1} are known.

Assianment Problems

1．Use Mean Value Theczen to deduce ine following ineoualities ：
a）$|\sin x-\sin y| \leq|x-y|$
b）$n y^{n-1}(x-y) \leqslant x^{n}-y^{n} \leqslant n x^{n-1}(x-y)$ if $0<y \leqslant x, \quad n=1,2,3, \ldots$ ．

2．The function $y=\left|--x^{2}\right|,-3 \leq x \leq$ a has a hoz＝ontal tangent at $x=0$ even though the function is not diffé天唯iable at $x=-2$ ard $x=2$ ．Does this contradict ！iez．Value Ihec＝en？Explain．

3．i moterisi crove 30 miles during a one hour $=こ=$ ．Show that the Caz＇s speed was equal to 30 misles／hour atieast once ouring the tこip．

4．Snow that

$$
\frac{d}{c x}\left(\frac{x}{x+1}\right)=\frac{d}{d x}\left(-\frac{1}{x+1}\right)
$$

even though $\frac{x}{x+1} \neq \frac{-1}{x+1}$
Explein．
5．Show that the dean value Theorem aan be given＝the equation． $\frac{f(x-h)-f(x)}{h}=f^{1}(x-\theta h), \quad 0<\theta<1$. Letermine θ as a function of x and h when
a）$f(x)=x^{2}$
（b）$f(x)=e^{x}$
c）$f(x)=\log x, \quad x>0$

DERIVATIVE AS A RATE MEASURE？

Consicer a paエ゙ミーie P moving in a stこeミgint line．Its motion can be desc＝ibed by the Eunction
$S=f(t)$ ，where S is the position of F at any time instant t ． Let V be the V elocity of the moving particle p ，at the time instant t．He wish to obtain V as the derivative $\mathcal{I}^{1}(t)$ ．

Recall that the average velocity of p in a time interval Δt is the difference quotient $\frac{\Delta s}{\Delta t}$ and

$$
\begin{equation*}
\frac{\Delta s}{\Delta t}=\frac{f(t+\Delta t)-f(t)}{(t+\Delta t)-t}=\frac{(S+\Delta S)-S}{(t+\Delta t)-t} \tag{1}
\end{equation*}
$$

V ，the Instantaneous velocity of p at time t ．is now computed from the values of $\frac{\Delta s}{\Delta t} f o r$ progressiveiy smalier values of Δt ． Ihis leads to V as $\lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t}$

$$
\begin{equation*}
\text { or } V=\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{t}=f^{\hat{1}}(t) \tag{2}
\end{equation*}
$$

（2）Implies that when the position function $\bar{S}=f(t)$ of a movino particle is known，the＝ate of motion of the particle w．I．t．time can be given by the derived function $f^{\prime}(t)$ ．

When the motion of ？is uniform，the average velocity itself zepresents the instantaneous velocity，as the velocity of motion remains constant at all instants of time．

If p moves with variaiole velocity，then average velocity $\frac{\Delta s}{\Delta t}$ differs with differing vaiues of Δt ．By taiking an instant＇t＇as a time－interval of length zero，（an instañ is at a point of time）$\frac{\Delta s}{\Delta t}$ recuces to $\frac{0}{0}$ for a given instant of time＇t＇， which is meaningless．However，for small val＇es of $\Delta t, \frac{\Delta s}{\Delta t}$ gives
approximate values of instantaneous velocity V. Hence it is reasonable to define V with the aid of the Limit concept. Thus,

$$
V=\lim _{\Delta t \rightarrow 0} \frac{\Delta s}{\Delta t}=f^{1}(t)
$$

Note: V is independent of the increment Δt, but depends on the value of t and the type of function $f(t)$.

Va=iable Physical maritudes as derivatives: More examples. 1. Accelexation : When the velocity function $\mathcal{Y}=f(t)$ of a particle pezfoming non-unifom motion is known, the instantaneaus rate of change of its velocity (accelezation) is computed by Acceleration $=\frac{d v}{d t}=f^{1}(t)=\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}$ when the quotient $\frac{\Delta v}{\Delta t}=\frac{f(t+\Delta t)-f(t)}{\Delta t}$ is the average acceleraticn. 2. Heat Capacity: as a derivative Let $q=H(t)$ Give the ouantity of heat q, absorbed by a physical body when heated to the temperature t. Heat capacity $=$ is the rate of change of the quantity of heat absorbed w.z.t. temperature. C is expressed as a derivative. If Average Heat Capacity $C_{a v}$ is the quoticnt $\Delta q / \Delta t$, then, $\quad c=\operatorname{Lim}_{\Delta t \rightarrow 0} C_{a v}=\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta \sigma}{\Delta t}=\frac{\operatorname{Lim} \frac{H(t+\Delta t)-H(t)}{\Delta t \rightarrow 0} \Delta t^{t}}{\Delta t \rightarrow 0}$ $=H^{1}(t)$.
3. Reaction rate of a chemical reaction

Let the function $m=\varnothing(t)$ represents the mass of a
chemical substance entering into a chemical reaction during time t.

The rate of change of mass of the substance w.I.t. the time t is called the Inaction rate. This can be expressed as a derivative.

If average reaction rate $R_{a v}$ for the time interval Δ t is given by the quotient

$$
\frac{\Delta m}{\Delta t}=\frac{\phi(t+\Delta t)-\phi(t)}{\Delta^{2}}
$$

Then the reaction rate \hat{R} for a given amount of substance at time t is
$R=\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta_{m}}{\Delta t}=\operatorname{Lim}_{\Delta t \rightarrow 0_{a v}} \mathrm{R}_{a v}=\phi^{1}(t)$
The above examples show how derivatives are used to express certain variable physical magnitudes as rates of chance wiI. =. some other physical magnituces.

In general, the derivative of a function estimates the rate
of change of a given function. Hence

$$
f^{1}(x)=\operatorname{Lim}_{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

gives the measure of the rate at which $f(x)$ changes with respect to x, at a given point x.

Relazed Iates - Yyoblems :
Before atzemnting to solve scme problemswe recall the chain Iule, as it is č̌en tailoz-made in sclving the related zates problem:

If $I=f(y)$ and $y=g(x)$
then $\frac{d z}{c x}=\frac{d z}{d y}$, $\frac{d y}{d x} \quad \ldots$
where $\frac{c z}{d y}=f^{1}(y)$ anc $\frac{d y}{c x}=g^{1}(x)$

```
(1) Tells us tha: the rate of change 0% 2 w.=.t.Xis the product
of the rate of change of =w.z.t. y anc the rate of change of y
w.I.t. x.
Problem i. A vaziable Fight triangle ABC in the xy-plane has its
Iight angie at the veztex E, e fixed ve=tex A at the origin and
the thirc vertex= restrizted to lie on the parabola y = 1 - 产 ( x
The point B staris at (0,1) at time t = 0 and moves upward along
the y axis at a constant velocity of 2 cm/sec. How fast is the
area of the t=iangle increasing when t = 7/2 sec ?
Solution: Ulearly the moving vertex C of the expanding triangle
has for its coordinates U ( }x,y\mathrm{ ) where }x\mathrm{ is the base and }y\mathrm{ the
height of the triangle, }x\mathrm{ and }y\mathrm{ are both variables. C(x,y) satis-
fies the equation y = 1 + }\frac{7}{30}\mp@subsup{x}{}{2}\mathrm{ . Note th-t the t=iangle
remains right angled while varying in its size.
    The velocity of the moving vertex B along y axis (= dy/ot)
is a constant (=2 cm/sec).{'The equations relating the variables
x, y and t are
(1) ..2 Area m = y 2 xy
```

(2) $y=1+\frac{7}{36} x^{2}$
(3) $y=1+2 t$
(4) $7 x^{2}=72 t$
iii must find $\frac{d A}{d t}$ at $t=7 / 2 \mathrm{sec}$.
$\frac{d A}{d t}=y_{2}(x \cdot d y / d t+y \cdot d x / d t) \ldots$
Substituting $x=6$ and $y=8$, (found from (3) and (4) for $t=7 / 2$)

We obtain $\frac{d A}{d t}=\frac{66}{7} \mathrm{~cm}^{2} / \mathrm{sec}$ at $7 / 2=t$
\therefore The triangle is increasing its area at the rate of $66 / 7 \mathrm{~cm}^{2} / \mathrm{sec}$.

Problem 2. A stone is cropped into a quiet pond and waves move in
circles outward from the place where it strikes, at a speed of $3^{\prime \prime}$ per second. At the instant when radius of one of the wave rings is three feet, how fast is its enclosed area increasing ?

Solution: Radius r and area A are
the variables. The equation relating
the variables are
$A=\pi r^{2}$ so that $\frac{d A}{d t}=2 \pi r \frac{d r}{d t}$

The speed of the wave out:yard from the center is the rate at which the radius increases $=\frac{d r}{d t}$

$$
\begin{gathered}
\frac{d r}{d t}=3^{\prime \prime} / \mathrm{sec} . \text { At } r=3 \text { the rate of } \\
\text { increase in area }=\frac{d A}{d t}=2 \quad \text { 3. } \frac{1}{4}=\frac{3}{2}=4.71 \mathrm{sq} . \mathrm{ft} / \mathrm{sec} .
\end{gathered}
$$

Frobiea． 3 ：Hater runs into conical paraffin paper＝cup five inches High and 3 inches across the top at the rate of one cubic inch pe＝ sec．mien it just half filled，how rapidly is the surface of the wite＝＝ising ？

Solutシュn：The height（H）and the diameter（D）of the conical cup are the given constants．Let h be the height of the su＝末ace of water in the conical cup，when the volume of the water already in the cup is V ． h and $=$（the diameter of water in the cupgare both variables．

The raze of increase in the volume of water＝rate of inflow of Water into the cup $=d v / d t=1$ cubic inch per second．The rate of ＝Ese in the surface of water in the cone＝rate of increase of height $n=d h / d t$
$V=$ Volume of the conical cup $=\frac{\overline{1}}{3} \pi \frac{D^{2} H}{12}=11.7$
$\frac{1}{2} v=\frac{11.7}{2}=5.85$ cu．inc．is the volume of water $=$ in the cup vitien fizz＝st half filled．

We must find $d h / d t$ when $v=5.25$ and $d v / d t=1$ ．
V ，Volume of rater in the cup $=$

$$
\begin{equation*}
v=\frac{\pi c^{2} h}{12} \Rightarrow h d^{2}=\frac{12}{\pi} v \tag{1}
\end{equation*}
$$

(1) relates the variables h and V, but also contains 'd'. We must express d in terms of h or V.

Vie have $\frac{d}{h}=\frac{D}{H}=\frac{3}{5}=.6$

$$
\begin{equation*}
d=.0 n \tag{2}
\end{equation*}
$$

Using (2) in (1)

$$
\begin{aligned}
& \text { h. }\left(.=5 h^{2}\right)=\frac{12 V}{\pi}=.26 h^{3} \\
& h=\sqrt{\frac{12}{36 \pi}}, \sqrt[3]{V}
\end{aligned}
$$

After computing cube roots, we can write $h=2.2 \mathrm{v}^{1 / 3}$

$$
\begin{aligned}
& \frac{d h}{d t}=2.2 \frac{1}{3} V-2 / 3 \frac{d V}{d t} \\
& =\frac{.74}{\sqrt[3]{V^{2}}} \cdot \frac{d V}{d \tau} \text { when } V=5.85 \text { (half filled) and } \frac{d V}{d t}=1 \\
& \frac{d h}{d t}=\frac{.74}{\sqrt[3]{(5 . \varepsilon \Sigma)^{2}}} \quad .1=\frac{.74}{3 \sqrt{35.2}}=.23 \mathrm{in} / \mathrm{sec} .
\end{aligned}
$$

Problem 4: A balloon is rising vertically from the ground at a

$$
\text { constant rate ci } 15 \mathrm{ft} / \mathrm{sec} \text {. in observer situated at a point ? }
$$

$$
160 \mathrm{ft} \text { away } \mathrm{f}=\mathrm{c}=\text { the point of lift } \rightarrow \mathrm{ff} \text { tracks it. Find the rate }
$$ at which the angie at P and the range r are changing when the balloon is 160 vt. above the ground.

$$
\begin{align*}
& \text { Solution: Variables } a=\epsilon \text { angie } \epsilon \text { and the Inge } I \text {, } \\
& \text { From the figure, tan } \theta=\frac{h}{100} \tag{1}\\
& \text { Differentiating (1) or both sides w.I.t. t } \\
& \sec ^{2} \theta \cdot \frac{d e}{c=}=\frac{1}{160} \cdot \frac{d h}{c t} \ldots \tag{2}
\end{align*}
$$

At $n=100$（1）gives $\tan \theta=1 \quad \theta=\pi / 4$ ．
$\sec ^{2}=(\sqrt{2})^{2}=2 ; \quad \frac{c h}{c \tau}=15 \mathrm{ft} / \mathrm{sec}$ ．（given），\therefore Lhterames
2．$\frac{c \theta}{C_{t}}=\frac{1}{100} \times 15 \quad \frac{d \theta}{d t}=\frac{15}{320}$ Iad／sec．$=\frac{3}{04}$ Indians $/ \mathrm{sec}$ ．

Angie p is increasing at the rate of $\frac{3}{04}$ Iaciansisec when $h=160 \mathrm{ft}$ ．

Now to fine the rate czenange of the rance $=$
From the Eiqure，$h^{2}+160^{2}=I^{2}$
（Note n and $=$ are $v a=$ abies）
difきererṫating（3）ッ．．こ．た．t．
$2 h \cdot c h / d t=2 \gamma \cdot \frac{c z}{C t}$
when $n=160, I=\sqrt{160^{2}+160^{2}}=160 \sqrt{2}$

$$
\frac{\mathrm{ch}}{\mathrm{ct}}=15 \mathrm{ft} / \mathrm{sec} .
$$

$\frac{d t}{a t}=\frac{160}{100 \sqrt{2}}-15=\frac{15}{\sqrt{2}} \quad \frac{15 \sqrt{2}}{2} \mathrm{ft} / \mathrm{sec}$.
Range $=$ is varying at the rate of $\frac{15 \sqrt{2}}{2} \mathrm{ft} / \mathrm{sec}$ ．

A ster by step guide to solve related rates croblers：

1．Draw a figure．Name the variable and constant magnitudes． Label these in the figure．

2．Mark the vaェiableivariables irnose rate／rates of change you must find．

3．Form equations relating variable and constants．
4．Substitute known values（if necessary）and cifミミrentiate． Cbtain a single equation expressing the rate that you want In terms of the rates and quantities already knc：un．

Problems for assignment ：

1．Suppose a ain drop：is a perfect sphere．Assume that through condensation，the $=$ Inn Crop accumulates moisture at rate proportional to the surface area．Show that the radius increases at a constant rate．

2．A baliocn 200 it of $=$ the ground and rising vertically at the constant late of $15 \mathrm{ft} / \mathrm{s}$ ．An automobile passes beneath it traveling along a straight road at the constant rate of $45 \mathrm{~m} / \mathrm{hour}$ ． How fast is the distance between them changing one second Later ？（mos．33．7 Et／sec）．

3．A light is at the top of pole 50 ft high．A ball is dropped from the same height from a point 30 ft away from the height． How fast is the shacow of the ball moving along the ground if 2 second late＝？（Ans． $1500 \mathrm{ft} / \mathrm{sec}$.$) ．$
4. Iwo ships A and B are sailing st=aight away from the point D along routes such that the angle $A O B=120^{\circ}$. How iast is the distance between them changing, if at a certain instant $D A=8$ mies? Ship A is sailing at the late of 20 miles/tr and snip B at the rate of 30 miles/hr ? (Hint: Use law of Cosines) 260/37 miles/ra.
5. A particle is moving in the ciraular oreit $x^{2}+y^{2}=25$. As it passes through the point $(3,4)$, its Y-coordinate is decieasing at the rate of 2 units per second. How is the X-coordinate cnanging ? (Ars: 8/3 units/sec).

Additional Problems for Assionment:

1. Eind the height of a =ight cone with ieast volume circumscibed about a given spnere of radius R. (Ans.4R)
2. It is requirec to make a cylinaer, open at the top the walls ara the bottom of which have a given thickness. What should be the dimensions of the cylinder so thatfor given storage capacity, it will Ieouize the least material ? (Ans. $\bar{A}=3 V / R$ is the inner Iadius of the base, $V=$ inner volume).
3. Dut of sheet metal having the shape of a circle of Iadius R, cut a sector such that it may be bent into a funnel of maximum storage capacity. (Ans. The central angie of the sector $=2 \sqrt{1} \sqrt{2 / 3}$
4. Of all circular cylinders inscribed in a given cube with side a so that thetr axisi coincide with the diagonal of the cube and the circumferences of the base touch its planes. Find the cylinder with maximum volume.

$$
\begin{aligned}
& h=\frac{a \sqrt{3}}{3} \\
& r=\frac{a}{\sqrt{6}}
\end{aligned}
$$

5. In a rectangular coorinate system a point $\left(X_{0}, Y_{0}\right)$ is lying in the first quadrant. Draw a straight line through this point so that it forms a triangle of least area with the positive directions of the axis.
(ans. $X / 2 X_{0}+Y / 2 Y_{0}=1$).
6. Given a point in the axis of the parabola $y^{2}=2 p x$ at a distance of a from the vertex, Find the abscissa of the point of the curve closest to it. (ins. $X=a-p$).
7. Assuming that the strength of a beam cf i rectangular c=oss-section is directly proportional to the width and to the curve of the altitude, firs the width of a beam of maximum staenuth that may be cut out of a log of diameter 16 cms . (ins. width $=8 \mathrm{~cm}$).
8. A torpedo boat is standing at anchor 9 km from the closest point of the shore. A messenger has to be sent to a cam 15 km (along the shore) from the point of the shore closest to the boat. Where should the messenger lance so as ic get to the camp in the
 rowing). (ins. at a paint 5 kim nom the camp).
9. Show that the volume of the largest right circular cylinder which can be inscribed in a given right circular cone is $4 / 9$ the volume of the cone.
10. If sum of the surface areas of cure and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere when a) the sum of their volumes is a minimum? b) the sum of their volumes is a maximum ?
11. A lamp 50 Et above the horizontal ground and a stone is cropper $:=0$ the same height for. a point 12 ft away from the lame. Find the speed of the shadow of the stone on the ground when the stone has faller io ft.
 inch is v cu. inches where $p V=1200$. If the volume increases at the =ate $0: \angle 0$ auric inches/rin. fine the fate of change of pressure when vol $=20$ c. inches,

$$
\text { (frs. } 120 \text { lbs/min). }
$$

 way that the radius $=\mathrm{cms}$ at t secs is given by

Find the =ate at which the blot is increasing at the end of 2 seconds. (Ans. $\frac{2079 \pi}{212}$).

DIFFERENTIALS ABL APpROXIMATIONS.

In this section, we attempt to define derivative as a quotient of tiro quantities called differentials and see how this definition is useful in carrying out approximate calculations.

Recall that, derivative $f^{1}(x)$ of a given function $y=f(x)$ is defined as the limit of a quotient,

$$
\text { i.e. } f^{1}(x)=\underset{\Delta x \xrightarrow{L}-0}{ } \frac{\Delta v}{\Delta x}=d y / d x
$$

Note that $f^{1}(x)$ itself: is not a quotient. It is wrong to interpret that $d y / d x$ as obtained by dividing $d y$ by $d x$, Where $\mathrm{Cy}=1 \mathrm{im} \Delta y$ and $d x=\lim \Delta x$

$$
\Delta x \rightarrow 0 \quad \Delta \quad \Delta x \rightarrow 0
$$

This interpration leads to the result $0 / 0$.
However, using the notion of derivative as a limit, it is possible to define a new quantity 'dy' called the differential of y so that the quotient $d y / d x$ will indeed become equal to the derivative $f^{1}(x)$.

Meaning of differential :

Consider y : $f(x)$, derivable at x.
Then, $f^{\prime}(x)=d y / d x=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}$
(1) implies that $\frac{\Delta y}{\Delta x}$ differs from $\frac{d y}{d x}$ (or $f^{1}(x)$) by an iníinitesimally small quantity \mathcal{E}. (Here $\Delta x, \varepsilon$, are examples of infinitesimals).

$$
\begin{equation*}
\therefore \quad \frac{A}{2 x}=f^{1}(x)+\varepsilon \quad 0= \tag{1}
\end{equation*}
$$

$\Delta y=\therefore, x i \cdot \Delta x+E \cdot \Delta x$

The $t \in=$ こ，Δx in（1）being the product of the infinitesimals， is mus\％smiler when compared with the temp $f^{1}(x) \cdot \Delta x$ ．
For $\angle x$ s：ت天iciently $s=E 11$ ，we see that $f^{1}(x) \cdot \Delta x$ is a good approxニーニニミニn of $\Delta y=z$ we neglect the term $\mathcal{E}, \Delta x$ ．

Nor，二三：us define tine differential dy of y by dy $=f^{1}(x) \cdot \Delta x$
Denoting ch．the differential of x as Δx itself（why？） We obtミシー $\because \because=f^{\prime}(x)$ ．ax and $d x=\Delta x$ se that， The $d \in=\Xi \because E=$ ie $f^{1}(x)=$ tine quotient $\frac{d v}{d x}$
$f^{*} \cdot x=$ the quotient of the differentials $d y$ and $d x$ ．

IIlustニミニミニー：（1）Conside＝a square of side x units．An error of ． 01 has cエミミこシー： さもs aエミョ。

Let us こa：ミ $x=12$ units．
Error $二$. －ne measurement of $x=.01$
$\therefore \Delta x=.01$
If the Function in question is $y=x^{2}$
then，$\quad y=2 x \cdot \Delta x+(\Delta x)^{2}=2 \times 12 \times(.01)+(.01)^{2}$
whereas $d y=f^{i}(x) \cdot d x=f^{1}(x) \cdot \Delta x=24 x \cdot 01$
neglecting $(.01)^{2} ; \Delta y \approx d y$ ．
EIIOI En EKEs estimation is ． 0001 ．

> To see the advantage gained by approximating
Δy by $d y$, consider $f(x)=x^{4}$
$\Delta y=4 x^{3} \cdot \Delta x+6 x^{2}(\Delta x)^{2}+4 x \cdot(\Delta x)^{3}+(\Delta x)^{4}$
For small Δx, the powers of Δx get progressively smaller. Replacing Δy by $d y$,
$d y=f^{1}(x) \cdot \Delta x=4 x^{3} \cdot \Delta x$ is a good approximation to Δy.
It is worth noting here, how much simpler it is to compute dy as compared to Δy.

When the functions under investigation get more complex, the usefulness of approximating Δy by dy becomes even more pronounced.

The geometric meaning of differential.
Refer to the figure 4.22 given in the text book. A variation of the same figure is supplied here.

Geometrically, the approximation by the differential is the tangent line approximation to the curve $y=f(x)$ at a given point $P(x,:)$. Note that the tangent to a differentiable curve always runs close to the curve near the point of tangency.

Edom the figure it is clear that $\triangle y$ and $d y$ are not the same. While Δy gives the actual change in the function $y=f(x)$ as x charges to $x+\Delta x$, $d y$ gives the increment in the function represented by =he tangent line to the curve $y=f(x)$ at $P(x, y)$. In other words, if the function $y=f(x)$ were : : eeplaced by its tangent line at P, $d y$ would be the increment in the function representing the tangent line corresponding to the increment $d x$ in x. The slope of this
tangent line is $f^{1}(x) \equiv t P(x, y)$. I he difference in Δy and dy is the $v \in=$ tical portion c: Δy between the tangent line and the graph of $f(x)$. The less the graph curves, nearer is it to the tangent line and better, the az= proximation is dy to Δy.

Erzors and aporoximate calculations:

1. Differentials are used to estimate the square roots, cube roots, fourth roots and so on. (Reテ̃. text).
2. Estimation of mail errors: Physical measurments using instruments are subject to small ez=ors. Difzamtials are used to estimate the accuracy and the error involved in measurements.

For example, when the diameter (d) of a small steel ball is measured by a vernier and if the reading is correct to $\frac{1}{100}$ of an inch. The true measurement differs from the vernier reading by $\frac{1}{100}$ th of an inch.

If Δx is the er for in the measurement of a magnitude x, the corresponding error which results in $y=f(x)$ is approximately $\Delta Y=f^{1}(x) \cdot \Delta x=d y$. This error is called the absolute error.

The ratio of this error Δy to the magnitude y is $\frac{\Delta v}{Y}$, and is called zelative error.
$100 \cdot \frac{\Delta}{Y}$ is called the percentage error in y.
Now, going back to the problem of steel balls, the actual measurement gives the d meter as $d+\Delta x$. The relative error here is $\quad-\frac{\Delta x}{a}$. Now we want to sind the corresponding error in the volume of the sphere.

$$
\begin{aligned}
& \text { Volume of the sphere }=V(d)=\frac{1}{6} \pi d^{3} \\
& \Delta V \approx d V=\frac{1}{2} \pi d^{2} \cdot \Delta x .
\end{aligned}
$$

Hence the relative error in the volume is

$$
\frac{\Delta V}{V(d)} \approx \frac{d V}{V(d)}=\frac{\frac{1}{2} \pi d^{2} \cdot \Delta x}{\frac{1}{6} \pi d^{3}}=\frac{3}{d} \Delta x=3 \cdot \frac{\Delta x}{d}
$$

＝ ＝times the relative error in the diameter．
三xミ——过 1 ：If $f(x)=x^{4}-4 x^{2}+7 x-5$
ミミー．ミ（2．49）．
Feeze we take $x=3$ ，and ix 01
$f^{1}(x)=4 x^{3}-8 x+7$
$\mathrm{E}^{1}(\equiv)=91, f^{1}(x) \cdot \Delta x=f^{1}(3) \cdot \Delta x=-0.41$
$E(2.09)=f(3)+f^{1}(3) \cdot \Delta x$

$$
=61+(-0.91)=60.09=60.09
$$

Example 2 ：Find the linearacproximation to $f(x)=\sqrt{1+2 x}$ near $x=2$ ．
ie Jus：evaluate $f(2)+f^{1}(2)(x-2)$
taitingix $=(x-2)$

$$
f^{1}(x)=\frac{1}{2}(1+2 x)^{-y / 2} \cdot 2=\frac{1}{\sqrt{1+2 x}=}
$$

Its value at $x=2$ is
$f^{1}(2)=\frac{1}{\sqrt{1+2 \cdot 2}}=\frac{1}{\sqrt{5}}$
$f(2)=\sqrt{5}$
$\therefore f(2)+f^{1}(2)(x-2)=5+\frac{1}{\sqrt{5}}(x-2)$

We have $f(x) \approx \sqrt{5}+\frac{1}{\sqrt{5}}(x-2)=5+\frac{x}{\sqrt{5}}-\frac{2}{\sqrt{5}}$

$$
=\frac{x}{\sqrt{5}}+\sqrt{5}-\frac{2}{\sqrt{5}}=\frac{x}{\sqrt{5}}+\frac{3}{\sqrt{5}}
$$

Linear approximation of $\sqrt{1+2 x}=f(x)$ near 2 is

$$
f(2)+f^{1}(2)(x-2)=(x / \sqrt{5})+\frac{3}{\sqrt{5}} .
$$

If $y=f(x)$ is differentiable at x_{0}
then $f(x) \approx f\left(x_{0}\right)+f^{1}\left(x_{0}\right) \quad\left(x-x_{0}\right)$ for x near x_{0}
a) How accurately should we measure the edge x of a cuisse to compute the volume $v=x^{3}$ within 1% of its true value.

Solution: ike want inaccuracy Δx in our measurement to be small enough to make corresponding increment ΔV in volume to satisfy the inequality

$$
|\Delta v| \leqslant \frac{1}{100} \times v=\frac{1}{100} \cdot x^{3}
$$

Using ciisferentials, $d V=3 x^{2} . \quad x$

$$
\begin{aligned}
& y \quad 3 x^{2} \cdot \quad x \\
& \left|0 r^{2} \cdot x\right| \frac{x^{3}}{100} \\
& |x| \frac{x}{3 \cdot 100}=\frac{x}{3} x \cdot 01=\frac{1}{3} \cdot \frac{x}{100}
\end{aligned}
$$

Hence we must measure edge x with an error that is no more than one third of one percent of the true value.
Using differentials $d v=3 \cdot x^{2} \cdot \Delta x$

$$
\Delta v \approx 3 x^{2} \Delta x
$$

$\therefore \quad\left|3 x^{2} \cdot \Delta x\right| \leq \frac{x^{3}}{100} \Rightarrow|\Delta x| \leq \frac{x}{3 \cdot 100}=\frac{1}{3} \cdot \frac{x}{100}$
\therefore truer in the measurement of x (edge) should not exceed a trivet of ene percent of the true value.

Assiaments ：

1．Estimate $\sqrt[4]{17}$ ．
2．Calculate $\sin 59^{\circ}$ approximately，knowing that $\sin 60^{\circ}=\sqrt{3} / 2$ Remembe＝thet in calculus fommae z＝esuppose＝acian measure for anoles．

3．The width c f $\overline{\text { a }}$ Ivez is calculated by measuizing the ancle of elevation faom a point on one bank of the top of a tree 50 feet high anc cirectly across on the opposite bank．The ancle is 45° with a possible error of 20^{\prime} ．Finc the possible erzor in the caiculatiec width of the İvez．

4．A given quarこity of metal is $=0$ be cast in ine íc．．．．of a
 If the racius is made $1 / 20$ on of an inch too iarge，what is the $\in=20=$ in the height ？

5．Ihe eqge of a cube is measurec as 10 cm with a possible eエエoz of one pez cent．Ihe cube＇s volume is to be calculated ficm this measurement．hbout how much e＝ユo＝is possible in the volume $c \equiv 1$ culation ？

6．Hbcut how accirately must the intoricy diameter c^{2} a 10 metez hign storage iank of cylinczical shape be measured to calculate the tank：＇s volume to within an error of one percent of its true value．

7．The radius of a circle is increased from 2.00 to 2.02 meters
a）estimate the change in area
b）calculate tre error in the estimate in（a）as a percent of the original area．
8. If $f(x)=x^{4}-2 x+3$ and given $f(8)=4083$ finc the value of f(8.001).
9. If $f(x)=x^{3}+x^{2}+x-3$, find $f(1.09)$ approximately.
10. Show that the relative erfor in the voluee of a sphere is three times the relative error in the radius.

INTEGRATIOH

1. Definite Intečal and properties of Lefinize Inteçal
2. Volumes of Sclias by Definite Integrais

DEEINITICN CF DEEINITE INTEGRAL

Introciuction :

Historically, the basic problem of integrals is to find the areas and volumes by certain approximation methods. The first abstract proofs of rules for finding some areas ard volumes are said to have been developed by Eudoxus between 400 3.C. and 350 B.C. Later his method of approximation was developed and exploited by Archimedes. Ihis methoc, called aetrod of exnaustion is at the root of all modern developaents in the theory of measure and integzal. In the 19th century, this method cuminated in the theory of Kiemann integration, defined by means of Riemann sums.

In mocern times, the method of exhaustion can be stated as follows: Let $\dot{\text { b }}$ be surface of known area s. Also sunpose that S^{\prime} is a surzace of known area s^{\prime} contained in s anc $s^{\prime \prime}$ is a surajece of known area $s^{\prime \prime}$ containing s. Then $s^{\prime}-s<s^{\prime \prime}$. The approximating surfaces s^{\prime} anc $s^{\prime \prime}$ are taken as polycons or sums of slices, mainly trapezoidal or rectangular according to the particular ficure s uncer the method of Eudoxus and irchimedes. In facた, the definition of area as a sum of rectancular areas is in voque Ern 16 th century A. D.

Calculus (both differential and integral) was invented by both Newton and Leiznitz - incependent of each other. Newton, influenced by his teacher Barron used calculus to solve the problems of dynamics. Thus he conceived all functions as functions of a universal indepencient variable known as time (t). So he had no concept of functions of several variables and partial derivatives.

Abstract

For Newton, the primary concept was that of fluxion (derivative) and arose from kinematical consicezations. Newton did not isolate the concept of integral; no= he introduced one symbol for intečasion. His first basic pIoniem was to fine fluxion (derivatives). Integration was used in a geometric for to find fluent (antiderivatives oI indefinite integralsj, functions when fluxions (derivatives) are given. Newton based his theory mainly on the fact: The derivative of \bar{e} variable area $F(x)$ under a curve is the ordinate $f(x)$ of this curve. For Newton, integatation was the inverse process ci ciffereri=iation, as he was mainly interested in the following problem- Given an equality relation containing fluxions, find the relation fo= Eiuents, which is the basic problem to solve ordinary differenたむal equations. He solved these by use of series.

On the other hand, Leibnitz thought of the derivative as the slope of a tangent, and the integral as summa omnimum linage. The main purpose of all his work was to devise a universal language, that is, a general : of knowledge. To a great extent, he succeeded in creating such a formalism for calculus. In East, the present formalism in calculus is mainly his including the integral symbol (a stylised form of the letter S standing for summa omnimum). The terms constant, variable, function and integraj. used in calculus are due to Leibnitz.
G.F.B.Riemann in 1854 (published in 1867) gave necessary and sufficient condition for the existence of integrals called Riemann integral and showed that continuous functions satisfy his condition. The definition of integral as a limit of sum of areas as given in the text books is due to him.

Resume of the key concepts :

Two important ideas underlie the treatment of definite integrals in the text: 1. Definite integral $\int^{t} f(x) . d x$ as a Limit of the sum of areas and 2. Fundamental Theorenof Integral Calculus.

Here, we give an alternative treatment of Fundamental Theorem of Integral Calculus.

Statement Fundamental Theorem of Integral Calculus If $f(x)$ is integrable in $(a, b), a<b$, and if there exists a function $F(x)$, such that $F^{\prime}(x)=f(x)$ in (a, b), then

$$
\int_{-}^{b} f(x) \cdot d x=F(b)-F(a)
$$

Proof : Let $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$ Then, by the lean Value Theorem of Differential Calculus, $F\left(x_{I}\right)-F\left(x_{I-1}\right)=\left(x_{I}-x_{I-1}\right) F\left(\xi_{r}\right), x_{I-1}<\xi_{r}<z_{r}$ Taking the sum of the respective sides of the above equations, we have

$$
\sum_{r=1}^{n} F^{\prime}\left(\xi_{1}\right) i_{r}=\sum_{r=0}^{n}\left[F\left(r-k_{r-1}\right)\right]
$$

$$
\left[\text { where } \varepsilon_{T}=x_{I}-x_{I-1}\right]
$$

$$
\begin{equation*}
=F(b)-F(a) \tag{1}
\end{equation*}
$$

Suppose that \hat{E} is the length of the largest $o f$ the subinte=vals $\left(x_{I-1}, x_{I}\right)$. Then as $\delta-0$, all the $\delta_{r} \therefore$ will $21 s 0$ tend to 0 . So we have

$$
\operatorname{Lt}_{\varepsilon \rightarrow i} \sum^{\prime} F^{\prime}\left(\xi_{r}\right) S_{r}=F(b)-E(a)
$$

Now $f(x)$ and so $F^{\prime}(x)$ is integrabie in (a, b).
Hence

$$
\begin{equation*}
\operatorname{Lt}_{\substack{ }} \sum F^{\prime}(\xi) \xi_{i}=\int_{2}^{2} F^{\prime}(x) \cdot d x=\int_{2}^{i} f(x) \cdot d x \tag{2}
\end{equation*}
$$

Erom (1) and (2) we have

$$
f(x) d x=F(b)-E(a)
$$

The folloving points are to be notec regarding the above
theorem.

1. Ihis theorem is very useful and impoztant as it gives us an easy method of evaluating the definite integral without calculatina the Liᄑit of the sum by establishing a connection between the integ=etion as a limit of a sum and the integration as inverse operation of differentiation.
2. $\int_{6-}^{i} f(x) d x$ is a function of lower limit a and uppe= limit b, and not a function of the variable x.
3. In $\int_{r}^{x} f(x) . d x$ the upper limit is the variable x. So $\int_{\sim}^{x} f(x) \cdot d x$ is not a definite inteçial, but another form of the indefinite integaal. FoI example,

$$
\begin{aligned}
& \int f(x) \cdot d x=F(x) \text {. Then } \\
& \int f(x) \cdot d x=F(x)-F(a)=F(x)+a \operatorname{constant}=f(x) \cdot d x .
\end{aligned}
$$

Extended Lefinition of $\int_{u}^{b} f(x) \cdot d x$
The following definition of $\int_{a}^{c} f(x) \cdot d x$ is an extensicn of the $d e f i n i t i o n ~ g i v e n ~ i n ~ t h e ~ t e x t . ~ . ~$

Let $f(x)$ be a bounded function defined in the interval (a, b); and let the interval (a, b) be divided in any manner into n subinterrals
$\left(a, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{r-1}, x_{I}\right), \ldots,\left(x_{n-1}, b\right)$ of lengths $\varepsilon_{1}, \delta_{2} . \dot{c}_{n}$ respectively where a $x_{1}<x_{2}<\cdots x_{r-1}$ $<x_{I}<\cdots<x_{n-1}<b$. In each of these sub-intervals select an arbitrary point and let these points be such that

$$
乡_{1} \in\left(a, x_{1}\right), \quad j_{-}=\left(x_{1}, x_{2}\right), \ldots, j_{s} \in\left(x_{r-1}, x_{r}\right) .
$$

$\ldots . S_{n} \in\left(x_{n-1}, b\right)$
Now let $s_{n}=\sum_{r=1}^{n} \varepsilon_{1},-(=)$.
Now let n increase incefinitely so that the longest of the lengths ", '... F., tencs to 0 . In such a case clearly each of $\left.\varepsilon_{1}, \varepsilon_{2} \ldots.\right\}_{n}$ tencs to 0 . Now, if in such a situation (i.e. max. $\left.\left(\varepsilon_{1}, f_{n}, y\right)-0\right), S_{n}$ tends to a finite limit which does not depend on the manner in which (a, b) is divided intc sub-incervals and the points $\left.\sum_{1},\right\}_{2}, . . \zeta_{n}$ are selected; then this lizit (if it exists) is defined as the definite integral of $f(x)$ from a to b and symbolically denoted by $\int_{ध}^{b} f(x) . d x$.

In the textbook, for the sake of simplicity, the sub-intervals are supposed to be equal and the points $5,5_{-}, \ldots,{ }^{n}$ are taken to be the end-points of the sub-intervals.

Areas of difficulty :
here are solved some problems the types of which are not discussed in the text.
Problem 1. Evaluate $\int_{i}^{i} x^{m} . d x$ where r. is any real number $\neq 1$ and $0<a<b$.

Solution: Conside = the sub-inte=vals
(a, aI), (aI, $\left.a I^{2}\right),\left(a I^{2}, a I^{3}\right), \ldots,\left(a I^{n-1}, a I^{n}\right) 0=(a, b)$ mere $a I^{n}=b i . \epsilon . I=(b / a)^{y n}$.
Clearly as $n \cdots, I=\left(\frac{b}{a}\right)^{\eta n} \rightarrow 1$ so that each of the length
of the sub-intervals
$a r-a, a r^{2}-a x, \ldots,\left(a a^{n}-a z^{n-1}\right)$
i.e. $a(I-1), a I(I-1), \ldots, a I^{n-1}(I-1)$ tends to 0 .

Now by the extended definition of $\int_{i}^{i} f(x) \cdot d x$.

$$
\begin{aligned}
& \int_{-1}^{i} x^{m} \cdot d x=\int_{x \rightarrow 10}^{2} \cdot x(r-1)+\cdots r^{2} \cdot(r-1)
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{r \rightarrow i} a^{m-1}(y-i)\left\{1+1^{\cdots+1}+7^{i(m+)}+\ldots \quad-1+\ldots .\right. \\
& =\operatorname{Lr}_{r \rightarrow 1} \frac{i^{n+1}\left(i^{n-1}\right)^{n}-1}{\cdots+1}
\end{aligned}
$$

(u) the sine io the flores bucakrt is a cir. with convenient -water r^{m+1} with $m^{n+1} \neq c$.

$$
\begin{aligned}
& \text { Simplatging the nat exptenuin ne have } \\
& -\int_{a}^{i} x^{m} \cdot d x \\
& =\operatorname{Lt}_{r \rightarrow 1} a^{m+1}\left(\frac{r-1}{r^{m+1}-1}\right)\left\{\left(r^{n}\right)^{m+1}-1\right\} \\
& =\operatorname{Lt}_{r \rightarrow 1} a^{m+1} \cdot \frac{1}{m+1}\left\{\left(\frac{[}{a}\right)^{m+1}-1\right\}, \operatorname{co} \operatorname{Lr}_{r \rightarrow 1} \frac{r-1}{r^{m+1}-1}=\frac{1}{m+1} \\
& \text { with } m+1 \div 0 \\
& =\operatorname{Li}_{r \rightarrow 1} \frac{i^{m-1}-i^{m+1}}{m+1}
\end{aligned}
$$

Series represented by Definite Integrals

The definition of the definite integral can be used with profit to evaluate easily the limits of the sims of certain series, when the number of terms in the series tends to infinity. The method lies in identifying a definite integral equal to series. In fact,

$$
\begin{aligned}
& \int_{0}^{b} f(x) \cdot d x=\operatorname{Lam}_{h \rightarrow 0} h \sum f(a+I n \ddagger \text { where } n h=b-a \\
& \text { or } \operatorname{lt}_{n \rightarrow 0} \frac{b-a}{n} \sum\left(f(a)+r \frac{(b-a)}{n}\right)=\int_{c}^{i} f(x) \cdot d x \\
& \text { If } a=0, b=1 \text {, we have } \\
& \operatorname{lt}_{n \rightarrow--} y_{n} \sum f(I / n)=\int_{0}^{1} f(x) \cdot d x
\end{aligned}
$$

In. the above discussion, I takes the values either
$0,1,2, \ldots n-1$ o $1,2,3, \ldots, n$. These two sets ci f numbers
represent the left and right extremities of the elementary vertical rectangles (columns) in the calculation of area represented by
$\int_{c}^{i} I(x) . d x$. (Reef to the definition of $\int_{\sigma}^{1} f(x) \cdot d x$ in the text).
The following are illustrative examples.

Problem 2. $=$ valuate

$$
n \xrightarrow[n]{ } \operatorname{lt}_{n}\left[\frac{1}{n+m}+\frac{1}{n+2 m}+\ldots \ldots+\frac{1}{n+n m}\right]
$$

Solution: The given expression

$$
\begin{aligned}
& =\sum_{n \rightarrow x}\left[\frac{1}{n}\left(\frac{1}{1+\frac{n}{n}}+\frac{1}{1+\frac{2 m}{n}}+\cdots+\frac{1}{1+\frac{(n-D m}{n}}+\frac{1}{1+\frac{n m}{n}}\right)\right] \\
& =\int_{0}^{1} \frac{d x}{1+m x} \text { by definition of the definite integral } \\
& =y m \log (1+m x) \\
& =y m \log (1+m)-\log 1 \\
& 1 y m \log (1+m)
\end{aligned}
$$

Problem 3. Evaluate

$$
\operatorname{lt}_{n \rightarrow \infty}\left\{\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right) \cdots\left(1+\frac{n}{n}\right)\right\}^{\frac{1}{n}}
$$

Solution :
Let $n=\left\{\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right) \ldots\left(1+\frac{n}{n}\right)\right\}^{\frac{1}{n}}$
I hen $n \xrightarrow{l t} \log A$
$=1 t \operatorname{lin} \sum \log \left(1+\frac{I}{n}\right)$
$=\int_{0}^{1} \log (1+x)$

Now put $z=1+x$
Then $x=0$ implies $z=1$ and $x=1$ implies $z=2$.
So $\underset{n \rightarrow \infty}{ } \operatorname{lt} \log A$
$=\int_{1}^{2} \log z \cdot d z$
$=[z \log z-z]_{1}^{2}$
$=2 \log 2-2-1 \log 1+1$
$=2 \log 2-1=2 \log 2-\log e$
$=\log 4 / e$
So $1 t \quad A=\frac{4}{e}$

Assignments:
Using the definition of $\int_{i}^{b} f(x) \cdot d x$ as a limit of a sum,
evaluate the following definite integrals (1 to 10) :

1. $\int_{2}^{1} e^{-x} \cdot d x$
2. $\int x^{2} \cdot d x$
3. $\int(a x+b) d x$
4. $\int_{0}^{\pi i n} \sin x \cdot d x$
5. $\int_{a}^{\varepsilon} \cos \theta \cdot d \theta$
6. $\int_{0}^{1} \sqrt{x} \cdot d x$
7. $\int_{1,}^{1} \frac{1}{\sqrt{x}} \cdot d x$
8. $\int_{-1}^{4} \frac{1}{x} d x$
9. $\int_{1}^{3} e^{x} \cdot d x$
10. $\int_{c}^{\pi / 4} \sec ^{2} x \cdot d x$

Evaluate the following limits using definite integrals.
11. $\operatorname{lt}_{n \rightarrow \infty}\left\{\frac{1}{n+1}+\frac{1}{n+2}+\ldots \ldots \ldots+\frac{1}{n+n}\right\}$
12. $\operatorname{lt}_{n \rightarrow \infty}\left[\frac{n}{n^{2}+1^{2}}+\frac{n}{n^{2}+2^{2}}+\cdots+\frac{n}{n^{2}+n^{2}}\right]$
13. $n \rightarrow t\left[\frac{1^{2}}{n^{2}+1^{3}}+\frac{2^{2}}{n^{2}+2^{2}}+\cdots \cdots+\frac{n^{2}}{2 n^{3}}\right]$
14. \quad it $n^{n}=\frac{n+I}{n^{2}+I^{2}}$
15. $\ln _{n \rightarrow \infty}\left[\frac{\sqrt{n+1})+/(n-2)-\cdots+!(2 r-1)}{n}\right]$
16. $1 t \sum_{n-:}^{n} \frac{n}{(n+I) \cdots=(2 n+m)\}}$
17. $\operatorname{lt}_{n \rightarrow \cdots}\left\{\left(1+\frac{1^{2}}{n^{2}}\right)\left(1+\frac{2^{2}}{n^{2}}\right) \quad \cdots\left(1+\frac{n^{2}}{2 n^{2}}\right)^{2 n}\right.$
18. $\operatorname{Lt}_{n \rightarrow \infty}\left\{\left(1+\frac{1}{n^{2}}\right)^{-1}\left(1+\frac{2^{2}}{n^{2}}\right)^{-n^{2}}\left(1+\frac{3^{2}}{n^{2}}\right)^{6 / n} \cdots \cdots\left(1+\frac{n^{2}}{n^{2}}\right)^{-\frac{2 n}{n^{2}}}\right\}$

Answers :

1. $e^{-b}-e^{-a}$
2. $y 3$
3. $a / 2+b$
4. 1
5. Sinb - sin a
6. $2 / 3$
7. 2
8. $y 4$
9. $e^{3}-e$
10. 1
11. $\log 2$
12. $\pi / 4$
13. (y3) $\log 2$
14. $\frac{\pi}{4}+(y 2) \log 2$
15. $(4 / 3) \sqrt{2}-2 / 3$
16. $/ 3$
17. $2 e^{(j 2)}(\pi-4)$
18. $4 / e$

PROPERTIES OE DEEINITE INTEGRALS
Here we will discuss and clarify certain impoztant properties of definite intecrals which have not been discussec in the text.

1. $\int_{a}^{\frac{1}{j}} f(x) \cdot d x=\int_{a}^{b} f(z) \cdot d z$

Proof:
Suppose that $\int f(x) \cdot d x=\varnothing(x)$
Then, we have by Funcamental Theorem of Integral Calculus

$$
\begin{equation*}
\int_{n}^{t} f(x) \cdot d x=\phi(b)-\phi(a) \tag{1}
\end{equation*}
$$

Also, $\int_{\sim} f(z) \cdot d z=\phi(z)$ and by the Fundamental Theorem of Integral Calculus,

$$
\begin{equation*}
f(z) \cdot d z=\phi(b)-\phi(a) \tag{2}
\end{equation*}
$$

Erom (1) anc (2), we have the result.

This property states that a definite integral is independent of the variables with respect to which the integration is performed. 2. $\int_{a}^{n \pi} f(x) \cdot d x=n \int_{0}^{\pi} f(x) \cdot d x$ if $f(x)=f(a+\partial)$ P=oof:

$$
\int_{c}^{n i n} f(x) \cdot d x=\int_{c}^{a} f(x) \cdot d x+\int_{a}^{2 i} f(x) \cdot d x+\ldots+\int_{(n-1) a}^{n n} f(x) \cdot d x
$$

Set $z+a=x$. Then $d x=d z$
ilso, $x=a$ implies $z=0$ and $x=2 a$ implies $z=a$
So, $\int_{a}^{2=} f(x) \cdot d x=\int_{0}^{n} f(z+a) \cdot d z=\int_{0}^{n} f(a+x) d x$
$=\int_{i}^{\infty} f(x) \cdot d x$

Again with the same substitution, $z+a=x$, we can see that $\int_{\text {Similarly, we can show that }}^{2 n} f(x) \cdot d x=\int_{2}^{2 n} f(z+a) \cdot d z=\int_{2}^{2 \pi} f(x) \cdot d x=\int_{2}^{2} f(x) \cdot d x$ $\int_{(n-1)}^{n} f(x) \cdot d x=\int_{(n-z)}^{(n-1)} f(x) \cdot d x=\ldots=\int_{\alpha}^{2 \infty} f(x) \cdot d x=\int_{0}^{a} f(x) d x$ Hence re get the result.

Illustration: Since $\cos x=\cos (x+\pi)$
we have

$$
\int_{0}^{6 \pi} \cos x \cdot d x=6 \int^{\pi} \cos x \cdot d x
$$

3. $\int f(x) \cdot d x=\int_{0}^{2} f(x) \cdot d x+\int_{0}^{2} f(2 a-x) \cdot d x$

Proof:
By formula 7.2 of the textbook

$$
\int_{y}^{2 d} f(x) \cdot d x=\int(x) \cdot d x+\int^{2} f(x) \cdot d x
$$

Substitute $2 a-z$ for x. Then $d x=-a z$.

Moreover, when $x=a, z=a$, and when $x=2 a, z=0$; so

$$
\int_{=}^{2 \prime} f(x) \cdot d x=-\int_{a}^{2} f(2 a-z)=\int_{i}^{2} f(2 a-z) \text { by formula } 7.1 \text { of the }
$$

$$
\text { textbook }=\int_{1} f(2 a-x)
$$

Hence, $\int_{j}^{2-} f(x) \cdot d x=\int_{i}^{n} f(x) \cdot d x+\int_{i}^{1} f(2 a-x)$
4. 1) $\int_{0}^{-i} f(x) \cdot d x=2 \int_{-}^{i} f(x) \cdot d x$ if $f(2 a-x)=f(x)$ and
ii) $\quad \int_{0}^{i n} f(x)=0$, if $f(2 a-x)=-f(x)$

So 1 , which is the exact upper bound of the set of numbers s, is $\% 0$.
Now, since $\int_{i}^{L} f(x) \cdot d x$ exists, $\quad l=\int_{i}^{l} f(x) . d x$
Hence, $\int_{i}^{i} f(x) . d x$ exists.
6. If $f(x)$ and $g(x)$ are integrable in $a, b)$ and $f(x) \geqslant g(x)$ for ail x in $[a, b]$ then $\int_{a}^{i} f(x) \cdot d x \geqslant \int_{a}^{b} g(x) \cdot d x$

Proof:

Let $h(x)=f(x)-g(x)$
Then as $f(x)$ and $g(x)$ are integrable in $[0,1], h(x)$ is so. Also, as $f(x) \geqslant g(x)$ in $[a, b], h(x) \geqslant 0$ in $[a, b]$.

$$
\begin{aligned}
& \text { Applying the previous result, we find that } \\
& \int_{-}^{l} h(x) \cdot d x \geqslant 0 \\
& \text { ide. } \int_{i}^{b}(I(x)-g(x)) d x \geqslant 0 \\
& \text { ide. } \int_{a}^{i} f(x) \cdot d x-\int_{a}^{b} g(x) \cdot d x \quad 0 \\
& \text { ide. } \quad \int_{\int}^{i} f(x) \cdot d x \geqslant \int_{n}^{2} g(x) \cdot d x \\
& \text { 7. If } f(x) \text { is integrable in }(a, b) \text {, then } \\
& \int_{a}^{i}|f(x)| \cdot d x \geqslant\left|\int_{\sim}^{\infty} f(x) \cdot d x\right| \\
& \text { Proof: } \\
& \text { Let }\left\{a=x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}=b\right\} \text { be a partition of } \\
& {[a, b] \text { and let } \delta_{r}=x_{r}-x_{I-1} .}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \left.\mid f\left(s_{1}\right) \delta_{1}+f\left(\xi_{2}\right) \cdot \delta_{2}+\ldots+f\left(\xi_{n}\right) \cdot \delta_{n}\right) \\
\leqslant & \left|f\left(s_{1}\right) \cdot \delta_{1}\right|+\left|f\left(\xi_{2}\right) \cdot \delta_{2}\right|+\ldots+\left|f\left(\rho_{n}\right) \cdot \delta_{n}\right| \\
= & \left.\left|f\left(s_{1}\right)\right|\right\} \delta_{1}\left|+\left|f\left(\rho_{2}\right)\right| \xi_{2}\right|+\cdots+\left|f\left(\xi_{n}\right)\right|\left|\delta_{n}\right| \\
= & \left|f\left(\xi_{1}\right)\right| \cdot \delta_{1}+\left|f\left(\xi_{2}\right)\right| \cdot \delta_{2}+\cdots+\left|f\left(\xi_{n}\right)\right| \cdot \delta_{n}
\end{aligned}
$$

where $\mathcal{f}_{r} \in\left[x_{I-1}, x_{I}\right]$ and each δ_{r} is clearly positive. Now, let $n \rightarrow \infty$ so that max. $\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$
$\rightarrow 0$ i.e. each $\delta_{\alpha} \rightarrow 0$
Then clearly

$$
\text { it }\left|\sum f\left(\xi_{r}\right) \cdot \delta_{r}\right| \leq \text { 纤 } \sum\left|f\left(s_{r}\right)\right| \delta_{r}
$$

$$
\text { i.e. }\left|\int_{a}^{i} f(x) d=\left|\leq \int_{a}^{2}\right| f(x) \cdot d x\right.
$$

Solved Examples:

The following examples will illustrate the use of the properties of the definite integrals in solving problems.

Example 1 :
Show that
$\int_{0}^{\pi / 2} \log \sin x \cdot d x=\int_{c}^{\pi / 2} \log \cos \cdot d x=(\pi / 2) \log 12$
$\int \log \sin x \cdot d x$
$=\int_{0}^{-i} \log \sin (\pi / 2-x) \cdot d x$
$=\int_{0}^{\pi / 2} \log \cos x . d x$ by Formula 7.4 of textbook.
Now if each of the definite integrals $\int_{c}^{\pi / 2} \log \sin x \cdot d x$ and
$\int_{0}^{\pi / 2} \log \frac{\cos x}{\pi / 2} \cdot d x$ is taken $\frac{\text { to }}{\pi / 2}$ be I, then
$2 I=\int_{\pi}^{\pi / 2} \log \sin x \cdot d x+\int_{r} \log \cos x \operatorname{Rin}_{\pi i 2} d x$
$=\int_{0}^{\pi / 2}(\log \sin x+\log \cos x) d x=\int_{0}^{\pi / 2} \log (\sin x \cdot \cos x) d x$
$=\int_{0}^{0} \log \frac{\sin 2 x}{2} \cdot d x=\int_{\pi}^{\pi / 2}(\log \sin 2 x-\log 2) \cdot d x$
$=\int_{c}^{\pi-} \log \sin 2 x \cdot d x-(\pi / 2) \log 2$
Set $2 x=u$. Then $d x=d u / 2$.

Hie have

$$
\begin{aligned}
& \int_{0}^{T / 2} \log \sin 2 x \cdot d x=y 2 \int_{\log \sin u \cdot d u} \\
& =y_{2} \int_{0}^{\pi} \log \sin x \cdot d x=\int_{0}^{\pi / 2} \log \sin x \cdot d x \text { by result } 4(i) \\
& =I \\
& \text { So, } 2 I=I-\pi / 2 \log 2 \\
& \text { ide., } I=-(\pi / 2) \log 2=(T / 2) \log (\% / 2) \\
& \text { Example } 2 \text { : } \\
& \text { Show that } \int_{0}^{1} \frac{\log (1+x)}{1+x^{2}} d x=(\pi / 8) \log 2 \\
& \text { Set } x=\tan u \\
& \text { then } d x=\sec ^{2} u d u \\
& \text { moreover, } x=0 \Longrightarrow u=0 \\
& \text { and } x=1 \Rightarrow u=\pi / 4 \\
& \text { So } I=\int_{0}^{\pi / 4} \log (1+\tan u) d u \\
& =\int_{\pi / 4}^{\pi i m}\left(1+\tan (\pi / 4-u i) d u=\int_{0}^{\pi / L} \log \left(1+\frac{1-\tan u}{1+\tan u}\right) d u\right. \\
& =\int_{j}^{\pi / 4} \log \frac{2}{1+\tan u} \cdot d u \\
& =\int^{i i / \operatorname{m}}(\log 2-\log (1+\tan u)) d u \\
& =\int_{0}^{\pi / 4} \log 2 \cdot d u-\int_{i}^{\pi / 4} \log (1-\tan u) d u \\
& =(\pi / 4) \log 2-I \\
& \text { So, } 2 I=(T / 4) \log 2 \\
& \text { ide. } I=(\pi / 8) \log 2
\end{aligned}
$$

Example 3 :
show that

$$
\begin{equation*}
\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x=\frac{\pi^{2}}{4} \tag{1}
\end{equation*}
$$

Put $I=\int_{0}^{\pi} \frac{x}{1+\cos ^{2} x} d x$
Substituting $T-x$ for x
$I=\int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{1+\cos ^{2}(\pi-x)} d x$
i.e. $I=\int_{0}^{\pi} \frac{(--x) \sin x}{1+\cos ^{2} x} d x$
"dding (1) and (2) we get
$I+I=\int_{0}^{\pi} \frac{\pi \sin x}{1+\cos ^{2} x} d x$ i.e. $2 I=\pi \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x$
i.e. $I=\frac{\pi}{2} \int_{=}^{\pi} \frac{\sin x}{1+\cos ^{2} x}$ dix

Set $\cos x=2$. Then $d x=\frac{d z}{-\sin x}$
Also $x=0 \Longrightarrow z=1$ and $x=\pi \Rightarrow==-1$
So, $I=\frac{\pi}{2} \int_{1}^{-1} \frac{\sin x}{1+z^{2}} \cdot \frac{d z}{-\sin ^{2}}=-\frac{\pi}{2} \int_{1}^{-1} \frac{d z}{1+z^{2}}$
$=\frac{\pi}{2} \int_{-1}^{1} \frac{d z}{1+z^{2}}$ by property (1) of the textbook
$=\frac{\pi}{2}\left[\tan ^{-1} z\right]_{-1}^{1}$
$=\frac{\pi}{2}\left(\tan ^{-1} 1-\tan ^{-1}(-1)\right)$
$=\frac{\pi}{2}\left(\frac{\pi}{L_{1}}-\left(-\frac{\pi}{4}\right)\right)$
$=\frac{\pi}{2}\left(\frac{\pi}{4}+\frac{\pi}{4}\right)=\frac{\pi}{2}\left(\frac{\pi}{2}\right)$
$=\frac{\pi}{4}$

Example 4 :
Show that $\int_{0}^{\pi} x \sin x d x=\pi \int_{0}^{\pi / 2} \cos x \cdot d x$
Solution:
$I \equiv \int_{0}^{\pi} x \sin x \cdot d x=\int_{0}^{\pi}(\pi-x) \sin (\pi-x) \cdot d x$ by result No. 4
$=\int_{0}^{\pi}(\pi-x) \sin x \cdot d x$
$=\pi \int_{0}^{\pi} \sin x \cdot d x-\int_{0}^{\pi} \sin x \cdot d x$
$=\pi \int_{0}^{\pi} \sin x \cdot d x-I$
$=2 \pi \int_{0}^{\pi / 2} \sin x \cdot d x-I$ by result No.4(i) of this booklet.
$=2 \pi \int_{0}^{\pi / 2} \sin \left(\frac{\pi}{2}-x\right) d x-I$
$=2 \pi \int_{0}^{\pi / 2} \cos x \cdot d x-I$
1.e. $2 I=2 \pi \int_{0}^{\pi / 2} \cos z_{0} d x$
i.e. $I=\pi \int_{r}^{\pi / 2} \cos x \cdot d x$

Example $5: \pi / 2$
Show that $\int_{0}^{\pi / 2} \frac{x}{\cos ^{4} x+\sin ^{4} x} d x=\frac{\pi^{2}}{10}$
Solution :
$I=\int_{0}^{\pi / 2} \frac{x \cdot \sin x \cdot \cos x}{\cos ^{4} x+\sin ^{4} x} d x$
$=\int_{0}^{\pi /=} \frac{(\pi / 2-x) \cos x \cdot \sin x}{\sin ^{4} x+\cos ^{4} x}$ by result No. 4 of the text
$=\frac{\pi}{2} \int_{0}^{\pi / 2} \frac{\cos x \cdot \sin x}{\sin ^{4} x+\cos ^{4} x} d x-I$
i.e. $2 I=\frac{\pi}{2} \int_{0} \frac{\cos x-\sin x}{\sin ^{4} x+\cos ^{4} x} d x$

Now, $\sin ^{4} x+\cos ^{4} x=\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cdot \cos ^{2} x$
$=1-\frac{\sin ^{2} 2 x}{2}=+1-\frac{\left(1-\cos ^{2} 2 x\right.}{2}$
So, $2 I=\frac{\pi}{4} \int_{0}^{\pi / 2} \frac{\sin 2 x}{1-\left(\frac{1-\cos ^{2} 2 x}{2}\right)} \cdot d x$
set $\cos 2 x=z$. Then $-2 \sin 2 x \cdot d x=d z$,
$x=0 \Longrightarrow z=1$ and $x=\pi / 2 \Rightarrow z=-1$
So, $2 I=\frac{\pi}{4} \int_{-1}^{-1} \frac{-d z}{1-\left(\frac{1-z^{2}}{2}\right)}=\frac{\pi}{4} \int_{+1}^{-1} \frac{-d z}{1+z^{2}}$
$=\frac{\pi}{4} \int_{-1}^{+1} \frac{d z}{1+E^{2}}$
by result No. 1 of the text.

$$
\begin{aligned}
& =\frac{\pi}{4}\left[\tan ^{-1} z\right]_{-1}^{-1}=\frac{\pi}{4}\left[\tan ^{-1} 1-\tan ^{-1}(-1)\right] \\
& =\frac{\pi}{4}\left[\frac{\pi}{7}-\left(-\frac{\pi}{4}\right)\right] \\
& =\frac{\pi}{4}\left[\frac{\pi}{4}+\frac{\pi}{4}\right] \\
& =\frac{\pi}{4} \times \frac{\pi}{2}=\frac{\pi}{2} / 8 \\
& \text { i.e. } I=\frac{\pi^{2}}{16}
\end{aligned}
$$

Example 6 :
Show that $\int_{-\infty}^{+a} \frac{t \cdot e^{t^{2}}}{1+t^{2}} \cdot d t=0$
The given integral

$$
I=I_{1}+I_{2} \text {, where } I_{1}=\int_{-a}^{0} \frac{t \cdot e^{t^{2}}}{1+t^{2}} \cdot d t \quad \text { and } I_{2}=\int_{0}^{\pi} \frac{t \cdot e^{t^{2}}}{1+t^{2}} d t
$$

$$
\text { Now } I_{1}=\int_{-\infty}^{a} \frac{t e^{t^{2}}}{1+t^{2}} \cdot d t
$$

$$
=-\int_{0}^{2} \frac{z \cdot e^{z^{2}} d z}{1+z^{2}} \text { where } z=-t(\quad t=-a \Rightarrow z=a)
$$

$$
=-\int_{0}^{2} \frac{z \cdot e^{z^{2}} d z}{1+z^{2}} \text { by result No. } 1 \text { of the text }
$$

$$
=-\quad \int_{0}^{i} \frac{t . e^{t^{2}} \cdot d t}{1+t^{2}} \text { by result Nc. } 1 \text { of the booklet }
$$

$$
=-I_{2} \text { i.e. } I_{1}+I_{2}=0 \text { i.e. } I=0
$$

$$
\text { : } 170 \text { : }
$$

Assianmerits:

1. Show hat $\quad f(a+b-x)=\int_{n}^{2} f(x) \cdot d x$
2. Snow that $f(x+c)=\int_{c}^{l} f(x)$
3. Show that $\int_{i}^{i} f(n x) d x=y_{n} \int_{n=}^{n i} f(x) \cdot d x$
4. Show that

$$
\int_{0}^{\pi / 2}\left(a \cos ^{2} x+b \sin ^{2} x\right) d x=\frac{\pi}{4}(a+b)
$$

5. Show that $\quad \therefore x f(\sin x) d x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) d x$
6. $\quad \int_{0}^{\pi} t \cdot \sin ^{2} t d t=\frac{\pi^{2}}{4}$
7. Show that $\int_{0}^{\pi} \frac{\sin 4 \theta}{\sin \theta} \cdot d \theta=0$
8. Show that $\int_{c} \log \sin \left(\frac{\pi n}{2}\right) \cdot d \theta=-\log 2$
9. Show that $\int_{-c}^{a} t \sqrt{a^{2}-t^{2}} \cdot d t=0$
10. Show that $\pi / 2$

$$
\int_{0}^{\pi / 2} \frac{\sin ^{3 / 2} e}{\sin ^{3 / 2} \theta+\operatorname{cis}^{3 / 2} \theta} d e=\frac{\pi}{4}
$$

11. Show that

$$
\int_{0}^{\pi / \pi / 2} f(\sin x) \cdot d x=\int_{0}^{\pi / 2} f(\cos x) d x
$$

$$
\text { 12. Show that } \int_{0}^{\tilde{0}} f\left(x^{2}\right) d x=y_{2} \int_{-\infty}^{a} f\left(x^{2}\right) \cdot d x
$$

13. Snow that $\int_{0}^{1} x^{m}(1-x)^{n} d x=\int_{0}^{n} x^{n}(1-x)^{m} d x, m>0, n>0$
14. Show that $\int_{-\frac{\pi}{2}}^{\pi / 2} x^{3} \cdot \sin ^{-2} x \cdot d x=0$
15. Show that $\int_{0}^{\pi} \frac{x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x=\frac{\pi^{2}}{2 a b}$

EValuailicn oe volumes oe solids of revolution by DEFINITE INTEGRALS

Key Concerns

1. Volume of a solid br revolution

Let an area bound by the continuous curve $y=f(x)$, x-axis, the lines $x=a$ and $x=b$. Suppose that this area is revolved about the x-axis. Then a solid of revolution is generated. Here we are to find an expression for the volume of this solid of revolution.
 the intervals $[a, b]$ into n sub-intervals. Let $\delta x_{I}=x_{I}-x_{I-1}$. Let $P_{\text {If }} P_{I}$ be the points on the curve $y=f(x)$ corresponding to the points x_{I-1}, x_{I} respectively on the x-axis. Thus the area under the curve $y=f(x)$ bjetween the points x_{I-1} and x_{I} generates a disc of thickness δx_{I}. Clearly, the volume of this disc can be taken as $\pi\left[f\left(x_{=-1}\right)\right]^{2} \delta x_{r}$ or $\Pi\left[f\left(x_{I}\right)\right]^{2} \delta x_{r}$

Since δx_{r} is very small, and $f(x)$ is continuous, the volume of this disc of infinitesimal thickness is given by

$$
\varepsilon V=\pi\left[f\left(\varepsilon_{1}\right)\right]^{1-} \delta x_{1} \text {, when } x_{r-1} \leqslant t_{1} \leqslant x_{+} \text {. }
$$

Taking the sum of volumes of all such discs, we have

$$
V=\sum_{1}^{n} \pi\left[f\left(x_{+}\right)\right]^{2} \delta x_{+} \text {, where } x_{r-1} \leqslant t_{\alpha} \leqslant x_{r}
$$

Let $n \longrightarrow \sim$ so that max. $\Sigma x_{I} \longrightarrow 0$. Then we have

$$
\begin{aligned}
V & =\operatorname{li}_{n \rightarrow i} \sum_{1}^{n} \pi\left[f\left(t_{+}\right)\right]^{2} \delta x_{r} \\
& =\int_{a}^{b} \pi(f(x))^{2} d x \\
& =\int_{a}^{2} \pi i_{j}^{\prime} d x
\end{aligned}
$$

2. Suppose that an area is bound by the curve $x=g(y), y=c$, $y=d$, and y - axis. Let this area be revolved about y-axis. Then we get a solid of revolution generated by this area. By proceeding as in (1), we can show that the total volume of this solid of revolution is given by

$$
V=\int_{c}^{d} \pi x^{2} \cdot d y
$$

Let $A B$ be a curve which is being revolved about a line $C D$ in the plane of the curve. Then a solid of revolution is generated and $C D$ is the axis of this solic of revolution. Now it is required to find an expression for the volume V of this solid of revolution.

Let P and 4 be points on the generating curve so that the distance $P Q$ is an infinitesimal. Law $P P$ and $Q S$ perpendiculars on CD such that k and S are feet of the perpendiculars. Then the total volume of the schick of revolution is cleaziy given by

$$
V=\lambda t \Gamma \pi \cdot P R^{2} \cdot R S=\pi \int_{0}^{(T)} P R^{2} \cdot d(C F)
$$

Solved Examples :

1. Find the volume of the solid of revolution generated by revolving about the x-axis, the area bound by $y=5 x-x^{2}$ and x-axis.

Solution:
The equation to the c verve can be written $y=5 x-x^{2}$.

$$
\begin{align*}
& \text { i.e., } y=-\left(x^{2}-5 x\right) \text { i.e. } y=-\left\lfloor\left(x-\frac{5}{2}\right)^{2}+\frac{25}{4}\right] \\
& \text { i.e., } y-\frac{25}{4}=-\left(x-\frac{5}{2}\right)^{2} \tag{1}
\end{align*}
$$

The x-ccordinates of the points of intersection of this curve with x-axis, i.e. $y=0$ is given by

$$
\begin{align*}
& \quad 5 x-x^{2}=0 \quad \text { i.e., } x(5-x)=0 \\
& \text { i.e. } x=0 \text { or } 5 \tag{2}
\end{align*}
$$

Considering the information given by (1) and (2), we can draw the graph of the generating curve as follows:

The generating curve is a parabola with vertex at (5/2, 25/4) and intersecting x-axis at $(0,0)$ and $(5,0)$. So the total volume of the solid of revolution is given by
$V=\pi \int_{0}^{5}\left(5 x-x^{2}\right)^{2} d x$
$=\pi \int_{0}^{5}\left(25 x^{2}-10 x^{3}+x^{4}\right) d x$
$=\pi\left[25 \frac{x^{3}}{3}-10 \frac{x^{4}}{4}+\frac{x^{5}}{5}\right]_{12}^{5}$
$=\pi=\left[25 \cdot \frac{j^{3}}{3}-10 \cdot \frac{5^{4}}{4}+\frac{5^{5}}{5}\right]-0$
$=\pi \cdot 5^{4}\left[5 / 3-\frac{5}{2}+1\right]$
$=625 . \pi\left[\frac{1 c-1 i+6}{6}\right]$
$=625 . \pi \cdot \frac{2}{6}$
$=\frac{6 \Xi 5 \pi}{6}$
2. Show that the volume of a sphere of zacius a is $\frac{4}{3} a^{3}$.

At sphere is generated by revolving the region bounded by the circle

$$
\begin{equation*}
x^{2}+y^{2}=a^{2} \tag{1}
\end{equation*}
$$

about the $y-a x i s$.

So, the volume of the sphere
$=\int_{0}^{\pi} x^{2}-d y=$
$=\pi \int_{-a}^{a}\left(a^{2}-y^{2}\right) d y=\pi \quad\left[a^{2} y-\frac{y^{3}}{3}\right]_{-i}^{i}$
$=\pi\left[a^{3}-\frac{a^{3}}{3}+a^{3}-\frac{a^{3}}{3}\right]$
$=\pi\left(2 a^{3}-\frac{2 a^{3}}{3}\right)$
$=\frac{4}{3} \pi a^{3}$.
3. The area cut off from the parabola $y^{2}=4 a x$, by the chord joining the vertex to an end of the latus rectum rotates about the chord. Find the volume of the solid so formed.

Solution: The equation to the latus rectum of the parabola $y^{2}=4 a x$ is $y=2 a$. So the lotus rectum intersects the parabola $y^{2}=4 a x$ at points whose x-coordinates are given by $(2 a)^{2}=4 a x$ ie. $4 a^{2}=4 a x$ i.e., $x=a$. Correspondingly, y-coordinates of the points of intersection are given by $y^{2}=4 a^{2}$ i.e., $y= \pm 2 a$. So the points of intersection are (a, La) and (a, -2a). Let us consider the point D (a, Ra) for our purpose

Now, $O U$ is the line joining $O(0,0)$ the origin and $D(a, 2 a)$. The equation to $C D$ is given by

$$
\frac{y}{x}=\frac{2 a}{a} \text { i.e. } y=2 x \text {, i.e. } y-2 x=0 \text {. }
$$

Let $?\left(x^{\prime}, y^{\prime}\right)$ be a point on the parabola $y^{2}=4 a x$ and $P Q$ be perpendicular to $C D$ with Q on $O D$. Clearly, the length $P Q$ is given by

$$
P Q=\frac{y^{\prime}-2 x^{\prime}}{\sqrt{5}}
$$

Now the area shaded in the figure is rotated about Ci and the volume of the solid so fo med is to be e:aluctec.

The elementary length along $C D$ is $\overline{5}$. Ex.

So the volume V of the solid of revolution is given by

$$
\begin{aligned}
& V=\pi \int_{0}^{i} P C^{2} \cdot \sqrt{5} \cdot c x \\
& =\pi \int_{0}^{2}\left(\frac{y-2 x}{5}\right)^{2} \sqrt{5} d x \text {, suppressing the cashes in } x^{1}, y^{1} \\
& =\pi \int_{0}^{2} \frac{y^{2}-4 x y+4 x^{2}}{5} \cdot \sqrt{5} d x \\
& =\pi \int_{0}^{c} \frac{(4 a x-8}{\sqrt{5}} \frac{a x^{3 / 2}-4 x^{2}}{\sqrt{5}} d x \\
& =\frac{\pi}{\sqrt{5}}\left[\frac{4 a z^{2}}{2}-\frac{2}{5} \cdot 8 \sqrt{2} z^{3 i}+\frac{4 x^{i}}{3}\right]_{0}^{i 2} \\
& =\frac{\pi}{\sqrt{5}}\left[\frac{4 a^{3}}{2}-\frac{16}{5} a^{3}+\frac{4 a^{3}}{3}\right] \\
& =\frac{\pi a^{3}}{\sqrt{5}}\left(2-\frac{16}{5}+\frac{4}{3}\right) \\
& =\frac{\pi}{\sqrt{5}} a^{3}\left(\frac{30-48+2 \pi}{15}\right)=\frac{2 \pi a^{3}}{15 \sqrt{5}}
\end{aligned}
$$

Assianments:

Find the volumes of solids generated by revolving about the x-axis, the areas bounded by the following curves and lines.

1. $y=\sin x ; x=0, x=\pi$
2. $y=5 x-x^{2}, x=0, x=4$
3. $y^{2}=9 x, x=4$
4. $x^{2}+y^{2}=4, x=1, y=0$
5. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
6. Prove that the volume of a right circular cone of height h and base of radius r is $\frac{1}{3} \pi r^{2} h$.
7. An are of a parabola is bounded at both ends by the latus rectum of length 4 a . Find the volume of the solid generated by rotating the arc about the latus rectum.
8. The area cut of f by the line $x+y=1$ from the parabola $\sqrt{ } \quad+\quad / y=1$ is revolved about the same line. Find the volume of the solid so generated.
9. Show that the volume of the solid of revolution generated by revolving the cycloid $x=a(\theta+\sin \theta), \quad y=a(1+\cos \theta)$ about its base is equal to $5 \pi^{2} a^{3}$.
10. Show that the volume of the solid generated by revolving the cardioide $r=a(1-\cos \theta)$ about the initial line is equal to $\frac{8}{3} \pi a^{3}$.
11. Evaluation of Plane Areas by Definite Integrals Key Concepts
12. Let a region by zounded by the graph of $y=f(x)$, x-axis, the lines $x=a$ and $x=t,(a<b)$. Then area is of this region is given by
$A=\int_{-1}^{b} f(x) \cdot d x$ if $f(x) \geqslant 0$ for $a \leqslant x \leqslant b$

13. If $f(x) \leqslant 0$ for all $x \in[a, b]$, then $-f(x) \geqslant 0$ for all x in $[a, b]$ and the area a bounded by the graph of this function, $x=a, x=b$ and x - axis $(a<b)$ is given by

$$
A=-\int_{a}^{b} f(x) \cdot d x
$$

The proofs of the above two assertions are very much similar to the extendediefinition of $\int_{\sim}^{l} f(x)$.dx given in lesson 1 and the reader can frame the proofs themselves based on the definition of

$$
\int_{\pi}^{1} f(x) \cdot d x \cdot
$$

The above two assertions immediately lead to the following :
3. If $f(x) \geqslant 0$ for $x \in[a, c]$ and $f(x) \leqslant 0$ for $x \leqslant[c, b]$ then the total area A bounded by $y=f(x), x=a, x=b$ and y-axis is given by
$A=\int_{\approx}^{i} f(x) d x-\int_{c}^{b} f(x) d x$

$$
\text { Similar results can be stated for the function } x=g(y) \text {. }
$$

4. The area A bounded by the graphs of the functions $y=f,(x)$ and $y=f_{2}(x)$, and the ordinates $x=a$ and $y=b,(a<b)$ where $f_{1}(x) \leq f_{2}(x)$ for all $x \in[a, b]$ is given by

$$
A=\int_{a}^{b}\left\{f_{2}(x)-f_{1}(x)\right\} d x \quad y=f_{2}(z)
$$

The figure is self-explanatory.
Clearly, area PQRSP
= area MNKSM - area MNCPM
$=\int_{a}^{b} f_{2}(x) d x-\int_{a}^{b} f_{1}(x) d x$
$=\int_{a}^{b}\left\{f_{2}(x)-f_{1}(x)\right\} d x$
5. area enclosed by a clare curve (equations queen in parametric form): Let a closed curve be given by $x=f(t), y=g(t), \alpha \leqslant t \leqslant \beta$ So that $f(\underset{\sim}{*})=f(\theta)$ and $g(x)=g(\beta)$. Le: us suppose that the closed curve starts (cozreszoneing to x) and ends (corresponding to B) at the point P. Let any line parallel to y-axis (intersecting the curve) intersect the curve in exactly two points. Let the lines $x=a$ and $x=b$ touch the curve in points L ard C, where these points correspond to t_{1} and t_{2} (values of t) respectively so that

Let ψ be a point on the curve corresponding to t_{3} such that
${ }^{t}{ }_{1}<{ }^{t_{3}}<\mathrm{t}_{2}$.
Now the area of the region
= area of region MLC Q LM - area of region MICPDM
$=s_{2}-s_{1}$
where S_{2} = area of $\mathrm{z} \in$ gion MNCQDM
where $S_{1}=$ area of region MPCDDM
Also $S_{2}=\int_{a}^{\infty} y d x$, covering the region ANHCCDM

$$
=\int_{t_{2}}^{t_{1}} y(t) \frac{d x}{d t} d t+\int_{t_{3}}^{t_{1}} y(t) \cdot \frac{d x}{d t} \cdot d t
$$

Similarly,

$$
S_{1}=\left\{_{:}^{3} y(t) \cdot \frac{d x}{d t} d t+\int_{i}^{2} y(t) \cdot \frac{d x}{d t} \cdot d t\right.
$$

considering the areas under the arcs DP and FC respectively So, $S=S_{2}-S_{1}$
$=\left(\int_{t_{2}}^{t_{3}} f \cdot \frac{d x}{d t} d t+\int_{t_{3}}^{t_{1}} f \cdot \frac{d z}{d t} d z\right)-\left(\int_{t_{2}}^{\beta^{2}} y \cdot \frac{i z}{d t_{0} t} \cdot d t-\int_{L}^{t_{1}} f \cdot \frac{i-z}{d_{i}} \cdot d t\right)$
$=-\int_{x}^{t_{1}} y \cdot \frac{d x}{d t} \cdot d t-\int_{t_{1}}^{t} y \cdot \frac{d x}{d t} \cdot u-\int_{t_{3}}^{t} y \cdot \frac{d x}{d t} \cdot \cdot t \cdot-\int_{i_{2}}^{6} y \cdot \frac{i}{d t} \cdot d t$
$=-\int_{x}^{6} f \cdot \frac{d x}{d i} \cdot d z-\quad-\quad-\ldots(1)$
Similarly, considering tangents to the closed curve parallel to x-axis, we can show that
$S=\int_{a}^{\beta} x \cdot \frac{d y}{d t} \cdot d t$
Adding (1) and (2), we get
$2 S=\int_{\alpha}^{3} x \frac{d v}{d t} \cdot d t-\int_{x}^{5} y \cdot \frac{d x}{d t} \cdot d t$
$=\int_{x}^{6}\left(x \frac{d v}{d t}-y \frac{d x}{d t}\right) d t$
Hence the area enclosed in the closed curve
$=y 2 \int_{x}^{3} x \frac{d v}{d t}-y \frac{d x}{d t} d t$

Solved Exams les:

1. Determine =fe area bounced by the parabola $y_{2}^{-}=4 a x$ am $x=b$.

The required area is the shaded portion in the Eigure which is self-explanato $=\because$. The parabola $y^{2}=4$ a x is symene=ここ=al about x-axis. So, the require area
$=2 X$ area PR
$=2 \int^{h} y \cdot d x$
$=2 \int_{\varepsilon}^{0} \sqrt{4 a x} \cdot \operatorname{sx}$ (y is taken as the positive side of the area is
considered here)
$=2.2 \sqrt{a} \int_{i} x_{i}^{y^{2}} \cdot d x$
$=4 \sqrt{a} \frac{2}{3}\left[x^{3 i-}\right]_{0}^{2}$
$=4 \cdot \bar{a} \cdot b^{3 / 2}$
$=\frac{5}{-3} \sqrt{6} \cdot b^{3 / 2}$
$=\frac{8}{3} \sqrt{a e^{3 / 2}}$
2. Find the area under the curve $y=\sin x$ between 0 and 2 .

Here, we note that between 0 and $\pi, \sin x \geqslant 0$; and between 0 and $2 \pi, \sin x \leqslant \theta$.
$=\int_{0}^{\pi} \sin x \cdot d x-\int_{0}^{\pi} \sin x \cdot d x$
$=[\cos x]^{\prime \prime}-[\cos x]_{\frac{1}{1}}^{=\pi}$
$=(1-0)-(0-1)$
$=1+1=2$
3. Find the area enclosec by a loop of the curve

$$
a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)
$$

Solution: Here the equation of the curve is

$$
\begin{equation*}
a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right) \tag{1}
\end{equation*}
$$

Ihe curve (1) intersects $y=0$ in the points given by $0=x^{2}\left(a^{2}-x^{2}\right)$ i.e. $x=0, x= \pm a$.

The tangents at the origin is given by $x^{2}-y^{2}=0$
which shows that the origin is a node.
So, a loop of the curve is
$a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right), \quad 0 \leqslant x \leqslant a$

Also the loo: is symneこ=ic asout x - axis

Thus the area oj e the lock is

$$
\begin{aligned}
& =2 \int_{0}^{\infty} y d x=z x \sqrt{a^{2}-x^{2}} \cdot d x \\
& =2 / a \int_{i}^{1} a \sin \theta, \quad a \sin \theta, a \cos \theta d \theta \text { by putting } \\
& x=a \sin \theta \\
& =2 \cdot a^{3} \cos ^{2} \theta, \sin \theta \cdot d \theta \\
& =2 a^{2}\left[-\cos ^{3} \theta\right]^{\pi / 2} \\
& =\frac{2 a^{2}}{3}
\end{aligned}
$$

4. Eina the are above the x-axis, of the =ecion bounded by the parabola $y^{2}=x$ and the circle $x^{2}+y^{2}=2 x$.

The x-coorinates of points of intersection of the parabola $y^{2}=x$ and the circle $x^{2}+y^{2}=2 x$ are given by
$x^{2}+x=2 x$ i.e., $x^{2}-x=0$ i.e. $x(x-1)=0$ i.e. $x=0$ and $x=1$.

So we have to find the area bounded by the given curve above the x-axis so that for the points of the region
$0 \leqslant x \leqslant 1$
Thus the required area

$$
\begin{aligned}
& =\int_{0}^{1}\left(y_{1}-y_{2}\right) d x \text {, where } y_{1}=2 x-x^{2} \text { and } y_{2}^{2}=x \\
& =\int_{0}^{1}\left(\sqrt{2 x-x^{2}}-\sqrt{x}\right) d x \\
& =\int_{0}^{1} \sqrt{2 x-x^{2}} d x-\int_{c}^{1} \sqrt{x} \cdot d x \\
& \text { For integrating } \int_{0}^{1} \sqrt{2 x-x^{2}} \cdot d x, \text { set } x=2 \sin ^{2} \theta \text {. Then } \\
& d x=4 \sin \theta \cos 0^{\circ} \cdot d \theta \\
& \text { and } x=0 \Longrightarrow \theta=0, \\
& \qquad x=1 \Longrightarrow \theta=\frac{\pi}{4}
\end{aligned}
$$

Then $\int_{0}^{1} \sqrt{2 x-x^{2}} \cdot d x$
$=\int_{0}^{\pi / 4} \sqrt{\left(2.2 \sin ^{2} \theta-4 \sin ^{4} \theta\right)} 4 \sin \theta \cdot \cos \theta \cdot d \theta$
$=\int_{0}^{\pi / 4} 2 \sqrt{\sin ^{2} \theta\left(1-\sin ^{2} \theta\right)} 4 \sin \theta \cos \theta \cdot d \theta$
$=\int_{0}^{\pi / 4} 3 \cdot \sqrt{\sin ^{2} \theta-\cos ^{2} \theta} \cdot \sin \theta \cdot \cos \theta \cdot d \theta$

Also, $\int_{0}^{1} \sqrt{x} \cdot d x=\left[\frac{2}{3} x^{3 /-}\right]_{0}^{1}=\bar{\equiv}$
Therefore, the required area $=\frac{\pi}{4}-\frac{3}{3}$
5. Find the area enclosed by the curve given by
$x\left(1+t^{2}\right)=1-t^{2}, y\left(1+t^{2}\right)=2 t$

Solution :
Here it is a variable parameter taking its values from
to . So we can set $t=\tan \theta$ where
Then $x=\frac{1-t^{2}}{1+t^{2}}=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos 2 \theta$
and $y=\frac{2 t}{1+t^{2}}=\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\sin 2 \theta$, where $\frac{-\pi}{2} \leqslant \epsilon \leqslant \frac{\pi}{2}$

Note that the parametric equation represents a closed curve. Hence the required area
$=\frac{1}{2} \int_{-\pi / 2}^{\pi / 2}\left(x \frac{d y}{d \theta}-y \frac{d x}{d \theta}\right) d \theta$
$=\frac{1}{2} \int_{-\pi /=}^{\pi / 2}(\cos 2 \theta \cdot 2 \cos 2 \theta-\sin \theta \cdot(-2 \sin \theta)) d \theta$
$=\frac{1}{2} \cdot 2 \int_{-\pi / L}^{\pi / 2}\left(\cos ^{2} 2 \theta+\sin ^{2} 2 \theta\right) d \theta$
$=\int_{-\frac{\pi}{2}}^{\pi / 2} d \theta=[\theta]_{-\frac{\pi}{2}}^{\pi / 2}=\pi / 4$
6. Find the whole area of the cycloid $x=a(\theta+\sin \theta)$,

Here the area of half the cycloid i.e., the shaced portion in the figure is the region sounded by the cycloid, $y=0$ and $y=2 a$. Hence the total area of the cycloid

```
=2 (area of the shaded portion in the figure).
```

$=2 \quad x \int_{-}^{2} d y$
$=2 \int_{i}^{\pi} a(\theta+\sin \theta) \cdot a \sin \theta \cdot d \theta$
$[$ for $x=a(\theta+\sin \theta)$, $d y=a \cdot \cos \theta \cdot d x$, $y=0 \Rightarrow c=0$.

$$
y=2 a \Rightarrow 0=\pi J
$$

$=2 a^{2} \int_{0}^{\pi}\left(\theta \cdot \sin \theta+\sin ^{2} \theta\right) d \theta$

$$
\begin{aligned}
& \int_{0}^{\pi} \hat{\theta} \sin f d r=-\theta+\cos -\int_{0}^{\pi}(-\cos \theta) d s \\
& =[-\cos r-\sin 0]_{0}^{\pi} \\
& \int_{0}^{\pi} e \sin ^{2}+d \theta=\int_{i}^{\pi} \frac{(-\cos 20)}{=} d \theta \\
& =\left[\frac{2-\frac{\sin 20}{2}}{2}\right]_{0}^{\pi}
\end{aligned}
$$

Hence the required area

$$
\begin{aligned}
& =2 a^{2}\left[-\theta \cos 0+\sin \theta+\frac{1}{2}\left(0-\frac{\sin 2 \theta}{2}\right)\right]_{0}^{\pi} \\
& =2 a^{2}\left[-\pi \cos \pi+\sin \pi+\frac{1}{2}\left(\pi-\frac{\sin 2 \pi}{2}\right)+0 \cdot \cos \theta-\sin c\right. \\
& =2 a^{2}\left[\pi+c+\frac{\pi}{2}(0 \cdot c+c-c]\right. \\
& \doteq 2 \pi^{2} \cdot \frac{3 \pi}{2}=3 a^{2} \pi
\end{aligned}
$$

Note: Here the parametric equations of the cycloid do not represent a $=$ closed curve.

Assigrments :

1. Find the area of the segment cut off from $y^{2}=4 x$ by the line $\mathrm{y}=2 \mathrm{x}$.
2. Find the area of the portion of the circle $x^{2}+y^{2}=1$ which lies inside the parabola $y^{2}=1-x$.
3. Find the area bounded by the curves $y^{2}-4 x-4=0$ and $y^{2}+4 x-4=0$.
4. Find the area included between the ellipses $x^{2}+2 y^{2}=1$ and $2 x^{2}+y^{2}=1$.
5. Find the areas enclosed by the following curves :
a) $x=a \cos t+b \sin t, \quad y=a^{1} \cos t+b^{1} \sin t$
b) $y=a \sin 2 t, y=a \sin t$
c) $x=a\left(1-t^{2}\right), y=a t\left(1-t^{2}\right) \quad(-1 \leqslant t \leqslant 1)$
d) $x=\frac{1-t^{2}}{1+t^{2}}, \quad y=t \frac{\left(1-t^{2}\right)}{\left(1+t^{2}\right)}, \quad(-1 \leqslant t \leqslant 1)$
6. Find the area bounded by the axis x, part of the curre $y=\left(1+\frac{8}{x^{2}}\right)$ anc the ordinates at $x=2$ and $x=4$. If the ordinates at $x=$ a divides the area into two equal parts, find a.
7. Find the area bounded by the curves $x^{2}+y^{2}=25,4 y=\left|4-x^{2}\right|$ and $x=0$, above the x-axis.

Answers :

1. $8 / 3$
2. $\left((y 2) \pi+\frac{4}{3}\right)$
3. $16 / 3$
4. $2 \sqrt{2}$
5. a) $\pi\left(a b^{1}-a^{1} b\right)$
b) $\frac{8}{3} a^{2}$
c) $\frac{8 a^{2}}{15}$
d) $2-\frac{\pi}{2}$
6. Area $n=4$ sq. units, $a=2 \sqrt{2}$
7. $4+25 \sin ^{-1} \frac{4}{5}$ sq. units
DIFFERENTIAL EQUATIONS
8. Differential Equations, their Classification and Terminology
9. Methods of Solving First Order Differential Equations
10. Applications of First Order Differential Equations
by
DI.N.B.BADRINARAYAN

DIFFERENTIAL EUNATICNS

An Introduction :

1. A body is falling freely under gravity.
2. A body is falling under air resistance.
3. The bob of a simple pendulum is pullec aside and let go.
4. A hot body cools according to certain law.
5. A chain of given length hangs over the smooth edge of a table arx beciins to slide off the tabie.

Here are a few situations where we need to discuss the problem. The problem may be the motion of the body or the bob of the simple pendulum or the temperature of the cooling body at a given moment or the motion of the chain sliding off the table on which it is lying. A Differential Equation set up to describe each of these problems is the mathematical formulation of the problem itseif. Consequently, solving the differential equation is equivalent to solving the problen itself.

لifferential equations occur in the context of numerous problems which one comes across in different branches of science and engineering.

Some of them are the probiem of determining
a) the motion of a projectile, rocket, sateliite or planet.
b) the curfent in an electric circuit.
c) the conouction of heat in a rod or a slab.
d) the vibrations of a wire or a membrane
e) the flow of a liquid
f) the rate of decomposition of a radioactive substance or the rate of growth of a population.
g) the reaction of chemicals
h) the curves which have certain geometrical properties.

The mathematical formulation of such problems gives rise to differential equations. In each of the situations cited above, the objects involved obey certain laws of nature or scientific laws. Ihese laws involve various rates of change of one or more quantities with respect to other quantities. Such rates expressed as various derivatives and the scientific laws themselves become mathematical equations involving the derivatives, that is, differential equations.
"The vital ideas of mathematics.... were created by the solitary labour and individual genius of a few remarkable men.... A few of the greatest mathematicians of the past three centuries are Fermat, Newton, the Bernoulis, Euler, Lagrange, Laplace, Gauss, Abel, Hamilton, Liouville, Chebyshev, Hermhe, Kiemann and Poincaqe".

An elementary course on differential equations as this, aims at familiarising to its students, basic terminology and methods and techniques of solving first order equations of the type

$$
\frac{d y}{d x}=f(x, y) \text { in easy cases. }
$$

Further, a student at the end. of this course should be able to apply the concepts and techniques of solving differential equations of first order to problens arising in real life situations, some of which have been mentioned already.

The prerequisites for the course are
i) working knoviedge of differentiation and integration
ii) familiarity with plane curves.

Differential Equations and Their Classification - Ierminoloay

An equation involving an unknown function of one or more (independent) var:ables and the derivatives of the unknown function w.r.t. the independent variable(s) is called a differential equaticr. Some examples :

1. $\frac{d_{y}^{2}}{d x^{2}}+x+\left(\frac{d y}{d x}\right)^{2}=0$
2. $\frac{d^{2} y}{d t^{2}}+5 \cdot \frac{d}{d t}+t x=e^{t}$
3. $\quad \frac{\partial v}{\partial s}+\frac{\partial v}{\partial t}=0$.
4. $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0$
5. $\quad \frac{d x}{d t}=y ; \quad \frac{d y}{d t}=-x$.

A differential equation involving ordinary derivatives of one independent va:riable w.I.t. the independent variable is called an ordinary differential equation (or equation).

Examples: In the earlier set of examples, equations (1), (2) and (5) are ordinary equations.

In (1) y is the dependent variable or the unknown function of x while x is the lone indepenent variable.

In (2) x is the depiencent variable and t is the independent variable.

In (5) x and y are both dependent variables and t is the independent variable.

A differential equation involving partial derivatives of one dependent variable w.r.t. more than one independent variables is called a partial differential equation.

Examples: In the set of examples already given, equations (3) and
(4) are partial differential equations.

In (3) v is the dependent variable and s and t are independent variables. In (4) z is the dependent variable and x, y are independent variables.

More examples of $ل$ ifferential Equations :
1.

$$
\frac{d y}{d x}=-k_{y}
$$

$$
\text { 2. } \quad m \cdot \frac{d^{2} x}{d t^{2}}=m g-k \cdot \frac{d x}{d t}
$$

3. $\frac{d y}{d x}+2 x y=e^{-x^{2}}$
4. $\frac{d^{2} \frac{2}{d x^{2}}}{d \cdot 5 \cdot \frac{d y}{d x}+6 x=0}$
5. $\left(1-x^{2}\right) \cdot \frac{d^{2} y}{d x^{2}}-2 x \cdot \frac{d y}{d x}+p(p+1)^{2} y=0$.
6. $\quad x^{2} \cdot \frac{d^{2}}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-p^{2}\right) y=0$.
7. $\quad a^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} \omega}{\partial y^{2}}\right)=\frac{\partial \omega}{\partial t}$.
8. $a^{2}\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} \omega}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right)=\frac{\partial^{2} w}{\partial t^{2}}$
9. $\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=$
10. $L \cdot \frac{d^{2} a}{d t^{2}}+R \frac{d A}{d t}+\frac{1}{C} Q=E$.

Some of these equations are classical. (5) and (6) are called Legendre's equation and Bessel's equation respectively.

The equations (7), (8) and (9) are the classical heat equation, wave equation and Laplace's equation respectively.

Readily it: is seen that (1) to (6) and (10) are ordinary equations while (7) to (9) are partial equations.

Order and Degree of a Differential Equation:
The order of the highest ordered derivative found in a differenttial equation is called the order of the equation.

The degree of the highest order derivative in a differential equation which is free from radicals and fractions in its derivatives is called the degree of the equation.

In the examples (1) to (10) we had earlier easily we can recognise the order and degree of each equation.

The equations (1) and (3) are of order 1 and degree 1. The other equations are of order 2 and degree 1.

More examples :

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+1<\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=0
$$

has its order and degree 2 each.
$\left(\frac{d y}{d x}\right)^{3}+y=e^{x}$ has order 1 and degree 3 .
The equation $\frac{d y}{d x}+\frac{1}{d y / d x}=2 x$
has to be rewritten as $\left(\frac{d y}{d x}\right)^{2}+1=2 x\left(\frac{d y}{d x}\right)$.

Then the order and degree are respectively 1 and 2 .
The equation

$$
p=\frac{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}}{\frac{d^{2} y}{d x^{2}}}
$$

has to be rewritten as

$$
\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=\rho^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}
$$

Then the order and degree of the equation are both 2. A Linear Equation of nth order. An ordinary Linear differential equation of nth order is given by

$$
\begin{aligned}
& a_{0}(x) y^{(n)}+a_{1}(x) y^{(n-1)}+\ldots+a_{n}(x) y=b(x) \\
&(k) \frac{k y}{y}=\text { the kith derivative of y w.I.t. } x .
\end{aligned}
$$

The equation is (1) said to be homogeneous if $b(x) \equiv 0$.
(2) said to be a linear equation with constant coefficients if all the coefficients $a_{0}(x), a_{1}(x), \ldots, a_{n}(x)$ are
constants. An equation which is not homogeneous is called a non-homogeneous or inhomogeneous equation.

Examoles:

1. $y^{111}+3 x^{2} y^{11}+3 x y^{\prime}+2 y=0$
is a linear homogeneous equation where $1=\frac{d}{d x}, 11=\frac{d^{2}}{d x^{2}}$, etc.
2. $y^{\prime \prime}+y^{\prime}+x y=0$
is a homogeneouis linear equation with variable coefficients.
3. $y^{(4)}+y^{11}+y=e^{x}$
is a non homogerieous linear equation with constant coefficients.
4. $x^{3} y^{\prime \prime 1}+2 x^{2} y^{\prime 1}+3 x y^{\prime}+4 y=\sin x$
is a non homogeneous equation with variable coefficients.
5. $y^{11}+x y^{2}=0$ is not a linear equation.
6. $\left(y^{1}\right)^{2}+y=e^{x}$ is also not linear.

Note:

1. y and its derivatives in the lineer equation occur in first degree only.
2. Consequently a linear equation is necessamily of first degree.
3. No products of y and/or any of its derivatives are present.
4. No transcencental functions of y and/or its derivatives occur.

More examples :

1. $\frac{d^{2} y}{d x^{2}}+5 \cdot \frac{d y}{d x}+6 y=0$
2. $\quad \frac{d^{2} y}{d x^{2}}+x^{2} \cdot \frac{d_{y}^{2}}{d x^{2}}+x^{3} \cdot \frac{d y}{d x}=x e^{x}$
are ordinary linear equations.

An ordinary differential equation which is not linear is called a non linear ordinary differential equation.
. $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y^{2}=0$ is a non linear ordinary equation.
A general orcinary differential equation of nth order is a relation of the type: $F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=0$.

Formation of Differential Equations

Problems

1. Suppose that a body of mass malls freely under gravity.

In this case the only force acting on the body is its weight mg. If x is the distance through wiich the body falls in time t, then its acceleration is $\frac{d^{2} x}{d t^{2}}$.

Then the equation of motion of the falling body is

$$
\begin{equation*}
m \frac{d^{2} x}{d t^{2}}=m g \text { or } \quad \frac{d^{2} x}{d t^{2}}=g \quad \ldots \tag{1}
\end{equation*}
$$

2. If there is a resisting force by ain (say) proportional to the velocity, then the total force acting on the body is mg $-k \frac{d x}{d t}$ (- because the ai= =esistance opposes the motion). In tais face, the equation of motion becomes,

$$
\begin{aligned}
& m \cdot \frac{d^{2} x}{d t^{2}}=m g-k \frac{d x}{d t} \\
& \text { or } m \cdot \frac{d^{2} x}{d t^{2}}-1 k \cdot \frac{d x}{d t}=m g \\
& \text { or } \quad \frac{d^{2} x}{d t^{2}}+\left(\frac{k}{m}\right) \frac{d x}{d t}-g=0 \cdot--(2)
\end{aligned}
$$

3. Consider a pendulum consisting of a bob of mass m at the end of an inelastoc string or hod of negligible mass ane of length a. If the bob is pulled aside through an angle and released, then by the principle of conservation of energy

$$
\begin{aligned}
& y 2 m v^{2}=m g(a \cos \theta-a \cos \alpha) \\
& S=Q E, \quad \frac{d \theta}{d t}=r=a \cdot \frac{d \theta}{d t}
\end{aligned}
$$

The equation of motion becomes

$$
\begin{aligned}
& \quad \frac{1}{2} a^{2}\left(\frac{d \theta}{d t}\right)^{2}=\operatorname{ag}(\cos \theta-\cos \alpha) ; \alpha>\theta \\
& \operatorname{or}\left(\frac{d \theta}{d t}\right)^{2}=\frac{2 g}{a}(\cos \theta-\cos \alpha)
\end{aligned}
$$

Or $\frac{d \theta}{d t}=\sqrt{\frac{2 y}{a}(\cos \theta-\cos x)}-\cdots-(3)$
4. resume that a hot body cools at a rate proportional to the difference between the temperatures of the body and the surroundings. This law is known as Newton's law of cooling.

Let θ denote the temperature of the body at any moment t and θ_{0} the temperature of the surroundings of the body. Then the rate of cooling is $\frac{d \theta}{d t}$ and this is proportional to $\left(\theta-\theta_{0}\right)$. Then the cooling of the body is governed by the equation

$$
\begin{aligned}
\frac{d \theta}{d t} & =-k\left(\theta-e_{c}\right) \quad k>0 \\
\text { or } & \frac{d \theta}{d t}+k e
\end{aligned}
$$

5. A tank contains 50 gal of pure water initially. A brine containing 2 lb of dissolved salt per gallon flows into the tank at the rate of 3 gals./min. The mixture is kept uniform by constant stirring and the well-stirred mixture simultaneously flows out of the tank at the same rate.

Let x denote the amount of salt in the tank at time t. Then the equation for the rate of change of x is

$$
\begin{equation*}
\frac{d x}{d t}=\operatorname{Inf} 10 w-o u t f 10 w \tag{1}
\end{equation*}
$$

The brine flows at the rate of 3 gals/min and each gallon contains 2 lbs salt.

Then, Inflow $=(21 \mathrm{~b} / \mathrm{gals}) \times(3 \mathrm{gal} / \mathrm{min})=6 \mathrm{lb} / \mathrm{min} .$.

```
    Since the rate of outflow = the Iate of inflow, the tank contains
    5 0 \text { gal of mixture in time t. Ihis 50 gal. contains x lbs of salt in}
    time t. Therefore, the concentration of salt at time t = y50 x lb/gal.
    Then, the outflow:= (x/50 lb/gal) (3 gal/min) =
    \frac{3x}{50}}10/min
    Hence, (i), (ii) anc: (iii)
\Longrightarrow}\frac{dx}{dt}=6-\frac{3x}{50}-\cdots-(5
    wrich is the equaticn governing the rate of change of salt content.
            The above discussed problems illustrate how a differential
    equation describes the problem. In other mords, in these
    illustretions, the mathematical formulation of the problem is the
    differential equation.
In each problem above, we can recognise the following important steps leading to the mathematical formulation of the problem, that is, the diff.urential equation.
1. Identification of the law/laws, operating in the problem.
2. Analysis of the p:coblem.
3. Representing the attributes by symbols.
4. Formation of the equation using the relatinnships or laws in the problem.
```


Differential Equations for Families of Curves :

1. Consider the family of concentric circles with their centre at the origin.

The circles are all given by

$$
\begin{equation*}
x^{2}+y^{2}=a^{2} \tag{1}
\end{equation*}
$$

As a takes various values, we get different members of the family of circles. we describe a as the parameter of the family of circles. Differentiating (1) w.r.t. x, we get

$$
2 x+2 y \frac{d y}{d x}=0 \text { or } x+y \frac{d y}{d x}=0--(2)
$$

The differential equation (2) represents the family of circles. lie note: 1. that (2) is free from the parameter. In other words, the parameter a is eliminated in getting the differential equation. 2. The number of parameters in (1) is equal to the order of the differential equation (2), each being one.
2. Consider the family of circles through the origin with their centres on the x-axis.
Each circle of the family is given by $x^{2}+y^{2}=2 c x \ldots$ (1)
As c takes different values, we get different circles, c is the parameter of the family of circles.

Differentiating (1) w.r.t. x

$$
\begin{equation*}
2 x+2 y \cdot \frac{d y}{d x}=2 c \quad \text { or } \quad x+y \cdot \frac{d y}{d x}=c \tag{2}
\end{equation*}
$$

Eliminating c between (1) and (2), we get

$$
\begin{align*}
& x^{2}-y^{2}=2\left(x+y \frac{d y}{d x}\right) x \\
&=-x^{2}+2 x y \frac{d y}{d x} \\
& \text { or } y^{2}-x^{2}=2 x y \cdot \frac{d y}{d x} \\
& \text { or } \quad \frac{d y}{d x}+\frac{1}{2}\left(\frac{x}{y}-\frac{y}{x}\right)=0
\end{align*}
$$

This differential equation represents the family of circles. Again we notice that (3) is a first order equation got by eliminating the single paramete $=c$ of the family of circles.
3. Consider the family of parabolas : $y=(x+c)^{2} \ldots$
c being the parameter of the family.
Differentiating (1), $\frac{d y}{d x}=2(x+c)$
Eliminating c fezzan (1)and (2), we get

$$
\begin{equation*}
\frac{d y}{d x}=4(x+c)^{2}=4 y \tag{3}
\end{equation*}
$$

oI $\quad \frac{d y}{d x}-4 y=0$
is the differential equation representing the family of parabolas.

Solution of a differential equation:
in Illustration : Consider the function $y=a e^{2 x}+b e^{-2 x}$
where a, b are arbitrary constants.
Lifferentiating w.r.t. x we get $y=2 a e^{2 x}-2 b e^{-2 x}$
Differentiating w.r.t. x again, $y=4 a e^{2 x}+4 b e^{-2 x}$

$$
=4\left(a e^{2 x}+b e^{-2 x}\right)
$$

or $y=4 y--(2)$
The function (1) satisfies the differential equation (2) for air constants a and b. (1) is a solution of the differential equation (2) for all values of a and b.

Consider an nth order ordinary differential equation

$$
F\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{-n}\right)=0-(1)
$$

where F is a real function of $x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}$
$y^{(n)}=$ The $n^{\text {th }}$ derivative of y w.r.t. $x=\frac{d y}{d x^{n}}$.
A real function $y=f(x)(2)$ is called a solution of the differential equation over some interval I if y is differentiable n times and 'satisfies the differential equation'
i.e. $F\left(x, f(x), f^{\prime}(x), \ldots, f^{(n)}(x)\right)=0$ for all $x \in I$.

The phrase 'satisfies the differential equation' means that when $y, \frac{d y}{d x}, \ldots$. , are replaced by $f(x), f^{\prime}(x), \ldots f^{(n)} x$ respectively in (1), the equation (1) becomes an identity.

A differential equation is said to be solved if a solution of the equation is found.

Another Illustration:

The differential equation: $\frac{d^{2} y}{d x^{2}}+m^{2} x=0$ has its solution $y=a \cos m x+b \sin m x$ where a and b are arbitrary constants.

Verification :

$$
\begin{aligned}
y & =a \cos n x+b \sin m x \\
\frac{d y}{d x} & =-m a \sin m x+m b \cos m x \\
\text { and } \frac{d^{2} y}{d x^{2}} & =-m^{2} a \operatorname{cis} x-m^{2} b \sin m x \\
& =-m^{2}(a \cos m x+b \sin m x) \\
\frac{d^{2} y}{d x^{2}} & =-n^{2} y \text { or } \frac{d^{2} y}{d x^{2}}+m^{2} y=0
\end{aligned}
$$

In the illustrations, the constants a and b of the solutions can take any values. Such a solution of a differential equation containing arbitrary constants (as a and b) is called the general solution of the differential equation.

A solution got from the general solution for particular values of the arbitrary constants is called a particular solution of the differential equation.

Initial Value Problem_:
$y=x^{2}+c, c$ being an arbitrary constant, is the general solution of $\frac{d y}{d x}=2 x$. The particular solution satisfying the
condition $y=4$ when $x=1$ is got from the general solution $y=x^{2}+c$. Putting $x=1, y=4,4=1+c$ or $c=3$. Hence the particular solution required is $y=x^{2}+3$.

A given differential equation together with an additional condition as in the above is called an Initial Value Problem (I.V.F.) Thus, $\frac{d y}{d x}=2 x$
together with $y=4$ when $x=1$ is an initial value problem.
The above initial value problem is written as

$$
\frac{d y}{d x}=2 x \text { The dizzerential equation }
$$

$$
y(1)=4 \quad \text { The initial condition I.V.P. }
$$

The condition in the inazial value problem is called an initial concition of the prodie:. For the initial value problem :
$\frac{d y}{d x}=2 x, y(1)=4, y=x^{2}+3$ is the solution.
Thus a solution of an initial value problem is a solution of the differential equatisn of the problem. In addition to this, tre solution must satis三y the initial condition also.
Another Examole: $\frac{d^{2} y}{d x^{2}}-y=0$ has the general solution $y=a \cos x+b \sin x$. Suppose $y(0)=2, y^{\prime}(0)=3$, then $a=2, b=3$. Thus, $y=2 \cos x+3 \sin x$ is a particular solution of the differential equation. This paf:icular solution satisfies the conditions $y(0)=2$, and $y^{\prime}(0)=3$.
Therefore, $\frac{d^{2} y}{d x^{2}}+y=0$
with $y(0)=2$ and $y^{\prime}(0)=3$.
is an initial value problem having the solution $y=2 \cos x+3 \sin x$. A general nth oriez initial value problem is of the type
$F\left(x, y, y, \quad y, \ldots, y^{(n)}\right)=0$ over.

$$
\begin{equation*}
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}, \cdots, \quad y\left(y_{0}\right)=y_{0}^{(n-1)} \tag{2}
\end{equation*}
$$

for some value $x=x_{c} \in I$.

The set of conditions in (2) is the set of initial conditions of the initial value prover. Here, $y_{0}, y_{0}, y_{0}, \ldots ., y_{0}^{(n-1)}$ are given values.

Geometrical Meaning :

A differential eouatior. represents a family of curves. Given a family of curves

$$
\begin{equation*}
f(x, y, a, b)=0 \tag{1}
\end{equation*}
$$

by eliminating a and b, by differentiating (1), we get the differential equation.

$$
\begin{equation*}
F\left(x, y, y^{\prime}, y^{\prime \prime}\right)=0 \tag{2}
\end{equation*}
$$

(1) is the general solution of (2) and represents the family of curves. Each curve of the family is a particular solution of the differential equation (2).

A solution of an initial value problem is a particular curve of the family of curves given by the differential equation (2).

Points to stzass iwhile teaching :

1. The difference between
a) the ordinary and partial equations
b) order and degree equations
c) Linear anc non-linear equations.
d) Linear homogeneous and non homogeneous equations
e) General solution and particular solutions
f) Fomation c f an equation and solving an equation
g) Solving an ecuation and an Initial Value Froblem
2. The geometrical meanings of
a) a differential equation : $\frac{d y}{d x}=f(x, y)$
b) the general solution of an equation
c) a particular solution of an equation
3. Information of a differential equation for a physical problem
a) identification of the law/laws operating
b) analysis of the problem
c) symbols and notations
4. Solution of an equation
a) Verification of a function as a solution of a given equation.
b) Fomation of the equation from a given solution.

Assianments and Self Test :
I. 1. Classify the differential equations as ordinary or partial differential equations.
L. State the order and the degree.
3. Determine whether the equation is linear or non linear.
4. If the equation is linear, whether it is homogeneous or non-homogeneous.
i) $\quad y^{\prime}+x^{2} y=x e^{x}$
ii) $y^{\prime \prime \prime}+4 y^{\prime \prime}+5 y^{\prime}-3 y=\sin x$
iii) $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} i}{\partial y^{2}}=0$
iv) $x^{2} d y+y^{2} d x=0$
v) $\frac{\partial^{2} u}{\partial x^{2}}+c \frac{\partial u}{\partial t}=0$
vi) $y^{(4)}+3 y^{\prime \prime}+5 y^{2}=0$
vii) $y^{\prime \prime}+y \sin x=0$
viii) $y^{\prime \prime}+x \sin y=0$
$i \times\left(\frac{d r}{d s}\right)^{2}=\sqrt{\frac{\alpha^{-r}}{d s^{2}}+1}$
x) $\quad \frac{d y}{d x}+\frac{d x}{d y}=1$
xi) $x y^{\prime}=y^{\prime} \sqrt{1-x^{2} y^{2}}$
xii) $\frac{d y}{d x}=-\frac{x y}{x^{2}+y^{2}}$
xiii) $y^{\prime}=x e^{x^{2}}$
xiv) $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$
xv) $y^{\prime \prime \prime}+4 y^{\prime \prime}-5 y^{\prime}+3 y=\sin x$

İ. For the differential equation for the following problems.
a) The population (P) of a bacteria is increasing at a rate proportional to the population at the moment.
b) A moth ball evaporates at a rate oropcrional to its surface.
c) The air resistance on a falling body exerts a retardation proportional to the square of the velocity.
d) A chain 4 feet long starts sliding oE the smooth table when 1 foot of the chain hangs over the Gage rich is supposed to be smooth (no friction).
e) A tank has 100 gallons of pure water. Ene containing $1 \mathrm{lb} / \mathrm{gal}$. runs into the tank at the rate of 1 gal/min. The mixture is constantly stirred and flows out at the same rate as inflow.
f) An amount of invested money draws interest compounded continuously (i.e. the amount of money increases at a rate proportional to the amount present).
g) A chemical reaction converts a certain chemical into another chemical at a rate proportional to the amount of the unconverted chemical amount present at any time.
n) The rate at which radioactive nuclei cecay is proportional to the number of such nuclei that are present in a given sample.
III. Show the: the family of curves given by the finst equation is representied by the corzeszonding diffezential ecuation.

1. $y=2+c e^{-2 x^{2}}, \quad \frac{d v}{d x}+2 x y=8 x$.
2. $y=\left(c+x^{\bar{i}}\right) e^{-3 x}, \frac{d y}{d x}+3 y=3 x^{2} e^{-3 x}$
3. $y=a e^{4 x}+b e^{-2 x}, y^{\prime \prime}-2 y^{\prime}-8 y=0$.
4. $\quad y^{2}=4 a x, 2 x y^{\prime}=y$
5. $y=c_{1} \sin 2 x+c_{2} \cos 2 x, y^{\prime \prime}+4 y=0$
6. $x y=c, x y^{\prime}+y=0$
7. $y^{2}=4 c(x+c),\left(2 x+y y^{\prime}\right) y^{\prime}=y$
8. $y=c_{1} e^{x}-c_{2} e^{-x}, y^{\prime \prime}=y$
IV. Verify that each function is a solution of the corresponding differential equation.
9. $y=x \operatorname{Tan} x, x y^{\prime}=x^{2}+y^{2}+y$
10. $y=\log _{e} x, x y^{\prime}=1$
11. $y=1+y x, x^{2} y^{\prime}+1=0$
12. $y=c e^{y / x}, x(y-n) y=y^{2}$
13. $x+y=\operatorname{Ian}^{-1} y, i-y^{2}+y^{2} y^{\prime}=0$
14. $y=c x^{n}, x \frac{d y}{d x}=n y$
15. $y=c x+a / c, y=x \frac{d y}{d x}+a \frac{d x}{d y}$
16. $y=x^{3}+a x^{2}+b x+c, y^{\prime \prime \prime}=6$
17. $y=x^{2}-c x, 2 x y y^{\prime}=x^{2}+y^{2}$
18. $y=x+3 e^{-x}, y^{\prime}+y=x+1$
19. $y=2 e^{3 x}-5 e^{4 x}, y^{\prime \prime}-7 y^{\prime}+12 y=0$
20. $y=e^{x}+2 x^{2}+6 x+7, y^{\prime \prime}-3 y^{\prime}+2 y=4 x^{2}$
21. $y=\left(1+x^{2}\right),\left(1+x^{2}\right) y^{\prime \prime}+4 x y^{\prime}+2 y=0$
V. Verify that the function given is a solution of the corresponding initial value problem.
a) $x^{2}+y^{2}=25 ; \frac{d y}{d x}+\frac{x}{y}=0, y(3)=4$
b) $y=y x, x y^{\prime}+y=0, y(1)=1$
c) $y=\left(2+x^{2}\right) e^{-x}, \frac{d y}{d x}+y=2 x e^{-x}, y(0)=2$
d) $y^{2}=4 \sec 2 x, \frac{d y}{d x}=y \operatorname{Tan} 2 x, y(0)=2$.
e) $y^{2}=16 x^{3} ; 2 x y^{\prime}=3 y, y(1)=4$.
f) $\sin y=x ; y^{\prime}=\sec y, y(0)=0$
g) $y=e^{-x} ; y^{\prime}+y=0, y(0)=1$.
h) $y=\operatorname{Ian}^{-1} x ; y^{\prime}=y\left(1+x^{2}\right), y(0)=0$
VI. Assuming the given generai solution of the differential equation, find the particular solution satisfying the acditional (initial) condition.
a) $y^{\prime}+y=2 x e^{-x}, y\left(c+x^{2}\right) e^{-x}, y(-1)=3+e$
b) $x y^{\prime}=2 y, y=c x^{2}, y(1)=1$
c) $y y^{\prime}=e^{2 x}, y^{2}=e^{2 x}+c, y(0)=1$
a) $y+x y^{\prime}=x^{4} \cdot\left(y^{\prime}\right)^{2}, y=c^{2}+c / x, y(1)=0$

Key : Ord - ordinary equation, part - partial equation, 1,1 - 1 st order, 1 st degree L- Linear, $H=$ homogeneous, $N H=$ non homogeneous, NL $=$ Non

1) Ore, $1,1, \mathrm{~L}, \mathrm{NH}$
ii) Ord, 3,1, L, NH
iii) Part, 2,1, L, H
iv) Ord, 1,1, N, L
v) Part, 2,1, L H
vi) Ord, 4,1 L, H
vii) Ord, 2,1, L, H
viii) Ord, 2,1, NL
ix) CId, 2,1, NI
x) CId, 2,1,ili
xi) ard. $1,1, N L$
xii) Ord, 1,1, NL
xiii) Ord, 1,1, L, 1 , H
xiv) CId, 1,1, NL
xv) Ora, $3,1, L$, lh:
II. $\quad \operatorname{lp/dt}=k P, \quad k>0$
b) $m \cdot d 2 / d t=m u-k v^{2}$
c) $\frac{d v}{d t}=k s, \quad k<0$
a) $\frac{d^{2} x}{d t^{2}}=y x$

$$
x=\text { the length of the hanging chain at any moment } t \text {. }
$$

e) If x lb is the amount of salt present in the tank at time t,

$$
\frac{d x}{d t}=1-\frac{x}{100}
$$

f) $\frac{d A}{d t}=K_{A}, K>0 \quad A=$ The amount at any moment t.
g) $\frac{d}{d t}=K\left(x_{0}-x\right), x_{0}=\begin{array}{r}\text { The amount } \\ \text { initially. }\end{array}$ of the chemical present
h) $\frac{a x}{d t}=K x, x=$ the no. of radioactive nuclei disintegrating.

METHODS OF SOLVING FIRST CRIER UIFFEREMIIAL EGUATICHS．

In this lesson，we discuss some first order differential equations and methods of solving them．AEirst omer equation is of the type

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y) \tag{1}
\end{equation*}
$$

$c=$ the type Mci + Nay $=0$
where $M=M(x, y), N=N(x, y)$（ie．functions of $x, y)$
Equations with variables separable are of the form
$\mathrm{Mdx}+\mathrm{NCy}=\mathrm{O}^{\circ}$
ne：hods of \quad where $M=\ln (x)=a$ function of x only
solution \quad where $M=N(y)=a$ function of y only
lIne solution of the equation of this type is got by direct integration o：the equation
The solution of（1）is \int（ 1 dx $+(N d y=-$
C being an arbitrary constant．
Note：（2）is the general solution of the equation（1）．The solutions go：ミュニッ．（2）by substituting particular values for lure particular solutions of the equation．

I上－ustこations：Solve the following problems．
1．$\left(1-x^{2}\right) d x+\left(1+y^{2}\right) d y=0$
The equation is of the type（1）where $A=i+x^{2}, \quad i=1+y^{2}$
The solution is $\int(1+x) d x+\int\left(1+y^{2}\right) d y=C$
or $x+y 3 x^{3}!+y+y 3 y^{3}=C$
or $x^{3}+y^{3}+3(x+y)=z C=K$（say）
2．$\quad \frac{d^{2} y}{d x^{2}}+\frac{1+y^{2}}{\sqrt{1-x^{2}}}=0$
The equation can be reduced to an equation in winch the variables are separated，by manipulation．
Accordingly we get，$\frac{d x}{\sqrt{1-x^{2}}}+\frac{d y}{1+y^{2}}=0$
Integrating $\int \frac{d x}{\sqrt{1-x^{2}}}+\int \frac{d y}{1+y^{2}}=C$
or $\operatorname{Sin}^{-1} x+\tan ^{-1} y=c$ is the solution．
3. $y \log x d x+x \log y d y=0$

Rewriting the equation, $\left(\frac{\log x}{x}\right) d x+\left(\frac{\log y}{y}\right) d y=0$
Integrating $\int \frac{\log x}{x} d x-\int \log y / y d y=C ; \quad$ put $\log x=1 / t$
Now $\quad \int \frac{\log x}{x} d x=\int t a t=\frac{1}{2} t^{2}=\frac{1}{2}(\log x)^{2}$
Similarly we get $\quad \int \frac{\log y}{y} d y=\frac{1}{2}(\log y)^{2}$
Hence, $\quad \frac{1}{2}(\log x)^{2}+\frac{1}{2}(\log y)^{2}=c$
or $(\log x)^{2}+(\log y)^{2}=K$ is the solution
4. $\frac{d y}{d x}+K y=00=d y+K y c x=0$
$\Longrightarrow \int \frac{d y}{y}+k \int d x=c$
$\Rightarrow \log _{e} y+k x=c \Rightarrow \log y=c-k x$ or $y=e^{c-k x}=e^{c} \cdot \frac{e^{e} k x}{}=a e^{-k x}$.
The solution is $y=a e^{-k x}$
a being the constant of integration.
Homogeneous differential equation of the type

$$
\begin{equation*}
M(x, y) d x+M(x, y) d y=0 \tag{1B}
\end{equation*}
$$

Homogeneous expzessions/funczions: Homogeneous equations
Consicie $=(1) f(x, y)=x^{2}+x y+y^{2}$
We can wizite $f(x, y)=x^{2}\left(1-y / x+(y / x)^{2}\right)$
or $f(x, y)=x f(1, y / x)$
Since $f(1, y / x)=1+1 \cdot y / x+(y / x)^{2}=1+y / x+y^{2} / x^{2}$
f is a homogeneous function of degree 2 in x and y.
2. $f(x, y)=x^{3}+3 x^{2} y+y^{3}$
$=x^{3}\left(1+3 y / x+(y / x)^{3}\right)=x^{3} f(1, y / x)$
and $f(x, y)$ is a homogeneous function of degree 3 in x and y.

```
3. \(f(x, y)=x+\sqrt{x y}+y\)
    \(=x[1+\sqrt{y / x}+y / x]=x f(1, y / x)\)
    so that \(=(x, y)\) is a homogeneous function of degree 1 in \(x\). and \(y\).
4. \(f(x, y)=x \sin (y / x)+y \cos (y / x)\)
    \(=x[\sin (y / x)+(y / x) \cos (y / x)]\)
    \(=x f(1, y / x)\)
\(f(x, y)\) is a homogeneous function of degree 2 in \(x\) and \(y\).
In general, a homogeneous function of degree \(n\) in \(x\) arc \(y\),
\(f(x, y)\) has the property,\(f(x, y)=x f(1, y / x)\)
Putting \(y=v x\) or \(y / x=v\)
\(f(x, y)=x f(1, v)\)
Note: In a homogeneous function, each term is of the sane degree.
\(f(x, y)=x^{2}+x+y+y^{2}\)
is not a homogeneous function.
Since \(f(x, y)=x^{2}+x+y+y^{2}\)
    \(=x^{2}\left(1+1 / x+y / x^{2}+y^{2} / x^{2}\right)\)
```

This part is not a function of (y / x). Thus we cannot write $f(x, y)=x^{n} f(1, y / x)$ for any x.
Lefinition : $M(x, y) d x+N(x, y) d y=0$
is called a homocieneous equation of 1 st order if $M(x, y)$ and if (x, y) are humoceneous functions of same degree.

If the differential equation is a homogeneous equation, then ie can write the equation as

$$
\frac{d y}{d x}=-\frac{M(x, y)}{N(x, y)}=-\frac{x^{\eta} M(1,4 / x)}{x^{n} N(1,1 / x)}=-\frac{M(1,4 / x)}{N(1,4 / x)}
$$

or $\quad \frac{d y}{d x}=f(y / x)$.
Method of solving a homogeneous differential equation:
Given the homogeneous equation

$$
H(x, y) d x+N(x, y) d y=0 \ldots(1)
$$

put $y=v x \cdots(2)$
$\frac{d v}{d x}=v \cdot 1+x \frac{d v}{d x}$ or $d y=v d x+x d v$

This substitution converts the equation (1) into an equation in v and x with sepazatec variables. Then the equation $c a n$ be solved.

Illust=etions: Solve the following equations.

1. $x \frac{c v}{c x}=x+y \cdots *$

By checking the coefficient function, it is easily sean that the equation is a homogeneous equation.
put $y=v x \quad \therefore \quad \frac{d y}{d x}=v+x \cdot \frac{d v}{d x}$ in $*$.

$$
\begin{aligned}
& x\left(2+x \cdot \frac{d z}{d x}\right)=x+20 \cdot x \\
& = \\
& \text { or di } 2 \cdot x \cdot \frac{d z}{d x}=1+u=x \cdot \frac{d z^{0}}{d x}=1 \\
& \text { or }
\end{aligned}
$$

Con integrazion of the equation, we cot

$$
\begin{aligned}
& v=\log x+c \\
& o I y / x=\log _{e} x+c
\end{aligned}
$$

Hence $y=x\left(\log _{e} x+c\right)$ is the solution of the given differential equation.
2. $\quad \frac{d y}{d x}=\left(x^{2}+x y\right) /\left(y^{2}+x y\right) \Longrightarrow\left(x y+y^{2}\right) \frac{d y}{d x}=\left(x y+x^{2}\right)$.
$x^{2}=$ a homosenecus function of degree 2 and
$x+x y+y=a$ homogeneous function $c=$ degree 2 .
Hence the equation is a homogeneous equation.
Put

$$
\begin{aligned}
& y=v x \quad \frac{d y}{d x}=v+x \cdot \frac{d v}{d x} \\
& \therefore\left(v^{2} x^{2}+v^{2} x^{2}\right)\left(v+x \cdot \frac{d v}{d x}\right)=v x^{2}+x^{2} \\
& \Rightarrow v(1+v)\left(v+x \cdot \frac{d v}{d x}\right)=(v \not-1) \\
& \Rightarrow v^{2}+v x \cdot \frac{d v}{d x}=1 \Longrightarrow 2 \cdot x \cdot \frac{d v}{d x}=1-v^{2}
\end{aligned}
$$

Separating the variables, we get $\frac{v}{1-v^{2}} d v=\frac{d x}{x}$

$$
\begin{aligned}
& \text { or. } \frac{d x}{x}+\frac{v^{2} \cdot d x}{v^{2}-1}=0 \\
& \therefore \quad \int \frac{d x}{x}+\int \frac{v^{2} \cdot v}{v^{2}-1}=C \\
& \text { or } \log x+\frac{1}{2} \log \left(v^{2}-1\right)=C \\
& \text { or } 2 \log x-\log \left(v^{2}-1\right)=2 c \Rightarrow \log _{e} x^{2}\left(v^{2}-1\right)=2 C \\
& \text { or } y^{2}-x^{2}=k=e^{2 c}
\end{aligned}
$$

is the solution of the equation.
3. $x^{2} \quad \frac{d y}{d x}=x^{2}+x y+y^{2}$

The equation is obviously a homogeneous equation.
put $y=2 \cdot x, \quad \frac{d y}{d x}=21+x \frac{d z o}{d x}$

$$
\begin{aligned}
& x^{2}\left(v+x \cdot \frac{d v}{d x}\right)=x^{2}+x^{2} v^{2}+x^{2} v^{2} \\
& \Rightarrow 6+x \frac{d v}{d x}=1+v^{2}+x \\
& \therefore x \cdot \frac{d v}{a x}=1+v^{2} .
\end{aligned}
$$

Separating the vagi coles, we get

$$
\frac{d x}{x}=\frac{d i}{1+x^{2}}, \therefore \int \frac{d x}{x}=\int \frac{d z}{1+v^{2}}+c
$$

on integration
Hence the solution is $\log _{e} x=\operatorname{Tan}^{-1}(y / x)+C$
or $y=x \operatorname{Tan}\left(k+\log _{e} x\right), k$ being the constant of integration.
If the given problem is an initial value problem, then we need to find the particular solution of the differential equation which satisfies the initial condition also.
4. $x\left(1-y^{\prime}\right)+y\left(1+y^{\prime}\right)=0$

$$
\text { with } y(1)=0
$$

$y^{\prime}=\frac{x+y}{x-y}$ which is ar homogeneous equation.
Putting $y=v x, y=v+x v$
$v+x v^{\prime}=\frac{x(1+v)}{x(1-v)}$
$x v^{i}=\frac{1+v}{1-v}-v=\frac{1+v^{2}}{1-v}$

$$
d v=\frac{d x}{x}
$$

On integrating we get

$$
\tan ^{-1} v-y_{2} \log \left(1+v^{2}=0+\log x\right.
$$

$0=\operatorname{Tan}^{-1}(y ; x)=c+\log \left(x \sqrt{1+v^{2}}\right)$
$\operatorname{or} \operatorname{Fan}^{-1}(y / x)=c+\log \sqrt{x^{2}+y^{2}}$ putting $x=1, y=0$ so that $c=0$.
Hence the solution of the equation is $\tan ^{-1}(y / y)=\log \sqrt{x^{2}+y^{2}}$
5. $x \sin (y / x) \frac{d y}{d x}=y \sin (y / x)+x, y(1)=\pi / 2$

Putting $y=v x, \quad \frac{d y}{d x}=v+x \cdot \frac{d u}{d x}$
$\sin v\left(v+x \frac{d u}{d x}\right)=v \sin v+x$
$v \sin v+x \sin v=v \sin v ب 1$
b in $v a v=d x / x$
On integrating we get $\log x+c=-\cos v$
Therefore, the general solution $\cos (y / x)+\log x+e=0$
Putting $x=1, y=\pi / 2, \cos (\pi / 2)+\log +C=0 \quad C=0$
Hence the solution is $\operatorname{Cos}(y / x)+\log _{e} x=0$
6. $x y^{\prime}=y+2 x e^{-y / x}$ with $y(1)=0$, putting $y=v x, y^{\prime}=v+x v^{\prime}$

$$
x\left(v+x v^{\prime}\right)=v x+2 x e^{-v}
$$

$v+x v^{\prime}=v+2 e^{-v}$
$\begin{array}{ll}\text { On integrating we get } & \quad{ }_{e}^{v}=2 v=2 c x / x \\ & \log x+c\end{array}$
The solution is $e^{y / x}=2 \log x+c$
Put $x=1, y=0, \quad=1=2 \log +C \quad c=1$

$$
\exp (y / x)=2 \log x \text { is the solution. }
$$

7. $\left(y+x^{2}+y^{2}\right)-x y^{\prime}=0, y(1)=0$

The equation being homogeneous, put $y=v x, y^{\prime}=v+x y^{\prime}$

$$
\begin{gathered}
v x+\sqrt{\left.x^{2}+v x^{2}\right)}-x\left(v+x v^{\prime}\right)=0 \\
y+\sqrt{1+v^{2}}-b-x v^{\prime}=0 \\
\Rightarrow \sqrt{d u}=\frac{d x}{\Longrightarrow} \\
\text { On integrating, sin } h^{-l^{2}} v=c+\log x
\end{gathered}
$$

Or $\sinh (y / x)=C+\log x$
Putting $x=1, y=0, \sin \bar{h}^{-1}(0)=C+\log 1, C=0$
The solution of the initial value problem is
$\sin h^{-1}(y / x)=\log _{e} x$
or $y=x \sinh \left(\log _{e} x\right)$
8. $(x \operatorname{Tan}(y / x)+y)=x \frac{d y}{d x} \quad y(1)=\pi / 2$

Putting $y=v x, y^{\prime}=v+x y^{\prime}$
$x \operatorname{Tan} v+v x=x\left(v+x v^{\prime}\right)$
$\operatorname{Tan} v+v=v+x u^{\prime}$
Separating the variables,
$d x / x=(\cos v / \sin v) d v$
On integrating $\log x=C+l o g \sin v$
or $\log x=C+\log \sin (y / x)$
Putting $x=1, y=\pi / 2$, we get $C=0$
The solution of the initial problem is
$\log x=\log \sin (y / x)$
or $y=x \sin ^{-1} x$
Equations reducible to huroceneous equations :

1. $\frac{d y}{d x}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}, \quad a_{1} b_{2} \neq a_{2} b_{1}$

In this case, put $X=X+h, h=Y+K$ and
choose (h, k) such that $a h+b k+c=0$
$a h+b k+c=0$
With t he substitutions, the equation becomes $\frac{d y}{d x}=\frac{a_{1} x+b_{1} y}{a_{2} x+b_{2} y}$

This equation is homogeneous and can be solved by putting $Y=v X$.

$$
\frac{c v}{c x}=\frac{x+y-5}{x-y+1}
$$

Fut $x=x-h, y=Y+k$
such that $h-k-5=0$
$h-k+1=0$

$$
\frac{d y}{d x}=\frac{x+y}{x-y}
$$

$$
\begin{aligned}
\text { Solving } h & =2,1=3, \\
\text { Hence, } x & =x+2 \\
y & =y+3
\end{aligned}
$$

$F u=y=v x, \quad \frac{d y}{d x}=v+x \frac{d u}{d x}$
$\frac{d^{\prime} y}{d x}=2 \cdot+x \cdot \frac{d ;}{d x}$ so that $v+x \cdot \frac{d z s}{d x}=\frac{x+2 \cdot x}{x-2 x}=\frac{1+2 i}{1-2 \cdot}$
$\therefore \quad x \cdot \frac{d v}{d x}=\frac{1+v}{1-v}-20=\frac{1+v^{2}}{1-v} \Longrightarrow \frac{d x}{x}=\left(\frac{1-v}{1-v^{2}}\right) d v$
cr separating the variables, we get

$$
\frac{d x}{x}=\left(\frac{1-v}{1-v^{2}}\right) d v^{2} \Rightarrow \int \frac{d x}{x}=\int \frac{1-2}{1+2^{2}} d z^{2}=\int \frac{d u}{1+v^{2}}-\int \frac{2 x d u}{1+v^{2}}
$$

Integrating $\log x=\operatorname{Tan}^{-1} v-y 2 \log \left(1+v^{2}\right)+C$
$109 x+\log \sqrt{1+v^{2}}=\operatorname{Tan}^{-1} v+c$
i.e. $\log \sqrt{x^{2}+y^{2}}=\operatorname{Tan}^{-1}(y / x)+c$

The solution is $\log \sqrt{(x-2)^{2}+(y-3)^{2}}=\operatorname{Tan}^{-1}\left(\frac{y-3}{x-2}\right)+c$
2. $\frac{d y}{d x}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}, \quad a_{1} b_{2}-a_{2} b_{1}=0$
$a_{p} b_{2}=a_{2} b_{1} \Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{1}{k}$ (say)
$\therefore a_{2}=k a_{1}, \quad b_{2}=k b_{1}$
$\therefore \frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}=\frac{c_{1} x+b_{1} y+c_{1}}{k\left(a_{1} x+b_{1} y\right)+c_{2}}$
$=\frac{1}{k}\left(\frac{a_{1} x+h_{1} y+c_{1}}{a_{2} x+h_{2} y+c_{2} k, y}\right)=\frac{1}{k}\left(\frac{a_{1} x+b_{1} y+c_{1}}{a_{1} x+b_{1} y+c_{3}}\right)$
where $C_{3}=C_{2} / K$.
Note: $\left(a_{2} x+b_{2} y\right)$ is $\left(a_{1} x+b_{1} y\right)$ son some constant. Substituting $Z=a_{1} x-b_{1} y$ the equation can be solved.
Iliustzizion: $\quad \frac{d y}{d x}=\frac{x+y+4}{2 x+2 y-5}$, pent $x+y=I$

$$
\begin{aligned}
& \quad \frac{1 z-1}{d x}=\frac{z+4}{2 z-5} \Rightarrow d x=\left(\frac{2 z-5}{3 z-1}\right) d= \\
& \left.i=\frac{d z}{d x}=\left(A+\frac{B}{3 z-1}\right) \quad \begin{array}{l}
d z \\
d x
\end{array}\right)
\end{aligned}
$$

intine $\frac{, 2 z-5}{B z-1}=A+\frac{B}{3 z-1}$
so that $2=-5=n(3 z-1)+3$
put $z=0,-\therefore+B=-\bar{n}, \mu=2 / 3$
Put $z=1,24+B=-3, B=-13 / 3$
$\therefore d x=\int\left(A+\frac{B}{3 z-1}\right) d z \Rightarrow x+C=A=+\frac{B}{3}(B a(3 z-1)$
Integrating, $x+c=A z+\frac{B}{3} \log (\hat{z}=-1)$
$x+C=a(x+y)+\frac{B}{3} \log (3 x+3 y-1)$
$x+C=2 / 3(x+y)-13 / 9 \log (3 x+3 y-1)$
The solution is $9 x+k=6(x+y)-13 \log (3 x+3 y-1)$
or $(3 x-6 y)+13 \log (3 x+3 y-1)+k=0$.
First ores Linear Equations:
Type : dy $/ d x+p y=Q$
where $p=P(x), u=u(x)$
(i.e. p, $\}$ are functions of x only).

Let $\mu_{i}=\mu(x$; be a function such that (1) becomes an exact*

Multiplying (i) b: f
(1) becomes $\mu \frac{d y}{d x}-\mu P y=\mu 5$
or $\mu d y+\mu F y d x=\operatorname{Hod} \cdot \ln$
By definition cE exact equation,
the L.f.S. of the equation (2) an be written as $d(\phi)=(\mu=y) d x+\mu d y \cdots(3)$
By the chain rule,
Hence, $\frac{\partial d}{\partial x} d x-\frac{\partial y}{\partial y} d y=(\mu P y) d x-\mu d y$

$$
\frac{\partial \phi}{\partial x}=\mu p y, \frac{\partial L}{\partial y}=\mu \cdots(L)
$$

$\therefore \frac{\partial^{2} d}{\partial y \partial x}=\frac{\partial}{\partial y}(\mu p y), \frac{\partial^{2}-\partial}{\partial x \partial y}=\frac{\partial \mu}{\partial x}$
since $\frac{\partial^{2} d}{\partial y \partial x}=\frac{\partial^{2} c}{\partial x \partial y}, \frac{\partial}{\partial y}(\mu P y)=\frac{\partial \mu}{\partial x}$
since $\mu=\mu(x), \frac{\partial \mu}{\partial x}=\frac{d \mu}{d x}$
(5) becomes $\mu \mathrm{P} \cdot 1+\frac{y \partial(\mu \bar{j})}{\Delta y}=\frac{d \mu \mu}{d x}$

Since p is a function of x orin $\frac{\partial}{\partial y}(\mu p)=0$.
$\therefore \frac{d \mu}{d x}=\mu p$
On integration we get $\mu=e^{\int f d x}-$
From
(2) and (三) $\quad d+=\mu c d x$

* By exact equation, we mean that the L.H.S. is the total derivative of some function of n.

Integrating the second equation $: \frac{\partial \phi}{\partial y}=\mu$ w.s.t y

$$
\begin{aligned}
& \phi=\mu y \\
& d \phi=d(\mu y)=\mu Q d x \\
& \text { integrating } \mu y=c+\int \mu s d x
\end{aligned}
$$

but $\mu=\exp \left(\int P d x\right)$
Hence, $\quad y=e^{-\int P d x}\left[C+\int Q e^{\iint d x} d x\right] \cdots(7)$
in the solution of (1).
Working file: Given (1)
i) identic: F and \mathcal{L}.
ii) compute $\int p d x$
iii) compute exp $\int p d x=e^{\iint d x}$
ivj compute $\int Q e^{\int P d x} d x$
v) Fit in (T) to get the solution

A particular case of (1) is got when f is a constant. Fie equation (1)

Then, $\quad \int \rho d x=p x$

$$
e^{\int p d x}=e^{p x}
$$

The formula (-) becomes $y=e^{-P_{x}[i}\left[C^{-}+\int Q \in d x\right] \cdots(F)$.

Illustrations: Solve the following equations ;

$$
\text { 1. } d y / d x+2 y=4 x
$$

Here, $P=2, G=4 x$

$$
\begin{aligned}
& e^{P x}=e^{2 x} \\
& \int Q e^{p x} d x=\int 4 x e^{2 x} d x=4\left[\frac{1}{2} x e^{2 x}-\frac{1}{2} \int e^{2 x} d x\right] \\
& =2\left[x e^{2 x}-\frac{1}{2} e^{2 x}\right]=(2 x-1) e^{2 x}
\end{aligned}
$$

The solution $y e^{2 x}=c+(2 x-1) e^{2 x}$

$$
\text { or } y=c^{-2}+(2 x-1)
$$

2. $y^{\prime}-y=\cos x$

He=ef=1, $u=\cos x \quad, \quad e^{f x}=e^{x}$

$$
\int \Delta e^{\int x} d x=\int e^{x} \cos x d x
$$

Le: $I=\int e^{x}-\cos x d x$
Inen $I=e^{x} \sin x-\int e^{x} \sin x d x$ (Integrating by parts).

$$
\begin{aligned}
& =e^{x} \sin x-\sin x-\left[e^{x}(-\cos x)+\int e^{x} \cos x d x\right] \\
& \left.=e^{2}\right]
\end{aligned}
$$

$$
=e^{x} \sin x+e^{x} \cos x-I
$$

$0=I=e^{7}(\sin x+\cos x)-I$
$Z I=e^{x}(\cos x+\sin x)$
$I=j e^{x} \cos x d x=y 2 e^{x}(\cos x+\sin x)$
The solution is $y e=c-y 2 e^{x}(\cos x+\sin x)$ or

$$
y=u^{-x}+y^{2}(\sin x+\cos x)
$$

3. $y^{\prime}-y=1$
$=-1, \quad Q=1 \quad f_{x}$
$=e^{-x}, \quad \int G e^{x} d x=\int 1 \cdot e^{-x} d x=-e^{-x}$
The solution is $y e^{-x}=c-e^{-x}$
$o=y-1=c \epsilon^{x}$
4. $y^{\prime}-2 y=6 e^{x}, \quad y=2, u=6 e^{x} e^{f x}=e^{2 x}$

$$
\begin{aligned}
& -2 y=b e^{n}==2,4=6 e^{x} e^{2}=e^{2 x} \\
& \int a e^{3 x} d x=\int 6 e^{x} e^{2 x} d x=6 x \\
& 3 x
\end{aligned}
$$

$$
\therefore \int Q e^{i x} d x=2 e^{3 x}
$$

The solution is $y e^{2 x}=c+2 e^{2 x}$ or $y=c e^{-2 x}+2 e^{x}$
5. $(1+\cos x) d y / d x=(1-\cos x)$

$$
d y / d x=\frac{1-\cos x}{1+\cos x}=\tan ^{2}(x / 2)
$$

or $d y=\operatorname{Tan}^{2}(x / 2) d x=\left(\sec ^{2}(x / 2)-1\right) d x$
Integrating $y=C+\int\left(\sec ^{2}(x / 2)-1\right) d x$

$$
y=c+2 \tan (x / 2)-x
$$

is the solution of the equation.

$$
\text { 6. } \begin{aligned}
& \left(y-x \cdot \frac{d y}{d x}\right)=a\left(y^{2}+\frac{d y}{d x}\right) \\
& \Rightarrow y-x \cdot \frac{d y}{d x}=a y^{2}+a \cdot \frac{d y}{d x} \\
& \Rightarrow\left(y-a y^{2}\right)=(x+a) \frac{d y}{d x} \\
& \Rightarrow \frac{d x}{a+x}=\frac{d y}{y-a y^{2}} \\
& \therefore \int \frac{d x}{a+x}+C=\int\left(\frac{1}{y}+\frac{a}{1-a y}\right) d y
\end{aligned}
$$

$$
o=\log (a+x)+c=\log y-\log (1-a y)
$$

$$
0=\log \left(\frac{4}{1-14}\right) \quad=\log (a+x)+c=\log (=-x)+\log k
$$

$$
0=\log \left(\frac{4}{k-x-1}\right)=\log [k(a+x)]
$$

$$
\text { or } y=K(a+x)(1-a y i)
$$

is the solution.
7. $2 x y^{\prime}=3 y, \quad y(1)=4$.

$$
2 x \frac{d y}{d x}=3 y \Rightarrow 2 \frac{d y}{y}=3 \frac{d x}{x}
$$

$2 \log y=3 \log x+\log c$

$$
y^{2}=C x^{2} \text { put } x=1, y=4, c=16
$$

The paziocular solution satisfying $y(:)=4$, is $y^{\hat{\gamma}}=16 x^{3}$
8. $\quad y^{\prime}=2 e^{2} y^{3} y(0)=y 2$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{y^{3}}=2 e^{x} d x \Rightarrow \int \frac{d y}{y^{3}}=2 \int e^{2} d x-C \\
& \Rightarrow-\frac{1}{2} y^{-2}=C+2 d
\end{aligned}
$$

PuT $x=0 \quad y=y 2,-; 2$

$$
-\because 2(y 2)^{-2}=c+2 e^{0}=c+2
$$

$$
\text { i.e. } c+2=-i 2 \times 2^{2}=-2 \text { or } c=-4
$$

The particular solution required is $-\frac{1}{2} y^{2}=2 e^{x}-4$

$$
\text { or .. } y^{2}=\frac{1}{8-4 e^{x}}
$$

9. $\frac{d y}{d x}=x e^{x} \quad y(1)=3$

$$
\dot{\operatorname{d}} y=x \mathrm{e}^{2} \mathrm{dx}
$$

$\int c y=c+\int_{x} x e^{x} d x$
$c+\left(x e^{x}-\int e^{x} 1 \cdot d x=c-(x-1) e^{x}\right.$
or $y=C+(x-1) e^{x}$
Putting $x=1, y=3,3=c+0 \Rightarrow c=3$
$y=3-(x-i) e^{x}$ is the solution of the initial value problem.
10. $\frac{c y}{c x}+x e^{x^{2}-y}=0, \quad y(0)=0$

$$
e^{y} c y-x e^{x-y} d x=0
$$

$$
\int e^{4} d y+\int x x_{\gamma^{2}} e^{x^{2}} d x=c
$$

$$
e^{y}+y_{2} e^{x^{2}}=c
$$

Put $x=0, y=0,1+\ddot{2.1}=c \quad c=c=\Xi / 2$
The solution of the initial proviem is $2 e^{y}+e^{x^{2}}=3$
Equations reducible to the form: $Y^{\prime}+p y=Q$, where $p=P(x), Q=Q(x)$.
Bernoulli's equation: $\quad \frac{c y}{c x}+p y=c y \ldots$ (1)
dividing the equation by y^{n}

$$
\frac{1}{y^{n}} \frac{d y}{d x}+P \frac{y}{y^{n}}=0
$$

$\Rightarrow \frac{1}{y^{n}} \frac{d y}{d x}+P\left(\frac{1}{y^{n-1}}\right)=Q$
put $Y=\frac{y^{n}}{y^{n-1}} \cdots(2) \quad \therefore \quad-(n-1) \frac{d y}{d x}=\frac{d y}{d x}$
then, on substitution, the given equation becomes

$$
\frac{d y}{d x}-(n-1) Y \Delta P=-Q(n-1)--(3)
$$

Put $P_{1}=-(n-1) P, \quad Q_{1}=-(n-1)$ U
Clearly, $p_{1}=p_{1}(x), u_{1}=u_{1}(x)$ and (3) becomes

$$
\frac{d y}{d x}+P_{1} Y=Q_{1}-(4)
$$

This equation can be solved since it is an equation of the form

$$
\frac{d y}{d x}+P Y=Q \text {. }
$$

1. Solve : $\frac{d y}{d x}+y x=x / y$
$\Rightarrow \dot{y} \frac{d y}{d x}+y^{2} x=x$
put $y^{2}=y \quad 2 y \frac{d y}{d x}=\frac{d y}{d x}$
I he equation becomes
$y 2 d y / d x+x y=x$
or $d y / d x+2 x y=2 x$
Comparing it with $d y / d x+p y=Q$,

$$
P=2 x \int F C X=x^{2}, \varphi=2 x
$$

$\int Q e^{P d x}=\int e^{x^{2}}, \quad \begin{gathered}2 x d x= \\ 2\end{gathered} e^{x^{2}}$
The solution is $y e^{x^{2}}=c+e^{x^{2}}$
or $y=c e^{-x^{2}}+1$
Since $y=y^{2}$, the solution is $y^{2}=c e^{-x^{2}}+1$.
2. Solve : $x y^{\prime}+y=x^{4} y^{3}$

Dividing by $x y^{3}, \frac{1}{y 3} y^{1}+\frac{1}{x y^{2}}=x^{3}$
Fut $y=\frac{1}{y^{2}} \quad \frac{d y}{d x}=-\frac{2}{y^{3}} y^{\prime}$ or $\frac{1}{y^{3}} y^{\prime}=-\frac{1}{2} \frac{d y}{d x}$
The equation becomes, $\quad-\frac{1}{2} \frac{d y}{d x}+\frac{Y}{x}=x^{3}$
or $\frac{d y}{d x}-\left(\frac{2}{x}\right) y=-2 x^{3}$
Comparing this equation with $\quad \frac{d y}{d x}+p y=Q$
$P=-2 / x, Q=-2 x^{3}$
$\int P d x=-2 \log _{e} x=\log _{e}\left(y x^{2}\right) \therefore e^{\int P d x}=y x^{2}$
The solution is $Y e^{\int P d x}=C+\int Q \quad e \int p d x d x$

$$
\int 0 e^{p d x} d x=\int_{2}-2 x^{3} \cdot y x^{2} d x=-x^{2}
$$

Therefore, $y . y_{x}^{2}=c-x^{2}$
or $y=x^{2}\left(c-x^{2}\right)$
or $y y^{2}=x^{2}\left(c-x^{2}\right)$ is the solution or $. y^{2}=\frac{1}{x^{2}\left(c-x^{2}\right)}$
3. Solve $\left(e^{y}-2 x y\right) y^{1}=y^{2}$

Here it is necessary to treat x as the efpencent variable and y as t depencent variable.
Noting $y^{\prime}=d y / c x=\frac{1}{d z / d y}$
The equation becomes $\left(e^{y}-2 x y\right) /\left(\frac{c x}{d y}\right)=y^{2}$

$$
e^{y}-2 x y=y^{2} \quad \frac{d x}{d y}
$$

Here $P=F(y)=2 / Y, \psi=\psi(y)=e^{Y / y}$
$\int F d y=\int 2 / y d y=2 \log y$
$\mathrm{e}^{\int P C x}=y^{2}$
$\therefore \hat{q} e^{\int i d y} d y=\int e^{4} / y^{2} \cdot y^{2} d y=E$
The solution is $x e^{\int P d y}=C * \int c e^{F E y} d y$
The solution is $x y^{2}=c+e^{y}$
4. Solve the initial value problem :

$$
\begin{aligned}
& \frac{d y}{d x}+y=x y^{3}, \quad y(0)=\sqrt{2} \\
\Rightarrow & \frac{1}{y^{3}} \frac{d y}{d x}+\frac{1}{y^{2}}=x
\end{aligned}
$$

fut $y^{2}=\because$
dy/dx $-2 y=-2 x$
$P=-2, Q=-2 x$
$\int P C x=-2 x \quad Q^{=} \quad-2 x \quad e^{\int P C x}=e^{-2 x}$
$\int a e^{P d x} d x=\int-2 x e^{-2 x} d x$

$$
\begin{aligned}
& d x=-2\left[x\left(\frac{e^{-2 x}}{-2}\right)-\int \frac{e^{-2 x}}{x} \cdot 1 d x\right] \\
& =x e^{-2 x}+\frac{1}{2} e^{-2 x}=\left(x+\frac{1}{2}\right) e^{-2 x}
\end{aligned}
$$

The solution is $y e^{-2 x}=C+(x+y 2) e^{-2 x}$
or $y y^{2}=x+2+c e^{+2 x}$.

Using the initial condition
$y(0)=\sqrt{2}$
$y 2=y 2+c \quad c=0$
The solution is $y y^{2}=x+y_{2}$
5. $\cos y \frac{d y}{d x}+\frac{\sin y}{x}=1$
put $\sin y=y \quad \cos y \frac{d v}{d x}=\frac{d y}{d x}$
$\frac{d y}{d x}+\frac{y}{x}=1$
$f(x)=y x,-(x)=1$
$\int f(x) d x=\log _{e} x \Rightarrow \int e^{f(x) c x}=x$
$\int 4 e^{P(x) d x}=\int 1 \cdot x d x=y 2 x^{2}$
Hence the solution is $y=e^{-\int f(x) d x\left[C+\int u e^{p(x)} d x\right]}$
$o=\sin y=y x\left(c-y 2 x^{2}\right)$
or $\sin y=c / x+x / 2$
6. $(y+1) d y / d x+\left(y^{2}+2 y\right) x=x$

$y 2 d / / d x-y x=x$
$0=\frac{c y}{d x}+(2 x) y=2 x$

$\int 4 e^{p(x)} d x=\int 2 x e^{x^{2}} d x=e^{x^{2}}$
Hence the solution is $y=e^{-\int(x) d x}\left[C y e^{\int p(x) d x}\right]$
i.e. $\left(y^{2}-2 y\right)=e^{-x^{2}}\left(c+e^{x^{2}}\right)$
or $y^{2}+2 y=c e^{-x^{2}}+1$

 g is a solution \Rightarrow cgicx－peg．$=0$ $\times \mathrm{C}_{2}$

$$
i_{1} \frac{d f}{d x} \div C_{2} \frac{c_{i g}}{d x}-p\left(c_{1} f+c_{2} g\right)=(1
$$

oI $d / c \times\left(c_{1}\left\{+c_{2} g\right)-P\left(c_{1}\left\{-c_{2} g\right)=0\right.\right.$
hence $c_{1} f+c_{2} \equiv$ is \bar{f} sc a solution $c f c y / d x+p y=0$ ．
Mote ：The＝esul：cEn．De extenced．Accordinciy，fo＝any solution，
 of the equation for any arらiさニミニy constants $c_{1}, c_{2}, c_{3}, \ldots$ 2．Consider，the ciffezertial equation $d y / d x+p y=0$ were $P=(x)$ ． Show that
a）$f(x) \equiv 0: 0=a 11 x$ is a solution of the equation．
i）if $f(x)$ is ar solution 0 ：the equation such that $f\left(x_{0}\right)=0$ fol some value $x=x_{0}$ ，then $f(x) \equiv 0$ for all x ．
 Note：The solution $f(=0$ of the equation（1）is called the zero solution or i＝ivial scluzion．my other solution than iris is called a

a）putting $y=0$ in the equation，the equation is satisfied． Hence $f(x)=0$ is a solution ct the equation．
b）consider $d y / d x+p y=0$
Separating the variables，$d y / y+f(x) d x=0$
Integrating the equation，we get $y=c e^{\int p(x)} d x$
is the general solution（i．e．all solutions are of this form）．
Let $f(x)$ be a solution．Then for some $c, f(x)=c e^{\int} p(x) d x$ ．
Let $f\left(x_{0}\right)=0$ for some $x=x_{0}$ ，then putting $x=x_{0}$ $f\left(x_{0}\right)=c e^{\int f(x) d x}=0 \Rightarrow c=0$
Then $f(x) \equiv 0$ for all x ．
c) Let $f(x), G(x)$ be two solutions such that $f\left(x_{0}\right)=g\left(x_{0}\right)$. Then $f(x)=c_{1} e^{\int P(x) d x}$
$G(x)=c_{2} e^{\int p(x) d x}$
$f\left(x_{0}\right)=g\left(x_{0}\right)$
$\Rightarrow f(x)-g(x)=0$. also $f(x)-g(x)$ is also a solution of the equation.
Hence from $(b), f(x)-y(x) \equiv 0$ for all x

$$
f(x) \equiv g(x) \text { for all } x
$$

3. Let $f_{1}(x)$ be a solution of $\frac{d y}{d x}+P(x) y=G_{f}(x)$
and $f_{2}(x)$ be a solution of $\frac{d y}{d x}+P(x) y=G_{2}(x)$
Then prove the: $f_{1}(x)+f_{2}(x)$ is a solution of

$$
\begin{equation*}
\frac{d v}{d x}+p(x) y=u_{1}(-x)+u_{2}(x) \tag{3}
\end{equation*}
$$

since $f_{1}(x)$ arc $f_{2}(x)$ are solutions of the differential
equations (1) and (2) respectively.

$$
\begin{aligned}
& \frac{d f_{1}}{d x}+p(x) f_{1}=u_{1}(x) \\
& \frac{d f_{2}}{d x}+f(x) f_{2}=u_{2}(x)
\end{aligned}
$$

doing: $d / d x\left(f_{1}+f_{2}\right)+p(x)\left(f_{1}+f_{2}\right)=Q_{1}(x)+Q_{2}(x)$ which
shows that $f_{1}(x)+f_{2}(x)$ is a solution of the differential equation ((s).
A Uniqueness Theorem :
4. If $P(x)$ ane $Q(x)$ are continuous functions of x, then show that $d y / d x+p(x) y=Q(x)$.
has a unique solution $y(x)$ satisfying the initial condition.
$y\left(x_{0}\right)=y_{0}$
Let $y_{1}(x)$ and $y_{2}(x)$ be two solutions of the initial value problem $d y / d x+P(x) y=u(x)$

$$
y\left(x_{0}\right)=y_{0}
$$

Then $y_{1}(x)-y_{2}(x)$ is a solution of $d y / d x+P(x)=0$
miso, $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=y_{0} Z y_{0}=0$

Hence, $y_{1}(x)-y_{2}(x)$ is a solution of the homogeneous equation dec $x+f(x) y=0$ satisfying the condition $y_{1}\left(x_{0}\right)-y_{2}\left(x_{0}\right)=0$. presence, $y_{1}(x)-y_{2}(x) \equiv 0(i . e$. for all x)

$$
y_{1}(x) \equiv y_{2}(x) \text { for all }
$$

Fence the solution is unique.
assignment and Self Test :

1. Solve the differential equations.
a) $(x-4) y^{4} d x-\left(y^{2}-3\right) x^{3} d y=0$
b) $x \sin y d x+\left(x^{2}+1\right) \cos y d y=0$
c) $4 x y+\left(x^{2}+1\right) y^{1}=0$
c) $\left(e^{y}+1\right) \cos x+e^{y}(\sin x+1) \frac{d y}{d x}=0$
e) $\operatorname{Tan} \mathrm{E} \mathrm{d} r+2 r d i=0$
f) $(x+y) d x-x d y=0$
g) $\left(2 x y+3 y^{2}\right)-\left(2 x y+x^{2} y^{1}=0\right.$
n) $\left(x^{2}-2 y^{2}\right)+x y y^{1}=0$
i) $x^{2} \frac{d y}{d x}=3\left(x^{2}+y^{2}\right) \operatorname{Tan}^{-1}(y / x)+x y$
j) $\left(x y^{1}-y\right) \sin (y / x)=x$
k) $x y^{1}=y+2 x e^{-y / x}$
1) $(x \operatorname{Ian}(y / x)+y) d x-x y=0$
2. Solve the Initial Value Problem
a) $(y+2) d x+y(x+u) d y=0, y(-3)=-1$
b) $\left(x^{2}+3 y^{2}\right) d x-2 x y d y=0, y(2)=6$
c) $(2 x-5 y) d x+(4 x-y) d y=0, y(1)=4$
d) $(3 x+8)\left(y^{2}+4\right) d x-4 y\left(x^{2}+5 x+6\right) d y=0, y(1)=2$
e) $\left(3 x^{2}+9 x y+5 y^{2}\right)-\left(6 x^{2}+4 x y\right) \frac{d y}{d x}=0, y(2)=-6$.
3. Solve:
a) $(x+2 y-3) \frac{d y}{c x}+(2 x-y-1)=0$
b) $(x+y-1) d x+(2 x-y-8) d y=0$
c) $(x+y) \frac{d y}{d x} \div(2+y-x)=0$
d) $(x+y+1) d y \div(2-x-y) d x=0$
e) $(x+2 y+3) \frac{d y}{d x}+(2 x+4 y+3)=0$
4. Solve :
a) $\frac{d y}{c x}+\frac{3 y}{x}=6 x^{2}$
b) $x \frac{4 d y}{c x}+2 x^{3} y=1$
c) $\frac{d y}{d x}+3 y=3 x^{2}-3 x$
d) $\frac{d y}{d x}+4 x y=8 x$
e) $\frac{d x}{d t} \quad \frac{x}{t^{2}}=\frac{1}{t^{2}}$
$\Rightarrow\left(u^{2}+1\right) \frac{d u}{d u}-4 u v=34$
g) $\quad x \frac{d y}{d x}+\frac{2 x+1}{x+1} y=x-1$
h) $\left(x^{2}+x-2\right) \frac{d y}{d x}+3(x-1) y=(x-1)$
i) $\frac{d r}{a g}+\tan \theta=\cos \theta$
j) $\frac{d y}{d x}-\frac{y}{x}+\frac{y^{2}}{x}=0$
k) $x \frac{d y}{d x}+y+2 x^{6} y^{4}=0$
1) $\frac{4 y}{c x}-x\left(6 y-\frac{1}{8} / y^{3}\right)=0$
a) $\frac{\mathrm{dx}}{\mathrm{ct}}+\left(\frac{t-1}{2 i}\right) x=\frac{t-1}{x t}$
n) $x \frac{d y}{c x}-2 y=2 x^{4}, y(z)=8$
c) $\frac{d y}{d x}+3 x^{2} y=x^{2}, y(0)=2$
p) $\frac{d y}{d x}+\frac{y}{d x}=\frac{x}{y^{3}}, y(1)=2$
c) $x \frac{d y}{d x}+y=(x y)^{3 / 2}, y(1)=2$
$\Rightarrow \frac{d y}{d x}+y=f(x)$, when $f(x)= \begin{cases}2, & 0 \leqq x<1 \\ 0 & x \geqslant 1\end{cases}$
s) $(x+2) \frac{c y}{c x}+y=f(x)$ when $f(x)=2 x, 0 \leq x<2$ $y(0)=\{\leq x \geqslant 2$

APPLICATIONS CE FIRST COOLER EQUATIONS

Geometrical Applications－orthogonal Trajectories
Given a first order equation

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y) \tag{1}
\end{equation*}
$$

the general solution of（1）is given by

$$
F(x, y, c)=0 \quad-\quad-(z)
$$

c being an arbitrary constant．
（2）represents a family of curves（a one－Parameter family）in the x y plane．
（1）gives the slope of a curve of the family at (x, y) ．
Definition ：Given a C_{1}－family of curves，a $C_{2}-\hat{E}=$ Ely of curves is
 every curve of C_{1} orthogonally（i．e．at right angles）．
Note ：Since orthogonality（ie．Perpendicularity）is ミ symmetric relation，if C_{2}－family is orthogonal to $C_{1}-f a m i l y$ fin C_{1}－family is orthogonal to C_{2}－family．
Given the family of curves $C_{\text {，}}$ by the differential ecu：＝ion（ 1 ），the orthogonal trajectories to C_{p} are got by

$$
\frac{d y}{d x}=-\frac{1}{f(x, y)}--(3)
$$

（Recall that for two curves to be orthogonal，the Freãez of slopes＝－1）． Procedure forfincing the orthogonal trajectories 0 三
of curves ：
Step 1 ：From the equation（given）$F(x, y, c)=0(i)$ oz the given family of curves，find the differential equation of the $f a s i=y: \frac{d y}{d x}=f(x, y)$（ii） Step 2 ：Replace in Yin），$f(x, y)$ by $-1 / f(x, y)$ to $g e \div \frac{C V}{C x}=-1 f(x, y)$ This is the differential equation of the orthogonal t＝ミ：きょtories of（1）．

Step 3 ：Solve the equation（iii）to get the equation 0 ㅊ the family of orthogonal trajectories－a one－parameter family of curves

$$
\begin{equation*}
G(x, y, c)=0 \tag{iv}
\end{equation*}
$$

Caution ：In step 1 ，in finding the equation（ii）be sure of eliminating C．

Illustration ：
1．Obtain the orthogonal trajectories of the family of circles ：
$x^{2}+y^{2}=c^{2}$.
(i) represents the family of concentric circles centred at the origin. -differentiating (1) we get

$$
\begin{gathered}
2 x+2 y \frac{d y}{d x}=0 \\
\text { or } \frac{d y}{c x}=-\frac{x}{y} \cdots(2)
\end{gathered}
$$

changing $-x / y$ by $-(-1 / x / 4)=y / x$
The orthogonal trajectories of (1) are given by

$$
\begin{equation*}
\frac{c v}{c x}=\frac{y}{x} \tag{3}
\end{equation*}
$$

Eyearating the variables in (3) and integrating (3) we ger $y=c x$. (4)
lois is the family of radiating 1 ines from the origin.

(こ). Find the orthogonal trajectories of the family of
$F \equiv=a b o l a Y=C X^{2} \cdots(1)$
L:Eferentiating $\frac{d y}{d x}=2 c x$
Eliminating $c, \frac{c v}{c x}=2 \mathrm{y} / \mathrm{x}$
Ire orthogonal t=ajecto:ies are given by

$$
d y / d x=-\frac{x}{2 y} \cdots(3) \Longrightarrow x d x+2 y d y=0
$$

Ir:egrating this equation

$$
\begin{equation*}
2 y^{2}+x^{2}=\text { constant or } \quad x^{2}+2 y^{2}=c^{2} \tag{4}
\end{equation*}
$$

which are ellipses.
(三) Find the orthogonal trajectories of the curves given by $y^{2}=2 c x+c^{2}$
Consider $Y^{2}=2 C x+c^{2} \ldots(1)$

Substituting for C in (1)

$$
\begin{align*}
& y^{2}=2\left(y y^{1}\right) x+y^{2} y^{2} \\
& y^{2}=2 x y y^{1}+y^{2} y^{2} \tag{2}
\end{align*}
$$

Replacing $y{ }^{\prime}$ by $-\frac{1}{y^{\prime}}$
We get $y^{2}=\frac{-2 x y}{y^{1}} \div \frac{y^{2}}{y^{2}}$
$y^{2} y^{1^{2}}+2 x y y^{1}=y^{2}$
(2) and (3) are identical. ::once the orthogonal trajectories of the given curves are themselves :.e. given by (1) itself.
Definition: A given fam: if its family of orthogonal :=ajectories is the same as the given family. In the above example, the given family of Parabolas

$$
y^{2}=2 c x+c^{2} \text { is sely-o=thogonal. }
$$

Miscellaneous Examples :

(4) Find the curves such th: the portion of the tangent intercepted by
the axes is bisected $E=$ the =ar: of contact.
Let $Y=f(x)$ in a curve wis.- the property.
The equation c the tangent $\equiv: E\left(x_{1}, y_{1}\right.$ is

$$
\begin{equation*}
\left(y-y_{1}\right)=\left(\frac{d_{1}}{d x}\right)_{p} \cdot\left(x-x_{1}\right) \tag{1}
\end{equation*}
$$

Putting $Y=0$ in (1) $-y_{1}=y_{i}^{1}\left(x-x_{1}\right)$
or $x=-x_{1}-\frac{y_{1}}{y_{1}}$
$a=\left(x_{1}-\frac{\mu_{1}}{4}, c\right)$
Putting $x=0$ in (1), $y-y_{1}=\because_{1}^{\prime}\left(-x_{1}\right)$
or $y=y_{1}-x_{1} y_{p}^{\prime}$
$B=\left(0, y_{1},-x_{1} y_{p}^{\prime}\right)$
Since P is the mid point of ra,
$\left(x_{1}, y_{1}\right)=\left[\frac{1}{2} x_{1}-\frac{y_{1}}{y_{p}^{\prime}}-x_{i}: \frac{1}{2}\left(y_{1}-x_{1} y_{f}^{\prime}-0\right)\right]$

$$
\begin{aligned}
\Rightarrow & x_{1}=\frac{1}{2}\left(x_{1}-\frac{y_{1}}{u_{p}^{\prime}}\right), \quad y_{1}=\frac{1}{2}\left(y_{1}-x_{i} y_{p}^{\prime}\right) \\
\Rightarrow & 2 x_{i}=x_{i}-\frac{u_{1}}{y_{i}^{i}}, \quad=y_{i}=y_{1}-x_{1} y_{p}^{\prime} \\
& x_{1} y_{p}^{\prime}-y_{i}=0
\end{aligned}
$$

Then the curves with the property are given by the differential equation $x y^{\prime}+y=0$
Sciving it by sectaa＝土ng the variables，we get the curves to be $x y=c^{2}$ ．
（三）Find the curves Ec＝which the suinc＝mal at any point of the curve
is of length 1 ．
The sub normal $=$ an an point $\equiv(x, y)$ is Given by y y^{1} ．
Therefore，the ciffeientiel equation of the curves whose subnormal is l
is $y y^{\prime}=1 \Rightarrow y \frac{c y}{c x}=1$
Integrating $y^{2}=2 x+c$
ane the recurred curves．
6．A curve rises from the origin in the wy plane in the first guaczant． The area under the curve $=x a m(0,0)$ to (x, y) is one－thirc the area of the rectangle with the points on opposite points．Find the equation of the curve．
Given：y 3 （area of CいI： ）$=$ nae under the arc

The curve is such that the area under the arc $O P, P(x, y)$
＝y 3 （The area of the rectangle Chipif）
$=$ y 3 my
The area under the curve $=\quad \int_{1}^{\prime} y d x$
Hence， $\int_{0}^{1} y d x=y 3 x y$
Lifferentiating w．I．t．x

$$
y=\frac{1}{3} \quad \frac{d}{c x}(x, y)
$$

or $3 y=x y^{1}+y$
or $2 y=x y^{1} \Longrightarrow \frac{2 d x}{x}=\frac{d v}{y}$

This is the differential equation of the curve.
Integrating the equation we get its equation to be $y=x^{2}$ or $2 x$.

Filling Bock p=oziems/pendulum

(a) F zee ball: If m is the mass of a falling body and a is the acceleration 0 : the bock, then the force acting on the body is given by $F=$ ma by the second law of motion. Accordingly, $i=v$ is the velocity of a freely falling body which has fallen through a distance x, then the equation of motion is $m \frac{d v}{d t}=m g$ or $\frac{d v}{d i}=g$
Integrating the equation $v=v_{0}+g t$
v_{c} being the initial velocity (att $=0$).
Since $v=\frac{d x}{d t} \quad$ (2) becomes $\quad \frac{d x}{d \tau}=v_{0}+g t$
Integrating again, $x=v_{0} t+\frac{1}{2} g t^{2}$
Since $x=0$, when $t=0$
the motion of the f=eely falling body is governed by the equations (1), (2) ane (3).
(b) Pesarcied fall: If $w e$ assume that air exerts a force opposing the mciion of the falling body and that this opposing force vales directly as the velocity of the body, then the quation of falling body becomes

$$
\begin{aligned}
& \quad \frac{d v}{}=g-c v \cdot(1) \quad(c>0) \\
& 0=\quad \frac{d v}{d t}=d t \\
& \text { Integrating }(1)-\frac{1}{c} \log (g-c v)=t+c_{1} \text { or } g-c v=c_{2} e^{-c t}
\end{aligned}
$$

TaKing the initial velocity as zero ie. $V(0)=0$

$$
c_{2}=g
$$

$$
\begin{equation*}
v=\frac{g}{c}\left(1-e^{-c t}\right) \tag{2}
\end{equation*}
$$

C is the. Hence $V \rightarrow y / c$ on $t \longrightarrow \infty$
Tais limiting value of v is called the terminal velocity . Since $v=\frac{d x}{d t}$
(2) becomes $\frac{d x}{d t}=\frac{g}{c}\left(1-e^{-c t}\right)$

Integrating again, $x=c_{3}+\frac{g}{c}\left(t+\frac{1}{c} e^{-c t}\right)$
since $x=0$ when $t=0 \quad c_{3}+9 / c i=0$ or $c_{3}=-g / c^{2}$

$$
\begin{equation*}
x=\frac{9}{c}\left[t+\frac{1}{c}\left(e^{c t}-1\right)\right] \cdots \tag{3}
\end{equation*}
$$

(c) Ire motion. cf a simple sencuium : Let m be the mass of the bor and a the leggin ce the pendulum. The bob is puller aside enrouch an angle α (mejsuzec from the plumb line). If V is the vele=ity of the
 of Conservation cf energy

$$
\frac{1}{2} m v^{2}===\quad(\bar{e} \cos \theta-\bar{a} \cos \alpha)
$$

But $s=a \theta \quad v=\frac{l i}{d t}=a \frac{d E}{d t}$
The equation $5=c o m=s$
$\frac{1}{2} a^{2}\left(\frac{d t}{a t}\right)^{2}=\operatorname{ay}(\cos \theta-\cos \alpha)$
That is the equation of motion of the pendulum

Differentiating (1) \%.こ.t. 亡
$a \cdot \frac{d t}{d t} \cdot \frac{d^{2} t}{d t}=-a y \sin \theta \cdot \frac{d t}{d t}$
or $\quad \frac{d^{2} t}{d t^{2}}=-\frac{c}{c_{i}} \sin t \ldots(2)$

(i) Case of small oscillations

$$
\text { Assuming that the oscillations are small, (ie. } \hat{A} \text { is small) }
$$

we replace : sin θ by θ (since θ is small, $\sin \theta$ is almost $\hat{\operatorname{G}}$ itself) This equation becomes

$$
\begin{equation*}
\frac{d^{2} t}{d t^{2}}=-\frac{1}{a} t \tag{3}
\end{equation*}
$$

This is the equation of motion of a simple penciulum
for small oscillations.

$$
\begin{array}{ll}
\text { assuming that } \hat{\theta}=x & \text { and } \frac{d e}{d t}=0 \text { when } t=0 \\
\epsilon=x \cos (\sqrt{9 / 2 t}) \quad \text { (4) }
\end{array}
$$

Simple electric circuits :

Consider a simple electric circuit consisting of
(i) a source of electromotive force (emf) E
(ii) a resistor of resistance n which opposes the current producing a drop in emf of magnitude E_{R}. If $I=$ the current, then $E_{R}=F \cdot I$ (This equation is called Ohm's law). (iii) An inductor of inductance L, which opposes any change in the current by producing a drop in emf of magnitude

$$
E_{L}=L \quad \frac{d I}{d t}
$$

(iv) a capacitor (or concenser) of capacitance C which stores the charge 4 . The charge accumulated by the capacitor resists the inflow of additional charge, and the drop in emf arising in this way is

$$
E_{C}=\frac{1}{C} Q .
$$

Furthermore, since the current is the rate of flow of charge at which charge builds up on the capacitor, we have $I=\frac{d e}{d t}$

These elements act in accordance with Kirchoff's Law, which states that the algebraic sum of the emfs around a closed circuit is zero.
This principle yields

$$
E-E_{L}-E_{R}-E_{C}=0
$$

OI E - RI -L $\frac{C I}{a t}-\frac{1}{C} Q=0$
or $L \frac{d I}{d t}+R I+\frac{1}{C} Q=E$
Replacing I by $\frac{d C}{d t}$
(1) becomes $L, \frac{d^{2} t}{d t^{2}}+R \frac{d t}{d t}+\frac{1}{c} S=E$.

When no capacitor is present the equation (1) becomes the first order differential equation : $L \frac{d I}{C T}+R I=E$
He solve ((3) assuming that initial durant I_{0} and a constant earn E_{0} is impresser on the circuit at time $t=0$. The equation governing the flow of current is

$$
L \frac{d I}{d t}+R I=E_{0}
$$

separating the variables

$$
\frac{d I}{E_{0}-R I}=\frac{1}{L} d t
$$

on integrating using the initial condition $I=I_{0}$, when $t=0$.
He get $\log \left(E_{0}-R I\right)=-\frac{R}{L} t+\log \left(E_{0}-R I I_{0}\right)$
so $I=\frac{E_{0}}{R}+\left(I_{0}-\frac{E_{0}}{R}\right) \exp \left(-\frac{R L}{L}\right)$
Note that the current I consists of a steady state part E_{0} / R and a transient part ($I_{0}-\frac{E_{0}}{12}$) exp ($\frac{\text { 此 }}{L}$) that approaches zero as $t \rightarrow \infty$. Consequently, crim's law $E_{0}=R I$ is nearly true for large values of t. If $I_{0}=0$, then $I=\frac{E_{0}}{R}\left(1-e^{-R t / L}\right)$
and if $E_{0}=0$ ，then $I=I_{0} e^{-E t / I}$

CTHER RAT 三 HRCEーES

flows into the zante at the こここe of 3 geilon／minute．The mixture is
kept unifuz．．．by constant sti＝ニing and the mixture simultaneously flows
out of the tank at the same rate．
1．How much salt remains in the tank．$E t$ any time $t>0$ ？
2．How much sat＝mains at the enc of 25 minutes ？
き．How much salt＝mains eventually（玉ごこEニ a lora time）？
Let x oencie the amount of salt in the tent e＝five t．The basic equation governing the flow is

$$
\frac{c x}{c t}=\operatorname{Inflow}-c u f 10 w
$$

Since the inflow is at the \mathfrak{i} ane 3 gailon／minute ane each gallon contains 2 lb of sal t
Thus inflow $=2 \mathrm{Lb} / \mathrm{Gal} \mathrm{x}$ З gal min＝ $6 \mathrm{Lb} / \mathrm{min}$
Since the rate çoutflow equals the＝ate of inflow the tank contains
50 gal．of the mixture at any time．
Then 50 gallons contains x lb of salt．
The concentration of salt at time $t=\frac{x}{50} 1 \mathrm{~b} / \mathrm{gal}$
The outflow $=\left(\frac{x}{50} 10 /\right.$ gal $) \times(3 \operatorname{cal} / \mathrm{min})=\frac{3 x}{50} 1 b / m i n$ ．（iii）
Thus the differential equation governing the flow is

$$
\frac{c x}{c t}=6-\frac{2 x}{50} \quad \text { (iv) }
$$

Initially there was no salt in the tank．Hence $x=0$ when $t=0$ （or $\chi(u)=0)$ ．
To solve（iv）separating the variables，$\frac{d x}{100-x}=\frac{3}{50} d t$
Integrating $x=100+C e^{-3 t / 50}$
5 inge $x(0)=0, c=-100$

$$
\begin{equation*}
x=100\left(1-e^{-3 t / 50}\right) \tag{v}
\end{equation*}
$$

This ansi:ers question (1).
For the question (2), put $t=25$.
$\therefore x(25)=100\left(1-e^{-1 \cdot 5}\right) \approx 78 \mathrm{lb}$
The question (i) is solved by letting $t \rightarrow \infty$
in (v). then $x=100$.
b) in cerain chemical is converted into anothez chemical by a chemical reaction. The rate at which the first chemical is converted (intc the second) is peocortional to the amount of this chemicel present at any instant. Een percept of the original amount of the first chemical has been conveここed i:a 5 minutes.
i) ihet pezeent of first chemicai will have been converted in 20 min ? ii) In hoiv many min. will 60, of the 1 st. chemicai has been converted ? Le= x_{0} in the amount of firss chenical present initially. Let x be the amcun: of chemical uncergoing reaciion \ddagger the enc of time t.
Then ($x_{0}-x$) is the amount of the chemiaal left out at the end of time t. Ey the hypothesis, the rate of charge of x is paop. to ($x_{0}-x$). Zherefore, the differential equation of the reacion is

$$
\begin{equation*}
\frac{z x}{c z}=K\left(x_{0}-x\right) \tag{1}
\end{equation*}
$$

Separating ine veriables and integrating $x=x_{0}-c e^{-k t}$
Since $x=0$ when $t=0, c=x_{0}$

$$
\begin{equation*}
\therefore x=x_{0}\left(1-e^{-k t}\right) \tag{2}
\end{equation*}
$$

Now $x=\frac{x_{0}}{10}$ when $t=5 \mathrm{~min}$.

$$
\begin{aligned}
& \frac{x_{c}}{10}=x_{c}\left(1-e^{-5 k}\right) \\
& e^{-5 k}=0.9
\end{aligned} e^{k}=(0,0)^{y 5}
$$

Hence (2) becomes $x=x_{0}\left(1-(0.9)^{t / 5}\right) \ldots$ (3)
(i) at the erd of 20 min . $x=x_{0}\left(1-(0.9)^{20 / 5}\right)=x_{0}\left(1,(0,9)^{4}\right.$

Thus at the end of $20 \mathrm{~min} \cdot \frac{100 \mathrm{x}}{x_{0}}=100\left(1-(0.9)^{4}\right)$

Peaces： af the chemical is converted into the second chemical． （ii）$I=x=\frac{6 x_{i}}{10}$（ 60% of the first chemical）
Then $ミ=\Omega-=(3) \quad \frac{6 x_{0}}{10}=x_{0}\left(1-(0.9)^{t / 5}\right)$

$$
c .5=\left(1-(0.0)^{t / 5}\right.
$$

$\therefore(0 . E)^{t / 5}=0.4$

$$
t_{5}=\frac{\log 0.4}{\log 0.9}
$$

$t=5\left(\frac{=0.4}{=00.9}\right) \mathrm{min}$.
c）Nssuニミ that＝he date at which a hot boy cools is propo＝こional te the difference between its tempe＝atuze and that of the su＝Iouraing（this law is calls＂ewtcn＇s law of cc＝lingi．n body is heated to $1: 0^{\circ} \mathrm{O}$ a nc faced in air $E=10^{\circ} \mathrm{C}$ ．after one hour its temperature is $60^{\circ} \mathrm{C}$ ．\because ow much accition三i time is recurred for it to cool to $30^{\circ} \mathrm{C}$ ？
Let $e^{\prime \prime} \dot{\sim}$ se the temperature c f he body at time t ．from start．Since the temfezEzure of the surrounding air is $10^{\circ} \mathrm{C}$ ，by hypothesis

$$
\frac{d e}{d t}=k(e-10) \quad(1), k>0
$$

Integral inc，lee $(\in-10)=-k i+$ constant
$c=\quad=10+c e^{-k t}$
when $t=c, \theta=110, \quad 110=10+c e=107 \mathrm{C}$ or $\mathrm{C}=100$

$$
\begin{equation*}
\theta=10+100 e^{-k t} \tag{2}
\end{equation*}
$$

vine $t=1$ hour，$\theta=60^{\circ} \mathrm{C}$
$60=10-100 e^{-k .1}$

$$
e^{-k}=0.5
$$

$$
\begin{equation*}
E=10-100(0.5)^{t} \ldots \tag{3}
\end{equation*}
$$

If $E=50^{\circ} \mathrm{C}, 30=10+100(0.5)^{t}$

$$
(0.5)^{t}=\frac{20}{100}=(0.2)
$$

$$
t=\frac{\log 0.2}{\log 0.5} \quad \mathrm{~h}=
$$

The additional time required

$$
\left(\frac{\log 0.2}{\log 0.5}-1\right) \operatorname{hrs}=\left(\frac{\log 5}{\log 2}-1\right) \text { hrs. }
$$

d) sum of money is deposited in a bank that pays interest at an annual rate $i r$ compounded continuously.

1. Find the time required for the original sum to double.
2. Find the interest rate that must be paid if the initial amount doubles in 10 years.
If $A=a(t)$, be the amount at any time.
then, $\frac{d A}{d t}=\frac{\pi}{100} A \ldots$
Integrating $A=A_{0} e^{\frac{r t}{100}} \cdots(2)$
$\dot{A}_{0}=\hat{A}(0)=$ the initial deposits.
3. If $t=I$, when $n=2 A_{0}$ then $2 A=A_{0} E$

$$
\begin{align*}
& \pi I / 100=\log _{\mathrm{e}}^{2} \\
& \therefore=\frac{100}{r} \log _{\mathrm{e}}^{2} \ldots \tag{3}
\end{align*}
$$

2. If $I=10$, then $10=\frac{100}{r} \log _{e}^{2}$

$$
r \equiv 10 \log _{e}^{2} \quad \text { (4) is the rate of compound interest. }
$$

(e) In .a certain chemical reaction a substance A is converted into another substance X. Let a be the initial concentration of A and $x=x(t)$ in the concentration of x at time t. Then $a-x(t)$ in the concentration of n at t. If the reaction is jointly proportional to x and $a-x$ (i.e., the reaction is simulated by the substance being produced, when the reaction is described on auto catalytic) and $x(0)=x_{0}$, find $x(t)$.
The rate of reaction is governed by

$$
\begin{aligned}
& \frac{d x}{d t}=k x(a-x) \cdots(1) \quad k>0 \\
& \frac{d x}{x(a-x)}=k \cdot d t \Longrightarrow\left(\frac{1}{x}+\frac{1}{a-i}\right) d x=a k d t \\
& \log x-\log (a-x)=a k t+c \cdot \cos t \\
&\left(\frac{a-x}{x}\right)=(c \exp (-a k t)
\end{aligned}
$$

$$
\begin{aligned}
& o=\frac{a}{x}=1+c e^{a k t} \\
& 0=x=\frac{a}{\left[1+c \bar{e}^{-k+}\right]} \\
& \text { At } t=0, x=x_{0}=\frac{a}{1+c} \\
&
\end{aligned}
$$

$x=$

$$
\frac{a}{a_{0}+\left(a_{1}-1\right) e^{-i k t}}=\frac{a x_{c}}{x_{c}+\left(a-x_{c}\right) e^{-a k t}}
$$

（f；伊并moth ball whose Iacius was originally $\because 4$ inch is found to have a racius $1 / \varepsilon$ irco enter one month．mssuming that it evaporates at a Late proportional to its surface，find the racius at any time． miter how many months will the moth ball cissappeaz altoget her． If x is the racius of the moth ball，V its volume and s its surface a at in e t，

$$
\begin{gathered}
\frac{d v}{d t}=-k \hat{s} \quad k>0 \cdots(1) \\
v=\frac{4}{3} \pi z^{3}, \quad s=4 \pi x^{2} \\
\frac{d v}{c i x}=4 \pi x^{2} \frac{d x}{d t}=5 \frac{d x}{d t} \cdot \text { Hence (1) becomes si } \frac{d x}{c t t}=-k s \\
\text { Integrating } x=c-k t
\end{gathered}
$$

when $t=0, x=y 4, y 4=C \quad x=y 4-K t$
then $t=1, x=\ddot{\varepsilon}, y 8=y^{\prime} 4-K \quad$ oI $k=y 8$

$$
\begin{align*}
& x=\frac{1}{4}-\frac{1}{8} \quad t=\frac{2-t}{\varepsilon} \\
& x=x(t)=y \varepsilon(2-t) \tag{3}
\end{align*}
$$

when $t=2, x=0$ and the moth ball disappears．the moth ball disappears after 2 months．
g）In rate at winch racicactive nuclei decay is proportional to the number of such nuciei present in a given sample．Half of the original radio active nuclei have undergone disintegration in 1500 years．
h）that percentage of the original radio active nuclei will remain after 4500 years ？
2. In how many years will only one-tenth of the original nuclei remain?

If $x=x(t)$ is the amount of radio active nuclei remaining after t years and $x(0)=x_{0}$, the origin nat amount of the nuclei, then the disintegration of the radioactive nuclei is governed by

$$
\begin{aligned}
& \frac{d x}{d L}=-K x(1) \quad K>0, \\
& x(0)=x_{0}
\end{aligned}
$$

Integrating the equation (1) we get, $x=x(t)=C(\exp (-k=))$. Putting $t=0, x=x_{0}$, we get $x=x_{0} e^{-k t} \cdots(2)$
It is given, that when $t=1500, x=y 2 x_{0}$

$$
\begin{align*}
& \frac{1}{2} x_{0}=x_{0} \cdot e^{-1500 k} \\
& \frac{1}{2}=e^{1500 k} \text { or }\left(e^{-k}\right)^{1500}=\frac{1}{2} \\
& e^{-k}=-\left(\frac{1}{2}\right)^{\frac{k}{1500}} \tag{3}
\end{align*}
$$

(2) becomes $x=x_{0}\left(\frac{1}{2}\right)^{\frac{t}{1500}}$
(1) when $t=4500, x=x_{0}\left(\frac{1}{2}\right)^{3}=\frac{x_{c}}{8}$
12.5% of the original amount remains after 4500 years.
(2) when $x=\frac{1}{10} x_{0}, \quad \frac{1}{10} x_{c}=x_{0}\left(\frac{1}{2}\right)^{\frac{t}{1500}}$

Taking Logarithm

$$
\begin{aligned}
& \log \left(\frac{1}{10}\right)=\frac{t}{1500}\left(\log \frac{1}{2}\right) \\
& t=1500 \frac{\log \left(\frac{1}{10}\right)}{\log (\overline{2})}=1500 \frac{\log 10}{\log 2} \approx 4985 \text { years. }
\end{aligned}
$$

h) The rate at which a certain substance dissolves in w=こミ= in proportional to the product of the amount undissolved ant the difference $C_{1}-C_{2}$ where C_{1} is the concentration in the serrated solution and C_{2} is the concentration in the actual solution. If saturated, 50 gm of water would dissolve 20 gm of the substance.

If 10 gm of the substance is placed in 50 gm of water and half of the substance is then dissolved in 90 min．，how much will be dissolved in 3 hour ？

Since 20 gm of the stu stance dissolves in 50 gm saturated solution，the concentエきさion ir the saturated solution

$$
\begin{equation*}
=c_{1}=\frac{20}{50} \tag{i}
\end{equation*}
$$

Let x gm be the substance cinssolvec in 50 gm of water at time t． Then $(10-x)$ gm of the substance is undissolved at time t ．

The concentration of the subsieuce ir 50 cm of wate＝et Ene

$$
\begin{equation*}
t=c_{2}=\frac{x}{50} \tag{iz}
\end{equation*}
$$

The substance dissolves ir water accozeing to the low

$$
\begin{align*}
& \frac{c l_{2}}{c z e}=K\left(c_{1}-f_{2}\right)(10-x) \\
& =K\left(\frac{2 c}{5 c}-\frac{x}{5 s}\right)(10-x) \\
& c=\frac{d x}{d t}=\frac{k}{50}(20-x)(10-x) \\
& \text { Sepeエeこing the vaュinbles } \\
& \frac{d x}{(10-x)(2(\cdots x)}=\frac{k}{50} d t \quad \text { or } \\
& \frac{1}{10}\left(\frac{1}{10-x}-\frac{1}{20-x}\right)=\frac{k}{5 c} d t \\
& \text { Iーむいgことting } \log _{\in}\left(\frac{20-x}{10-x}\right)=\frac{k}{5} t+\text { cons. } \\
& c=\frac{2-0-x}{10-x}=C e^{k / 5 t} \\
& \text { ines } t=0, x=0, \quad C=2 \\
& \frac{2 c-x}{10-x}=2 e^{\frac{k}{5} t} \cdots \tag{1}\\
& \text { Since half the substance (ide. } 5 \mathrm{gm} \text {) is dissolved in } 90 \mathrm{~m} \text { in } \\
& \text { Fuたたing } x=5, \quad t=90
\end{align*}
$$

$$
\begin{aligned}
& 3=2 e^{15 k}, \frac{3}{2}=e^{18 k} c_{r} \quad e^{k}=\left(\frac{3}{2}\right)^{\frac{1}{15}} \\
& \frac{3-\cdots x}{10-x}=2 e^{\frac{k}{5} t}=2\left(e^{k}\right)^{1 / 5}=2\left(\frac{3}{2}\right)^{\frac{1}{40}}
\end{aligned}
$$

Now: ::e express x in terms of t.

$$
20-x=2\left(\frac{3}{2}\right)^{5 / 40(10-x)}
$$

$$
20-20\left(\frac{3}{2}\right)^{\frac{t / 40}{2}}=x\left[1-2\left(\frac{3}{2}\right)^{\frac{1}{i n}}\right]
$$

$$
x=20\left[\frac{(3,3}{\left.\frac{1}{2}\right)^{2} 0}-1 \quad-(2)\right.
$$

$$
\text { When } t=3 \mathrm{hrs}=180 \mathrm{~min} \text {. }
$$

$$
x=20\left[\frac{(3 / 2)^{2}-1}{2(3 / 2)^{2}-1}\right] 9_{m 1}=20\left[\frac{9-4}{15-4}\right]=\frac{100}{14} \text { or } x=7.14 \mathrm{gm}
$$

EXERCISES

ON

Differential Equations

Formation of Differential Equations

I. Form the differential equation by eliminating the arbitrary constants in the following equations.

1. $y=a \cos m x+b \sin m x$ where a and b are arbitrary constants.
2. $y=a e^{m x}+b e^{-m x}, a, b$ are constants.
3. $A x^{2}+B y^{2}=1$
4. $y=a e^{b x}$
5. $y=a \cos (x+b)$
6. $y^{2}=m\left(a^{2}-x^{2}\right), m, a$ are constants
7. $c(y+c)^{2}=x^{3}$
8. $y=d x-c)^{2}$
9. $y=a \sin (b x-c)$ where a and c are constants
10. $x y=A e^{x}+B e^{-x}$
11. $y^{2}-2 a y+x^{2}=a^{2}$
12. $(x-a)^{2}+(y-b)^{2}=r^{2}$, where a and b are constants.
13. Form the differential equation representing a family of straight lines passing through the ongin
lf Form the differential equation representing a family of concentric eireles $x^{2}+y^{2}=a^{2}$
15 Form the differential equation representing the family of parabolas ha:ngs x a.vis as the axis and focus at the ongin.
14. Obtain the differential equation representing a family of rectangular hyperbolas which have co-crdinate axes as asymptotoes
15. Form the differental equations bre eliminating a and b

$$
\begin{array}{ll}
\text { i) } & y=e^{x}(a \cos x-b \sin x) \\
\text { ii) } & y=a \sec x+b \tan x \\
\text { ii1) } & y=a \sin x-b \cos x-x \sin x
\end{array}
$$

Variables separable form :

Solve the following equations:
$1 \quad \sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$
$2 \quad \sqrt{1-y^{2}} d x-\sqrt{1-x^{2}} d y=0$
3. $(2 y-1) d x+(2 x+3) d y=0$
+. $\quad \frac{d y}{d x}+x y=x y^{2}$
5. $\quad\left(y^{2}+y\right) d x+\left(x^{2}-x\right) d y=0$
6. $y-x \frac{d y}{d x}=a\left(y^{2}-\frac{d y}{d x}\right)$
7. $x \sqrt{1+y^{2}} d x+y \sqrt{1+x^{2}} d y=0$
8. $\left(e^{y}+1\right) \cos x d x+e^{y} \sin x d y=0$
0. $\log \frac{d y}{d x}=a x+b y$
10. $\frac{d y}{d x}=(y-a)(y-b)$
11. $\cos y \log (\sec x+\tan x) d x=\cos x \log (\sec y+\tan y) d y$
12. $\frac{d y}{d x}=\frac{x(2 \log x+1)}{\sin y+y \cos y}$
13. $\left(y^{2}+y+1\right) d x+\left(x^{2}+x+1\right) d y=0$
$14 y-x \frac{d y}{d x}=a\left(x^{2} \frac{d y}{d x}+1\right)$
15. $\frac{d y}{d x}=(x+y)^{2}$

16 $\frac{d y}{d x}=\sin (x+y)$
17. $\frac{d y}{d x}+1=e^{x+y}$
18. $(x+y+1) \frac{d y}{d x}=1$
$10 \frac{d y}{d x}=1-e^{x-y}$
20. $\frac{d y}{d x}=\frac{x+y+1}{2 x+2 y+3}$
21. $\left(\frac{x+y-a}{x+y-b}\right) \frac{d y}{d x}=\frac{x+y+a}{x+y+b}$
$22 \frac{d y}{d x}=y \tan 2 x$ with $y(0)=2$
23. $2 x \frac{d y}{d x}=3 y$ given $y(1)=4$
$24 \cdot \frac{d y}{d x}=\sec y$ given $y(0)=0$
25. $\frac{d y}{d x}=2 e^{x} y^{3}$ given $y(0)=1 / 2$
26. $\sin \left(\frac{d y}{d x}\right)=a$ given $y(1)=2$
27. $e^{\text {dy/de }}=x+1$ given $y(0)=3$
28. $\left(1+x^{2}\right) \frac{d y}{d x}+\left(1+y^{2}\right)=0$ given $y(0)=1$
$29\left(1+y^{2}\right) d x-x y d y=0$ given $y(0)=1$
30. $e^{=} \frac{d y}{d x}=3 y^{3}$ given $y(0)=1=$

Homogeneous Equations
Show that the following equations are homogeneous and solve them:

```
    1. \(x y^{\prime}=x-y\)
2. \(\quad x^{2} y^{\prime}=x^{2}+x+y^{2}\)
\(3 \quad\left(3 x y+y^{2}\right) d x+\left(x^{2}+x y\right) d y=0\)
\(+\quad \frac{d y}{d x}=\frac{x-3 y}{x-y}\)
5. \(\quad \frac{d}{d x}=\frac{x-y}{x-1}\)
万. \(\quad 2 x y \frac{d y}{d x}=x^{2}+y\)
7. \(\left(x^{2}+x y\right) d y=\left(x^{2}-y^{2}\right) d x\)
8. \(\left(y-x^{2}\right) d x-2 x y d y=0\)
9. \(x d y-y d x=\sqrt{x^{2}-y^{2}} d x\)
10. \(x \frac{d y}{d x}=y-x \tan \frac{y}{x}\)
11. \(\left(x \tan \frac{y}{x}-y \sec ^{2} \frac{y}{x}\right) d x-x \sec ^{2} \frac{y}{x} d=0\)
```

12. $\quad x \cos \frac{y}{x}(y d x+x d y)=y \sin \frac{y}{x}(y d x-x d y)$

13 $x \frac{d y}{d y}=y[\log y-\log x-1]$
14. $\left(1-e^{x / y}\right) d x+e^{x / y}\left(1-\frac{x}{y}\right) d y=0$
15. $\quad x \frac{d y}{d x}=y+x \sec ^{=} \frac{y}{x}$
16. $x d x-\sin ^{2}\left(\frac{y}{x}\right)(y d x-x d y)=0$
17. $(2 \sqrt{3}-x) d-y d x=0$
18. $\quad \frac{d y}{d x}=1+\frac{y}{x}+\frac{y^{2}}{x^{2}}$

Linear Differential Equations

Find the general solution of the following equations.
$1 \quad\left(x^{2}-1\right) \frac{d}{d x}-2 x y=1$
$2 \frac{d y}{d x}-y \cos x=\cos x$
$3 \quad \cos ^{2} x \frac{d y}{d x}-y=\tan x$
$\rightarrow \quad\left(x-2 y^{3}\right) \frac{d y}{d x}=1$
$5 \quad\left(1-y^{2}\right) d x=\left(\tan ^{-} y-x\right) d y$
B $\quad(x-\tan y) d y=\sin 2 y d x$
$7 \quad \frac{d x}{d x}-y \tan x=\sec x$
ε
(ive
c $\quad x \frac{d y}{d x}-2 y=\log x$

10

$$
(x+y+1) \frac{d y}{d y}=1
$$

11. $\left(2 x-10 y^{2}\right) \frac{d y}{d x}+y=0$
12. $x \cos x \frac{d y}{d x}+y(x \sin x+\cos x)=1$
13. $(x+1) \frac{d y}{d x}-y=(x+1)^{2} e^{3 x}$
14. $\quad x\left(\frac{d y}{d x}+y\right)=1-y$
15. $\frac{d y}{d x}+\frac{y}{(1-x) \sqrt{x}}=1-\sqrt{x}$

Reduce the following equations to the linear form and hence solve.
Equations of the form $f^{\prime \prime}(y) \frac{d y}{d x}-f^{\prime}(y) P=Q$ can be reduced to linear form by using the substitution $\mathrm{f}\left(\mathrm{y}^{\prime}\right)=\mathrm{u}$ so that $f^{\prime \prime}(y) \frac{d y}{d x}=\frac{d u}{d v}$
$1 \quad \frac{d y}{d x}-x \sin 2 y=x^{3} \cos ^{2} y$
$2 \quad \frac{d y}{d x}-\frac{\tan !}{1-x}=(x+1) e^{x} \sec y$
3. $\quad x \frac{d y}{d x}+y \log y=x y e^{z}$

+ $\quad \frac{d y}{d x}-\frac{v \log y}{x}=\frac{y(\log y)^{2}}{x^{2}}$
$5 \quad \frac{d y}{d x}-\frac{1}{x}=\frac{e^{y}}{x^{2}}$

6. $\quad \tan y \frac{d y}{d x}+\tan x=\cos y \cos ^{3} x$
7. $x \frac{d y}{d x}=y(\log y-\log x+1)$
8. $\quad \frac{d y}{d x}+\frac{1}{x} \tan y=\frac{1}{x^{2}} \tan y \sin y$
9. $\quad \frac{d y}{d x}=e^{x-y}\left(e^{x}-e^{y}\right)$

10 $\frac{d y}{d x}=(\sin x-\sin y) \frac{\cos x}{\cos y}$
11. $\sin y \frac{d}{d x}=\cos y(1-x \cos x)$
$12 \quad \frac{d x}{d x}-\left(2 \tan ^{-2} x-x^{3}\right)\left(1-y^{2}\right)=0$

Differential Equations of the form $\frac{d y}{d x}=\frac{a_{2} x-b_{1} y+c}{a_{-} x-b_{y} y+c}$.

Find the general solutions of the following equations.
$1 \frac{d}{d i}=\frac{x-2 x-3}{2 x-1-3}$
2. $\frac{d}{d x}=\frac{1-x-1}{1-x-5}$
3. $\frac{d x}{d x}=\frac{2 x-2 x-1}{3 x-x-5}$
$4 \frac{\frac{h}{d x}}{d x}=\frac{x-3 y-1}{3 x-y-2}$
5. $(3 y-7 x-7) d x-(7 y-3 x-3) d y=0$
6. $(y-x-2) d z-(y-x-y) d y=0$
7. $\frac{d y}{d x}=\frac{6 x-4 y 3}{3 x-2 y+1}$
8. $(5 x-y+2) d y+(3 x-7 y-1) d x=0$
9. $(2 x-y+1) d y-(x+2 y+3) d x=0$
10. $(x+y+1) d x-(2 x+2 y+3) d y=0$
11. $(2 x-4 y+3) d x+(x-2 y+1) d y=0$
12. $(x+2 y)(d x-d y)=d x+d y$

Bernoulli's equations

A differential equation of the form $\frac{d y}{d x}+P y=q y^{\prime \prime}$ where P and Q are functions of \boldsymbol{x} is called a Bernoulli's differential equation.

Find the general solution of the following equations.

1. $\quad x \frac{d y}{d x}-y=x^{3} y^{2}$
$2 \quad \frac{d}{d x}-\frac{4 x}{1-x} y=2 x \sqrt{3}$
2. $\quad y\left(2 x-e^{x}\right) d x-e^{x} d x=0$
$+\quad\left(x^{2} y^{3}-x y\right) \frac{d}{d y}=1$
$5 \quad x \frac{d y}{d x}-y=y \log x$
$6 \quad \frac{d y}{d x}-y \tan x=-y \sec x$
3. $\quad x^{2} \frac{d y}{d x}-x^{2} y-y^{2} \cos x=1$
4. $\frac{d y}{d x}-2 y \tan x=\tan x$
5. $\quad 2 \frac{d y}{d x}-y \sec x=y \tan x$

10

$$
x y-\frac{d y}{d x}=y^{3} e^{-3}
$$

11. $\left(x-y^{2}\right) d x-2 x d y=0$
$12 y\left(2 x+e^{x}\right) d x-x e^{2} d y=0$
12. $\frac{d y}{d x}-\frac{x y}{1-x}=x \sqrt{y}$
13. $2 x y d y-\left(x^{2}+y^{2}+1\right) d y=0$
14. $\frac{d y}{d x}-2 y \tan x=y^{2} \tan ^{2} x$

Differential Equations of the type $\frac{d^{2} y}{d x^{2}}=f(x)$ and $\frac{d^{2} y}{d x^{2}}=g(y)$.

Solve :

1. $\frac{d^{2} y}{d x^{2}}=\frac{1}{x}$
2. $\frac{d^{2} y}{d x^{2}}=\cos n x$
3. $\frac{d^{2} y}{d x^{2}}=\sec ^{2} x$
$+\quad \frac{d^{2} y}{d x^{2}}=x^{2} \sin x$
$5 \quad \frac{d^{2} y}{d x^{2}}=\sin x$
4. $\quad \frac{d^{2} y}{d u}=x 2$
$7 \quad \frac{x^{2} y}{x^{2}}=\cos 3 x-\sin 3 x$
s $\quad \frac{d^{2} y}{d x^{2}}=\sin x$
9 $\quad \frac{d^{2} y}{d x^{2}}=\operatorname{lng} x$
$10 \frac{d^{2} y}{d x^{2}}=x \sin x$
5. $\frac{d^{2} y}{d v^{2}}=0$
6. $\frac{d^{2} y}{d x^{2}}=\left(\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}\right)$
$13 \quad \frac{d^{2} y}{d x^{2}}=\frac{x-1}{\left(2 x-x^{2}\right)^{3 / 2}}$
$1+\frac{d^{2} y}{d x^{2}}=\operatorname{cosec} 2 x-\log x$
7. $\sec x\left(\frac{d^{2} y}{d x^{2}}+6 e^{2 x}\right)=2-x$
8. $\frac{d^{2} y}{d y^{z}}=x-\sin x$ given $y(0)=0$ and $y^{\prime}(0)=-1$
$17 \quad \frac{d^{2} y}{d u^{2}}=\log x$ given $y(1)=1, \quad y^{\prime}(1)=-1$
18 $\quad \frac{d^{2} y}{d x^{2}}=x^{2} \sin x$ given $y(0)=0, \quad y^{\prime}(0)=0$
$19 \quad \because \frac{d^{2} y}{d x^{0}}=1$ given $\quad y(1)=1 . y^{\prime}(1)=0$
$2 \quad \frac{x^{\prime} y}{x^{x}}=e^{x}(\sin x-\cos x) \operatorname{gnen} y(0)=1, y^{\prime}(1)=0$

Application of Differential Equations

i \therefore harizontal beam of length 2l metres carning a uniorm load of ω ky per metre at length is ifeely supponed at both the ends satisfying the differential equation

E $1 \frac{d^{2}}{d x^{x}}=\frac{1}{2} \cos -\cos x$
y being the deflection at distance x from one end if $y=0$ at $x=0$ and $\frac{d y}{d r}=0 \mathrm{dt}$ $x=l$ find the deflection at any point

2
A particle starting with velocity ' W ' is falling freely under gravity' with a constant acceleration Find the velocity 1 and the distance s travelled by the particle at time ' t '
3. The velocity y of a particle vertically satisfies the equation:

$$
v \frac{d v}{d x}=g\left(1-\frac{v^{2}}{k^{2}}\right)
$$

where g and k are constants. If both v and x are zero initially find v in terms of x 4. The decay rate of radium at any time is proportional to its mass at that time. The mass is m_{0} at $\mathrm{t}=0$. Find the time when the mass will be halved
5. The equation of electromotive forces for an electric circuit containing resistance and self induction is :

$$
E=R_{i}+L \frac{d i}{d t}
$$

Where E is the electromotive force given to the circuit; R, the resistance, L the coefficient of induction. Find the current ' i ' at time ' t ' when (i) $E=0$ and (ii) E $=$ anon-zero constant.
A particle falls towards the earth, starting from rest at a height ' h ' above the surface If the acceleration of the earth varies inversely as the square of the distance from its centre. find the velocity of the paricle on reaching the earth's surface, green 'a' the radius of the earth and ' g ' the vaiue of aeceleraton due to gravity at the suriace of the earth

LINEAR PRROGRAMMING

1. Linear Inequations and Convex Sets
2. Formulation of L.P. Problems
3. Applications of Linear Programming
by
Dr.G.RAVINURA

Exercises :

1. A random variable X has a binomial distribution bith FE=ametここs $n=4$ and $p=y 3$.
i) Describe the probability mass function and sketch its graph.
ii) Compute the probabilities $P(1<x \leqslant 2)$ and $P(1 \leqslant x \leqslant 2)$.
2. In a binomial distribution consisting of 5 independent tricis, probabilities of 1 and 2 successes are 0.4096 and 0.2048 respecizvely. Find the parameter p of the distribution.
3. The probability of a man hitting a target is $Y 3$.
i) If he fires 5 times wha: is the probability of hitting the target at ieast twice ?
ii) How many times must he fire so that the probability of hittir. the target at least once is more than 90% ?
4. The random variable X has a binomial distribution with $n=4$, $p=0.5$. Find $P\{|x-2| \geqslant 1\}$.

Answers:

1. ii) $8 / 27,56 / 81$.
2. 0.2
3. i) $131 / 243$
ii) 6
4. $5 / 16$

LINEAR ERCGRABAING

Introduction:

Mathematical Programming constitutes one of the most important problem areas of Operational Research (OR). It encompasses a wide variety of optimization problems. The basic problem of mathematical Programming is to find the optimum (maximum or minimum) of a nonlinear/linear function (called the objective function variously known as cost function, gain, measure of efficiency, return function, performance index, utility measure, eic. depending on the context) in a domain determined by a given system of non-linear and linear inequalities and equalities (called constraints).

Linear programming (LP) is a Mathematical Programming problem where the objective function anc the constraints are all (at least approximated) iinear functions of the unknown variables.

In practical terms, mathematical programming is concerned with the allocation of scarce resources - men, materials, machines and money (commonly known as the 4 N's in G) - for the manufacture of one or more products so that the products meet certain specifications and some objective function (cost/profit) is minimized or maximized. whenever the objective function is a linear function of the decision variables and the restrictions on the utilization or availability of resources are expressible as a system of linear equations or inequations, we have a Linear Programming Problem (LPr). For example, in the case of manufacturing a variety of products on a group of machines, the production problem is to determine the most efficient utilization of available machine capacities to meet the required demand. The
programming problem is tc allocate the available machine resources to the varicus products so that the total oroduction cost is minimum. To solve this problem, we need to know the unit production cost (cost for producing one item), unit production time, machine capacity and production requirements. This is anLPF (for more clarification see Section 3 on formulation of Linear Programming yroblems for a similar example).

The stanaErd tecnniaue of solving an Lut is by Simplex Method (due to Georce, E. Dantzig, i947) which is quite complicated and is beyond the scope of this unit. However, LPP's involving two variables can de solved craphically. Moreover, there are certain special types of Lpp's sucr as transportation anc assianment probiems whicn aamit easier methods of solution. Recently, there have been some spectacular cevelopments in the area of LP due to an Indian, Nerencra Karmakar of Bell Telephone Labs, U.S.A, where he is able to reach the solution of an LPP considezably faster than simplex methoc.

In this unit, we confine our attention to formulation of Lpp's and their solution by graphical method.

LINEAR INECUATICNS ANU CONVEX SETS :

The restrictions on the utilization (demand) Or availability of resources in a linear programming problem (LPp) are expressed as a system of linear equations or linear inequations, and the set of feasible solutions of an LPP is convex set. Though any LPP (in any number of variables) could be solved by the famous Simplex Algorithm, the LPP in two variables can be solved in an easier way by graphical method essentially identifying the intersection of graphs of various linear inequations and testing the objective function for maximum or minimum at the vertices of such a graph. The graph of a linear inequation is essentially a convex set. Thus the concept of Linear Inequations (and their graphs) and convex sets play an important role in the study and the solution of Linear Programing Problem (especially in the two variables case).

Linear Inequation :

Consider the relation $2 x=4$ in exactly one variable x on real number line. In this equation, the hignest power of x is 1 and so it is a linear equation in one variable. The graph of the equation is the set of all those points on x axis (Real line, R) satisfying the condition $2 x=4$. Since there is exactly one point satisfying the condition namely $x=2$, the graph of the equation consists of just one point namely $x=2$ and it divices the x-axis into exactly two parts A and B, where A is the set of points on the axis satisfying $2 x \leqslant 4$ and B is the set of points on the axis satis-
fying $2 x \geqslant 4,2 x \leqslant 4$ and $2 x \geqslant 4$ are linear inequations in one variable anc their graphs are respectively A and B, which are two opposite rays with end point $x=2$.

The following illustrates the graphs of equation $2 x=4$ and inequations $2 x \leqslant 4$ and $2 x \geqslant 4$.

Ir: general, $a x=b$, where a and b are real numbers, is a linear equation in one variable and its graph is just the point $x=b / a$ on x-axis (real line). Also, the point $x=b / a$ is common to the rays $a x \leqslant b$ and $a x \geqslant b$.

Consider another relation $2 x+3 y=6$ in two variables. This is a linear equation in two variables. The graph of the equation is the set of all the points (x, y) in the cartesian plane (i.e. $n i^{2}$ or $x y-p l a n e)$ which satisfy the equation $2 x+3 y=6 .(3,0)$ and $(0,2)$ are respectively the points of x-axis and y-axis satisfying $2 x+3 y=6$. Thus the graph of $2 x+3 y=6$ intersects the x-axis and y-axis respectively at $(3,0)$ and $(0,2)$. We know that the equation of the line passing through $(3,0)$ and $(0,2)$ is $2 x+3 y=6$. Thus, the graph of $2 x+3 y=6$ is essentially the straight line wich iniersects x-axis and y-axis respectively at $(3,0)$ and $(0,2)$. Further, the graph of $2 x+3 y=6$ is the comnon edge of the two regions C and L where C is the set of points satisfying the inequation $2 x+3 y \leqslant 6$ and D is the set of points satisfying the inequation $2 x+3 y=6$. C and w are called the graphs of $2 x+3 y \leq 6$ and
$2 x+3 y \geqslant 6$ respectively. More precisely, we observe that the $x y-p l a n e ~ h a s ~ t h e ~ f o l l o w i n g ~ p a r t i t i o n s . ~$

1. The set of points satisfying $2 x+3 y<6$.
2. The set of points satisfying $2 x+3 y=6$.
3. The set of points satisfying $2 x+3 y>6$.

Ihus, if (x, y) is a point in the $x y-p l a n e$, then it belongs to either i) the graph of $2 x+3 y<6$
or iij the graph of $2 x+3 y=6$
or iii)the graph of $2 x+3 y>6$

This is the basic philosophy in identifying the graph of an inequation, ive illusirate the same as follows:

Suppose we wish to identify the graph of the inequation
$2 x+\hat{j} y<6$. In the following figure, L represents the graph of the Line $2 x+3 y=0$. The graph of $2 x+3 y<0$ coula be either or 3 (but not a portion of both). ive have tc mark wich one of them is the exact graph corresponding to the inequation.

Here A and \bar{i} are mutually disjoint. Choose a point bhich does not belone to $L .(0,0)$ is one such point. The point $(0,0)$ satisfius the inequation $2 x+3 y<6$. Hence A is the graph of the inequation.

AUL is the graph of the inequation $2 x+3 y \leqslant 6$. Suppose we wish to identify the Graph $2 x+3 y>6$. Since $(0,0)$ which is in A does not satisfy the inequation, a cannot be the graph of the inequation. Therefore, B is the graph of the inequation. Also BUL is the graph of the inecuãion $2 x+3 y \geqslant 6$.

In general, the Graph of the linear equation $a x+b y=c$ (in two variabies, is the set of points on the line intersecting x-axis at $(c / a, 0)$ anc $y-\bar{c} x i s a t(0, c / b)$. Further, the graph divides the xy-plane into t:oo jazts $=$ and F, one of which is the graph of $a x+b y \leqslant c$ and the other is the graph of $a x+b y \geqslant c$. If a point in E (which is not on i) satisfies $a x+b y \leqslant c$, then E is the graph of the inequation $a x+D y \leqslant c$ and F is the graph of the inequation $a x+b y \geqslant c$. Otherwise, E is the graph of the inequation $a x+b y \geqslant c$ and F is the graph $o f$ the inequation $a x+b y \leqslant c$.

Consider the linear equation $a x+b y+c z=d$ in three variables. The graph of this is a plane in the space R^{3} and is common to the two parts A anci B where A is a set of points (x, y, z) in R^{3} satisfying $a x+b y+c z \leqslant d$ and E is the set of the points (x, y, z) satisfying $a x+b y+c z \geqslant d . M$ and B are called half planes.

In general, the graph of $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b$ is called Hyper olane in the space R^{n} (i.e. $n-d i m e n s i o n a l$ Euclidean space) giving rise to two parts A and B where A is the set of points $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in R^{n} such that $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \leqslant b$ and B is the set of points such that $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \geqslant b$. A and is are called Half spaces.

In what follows, we shall mainly confine our discussion to equations and inequations in two variables only. Example: Icentify the intersection of graphs of the following linear inequations : $x+y \geqslant 1, y \leqslant 5, x \leqslant 6$, $7 x+9 y \leqslant 63, x, y \geqslant 0$.

In the following figure, we have drawn arrow marks along the Line $L_{\text {, }}$ representing $x+y=1$ in such a way that the pointers of the arrows lie in the graph (region) of $x+y \geqslant 1$. The same is repeat=d for the rest of the inequations. the intersection of the graphs of these inequations is identified as that region which includes pointers corresponing to all the lines $L_{1}, L_{2}, L_{3}, L_{4}, X$ and Y. The region enclosed by the polygon $A B C D E F$ is such a region and hence it is the required graph satisfying all the six inequations simultaneously. Note that the region S enclosed by CDF is not the required region as no pointer corresponding to L_{4} lies in it. Note that the arrows corresponding to all the lines L_{1}, L_{2}, L_{3}, L_{4}, X and Y converge in the graph satisfying all the six inequations.

Examine the following figures.

(C) NOT CCNNEX

(d) NCT CONVEX

The figure (a) is distinctly different from the other three. In the figure, the linear segment joining any two coints is entirely within it, while the regions (b), (c) and (d) do not have the same property. For example, in (b) the line segment joining X and Y is not entirely in it, in (c) the ine segment $P Q$ is not in it and in (d) the line segment joining R and S is not entireiy in it. Note that the cotted portion of the lines in (b), (c), (d) are not inside the regions. The figures like that of (a) are of special significance in the solution or L?P's and they are saic to be convex. Speaking more preciseiy, a set of points 6 in the $x y-p l a n e$ (or \mathcal{R}^{n} in general) is called a convex set if the lire segment joining any two of its points is entireiy containec in \quad.

Examoles of Convex jets :

i) $x y-p l a n e ~ i s ~ a ~ c o n v e x ~ s e t . ~$
ii) Circular region in $x \not y-p l a n e$ is convex but a circle is not convex. (by a circle, here we mean the set $=\vdots$ points in xy-plane each of which is equidistant from a Eiven point in the plane).
iii) Sphere, cube, cone, ellipsoid, paraboloid, ete. ミ=e convax sets in r^{3}.
iv) Torus is not a convex set in R^{3}.
v) Hyperboloid is not \exists convex set in R^{3}.
vi) The graphs of the inequations $a x+b y \leq c$ and $a x+b y \geq c$ are convex, i.e. half planes are convex.
$v i i)$ Half spaces in R^{n} are convex.

Now sup:iose A and D are any two sets with a given property P. The intersection of A and B may or may not have the property p, though it is payt of the both. For example, if m and H are triangular regions in $x y-p l a n e$ their intersection is not necessarily a triangular region in the $x y-p l a n e$. Similarly, if A and B are two sets in $x y$ plane which are 'not convex', their intersection need not have the same property, that is, it could be convex. The following figures ißlustrate this.

The Intersection $\hat{A} \quad \bar{B}$ is not a trinngular region.

[^0]If A and B are convex, will the intersection of A and B also be convox ? Vie will verify whether this is true or false.

Let C be the intersection of A and B. Let P and U be any two points in C. Let L be the line segment joining P and Q. Since A is convex, the points of L are contained in A. Since B is convex, the points of L are also contained in it. Thus the points of L are in both A and 8 . That is, the line segment joining any two points P and U is entirely in C. This implies that l is a convex set. That is, the intersection of A and B is a convex set. We list the interesting result as

- -

FACI : The intersection of any number of convex sets is also convex. Justification for this essentially follows from the above arguments, replacing sets A and B by any number of sets.

He now look for another way of defining convex sets which of ten helps in proving results concerning convex sets.
iie know from coorainate geometry that (x, y) is a point on a line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ if and only if $x=(1-t) x_{1}+t x_{2}$ and $y=(1-t) y_{1}+t y_{2}$, where $0 \leqslant t \leqslant 1$. Justification for the statement follows by consiaering the similar triangles $P_{1} O P$ and $P_{1} P_{2} O_{2}$ and their implication viz.

$$
\frac{P_{1} Q}{P_{1} Q_{2}}=\frac{C P}{Q_{2} P_{2}}
$$

Let $X=(x, y), x_{1} a\left(x_{1}, y_{1}\right), X_{2}=\left(x_{2}, y_{2}\right), t_{1}=1-t, t_{2}=t$. Using these symbols, the abuve statement can be restated as follows: x is a point on the line segment joining X_{1} and X_{2} if and only if $x=t_{1} x_{1}+t_{2} x_{2}$ such that $t_{1}+t_{2}=1, t_{1}, t_{2} \geqslant 0$.
(Since $X=(x, y)=\left((1-t) x_{1}+t x_{2},(1-t) y_{1}+t y_{2}\right)$
$=\left((1-t) x_{1},(1-t) y_{1}\right)+\left(t x_{2}, t y_{2}\right)=(1-t)\left(x_{1}, y_{1}\right)+t\left(x_{2}, y_{2}\right)=$ (1-t) $x_{1}+t K_{2}$). The point X sn expressed is said to be a convex combination of the points X_{1} and X_{2} in $x y-p l a n e$.

A convex cumbination of points $X_{1}, X_{2}, \ldots, X_{n}$ in $x y-p l a n e$ (or R^{n} ingeneral) is a point $x=t_{1} X_{1}+t_{2} x_{2}+\cdots \cdot+t_{n} X_{n}$ where t_{i} 's are non-neyative real numbers and, $t_{1}+t_{2}+\ldots+t_{n}=1$. As seen already, a point $\hat{x}=\left(x_{1}, y_{1}\right)$ belongs to the line segment joining $X_{1}=\left(x_{1}, y_{1}\right)$ and $x_{2}=\left(x_{2}, y_{2}\right)$ if and only if X is a convex combination of X_{1} and X_{2}. Inus a convex set can also be defined as follows:
A set C in $x y-p+a n e\left(o r R^{n}\right.$) is a convex set if convex combination of any two points in C is also in it.

In fact, for a given convex set 6 any convex combination of any number of points in C is also in C.

Not every point in \mathcal{C} is a convex combination of some points in C. For example, consider the triangle aBC in $x y-p l a n e$ (The following figure). Ihere are no two distinct points in the triangle such that the line segment joining them contains A. That is, A is not an 'intermediate' point of any line segment in the triangle. Though A is a point on the line segment $A B$, it is not an intermediate point but one of the extreme points. Thus, A is not a convex combination of any other two distinct points in the triangle. Similarly, the points b and i have the same property. But any other point in the triangle is an intermediate point of same line segment in C. That is any point in the triangle other than A, B and C is a convex combination of some other two distinct points. The points A, B, C are extrene points in comparison with other points in the triangle.

A point X in a convex set is called an extreme point if X cannot be expressed as a convex combination of any other two distinct points in C.

Note that in the above example, the vertices A, B and G are the only extreme poinis of the triangle.

Examples :

1. The end points of a line segment are extreme points.
2. Vertices or corners of a cube in R^{3} are extreme points.
3. Every point of the boundary of a circular region is an extrere point.
4. All the interior points of a circular region are not extreme points.
5. No point of a xy-plane is extreme in the plane.
6. The extreme points of a polygonal region are its veriices.
7. Any point in $x y-\dot{p} l a n e$ is an extreme point of the singleton set containing the point.
8. The point of intersection of two line segments is not an extreme point of the line segments.

The extreme points play a very significant role in the solution of a LPP. In fact, the objective function of a LPP attains its optimum at at least one of the extreme points of its feosiole Iegion which is always convex.

Exercises :

1. Which of the given points belong to the graph of the given
inequations?
i) $\quad x+y<5 \quad(0,0)$; $(3,2)$
ii) $x-y>6 \quad(4,3) ;(11,4)$
iii) $3 x+y \leq 2(0,0) ;(0,4)$
2. State whether the solution set of the following system of linear inequations is a null set or not.
i) $x \leq 0$ and $x \leq 2$
ii) $x<2$ and $x>2$
iii) $y>1$ and $y>-1$
3. State true or false.
i) The line $y=10 x+50$ separates the $x y$-plane in two half planes.
ii) A half plane is the graph of the inequation.
iii) The graph of a linear inequation is a convex set.
iv) The union of to convex sets in $x y-p l a n e$ is also a convex set in $x y-p l a n e$.
v) The intersection of two convex sets in $x y-m$ lane is a convex set in $x y-p l a n e$.
vi) If A and v are two sets in R^{2} which are not convex, their intersection is also not convex in R^{2}.
vii) Vertices of a cube are extreme points.
viii) If m is the number of linear inequations in two variables and if the intersection of their graphs is a polygonal region with n sides then $m=n$.
ix) If a point (x, y) in $x y-p l a n e ~ i s ~ a ~ c o n v e x ~ c o m b i n a t i o n ~ o f ~ t w o ~$ points (I, s) and (p, q) in the plane, then it lies on the line joining the two points (p, q) and (r, s).
x) The converse of the above statement is generally not valid.
xi) The intersection of two convex sets could possible be disjoint union of two convex sets.
xii) Union of two convex sets is convex.
xiii) Every point in a convex set is a convex combination of two other points in it.
4. Find two points in $x y-p l a n e ~ t h a t ~ s a t i s f y ~ r a c h ~ o f ~ t h e ~ f o l l o w i n g . ~$
i) $y=5 x, \quad$ ii) $y<5 x \quad$ iii) $y>5 x$
5. Mark the region which represents the graph of following inequations.
a) $x<3$ b) $y>3$ c) $2 x+4 y \leq 8$
d) $x+y \leqslant 4$
6. State whether the region representing the following is bounded or unbounded.
$x \geqslant 0, y \geqslant 0$ and $x+y \leqslant 8$.
7. Let $A B C D$ is a square in the first quadrant of $x y$-plane.
i) If $x+y=1$ is the equation of the side $A B$, finc the equations O the sicues, $B C, C D$ and LA.
ii) write the inequations whose intersection is the intericr of the square.
8. Let $\triangle B C L E F$ be a regular hexagin with lencth of each of its sides equal to 1 unit. irite the inequations whose intersection is the given hexagon.
9. Prove or disprove :
i) Ifie circle $x^{2}+y^{2}=a^{2}$ (a is a given real number) is a convex set.
ii) Every point on the boundary of a circular region is an extreme point.
iii) If \mathcal{U} is the graph satisfying m linear inequations simultaneously, then G is a pol;gonal region having m sices.
iv) n set consistin, of single element of R^{2} is a convex $s=t$ in R^{2}.
10. Eind the linear constraints for which the shaded region in the foliowing figure is the solution set.

FURMULIIICN UF LINEAR PRCGRANAING PROBLLMS

A large class of problems can be formulated as LP models. while formulating an $L P$ mocel it is worth-while to rember the following 3-way rule suggested by Lantzig..
i) Identify the unknown activities to be cetermined and represent them by suitable algebraic symbols. Identify the inouts and outputs associated with each activity.
ii) Identify the restrictions (constraints) in the problem and express (at least approximate) them as linear algebraic equations/inequations.
iii) Identify the obiective function and express it as a linear function of the unknown variables.

Proper definitions of the variables (step (i)) is a key step and will largely facilitate the rest of the work.

Let us illustrate the formulation by a few examples. Example : Suppose we are concerned with a problem encountered by a man who sells oranges and apples in a running train. He has oniy fs. 120 with him and he decided to buy atleast 5 kgs of ecin item. One kg of apple costs: 10 and 1 kg of orange costs 5.5 . Hie can carry to the train oniy a maximum load of 15 kgs which his bag woula hoid. He expects a protit of m .2 per kg from apilies and fis. 1 per kg from oranges. How much each of these tiro items should he buy (if he is wise enougn) so as to get a maximum profit?

Here, the ultimate goal or objective of the fruit seller is to get the maximum profit in nis business, i.e. he wants to maximise his profit. To achieve this, he cannot purchase the items at random. The problem is to find out in what combinations should he buy apples and oranges so that the profit is maximum. Let us try to find out the possible combinations. The man can buy a total of 15 kgs of apples and oranges. Can he buy 15 kgs of oranges? Of course, not, because he has to buy at least 5 kgs of ap,les, i.e., he can buy a maximum of 10 kgs of oranges. Can he buy 15 kgs of apples ? He cannot because he should buy at. least 5 kgs of oranges i.e. he can buy a maximum of 10 kgs of apples. ie can purchase oranges from 5 kgs io 10 kgs and so also apples. we can list all the possible combinatiuns of his purchase of apples and oranges und calculate the profit in each case. See the table below.

$\begin{aligned} & \text { PURCHASE (in kus) } \\ & \text { Orange rpple } \end{aligned}$		Cos I			PROFIT		
		$\begin{aligned} & \text { C=ange } \\ & \text { Bs.5 } \end{aligned}$	$\begin{aligned} & \text { Apple } \\ & \text { Rs. } 10 \end{aligned}$	Toこal	Orange He. 1	mpple Rs. 2	Total
5	10	25.00	100.00	125.00	N	possi	
6	9	30.00	90.00	120.00	6.00	18.00	24.00
7	8	35.00	80.00	115.00	7.00	16.00	23.00
8	7	40.00	70.00	110.00	8.00	14.00	22.00
9	6	45.00	60.00	105.00	9.00	12.00	21.00
10	5	50.00	50.00	100.00	10.00	10.00	20.00

Look at the iast column. Ine maximum profit as fi. 24. He gets this profit when re purchases 6 kgs of oranges and 9 kgs of apples.

This is the solutior of the probiem which maximises or optimises the profit. So we call it an uptimal solution of the problem.

Cotimal solution $=9$ kgs of apples and 6 kgs of oranges.
Cptimumprofit $=$ sis. 24 。
After investigating the next example, where we maximise the profit as in this example, be will be able to see if we can arrive at the optimal solution by trial and error method. Before that let us formulate the above example in Mathematical terms (see Lantzig's 3-way Iule).
i) Vefinition of Vaxiabies

Let x be the number of kgs of cranges and y be the number of $k g s$ of apples bought.
ii) Constraints : Since one cannot buy negative number of orances or apples it is clear that $x \geqslant 0$ and $y \geqslant 0$.

Since one kg of orange costs Ps.5, x kgs of orange will cost fis. 5 x . Similarly, y kys of apple costs filloy. Therefore, the total cost will be $5 x+10 y$. Since he nas only do. 120 with him we have,
$5 x+10 y \leqslant 120$.
=ince he has aecided to buy atleast 5 kgs of each item,
$x \geq 5, \quad y \geq 5$.
ms he cannot carry more then 15 kys
$x+y \leq 15$.

iii) Ihe objective function :

Since he expects a profit of $\frac{0}{i} .2$ per $k g$ from appiles and he. 1 per $: 9$ from oranges, his total profit mould be $x+2 y$ which has to be maximised. The i.P. model is : maximise $z=x+2 y$ subject to $x \geq 5$, $y \geq 5,5 x+10 y \leq 120, x+y \leq 15$; and $x, y \geq 0$. In this problem, the non-negativity restrictions are not necessary in view of the constraints $x, y \geq 5$.

Examole : A company sells two differant types of radios - 3 band types and 2 band types. Company has a profit of $\mathrm{R}_{3} .50$ for each of the former type and Rs. 30 for each of the second type. The production process has a capacity of 80,000 man hours in total. It takes 10 man hours labour to assemble 3 -band type and 8 man hours for 2 -band type. It is expected that a maximum of 6000 numbers of the former type and a maximum of 3000 of latter type can be sold out. How many of each type snould be produced so as to maximise the profit ?

In this problem, the company aims at getting the maximum profit. i.e. profit is to be maximised. The problem is to find out in what combination should he produce 2 -band radios and 3 -band radios in orcer to achieve this objective. We know that the company gets more profit from the 3 -band radios. Naturally, we can think of a possibility : $n e r e$ all the radios produced are 3-band type. This could not be done since the maximum number of 3-band type radios should be six thousand. The other possibility is to think of another way. The man hours needed to produce a 2 - banc radio is smaller compared to 3-band radios. In that case, he should increase the number of 2 -band radios, which should not exceed 8000. Naturally, a third question arises can the company produce 6000 , 3 -band radios and 8000 , 2 -oand radios. In that case, we have to take into consideration the man hours available. The man hours required for producing 8000, 2-band radios is $8 \times 8000=64000$. The total man hours required to produce 6000 3-band type and 8000 2-band type is 124000 which is greater than the man hours available. From the above discussion, we found that the number of 3-band radios can extend from 0 to 6000 and that of 2-band Ladios from 0 to 8000. To get a solution for this problem, we have to enumerate all the cases from 0 to 6000 and 0 to 8000 , which evidently is laborious. Therefore, we have to find out an easier method to solve such problems.

We will now think of evolving an easy method to solve such problems. Before entering into the details of this metnoc, let us explain the problem mathematically. In other worcs, let us try to write the $L P$ formulation $c=$ the problem.

In the above problem, what we are expected to find is the number of 3 -band radios and 2 -banc radios to be produced so as to get the maximum profit. Let us assume that the number of 3-band radios produced is 'x' and the number of $2-b a n c$ radios produced is 'y'.

Number of 3 -banc racics $=x$
Number of 2-band radics $=y$
Once we know the number of each type of radios, we can calculate the total profit of the company. Profit from a 3-band racio is fis. 50 anc the profit from a 2-banc radic is E .30 .

Total profit $=50 x+30 y$.

The objective of the company is to get the maximum frofit i.e. $50 x+30 y$ should be maximuc.. We call this the obiective function of the problem. Now the problem reauces to finding the maximum values of $50 x+30 y$. In other words, we have to maximise $50 x+30 y$.

What are the conditions to be satisfied?
be know that ' x ' and ' y ' aze the numbezs of radios produced. So we can say that x and y cannot be negative. hiathematically, we put it as
$x \geq 0$ and $y \geq 0$
x is the number of 3-band radios. The niaximum numb I of 3-band radios produced is 6000.
i.e. $x \leq 6000$

Similarly $y \leq 8000$
The total man hours available is only 80000. Nian hours required to produce one 3 -band radio is 10 . Man hours required for x radios $=10 \times \mathrm{X}$ $=10 \mathrm{X}$

In a similar way, man hours needed for $y, 2$-band racios $=8 y$. The total man hours should not exceed 80000

$$
\text { i.e. } 10 x+8 y \leq 80000
$$

Thus the restrictions or conditions to be satisfiec are

1. $x \geq 0$
2. $\quad 7 \geq 0$
3. $x \leq 6000$
4. $y \leqslant 8000$
5. $10 x+8 y \leqslant 80000$

These conditions are generally called constraints of the problem.
The first two viz. $x \geq 0$ and $y \geqslant 0$ are called non-negativity
restrictions. Each of these constraints is an inequation of degree 1 . hence, they are called linear constraints.

The mathematical formulation of the problem is as follows :
Raximise $50 x+30 y$
subject to $x \geq 0$
$y \geq 0$
$x \leqslant 6000$
$y \leqslant 8000$
and $10 x+8 y \leqslant 80000$
Here the objective function as well as the constraints are all linear (first cegree).

A typicai LP i:'odel :
Suppose a company with two resources (labour and material) wishes to proauce two kinds of items A and B.
Let t_{1}, t_{2} units of time (hours or minutes) be respectively time required to produce ont unit of a and B, m_{1} and m_{2} be the amount of unit material (in Kg or pouncs or any unit of weight) respectively required for one unit of A and B, and Rs. p_{1} anu $k s . p_{2}$ profit per unit of A and B. Suppose the daily availability of manower (labour) is 1 hours and the supply of raw material is restricted to $.1 /$ Kgs per day. The problem of the company is :

How many items of kind a and how many items of kind 3 be produced everyday, so that the total profit is maximum ?
This kind of problem is generally known as product-mix Problem.
The entire information of the problem can be stored in matrix (tabular) form as follows :

Resources	Kinds	It	Supply/availability
	A	E	
Labour (hours/unis)	t_{1}	t_{2}	T
	m_{i}	5_{2}	M
Profit (ks./unit)	P_{1}	P_{2}	

```
In view of the 3-may rule suggested earlier we have
Step 1 : Let x = Laily production of kinc a
    y = Daily production of kinc B
Step 2 : Constraint corresponding to the first row :
    t
Constraint corresponding to seconc row:
\[
m_{1} x+\pi_{2} y \leq m
\]
Non negativity coniztions :
\[
x, y \geq 0
\]
Step 3 :
The third row corresponas to the objective function and is wen by
\[
z=p_{1} x-p_{2} y
\]
Thus the mathematical fomulation of the problem is :
(I) - Find numbers \(x\), \(y\) which will maximize
\(z=p_{1} x+p_{2}\)
subject to the constraints
\[
\begin{aligned}
& t_{1} x+t_{2} y \leq I \\
& m_{1} x-m_{2} y \leq M
\end{aligned}
\]
and \(x, y \geq 0\)
Note that in the matheríatical formulation (I) above we deal only with numbers, equations, inequations and the given situation (that is company's problem) is no lagger under consideration.
```

The above typical problem can be adopted in nany zeal life situatiuns and thus a teacher can find a problem of linear programming accoruing to the nature of the students (urbar, rural, etc). For example, if the 'company' is an industry line "OFKay" A could be taken as Idly mix and B could be taken as Liosa mix. The relevant information concerning resources and profit (possibly in terms of cost price and selling price) can be obtained in the form of a matrix. Such matrix will help in identification of the problem as well as in its mathematical formulation. If we consider a comfy in kitchen appliance,
a could be considered as a pressure cooker
B could be considered as pressure pan.
If we want to have a farmer's problem, we can take a ara B respectively
to be areas of a given field for production of wheat arc gram. The resource corresponding to material coula be fertilizer. तere we will have an extra constraint viz. $x+y \equiv a$ where'a'is the area of the given field. Note that there could be any number of resources (and hence constraints) depending upon the situations.

Linear proarames Mathematical Niodel :

A mathematical model is a symbolic representation oi a real situation. The process of mathematical modelling is cepicted in the following figure.

In examule 1, the real situation is 'selding of oranges and apples'. In example 2, the real problem (situation) is 'to evolve a selling fulicy of two kinds of radios' and in the product mix problem the real situation is 'productive scheouling'. In all these problems, mathematical formulation is mathematical mocel. The mathematical mocels in the above examplesconsist of objective function anc const=eints which are expressed quantitatively or mathematically as functiors of cecision variables 'Mathematical conclusion' and 'real conciusion' constitute the solution of a linear programming problem, waicn we would be dealing within the next section.

EXERCISES :

1. M co:pany makes two kinds of leather belts m, E. Belt A is of higher cuaiity and belt \bar{B} is of lower quality. The respective profits are Rs. 4 ard Rs. 3 per belt. Each belt of type m recuires twice as much time as a belt of type B, anci, if all belts wers of type B, the cumpany, cculd make 1000 per aay. The supply of leather is sufficient for only $\varepsilon O 0$ belts per day (both n and B combinec). Belt A requires a fancy buに:ie and only 400 per day are availabie. There are only 700 buckles a aay are available for belt B. Formulate this as a linear programring model.
2. Give an example of a real situation (other than those mentioned in this iesson) whose mathematical model is a linear programming model. 3. Give an example of a mathematical model which is not a linear programming model.
3. An mdvertising company wishes tu plan an advertising campaign in three different media - television, radio and magazines. The purpose of the advertising company is to reach as many potential customers as possibie. Results of the market study are given below:

	Television		Radio	A.tagazine
	Lay İ-in	Prime Iime		
Cost of an advertising unit	$40,000$	Ps. 75,000	$\begin{gathered} \text { R5. } \\ 30,000 \end{gathered}$	$\begin{gathered} \text { Ps. } \\ 15,000 \end{gathered}$
Number of potential customers reached per unit.	400,000	900,000	500,000	200,000
Number of women customers reached per unit	300,000	400,000	200,000	100,000

The company does not want $=0$ spend more than fs. 300,000 on advertising. It further requires that $(\underset{)}{ }(\underset{)}{ }$ atleast 2 miliion exposures take place among women, (ii) acive=こising on television be limited to lis. 500,000 , (iii) atiėEs = $=$ advertising units be bought on day time television and two unizs =u=ing prime time; and (iv) the number of advertising units on $I \equiv c i=$ and magazine snould each be between 5 anc 10 . Find different tyoes of advertising units :. hicn minimize the total number of potent:ai $=\dot{\sim}$ tomes reachea is maximum. (ivote: The problem involies tour aecisior variailes).
5. write the constrain=s ミssocinted with the solution space shown in the following tigu=e anc identify all redundant constraints.

SOLU：ICN CE LINEA PROGRAR INO IRCELE：BY GRMPHICAL RETHCD：

Let us consider another exam．ie of an ootimisation or colem． be can examine wh．ther tris is a linear programming problem by formuiating a mathematical model of the problem．We can also try to Einc the solution of the problem by gapphical method．

Example 1 ：A contraczor has 30 men anc 40 women working under hime He ras contracted to move at least 700 ذags of cement to a work site． Uue to the peculiar nazure of the work site he could employ at the maximum of 50 woIkers of a time．n mar will carry 25 bags in a day and a woman will carry 20 baç in a day．n man demands ${ }_{\text {m }} .45$ a day and à voman cemands Fi_{i} こち a day as thei＝wages．In what Iatio should the contractor employ men anc women so that the cost of moving the cemer：to the work site is minimum ？
ive w tis mathematical mouel of the probiem is ：
minifozze $z=45 x-35 y$
subjeここ to the cona亡さiors
$x=c$
$y \geqslant 0$
$x \leq 30$
$y \leq 40$
and $5 x-4 y \geq 140$
（ x anc y are respectively the number $0 \vdots$ men und women employed and z is the total wage for them）．

The above problem is an optimisation problem．The objective function as well as the constzaints are lineã．Hence，it is a LPP．

The next step is to find a value for x and a value for y such that $45 x+35 y$ is minimum subject to the concitions laia down in the problem．

We first draw the graph of the inecuations and see how the graph will give the solution of the problem．

The intersection of the graphs of the inequations is the Iegion of the polygon $\dot{\text { mbCUEF, called the feasible reqion. Any }}$ point $p(x, y)$ in the feasible region is a feasible solution of the LPP. The coorainutes of such a point will satisfy all the inequations. Let us consider a point $p(20,20)$ in this region. He can easily verify that it satisfies all inequations. So ine can consider the x-courainate of P as a value of x and $y-c o o r a i n a t e ~ o f ~$ P as a value of y. i.e. $x=20(x-\operatorname{coordinate}$ of $P)$ and $y=20$ $(y-c o o r d i n a t e ~ o f ~ p)$ is a feasible solution of the Lpp. If we select another point sa; $\nu(10,40)$ in the region, $x=10$ and $y=40$ is another feasible solution of the problem. We know that there are infinite number of points in the region $A B C L E F$. The coorainates of each point will give a feasible solution of the problem i.e.
the number of feasible solutions are infinite. The problen is to deciue mhich one of these is optimal. For this, we matie use of the foliowing key result.

T:HORER. If there exists an optimal solution to an Lut, the objective function of the LPF always attains its optimum (minimum or maximum) at at least one of the coIners (extreme points) of the fe:sible region.

Proof: ire prove the vaiicity of the theorem for two varizbles (coorcirates) and in fact the same arquments can be extended to $p=o v e ~ t h e ~ t h e o r e m ~ f o r ~ a r y ~ n u m b e r ~ o f ~ v a r i a b l e s . ~$

Let k be the set of feasible solutions of a linear programming problem. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ be the extreme points (corners), of the feasible region corresponcing to k. Let $2(x, y)=C_{1} x+C_{2} y$ be the objective function of the linear pIogram:ing problem.

Suppose for $x=x_{0}$ and $y=y_{c}$ the objective function attains its minnimum.

That is, $\bar{Z}\left(x_{c}, y_{c}\right)=C x_{0}+C y_{c}$ is the minimum value of the objective function. Let $m=z\left(x_{0}, y_{n}\right)$.

If $\left(x_{0}, y_{c}\right)$ is one of the extreme points (corners) of the region representing k, the theorem is true. Therefore, we assume that (x_{0}, y_{c}) is not an extreme point. Hence, by the definition of extreme point, $\left(x_{0}, \not \subset\right)$ can be expressed as a convex combination $c \neq$ extreme points of k.

That is,
$\left(x_{0}, y_{c}\right)=t_{1}\left(x_{1}, y_{1}\right)+t_{2}\left(x_{2}, y_{2}\right)+\cdots+t_{n}\left(x_{n}, y_{n}\right)$
where $t_{1}+t_{2}+\cdots \cdot t_{n}=1$ and $t_{1} \geqslant 0$.

This implies that
$m=z\left(x_{0}, y_{c}\right)=t_{1} z\left(x_{1}, y_{1}\right)+t_{2} z\left(x_{2}, y_{2}\right)+\ldots+t_{n} z\left(x_{n}, y_{n}\right)$
Suppose $Z\left(x_{I}, y_{I}\right)$ be minimum along
$z\left(x_{1}, y_{1}\right), \ldots \ldots, z\left(x_{n}, y_{n}\right)$ so that
$z\left(x_{i}, y_{i}\right) \geq z\left(x_{I}, y_{I}\right), \quad 1 \leqslant i \leq n$

Now (1) and (2) together imnly that
$m \geq t_{1} z\left(x_{I}, y_{I}\right)+t_{I} z\left(x_{I}, y_{I}\right)+\ldots+t_{n} z\left(x_{I}, y_{I}\right)$
(Since t_{i}^{\prime} s are non negative).
That is,
$m \geq\left(t_{1}+t_{2}+\cdots+t_{n}\right) \sum\left(x_{I}, y_{r}\right)$
or $m \geq 2\left(x_{r}, y_{r}\right)$ (Since $\left.t_{1}+t_{2}+\ldots+t_{n}=1\right)$
By cefinition of minimum
$m \leqslant Z(x, y)$ for every (x, y) in k and in particular $m \leqslant Z\left(x_{r}, y_{r}\right)$
(3) and (4) togetier imply that
$m=z\left(x_{I}, y_{r}\right)$ where $\left(x_{r}, y_{I}\right)$ is an extreme point. Thus z (the objective function) attains its minimuai at an extreme point of the feasibility revion.

Hemark :

```
    Let for }x=\mp@subsup{x}{}{i}\mathrm{ and }y=\mp@subsup{y}{}{1},=(x,y\mathrm{ , the - bective function;
utuin its nckimum. Then by ceEzinition o: maxinum
z}\mp@subsup{}{}{1}\geqz(x,y)\mathrm{ for every }x,y\mathrm{ in h fonere }\mp@subsup{z}{}{1}=z(\mp@subsup{x}{}{1},\mp@subsup{y}{}{1}\mathrm{ ;
=>-zi}\leqslant-z(x,y
= -i
```

That $\mathrm{is},-z=\min (-z(x, y))$
or $-(\max z(x, y))=\min (-z(x, y))$
or max $z(x, y)=-\min (-z(x, y))$

Thus minimisation frodem can be converted to maximization problems by consiaering negative of the objective function $z(x, y)$. And accoraingly, the above theorem is true in the case of maximisation problems also.

In view of the above theorem, it is sufficient to concentrミEe our attention only on the corner points of the polygon AOULEF. Evaluating the objective function at each of the vertices of AECLEF anc selecting the minimum of these values, we gut the minimum value of the objective function. The cooruinates of the corresponcing vertices will constitute an optimal solution. The details are shown in the table given below :

Cornerfoint	Value of the objective function $Z=45 x+35 y$	
$A(2 E, 0)$	$45 \times 28+35 \times 0$	$=1260$
$B(30,0)$	$45 \times 30+35 \times 0$	$=1350$
$C(30,20)$	$45 \times 30+35 \times 20$	$=2050$
$U(10,40)$	$45 \times 10+35 \times 40$	$=1850$
$E(C, 40)$	$45 \times 0+35 \times 40$	$=1400$
$F(C, 35)$	$45 \times 0+35 \times 35$	$=1225$

Thus, itcis clear that when the contractor employs 35 women and no men the cost of moving cement to work-spot is minimum and the minimum cost is fi.i225. Nov let us sulve a maximisation problem by gecohical method.

Examite2: If a young man riaes his motor cycle at 25 km per hour, he has to spend ti. 2 per km on petrol; if he rioes it faster speed of 40 kr . per hour, the cost increases to Fi .5 per km. He has fi. 100 to spend on petrol. hinet is the maximum distance he can travel witrin one houz ?
$\begin{aligned} & \text { Let } x= \text { distance traveliec by the young man in one day at the spesc } \\ & \text { of } 2 \mathrm{~km} / \text { nourg }\end{aligned}$ anc $y=$ distance travelled by the young man in one day at the speed of $40 \mathrm{~km} / \mathrm{hour}$.
Let $Z=X+Y$
Objecilve Function : $Z=x+y$ (with the ozjective to maximize Z)
Cons:=aints:
i) money spent on petrol $=2 x+5 y \leqslant 10 u$ (consiraint due to money)
ii) total time of travel $=\frac{x}{25}+\frac{y}{40} \leqslant 1$ (constraint due to time)
or $8 x+5 y \leqslant 200$
iii) non negativity conditions : $x \geqslant 0, y \geqslant 0$

We now craw the graph corresponding to the constraints.

The feasible =egion is the shaded region of the polygon OABC.

Gorner point
$0(0,0)$
$\cdots(0,20)$
B $\left(\frac{50}{3}, \frac{40}{3}\right)$
C $(25,0)$

Value of $z=x+y$
0
20
30
25

Therefore, $30=\max z=$ the maximum cistance the young man can travel in one day.

The procedures that we follow in solving a Lpe (in two variables) by grapnical method is summarised below:

1. Hark the feasibie region. (This is the intersection of the graphs of consiraints).
2. Evaluate the objective function at each of the corner points of the feasiole region and pick out the point which gives the minimum (maximum) value for the objective function as the case may be.

Theorem noics true if there exists an optimal solution to a He. There may be cases where the objective function has no finite optimal value. For example,

Meximise $==x+2 y$
subject $=: x+y \cong 1$
$x=0, \because=0$
$y \leqslant 4$

The shined region in the foliowing figure is the feasible region of ise problem. Note that the feasible region is not a poiygona- =egior, but is unbounded.

In こhis case, moving farther away from the origin increases the value $=$ E the objective function $\bar{Z}=x+2 y$ ano the maximum vaiue of Z would tend to $+\infty$ i.e., Z has no finite maximum. Wheneve $\bar{a} \mathcal{F}$ f has no finite optimal value (maximum or minimum), we say traz it has an unbounded solution. Further, there could be a linear zroaramnina problem such that it has no feasible solution.

```
For example,
Haximise Z = 4x + 3y
subject to }x+y<
2x+3y=6
x\geqslant0, y;0
```

The shaded regions A and B in the following Eigure indicate the graphs of the inequation $x+y \leqslant 1$ and the graph of the inequation $2 x+3 y \geqslant 0$ respectively.

Obviously, the intersection of A and
B is emot \because. Hence the LPF has no feasible sclution.

The following lo has or does not have a feasizle solution depending upon the value of i.

```
Maxinise Z = x
subject to }x+y\approx
-x - y < -1
x\geqslant0,y\geqslant0
If L = 1, the feasible region of the problem consists of just
one point (1,0) (See figure shown below).
```


If $L=Y 2$ ，the fecsidie zegion is empiy since there are no points suiisfying the non－nesaさivity resここictions．
when $L=y 2$ ，the feasible region is empty．

In fact, for all values of $L<1$ the feasible region corresponoing to the given constraints is empty.

The above fact can also be verifiec analyticolly. For $L<1$, suppose there exists a point $\left(x_{1}, y_{1}\right)$ satisfying the constraints of the problem.
That is $x_{1}+y_{1}<1$, since L is stictly less than 1
$-x_{1}+y_{1} \leq-1$
and $x_{1} \geq 0, y_{1} \geq 0$
The first two inecualities imply (by adding them), that $2 y_{1}<0$.

In ofher words, $y_{1}<0$ which contradicts the fact that $\gamma_{1} \geq 0$.

Inus we conclude that there is no point (x, y) which satisfies the given constraints whenever $L<1$.

If $L=2$, the fewsible zeqion is the shaded region aBC of the figure which is non empty.


```
Fror the foregoing discussion, it is clear that tho feasible
region is non-empty for all values of L\geqslant1.
    If L = 1, it consists of just one point. If L > i it consists
of infinitely many points.
    He can ve=ify this analytically also. Given constraints are
    x-y 
    -x+y\leqslant-1
    x\geq0, y}=
F゙ミここ む:%0 inecualities (Dy accing tnem) imply that
2y = i-i Or i-1 2y
Inis implies that
    i-1\geq0, isince }y\geqC
In ここne= woras, L =1
If: = 1, chcose non negative numbers }\mp@subsup{x}{1}{}\mathrm{ ane }\mp@subsup{y}{1}{}\mathrm{ such thet
    2x
anc 2\mp@subsup{y}{i}{}=L-i
(Ir.is is possinie since i-1 \geqslant 0)
Inese equations imply that
    2x
That is, }\mp@subsup{x}{1}{}+\mp@subsup{y}{1}{}=L\mathrm{ anc }-\mp@subsup{x}{1}{}+\mp@subsup{y}{1}{}=-1 obviously, such \mp@subsup{x}{1}{}\mathrm{ and }\mp@subsup{y}{1}{
saむこsfy the given constIainis.
Thus we conclude that there exist numbers \(x=x_{1}\) and \(y=y_{1}\) satisfying the given constraints if and only if \(L \geqslant 1\) ． That is the given L．f．p．has a feasible solution if and only if \(L \geqslant 1\) ．
He now solve the given L．P．P．
If \(L<1\) ，then the given problem has no feasible solution． Therefore，let \(I \geqslant 1\) ．
If \(I=1\) ，the feasible solution has just one point（ 1,0 ）and so tire maximum value of 2 is 1 ．The feasible region for any value of \(L>1\) will look like the shaded region \(A B C\) of the following figure．
```


The coordinates of m are obtained by solving $x+y=L$ and $-x+y=-1$.
i.e., $x=\frac{L+1}{2}, \quad y=\frac{L-1}{2}$

Now,
the value of Z at $A=\frac{L+1}{2}$
The value of Z at $B=1$
The value of Z at $C=L$
Since $L \geq 1, L+1 \geq 2$ and so $\frac{L+1}{2} \geq 1$
Also, since $L \geqslant 1,2 L \geqslant L+1$ and so $L \geqslant \frac{L+1}{2}$
Thus, we have

$$
1 \leqslant \frac{L+1}{2} \leqslant L
$$

Therefore, $\max \left\{1, \frac{L+1}{2}, L\right\}=L$
That is maximum value of Z is L, and Z attains the maximum at C.

If the probier: is to minimize $\bar{Z}=x$ with the same constraints, minimum value cíz is 1 anc it is attainec at \bar{E}.

Exercises :

1. Choose the most appropriate answe..
i) The set of feasible solutions of a linear programming problem is
a) convex
b) noz a convex set
c) convex of concave
b) bounaec and convex
ii) The minimum number of inequations needed to Einc a feasible region ir a linea= programming problem is
a) 1,
b) 2,
c) 3,
d) 4
iii) The maximum value of the objective function of a linear programmine prodlem always occurs
a) exactly at one verte of the feasibility =egio..
b) everywnere in the feasibility region.
c) et all the vertices of the feasicility recion.
d) at some vertices of the feasibility legicr.
iv) The feasible recion of e Linear programming probiem intersects
a) first quearent
b) seconu quadrant
c) thira quadiant
d) fourth quadrant
v) A factory has an auto latne which when used to proouce screws ot larger size prouuces 400 items per week anc ohen used to produce screws of smaller size produces 300 items per week. Supply of rods used in making these screws limits the total production of both typesfweek to 380 items in ail. The factory makes a profit of 25 paise per large screw and 10 paise per smali screw. How much of each type shoula be produced to get a maximum profit? (Ans. 80,300)
vi) Using graphical method
maximise $Z=3 x-4 y$
subject to $4 x+2 y \leqslant 80$

$$
2 x+5 y \leqslant 180
$$

$x \geqslant 0, \quad y \geqslant 0$,
(ans: $x=2.5 ; y=35$; maximum value $=147.5$)
vii) Using graphical method minimise $Z=4 x+2 y$
subject to $x+2 y \geqslant 2$
$3 x+y \geqslant 3$
$4 x+3 y \geqslant 6$
$x \geqslant 0, y \geqslant 0$
(Ans: $x=.6, y=1.2$, minimum value $=4.8$)
viii) Consider the following problem:

Maximize $Z=6 x_{1}-2 x_{2}$
subject to $x_{1}-x_{2} \leqslant 1 ; 3 x_{1}-x_{2} \leqslant 6 ; \quad x_{1}, x_{2} \geqslant 0$.
Show graphically that at the optimal solution the variables x_{1}, x_{2} can be increased indefinitely, while the value of the objective function remains constant.
ix) Consider the following LI? :

Maximize $Z=4 x+4 y$
subject to $2 x+7 y \leqslant 21 ; 7 x+2 y \leqslant 49 ; x, y \geqslant 0$.
Find the optimal solution (x, y) graphically. What are the ranges of variation of the coefficients of the objective function that will keep (x, y) optimal?
x) Consider the following problem. Maximize $Z=3 x+2 y$ sunject to $2 x+y \leqslant 2,3 x+4 y \geqslant 12$, $x, y \geqslant 0$.
Show graphically that the problem has no feasible extreme points. lhat can one conclude concerning the solution of the problem?
xi) Prove or disprove:
a) For some LPP, the set of feasible solutions is a disjoint union of convex sits.
b) The set of feasible solutions of every LPP is non empty.
c) Every L.P.P. is a mathematical model.

ApPLications of L.F.
If is a powerful and widely applied technique to solve problems related to decision making. It was employed formally in three major categories - military applications, inter industry economics and zero sum two-person games. But, now the emphasis has been shifted to the industrial area. I he following are a few of the applications of L.1.

1. ngさicultural applications :

Eam: economics and Farm management - the first is related to the
Economy of a region whereas the second is related to individual
£ $2=\pi$.
2. incustrial applications :
a) Chemical Industry - Production and inventory control chemical equilibrium problem.
E) Goal industry
c) airline operations
c. Communication industry - optical design and utilisation of communication network
€) Iron and steel industry
f) Paper industry - for optimum newsprint production
c) Petroleum industry

ㄷ.) fail road industry
3. Economic analysis - Capital budgeting
4. Mílitery - Weapon Selection and Target analysis
5. PErsonal assignment
6. Fzoduction scheduling - inventory control and planning cost controlled production
7. Structural designs
8. Traffic analysis
9. Transportation problem and network theory
10. Travelling salesman problem
11. Logical design of electrical network
12. Efficiency in the operations of a system of Dams

Reremedices ：

```
1. LailZIG, G.3. : Linıar program.aing anc Extensions,
    Princeton University ミこess, 1963.
2. GAUS, u.I. : Linear programing, i.f Craw hill, 1969
    (4th Edition - 1975
こ. Hwley, G. Lineaz programing, macison-iresley,
    1962.
4. HUGHits, A.J. and : Linear Programming, ncaison-iesley, 1973.
    GRAVIIUG, L.E.
5. KAMTISHARCCP, : Operations Kesearcn, Juitan Chand and Sons,
    GUPTA P.K. and
    Whim:CHais
6. RILHAKL BRCHSCH: Theory and Problems 0 : Coerations desearch,
    Schaum's Outline Seさミミs, 1982 .
```



```
        A. and FisIED...nit, i. wiley, 1959.
```



```
    Collier hacmillan Inteznational Ecition,
    1976.
```

```
    PROBABILITY
    1. Sasic Ierminology
    2. Some theorems on Probability
    3. Random Variables and
        ProDability Distribution
            by
    DI.D.BASAVAYYA
```

$$
\begin{aligned}
& \text { D.GASAVAYYA } \\
& \text { R.I.E. } \\
& \text { MYSORE-6. }
\end{aligned}
$$

PROBABILITY

In our day-today life we perform certain activities to verify cortain known facts or to observe certain phenomena Such activities usually we call as experiments. In certain experiments, we can predict resuits exactly before conducting the experiment and in other it will not be possible. The experiments where the results can be predicted exactly are known as deterministic experiments and the experiments where the prediction is not exact are known as non-deterministic or random or probabilistic experiments. For example, a train is raning at a uniform speed of sixty km. per hour, then we can predict with hundred percent surety that it will cover one humded twenty kilometers after two hours, assuoning that it never stopped during these hours. Similarly, for a perfect gas, $\mathrm{PV}=\mathrm{constant}$ (P is pressure, V is volume).

In case of non-de:erministic experiments, we cannot make predictions with complete relisbility. The result are bistei un sume 'chance elemenl'. Fur example, ir we tuss a coin, will it show 'bead up' or 'raii upo'? Although we cannot predict anything with complete surrety, ye! if we throw the coin a iarge number of tiutes, it is very likely that the bead will tum fulfy percent of the times and also it is very unlikely that the head turns up in every case.

Consider another example of a trained parachuter who is ready to jump. When he jumps then either his paritiur wiil opea or it will not. But experience says that most of the time it opens. though there are occasions on which it does not i.e. the uncertainty associated with the head or till coming up when we toss a coin

How will you proceed in answering the following questions?

1. How shoulid a businessman order for replenishment (filling once again) of his stocks (irvertory) so that he has not carried very large stocks, yet the risk of refising customers is minimized? (Inveatory problem).
2. At what intervais should a car owner replace the car so that the total maintenance expenses are minimized? (Replacement problem).
3. Ilow manty trinees should a large business organisation recruit and train them in certain intervals so that at any time it does not have a large number of trained persons whom it cannot employ and yet the risk of its being withourt sufficieat persons when needed is minimized?
4. How siould the bus service in a city be scheduled so that the queues do not become too long and yet the gains by the bus company are maximized? (Queing problem).
5. How many booking counters should be provided at a station to serve in the best wey the interests of both the railways and the travelling public? (Queing problem).
6.

What should be the stangth of a dam ($0:$ a bridge) so that its cost is reasonatie and yei the risk of its being swept away by the flemers is mimimized?
7. How many telephone eritanges should be esabiished in a grien city so as to give the best service at a given cost?
8. Which variety is the beat cill of given varieties of uteat, on the basis of yields from cxporimouta' ficlds?
9. What should be the minimum premia chareei by an insurance company so that the chance of its numing into loss is minimized ?
10. How to decide whether a civen batch of rems is dafective piten only a sample of the batch can be examined?

Answers for all such questers are based upon cremin facts and then try to mearure tio whertainty associated with some eress hinich may or may not materiaise. The theory of frobahility deals with the problem of measuring the uncerainty associaded with various events rather precisely, making it lise by possible tudiyy, to a cetiain extont of course, to contol phenomena depending upon charne.

The 'measure of uncertainty' is knorn as probability.

History of Probability Theory

Probability had its bire in the sevententh centry and over the last three hucred years, it has progressed rapidry fent its classical heritane of simple mathemanical and combinatorial methods to its present rizorous development based on modem functional arahsis. The probability bad its origin in the usual interest in gambling that pervaded France in ter seventeenth century. Eminent manematicians pere led to the quantiative study of games of cinance. The Chevalier de Fsera, a French nobleman andi a notorious gambler, posed a series of problems to B Pascal (1623-1602) like the following:

Two persons play a game of chance. The person nito first gains a certain number of points wins the stake. They sup playing before the game is completed. How is the stake to be divided on the basis of the number of points each has got?

Toough Galileo (1564-1642) bad earlier sotved a similar problems, this was the beginning of a s.atematic study of chance and regularity in nature. Pasmal's interest was shared by Fermat (1601-1665), and in their correspondene the two mathematicians laid the foundation of the theory of probability. Their results aroused the interest on the Dutch physicist Hurghens (1629-1695) who started working on some difficult problems in games of chance, and pubished in 1654 the first book on the theory of probability. In this book, he introduced the concept of mathematical expectation utich is basic to the modern theory of probability. Following this, Jacob Bernoulli (1654-1705) wrote his famous 'Art Conjectandi' the result of his work of over twenty years. Bernouiii approached this subject from a very general point
of view and cleariy foresaw the hicie arplications of the theory. Important contributions were made by Abrabam de Morire (1667-1754) whose book 'The Dectrine of Chance' was published in 1718. Other wain contributors were T.Bayse (Inverse Probability), P.S. Laplace (1749-1827) who after extensive research published 'Theoric Analytique des probabilities' in 1812. In addition to these Levy, 2rises and RAFisher were the main contributors. It was, however, in the work of Russian marbematicians Tschebyshev (1821-1874), A Marikov (18561922), Lispounow (Contral Limis theorcm), A Kintchinc (Law of Large Numbers) and A Kohnogorov that the theory maite great strides. Kolmogotolt was the person who ariomised the calculus of probability.

The prociabitty theory itself has developed in many directions, but at present the dominant area is the stoctastic processes, which has wide applications in physics, chemistry, biology, enginsering, management and the social sciences.

Calcalus of Probabillty
In our dav-tonay vocabulary we use words such as 'probably', 'likely', 'fairly good chanes', etc. to express the uncrainty as indicated in the following example. Suppose a father of a XII class studeat pants to know his son's progress in the studies and asks the concerned teacher about his son. Teacher may express to the father about the student's progress in any one of the following sentences.

It is certain that he will get a first class.
He is gure to get a first class
I beijeve be will get a first class.
It is quite likeily that be will get a first class.
Perhaps be may get a first class.
He pay cr be may mol get a first class.
Ibeijeve he will not get a first class.
I amo sure be will non get a first class.
I am certain he will not get a first class.
Instead of expressing unceriainty associated with any event with such phrases, it is better and exact if we express uncertainty marhematicaily. The measure of uncertainty or probability can be measured in three ways and these are known as the three definitions of probability. These methods are

Mathematteal or Classical or Priort Probability Statistical or Empirical Probability and Axiomatic Probabilty

Before discussing those methods, we define some of the terms which are useful in the derinition of probability.

Experiment : An act of deing something to verify some fact or to obtain some result. Ex Throwing a die to ubstve whici numer will come up (Dit is a six-facied cuice).
Trial: Contucting experiment once is kmown as the trial of that experiment. Ex Turouing a die once.
Ootenmes: The results of an experiment are konom as outonmes. Fix. in thmaing a die, getting ' 1 ' or ' 2 ' or ' 6 ' are the outcomes.
Erents: Any single ourcome or set of ourcomes in an expriment is bronn as an even:. In: 1. Getting ' 1 ' in throwing of a die is an event Also getting an even number in throwing a die is also an event:
 king and a queen is 20 event.

Eshaustive Events : 'The total number of possible oucomes in ant trial are boown as exhautive events.
Ex: 1. In tossing a coin there are two exibaustrive events.
2. In throwing a die, here are six exhaurive cases viz ($1,2,3,4,5,6$).

Favourable Events (Cases): The number of outcomes whici eatai the happening oi=n event are koown as the favourabie cases (evenus) of that event Ex: In throwing two dice, the number of cases frvourabie for gering a sum of 5 are $(1,4),(2,3),(3,2)$ and (4,1).

Mulually Exclusive Events: Evenis are suid tu be muluaity exchaive ut incmpredibie if he happening of any one of them precludes or excludes the iappening of all others. Ex: In tossing a coin the eveuts hasd and tail are mutuaily exciusive (because both cannot occur simulineously).

Mathematical or Classical or 'a priori' probabillty
If a trial results in ' \square ' exhaustive, murually exclusive and equally likely cases and 'm' of them are favourable to the happening of an event E, then the probability ' p ' of happening of E is given by
$\mathrm{p}=$ Eavourable numberofoucomes/Iotal No of ouriomes E=证
We write $p=P(E)$.
Ex:1. Probability of getting head in tossing of a coin once is $1 / 2$ because the number of exhauslive cases are 2 and lhese are mulually exclusive and eumaily likely (assuming the coin is made evenly) and of these only 1 case is favoutable to nur event of getting head.

Ex: 2. The probability of geting a number divisible by 3 in throwing of a fair (evenly made) dic is $2 / 6$ becauss the favourable cascs arc 3 (viz 3 and 6) and cxhaustive cascs arc 6.

The probability ' q ' that E wiil not bappen is given by
$A=\frac{n-m}{n}=1-\frac{m}{n}=-p$
Always $0 \leq \mathrm{p} 1$.
If $p=P(E)=1, E$ is called a cortain cront and if $P(E)=0, E$ is called an impossible creat
In this method, the mathematical ratio of two intezers is griving the probability and therefore, this definition is known as mathematical definition. Here we are using the concept of probability in the form of 'equality likely cases' and therefore, this definition is a classical definition. Before using this definition, we should know about the nature of outcomes (viz Murually exclusive, exhaustive and equally likety) and therefore, it is also known as 'a priori' probability definition.

The definition of mathemalical ur clasilual probability definition breaks cuwn in the following cases: 1. If the various nutcomes of the trial are not equally likely. 2. If the exhaustive number of cases in a trial is infinite.

Ex:1. When we tall about the probability of a pass of a candidate, it is not $1 / 2$ as the trio customers 'pass' and 'faiu' are not equally likely.
Ex: 2. When we talk aboun the probabiity of a selected real number is to be divided by 10 , the number of exhaustive cases are infinite.

In such above mentioned circumstances it is not possible to use mathematical probability definition. Therefore, probability is defined in the other way as below:

Statistical or Empirical Probability :

If a trial is repeated a number of times under essentially homogeneous and identical conditions, then the limiting raite of the ratio of the umber of times an eveat happenss to the number of trials, as the number of trials becomes indefinitely large, is called the probability of happening that event.

Mathematically, we write

$$
p=P(E)=\lim _{n \rightarrow \infty}\left(\frac{m}{n}\right)
$$

Here n is the number of trinls and ma is the number of times of the occurrence of event E. The above limit should be finite.

Ex: When you throw a die 10000 times and if you get 1600 times the number ' 1 ', then the probabiilty of geting ' 1 ' is $1600 / 10000$. This ratio is nothing but the relative frequency of '1'.

But this definition is also not antitable always because it is very difficult to maintain the identical conditions thronghort the experiment. Therefore, the probability is defined in anoter nay by using certain axioms. This defintion is kwow as "Axiomatic Probability' defmition.

Here twe deñe some of the itms which are useful in the 'Axiomatic Probabiiity" defmition

Sample Space: The set of all possible outcomes of an experiment is known as the sample space of that experiment Usually we cinote it by S . Ex: In tossing a coin $\mathrm{S}=\{\mathrm{H}, \mathrm{I}\}$.

Sample Point : Any element of a sample space is knorn as a sample point
Ex: In tossing a coin experiment, H or T is a sample point
Event: Any subset of a sample space is an event.
Ex: In throwing a die, $(1,3,5),(2,4,6)$ of $(5,6)$ are the events where $S=\{1,2,3,4,5,6\}$.
If A and B are any tro events then $\bar{A}, \bar{B}, A U B, A \cap B$ are also events because they are also subsels of S.

The event S (entire sample space) is kronn as cerain event and the event Φ (empty set) is knorn as impossible event.

Mutually Exclusive Events: Events are said to be mutually exclusive if the corresponding sets are disjoint
Ex: In throwing of a die experiment, if $\mathrm{A}=(1,3,5)$ and $\mathrm{B}=(2,4,5)$ then A and B are munally exclusive beause we cannot get both odd number and even number simulanoorsiy. That is, if $A \cap B=\Phi$, th $\sim A A$ and B are mutually exclusive events.

Ariomatic Probability :
Let S be a sample space and $\bar{\xi}$ be the class of events. Also let P be a real valued function defined on ξ. Then P is called a probability function and $P(A)$ is called the protability of the event A if the following axinms thid :
i) For every event $A, 0 \leq P(A) \leq 1$.
ii) $\quad \mathrm{P}(\mathrm{S})=1$.
iii) If A and B are mutually exclusive events, then $\mathrm{P}(\mathrm{AUB})=P(\mathrm{~A})+\mathrm{P}(\mathrm{B})$.
iv) If $\Lambda_{1}, \Lambda_{2}, \ldots$ is a sequence of mutually exclusive events, then

$$
P\left(A_{1} \cup A_{2} \ldots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots \ldots
$$

In the above definition axiom (iv) may seem to be not necessary. But it is necessary to stress that axiom (iii) should be extended to more than two events.

Theorem 1: If Φ is the empty set, then $\mathrm{P}(\Phi)=0$.
Proof: We know that $\mathrm{S}=\mathrm{S} U \Phi$ and $\mathrm{P}(\mathrm{S})=\mathrm{P}(\mathrm{SU} \Phi)=\mathrm{P}(\mathrm{S})+\mathrm{P}(\Phi)$.
(beczuse S and Φ are disjoint and according to axiom (iii)). But $\Gamma(S)=1$ and thercfore, $1=1+P(\Phi)$.
$\therefore \mathrm{P}(\Phi)=0$.
Theorem 2: If \bar{A} is the complement of an event A, then
$P(\bar{A})=1-P(A)$.
Prour: $A \cup \bar{A}=S$.
$\mathrm{P}(\hat{\mathrm{A}} \cup \bar{\Delta})=\mathrm{P}(\hat{A})+\mathrm{P}(\overline{\boldsymbol{A}})=\mathrm{P}(\mathrm{S}) \quad(\mathrm{A}$ and $\bar{\Delta}$ are disjoint).
But $P(S)=1$, therffore,
$P(A)+P(\bar{A})=1$
$\operatorname{OT} P(\bar{A})=1-p(\Lambda)$.
Theorem 3: If $A=B$, then $P(A) \rightrightarrows P(B)$.
Proof: We know that if $A=B$, then
$B=A U(B-A)$ (here we may use the notation B / A)
So, $P(B)=P(A)+P(B-A)$
But from axiom i, $P(B-A) \geq 0$
$\therefore \mathrm{F}(\mathrm{B}) \geq \mathrm{P}(\mathrm{A})$.

Theorem 4: If A and B are any two events, then
$P(A-B)=P(A)-P(A-B)$
Proof: We can write, $A=(A B B) U(A-B)$
But $(\mathrm{A} \overline{\mathrm{E}} \mathrm{B})$ and $(\mathrm{A}-\mathrm{B})$ are disjoint and according to axiom (iii).
$P(A)=P(A$ 伿 $B)+P(A-B)$.
Ot $P(\Lambda-B)=P(\Lambda)-P(\Lambda$ б $B)$.
Theorem 5: (Addition Theorem)
If A and B are any two events, then

$$
P(A \cup B)=P(A)+P(B)-P(A \bar{B})
$$

Proof: We can write, $\mathrm{AUB}=\mathrm{BU}(\mathrm{A}-\mathrm{B})$. Bur B and $(\mathrm{A}-\mathrm{B})$ are disjoint and tinerefore, by axiom (iii),
$P(A \cup B)=P(B) \div P(A-B)$.
Also, from theorem 4, $\mathrm{P}(\mathrm{A}-\mathrm{B})=P(\hat{A})-P(A \in B)$
Hence, $P(A \cup B)=P(B) \mid P(A-B)$
$=P(B)+P(A)-P(A B)$

This theorem is knoun as addition theorem and it can be extended to any number of events as follows:

Theorem 6: (Addition Theorem in case of n events)
If $A_{1}, A_{2}, \ldots, A_{D}$ are any nevents, then

Proof: This theorem can be proved by the method of induction. For the events A_{1} and A_{2} we have from theorem 5,

$$
\begin{aligned}
& P\left(\Lambda_{1} \cup \Lambda_{2}\right)=P\left(\Lambda_{1}\right)+P\left(\Lambda_{2}\right)-P\left(\Lambda_{1} \cap \Lambda_{2}\right) \\
& =\sum_{i=1}^{2} P\left(\Lambda_{1}\right)+(-1)^{\prime} \cap P\left(\Lambda_{1} \cap \Lambda_{2}\right)
\end{aligned}
$$

Hence the theorem is true for $\mathrm{n}=2$.
Now, suppose the theorem is true for $n=r$, say
Then,

$$
P\left(A_{1} \cup A_{2} U \ldots U A_{2}\right)=\sum_{i=1}^{r} P\left(A_{1}\right)-\sum_{U=\infty}^{r} P\left(A_{1} \cap A_{j}\right)+\ldots+(-1)^{-1} P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{1}\right)
$$

Now,
$\left.P\left(A_{1} \cup A_{2}, \ldots, U A_{r} \cup A_{r+1}\right)=P\left(A_{1} \cup A_{2} U \ldots, \ldots A_{r}\right) \cup A_{r+1}\right)$

$$
\begin{aligned}
& =\sum_{i=1}^{n} P\left(\Lambda_{p}\right)-\sum_{W \sum_{i}}^{x} P\left(\Lambda_{1} \cap \Lambda_{p}\right)+\ldots(-1)^{v} P\left(\Lambda_{1} \cap \Lambda_{2} \cap \ldots \Lambda_{T+4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{m} P\left(\Lambda_{1}\right)-\sum_{V=1,1+1}^{m} A\left(\Lambda_{1} \cap \Lambda_{1}\right)+\ldots .+(-1)^{Y} P\left(A_{2} M_{2} \cap \ldots A_{m+1}\right)
\end{aligned}
$$

Herce, if the theorem is true for $n=r$, it is also true for $n=r+1$. But we have proved that the theorem is true for $n=2$. Heace by the method of induction, the theorem is true for all positive integer values of n

Corcllary 1 : If A and B are two mutually exclusive events, then, $\Gamma(A \cup B)=P(A)+P(B)$.

Corollary 2 : If $\Lambda_{1}, \Lambda_{2}, \ldots \Lambda_{2}$ are a mutually exclusive events,
Then $P\left(A_{1}\right.$ U $\left.A_{2} \ldots U A_{2}\right)=P\left(A_{1}\right) \div P\left(A_{2}\right)+\ldots+P\left(A_{2}\right)$

Conditional Probability :
So far, we have assumed that so information was araitable about the experiment other than te sample space while calculating the probabilities of events. Sometimes, bowever, it is korn that an event A has happened. How do we use this information in making a statement conceming the outcome of another event B ?

Consider the following examples.
Ex.1: Draw a card from a well-sbuffled pack of cards. Define the event A as getting a black card and the eveat B as gering a spade card. Here $P(A)=1 / 2$ and $P(B)=1 / 4$. Suppose the drawn card is a black card then what is the probability that card is a spade card? That is, if the event A has happened then what is the probability of B given that A has alreanty happened? This probability symbolically we write as $\mathrm{P}(\mathrm{B} / \mathrm{A})$. In the given example,
$P(B / A)=\frac{1}{2}=\frac{P(A \cap B)}{P(A)}=\frac{(1 / 4)}{(1 / 2)}$

Because probahility of simultanenus nccurrence of A and B is $1 / 2$ and prohability of A is $1 / 2$.

Ex.2: Let us toss two fair coins. Then the sample space of the experiment is $S=\{$ IIII, IIT, TH, TI\}. Let event $A=\{$ both coins show same face $\}$ and $B=\{$ at least one coin shows H \}. TEND $P(A)=24$. If B is snown to have happencit, this information assurss that IT cannot bappen. and $\mathrm{P}\{\mathrm{A}$. conditional on the information that B has happened $\}=$
$P(A B)-1 / 3-\frac{1 / 4}{3 / 4}$

$$
=\frac{F(1)(B)}{P(S)}
$$

In the above two examples, we were intereated to find the probability of one event given the condition that the other event has alreaty happened. Such events based on some conditions are inout as conditional events. In the above examples B / A and $A \cdot B$ are the conditional events. Tre probability of a conditicnal event is known as conditional probability of that event We write the conditional probabilities as $\mathrm{P}(\mathrm{A} / \mathrm{B})$, $\mathrm{P}(\mathrm{E} / \mathrm{F})$, etc.

Definition of conditional probability: The conditional probability of an event A, given B, is denotid by $\Gamma(A, B)$ and is dofinad E .
$P(1 / B)=\frac{P(1 / B)}{P(B)}$

Where A, B and $A \cap B$ are events in a sample space S, and $P(B) \neq 0$.
From the dennition of conditional provaility we know that
$P(A / B)=\frac{P(1 \cap 3)}{P(B)}$
Therefore, we can write from the above
$P(A-B)-P(P) P(A)$
Also, we bnow that $P(A \cap B)=P(B-A)$ and
$P(B C A)=P(A) P(B A)$
Hence we can write
$P(A, B)=D(A) D(B / A)$ or $P(B) P(B)$
The above result is known as multiplication law of probabilities in case of two events.

Multiplication Theorem of Probabilities: If A and B are any two crents of a sample space S, then
$P(A \subset B)=P(A) P(B / A) \cup P(B) P(A)$
The above theorem can be extended to any n events as follows:
If $A_{1}, A_{2}, \ldots, A_{2}$ are any n events, then

This theorem can be proved by method of induction or generalization.
Eaye's Theorein: If $E_{1}, E_{3} \ldots, E_{0}$ are mutually exclusive events with $F(E) \neq 0,(i=1,2, \ldots$ u) then for any artitrary event A which is a suhset of $\mathbb{U}_{10} E_{1}$ such that $P(A)>0$, we have $P\left(E_{1} / A\right)=\frac{P\left(E_{0} P\left(A / E_{i}\right)\right.}{\sum_{i=1}^{n} P\left(E_{i}\right) P\left(N E_{l}\right)}$ for all i.

Proof: Since $A \subset \bigcup_{1=1}^{x} E_{1} \quad$ we have

Since $(1 \cap E)=Z_{1}($ for $i=1,2, \ldots, n)$ are mutually exclusive events, we have by additiond theorem of probability
$P(A)=P\left[U_{i=1}^{*} U \cap E_{j}\right]=\sum_{i=1}^{+} P(A \cap E)=\sum_{i=1}^{\dot{N}} P(E) P\left(N E_{i}\right)$
(By multiplication theorem in case of two events.)
Also, we have
$P\left(\Lambda \cap E_{1}\right)=P(1) \quad P(E / \Delta) \quad$ and

$$
P\left(E_{1} / A\right)=\frac{P(A \cap E)}{P(\Lambda)}=\frac{P(E) P(\Lambda / E)}{P(\Lambda)}
$$

Hence, $P(E / \Delta)=\frac{P\left(Z_{i}\right) P\left(N E_{i}\right)}{\sum_{i=1}^{Z} P\left(E_{i}\right) P\left(N / E_{i}\right)}$

This thenrem is very useful in calculating the conditional probabilities in certain situations.
If $P(A \square B)=P(A) P(B)$, then we see that $P(B / A)=P(B)$ and hence we say that the probability of B is not depending upon the happening of A . That is the conditional probability of B is same as the unconditional probability of B. Such events are called independent events.

Two crents A and B are independent if and only if
$P(A \cap B)=P(A) P(B)$

Ex: Le: iwo far coins be lossed and let
$\Lambda=\{$ tead on first coin $\}, B=\{$ head on the second coin $\}$.
Then $P(A)=P\{H H, H T\}=1 / 2$
$P(B)=P\{H \mathcal{H}, T H\}=1 / 2$ and
$P(A / B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 4}{1 / 2}=1 / 2=P(A)$
Thus,

$$
P(A \bar{B} B)=P(A) P(B)
$$

and we know tha: the probability of getting head on the first coin does not depend won the probability of getting bean on the second coin. Hance A and B are independent Aico ne see that the condition $P(A, B)=P(A) P(B)$ is both necessary and sufficient for these events A and B to be incopendent.

If there are thre or more than three events, we hill have the situation ontere eiery pair of these events are independent or the situation where the events in every set of evezts are independent. In tie first case, we call the events as pairmise independent and in the second case the call as complete or mutual independent events.

Geometric Prohahility :

Sample space can be countably finite or countably infinite or uncountably finite or uniounably infuite depenaing upon the situation. If the sample spase is countably finie, then it is easy to calculate the probability of any event by using either mathematical probatuity or axiomatic probability definition. Even if the sample spare is countably infinite say S^{-}(e, e_{2}, \ldots) we obtain a probability space assigning to each $\varsigma \in S$ is a real number R, called its probability, such that
$P_{1} \geq 0$ and $p_{1}+a_{2} \square \square=\sum_{i=1} P_{1}=1$
The probability $\mathrm{P}(\hat{A})$ of any event A is then the sum of the probabilities of its points.
Consider the sample space $S=\{1,2, \ldots\}$ of the cxperiment of tossing a coin till a head appears; here n denotes the number of times the coin is tossed. A probability space is ofiained by
$P(1)=1 / 2, P(2)=1 / 4, \ldots, P(n)=\frac{1}{2^{m}}, \ldots$.
But the calculation of probability of events regarding an uncountably finite or infinite sample space is not so easy.

Consider a situation of selecting a point at random on a line segment of length ' 1 '. Here the simple space is uncountably finite and the procedure to find the probability of any: event in case of countable sample space is not applicable.

Conciter another example. Suppose that two friends have agreed to meet at a certain place berween $9 \mathrm{a} . \mathrm{m}$. to $10 \mathrm{a} . \mathrm{m}$. They also agreed that each would wait for a quarter of an hour and if the other did not arrive, would leave. What is the probability that they meet ?

In te above example also both the sample space and the given event are uncountable ard the crënary procedures of calculation of probability are not applicable. So we need difierent procedure in such cases.

If the sample space is uncountably finite, we precent that sample space by some geometricail measurement, $m(S)$ such as length, area of volume, and in which a point is selected at ratidom. The probability of an event A, i.e. the selected point belongs to A, is then the rutio of $m(A)$ to $m(S)$ is

Swh probability is known as 'geometrical probability'.
Solved Problems:

1. A tuag contians 5 reci, 4 white and 3 blue bails. What is the probability that two balls dann are red and hiue?

Sol: Total number of bails $=5+4+3=12$
The aurite: of ways of drawing two balls out of 12 balls $=12^{c_{2}}=\frac{12 \times 11}{2}=66$ nows
The numie: of ways of drawing 1 red ball out of 5 red balls $=5$ ways.
The number of ways of drawing 1 blue ball out of 3 blue balls $=3$ ways.
The numier of ways of crawing 1 red ball out of 5 red bails amil 1 blue ball oul of 3 blue bails $=5 \times 3=15$ ways.

The required probabilty $=15 / 66=5 / 22$, by using Mathematical probability definition
2. If ite letters of the word 'STAITSTICS' are arranged at random to form words, what is the probability that three S 's come consecutively?

Soi: Tomi 20 . of letters in the word 'STATISTICS' $=10$. Towal mo. of arrangements of these 10 letters in hitich 3 are of one kind (riz S) , 3 are of second kind (viz T), 2 are of third kind
(viz D), 1 of fourtiond (viz. A) anc 1 of fifth kind (viz C).

$$
=\frac{10!}{3!3!2!1!1!}
$$

Fribwing are the S passibic combimations of 3 S's coming consecutively.
i) in the first three places
ii) in the second, thire and fourth places
iii) in the eigith, ninth and tenth places

Since in each of the above cases, the total number of arrangements of the remaining 7 letames viz IMILAC oínich 3 are of one kind, 2 of second kind 1 of thirdind and 1 of fourh kind

$$
\begin{aligned}
& =\frac{7!}{3 i 2!\quad: 1} \\
& \text { and the required number of fovourable cases }=\frac{\& \times 7!}{3!2!1!} 1!
\end{aligned}
$$

Hence the required probabiiity

$$
=\frac{\text { Emourct:s Casss }}{T_{0}: a!\text { tio of cases }}=\frac{8 \times 7!}{312!1!11} / \frac{10!}{3!3!2!1!1!}
$$

$$
\frac{-: \times 7!\times 3!}{10!}=\frac{1}{15}
$$

3. What is the probability that a leap year selected at random will contain 53 Sundays?

Sol: In a leap year, there are 366 deys of 52 complete weiks and 2 days more. In order that a lop year selected at random should contain 53 Sundays, one of these extra 2 days must be Sudary. But there are 7 different combinations with these two extra 2 days viz Sunday and Monday, Monday and Tuesday, etc. Ort of these 7 possibie ways, only in 2 ways we are having an extra Sunday.
\therefore Required probability $=2 / 7$.
4. Two dice are thrown sinultaneously. What is the probability of obtaining a total score of seven?

Sol: Six numbers $(1,2,3,4,5,6)$ are on the six faces of each die. Therefore, there are six possible ways of outcomes on the first die and to each of these ways, there corresponds 6 posisble number of outcomes on the second die.

Hence the total number of ways, $n=6 \times 6=36$. Now we will find out of tease, how many are favourable to the total score of 7 . This may happen only in the folloring ways $(1,6)$, $(6,1),(2,5),(5,2),(3,4)$ and $(4,3)$ that is, in six ways where first number of 2 ach ordered pair denotes the number on the first die and second number denotes the number on the second die.
$m=6$.
IIence required probability $=\frac{\text { Favourable No of Cases }}{\text { Total No of csaze }}$

$$
=\frac{m}{n}=\frac{6}{36}=\frac{1}{6}
$$

5. Two digite are selected at random from the disits 1 through 9. If he sum is even find the probability, p that both numbers are odd.

Sol: If both numbers are even or if boit numbers are ath, then the sum is even. In this problem, there are 4 eien numbers $(2,4,6,8)$ and hence there are 42 ways to choose two even numbers. There are 5 odd numbers $(1,3,5,7,9)$ and hence there are $5^{2} 2$ wais to choose two odd numbers. Thus there are $4^{C} 2+5^{C} 2=16$ nays to choose two numbers strin that their sum is even Since 10 of these ways occur when both numbers are odd, the recuired probability,

$$
p=\frac{10}{16}=\frac{5}{8}
$$

6. Six boys and six girls sit in a row randomly. Find the probability than a) the six giris sit together, b) the boys and giris sit alternately.

Sol: a) Six giris and six boys can sit ar random in a row in 12 ways. Consider six girls as one object and the six boys as six different objects. Now these seven objects can be arranged in 7 ! different ways. But the six girts in the first object can be arranged in 6 ! ways. Thus the favourable number of cases to the e.ent of siting all giris together is 7! 6! ways.

Therefore, the required probability $=\frac{\text { Farorects ho of Cases }}{\text { Total No of Cares }}=\frac{7!\text { 6! }}{12!}=\frac{1}{132}$
b) Since the bous and girls can sit altenately in $6!6$! ways if we bezin with a boy and simulariy they can sit aitemateiy in 61 6! ways if we begin with a giri. Thus the total number of ways sitting the boys and girls aftemately $=\begin{array}{lll}2 & 61 & 6!\end{array}$
\therefore TEE required probability $=\frac{\text { revourchie No of Ceses }}{\text { Ioce tio of Cees }}=\frac{26!8!}{12!}=\frac{1}{462}$
7. Tat of $(2 n+1)$ tickets conseruriely numbered, three are diawn ai randnm. Find the chance that the numbers on tiem are in AP.

Sol: Surposee that the smallest number zmonn tie three draun is 1. Then the groups of three numbers in AP. are $(1,2,3),(1,3,5),(1,4,7) \ldots . .(1, n-1,2 n+1)$ and tivey are n in number.
 2 n) and their number is $\mathrm{n}-1$. If the lowest number is 3 , the groups are $(3,4,5),(3,5,7), \ldots(3$, $\mathrm{n}+2,2 \mathrm{n}+1$) 2 z d their number is $\mathrm{n}-1$.

Similarly, is can ne seen that if the insiest numbers selected are $4,5,6, \ldots, 2 n-2,2 \pi-1$, the: numier of selections respectively are $(\mathrm{n}-2),(\mathrm{n}-2),(\mathrm{n}-3),(\mathrm{n}-3), \ldots, 2,2,1,1$. Taus ine favourable inys for ine selected three zumbers are in AP.

$$
\begin{aligned}
& =2(1+2-3+\ldots+n-1)+\mathrm{D} \\
& =\frac{2(n-1) r}{2}+n=n^{2}
\end{aligned}
$$

Aso the 10:ai numiner of ways of celecting three numbers out of $(2 n+1)$ Dumbers

$$
=\binom{2 \pi+1}{3}=\frac{(2-+1)(2 n)(2 \pi-1)}{1 \cdot 2 \cdot 3}=\frac{r\left(4+r^{2}-1\right)}{3}
$$

Hance the roupurei probability $=\frac{\text { Favoreble No of cares }}{\text { ToLal No of cars }}=\frac{n^{2}}{n\left(4 n^{2}-1\right) \sqrt{3}}=\frac{3 n}{4 n^{2}-1}$
8. If a coin is tossed $(m+n)$ times $(m>n)$, then show that the probability of at least m consccuitic heads is $\frac{n+2}{2^{m a}}$.
Sol: Let us denote by H the appearance of head and by T the appearance of tail and let X denule the appearance of head or tail. Now $P(H)=P(T)=1 / 2$ and $P(X)=1$.

Suppose the appearence of m consecutire heads starts from the first throw, we have
(H H H....m times) (X X n times)
The chance of this event $=(1 / 2,1 / 2 \ldots m$ times $)=\frac{1}{2^{m}}$
If the sequetree of m consecutive heads siants from the second throw, the first must be a tail and we have
$\mathrm{T}(\mathrm{HH} \ldots \mathrm{m}$ times) $\mathrm{X} X \ldots(\mathrm{n}-1)$ times $)$

The chance of this event $=1 / 2(1 / 2,1 / 2 .$. m times $)=\frac{1}{2^{n+1}}$
If the sequace of m corsecutive beads starts from the $(r+1)$ th throw, the first ($r-1$) throws may te bead or tail but th throw must be tail and we have

The probability of this event $=\frac{1}{2} \frac{1}{2^{m}}=\frac{1}{2^{-1}}$

In the aiove ase, r can take any varie from $1,2, \ldots$ n Since ali the above cases are munally exclusive, the required frobability when r takes $0,1,2, \ldots$ 口

$$
=\frac{1}{2^{x}}+\left(\frac{1}{2^{n-1}}+\frac{1}{2^{n-1}}+\ldots \ldots x\right)
$$

$$
=\frac{n+2}{2^{*-1}}
$$

Hence the result.
9. What is the prooabiity that in a group of N peopie, at least two of them wiil tave the same birthday?

Sol: We first find the probability that so two persons barie the same birthday and then subtrace from 1 to ge: the required probabilit: Suppose there are 365 different birthdays possiole in a year (excluding leap year).

Any person nuight have any of these 365 days of the year as birtbuay. A second person may likewise have any of these 365 birthays and so on. Hewce the total number of wans of N people to have their birthdays $=(365)^{\mathrm{N}}$.

But the number of possible ways for none of these N birthdays to coincide is $=$
365. 364(365-N-1)

$$
=\frac{(365)!}{(365-3)!}
$$

The probability that no two birtheys coincide is
$\frac{\left(365 j^{\prime} \%\right.}{(365-N) \mid} /(365)^{v}$
Hence the required probability (for at least two people to have the same birthday)

$$
=1-\frac{(365)!}{(365-N)!(365)^{* 1}}
$$

10. A and B are two indepation: moesses (i.e. there is no collusion between them) in a case. The probrbility the: A will spent the truth is x and the probability that B will speak the troth is y. A ani E agroe in a cerain statement. Show that the probability that the statement is trie is $x y /(1-x-y+2 x y)$.

Sol: A and B agree in a cerain statement means either both of them speaid trun or maje false stutement. Bur the probeioility that they both spoals truth is ry and both of them maise faise statement is $(i-x)(i-y)$.

Thus the probability of tiz: asterment in a statement

$$
=x y+(1-x)(1-y)=1-x-y-2 x y
$$

Therefore, the conditional protaibity of their sutement is trie $=\frac{2 y}{1-2-y+2 y}$
(oy using the definition $P(A B)=\frac{\partial(A \cap)}{P(B)}$, where A is the event of correct statement and
B is the event of commonstatement
11. Two friends have agreed to meet at a certain place beiween nine and ten O' clock They also agreed thai ensh wouid want for a quarter of an hour and if the other did not arive, would leave. Wina is be probability that they meat ?

Sol: Surpose x is the moment menernn arrives at the appointed piace, and y is the moment tie other amives.

Let us consider a point with cocrdizates (x, y) on a place as an outcome of the rendezvous.
Every possible outcome is within the area of square having side corresponds to an hour as shown in the figure.

The outcome is favourable (the two meet) for all points (x, y) such that $|x-y| \leq 1 / 4$. These points are within the shaies pat of the square in the alove figure 1.

All the outcomes are exclusive and equally possible, and therefore, the probability of the rendezvous equals the ratio of the sbaided area to the area of the square. That is, $m(A)=7 / 16$ and $m(S)=1$.

Hence by geometric probability, the required probability $=\frac{\operatorname{men}(1)}{m(S)}=\frac{7 / 16}{1}=\frac{7}{16}$

18

Exercises:

1. A factor of 60 is chosen at random. What is the probability that it has feciors oftorth 2 and 5 ?
2. The numbers 3,4 and 5 are placed un three cards and then liro cards are chusen at random.
a) The two cards are placed side-by-side with a decimal point in front What is the probability that the decimal is more than $3 / 8$?
b) One card is placed over the other to form a fraction. What is the probariliry that the fraction is less than 1.5?
c) If there are 4 cards with numbers $3,4,5$ and 6 , then what are the probacilities of the above two cises?
3. A vertex of a paper isosceles triangle is chosen at random and foided to the miexcint of the opposite side. What is the probability that a trapezoid is formed ?
4. A vertex of a paper square is folderi onto another vertex chosen ar randem. vitari is the probability that a trizngle is formed?
5. Three randomiy chosen verices of a regular hexagon cut from paper are feizer to the centre of the hexagon. What is the probability that an equilatemi triangis is formed?
6. A piece of string is cut at random into two pieces. What is the probabiity that the short piece is less than half the leagth of the long piece?
7. A paper square is cut at randiom into rectangles. What is the probabilit: that lerger perimeter is more than $11 / 2$ times the smaller?
8. The numbers 2,3 and 4 are substituted at random for a, b, c in the equation $a x-b=$ c.
9. Each coefficient in the equation $a x^{2}+b x+c=0$ is determined by throwing an ordinary die. Find the probability that the equation will have real roots.
10. The numbers 1,2 and 3 are substituted at random for a, b and c in the queiraric equation $a x^{2}+b x+c=0$.
a) What is the probability that $a x^{2}+b x+c=0$ can be factored?
b) What is the probability that $a x^{2}+b x+c=0$ has real roots?
11. Two faces of a cuike are chosen at random. What is the probability that they are in parallel planes?
12. Three edges of a cube are chosen at random. What is the probability that each edge is perpendicular to the other two?
13. A point P is chosen at random in the interior of square $A B C D$. Wat is the probability that triangle $A B P$ is acute?
14. Find the probability of the event of the sine of a randomly chosen angle is greater than 0.5
15. Suppose you ask incividuals for their random choices of letters of the aipheret How many people would you need to ask so that the probability of at least one duplication becomes better than 1 in 2?
16. Six boys and six ciris sit in a row randomly. Find the probability that i) the six girls sit togciticn, ii) itc boys and girls sit altemately?
17. If the leners of the word 'MATHEMATICS' are arranged at random, what is the prubabiily that there will be exaclly 3 lellers belween H and C ?
18. The sum of two non-nesative quantities is equal to $2 n$ Find the probability that their product is sot less than $3 / 4$ times their greatest product.
a) What is the probability that the solution is negative?
b) If c is no: 4 , what is the probability that the solution is negative?
19. If A and B are independent events then show that $\bar{\Delta}$ and \bar{B} are also indepencient events.
20. Cards are dealt one by"ode from well-shuffled pack of cards until an ace appens, Find the probebility of the event that exactly n cards are dealt before the first ace appears.
21. If four squares are chosen at random on a chess-board, find the chance that they should be in a diagonal line.
22. Prove that if $\mathrm{P}(\mathrm{A} \cdot \mathrm{B})<\mathrm{P}(\mathrm{A})$ then $\mathrm{P}(\mathrm{B} / \mathrm{A})<\mathrm{P}(\mathrm{B})$?
23. If a people are seated at a round table, what is the chance that the two narmed individuals will be next to each other?
24. A and B are two tery weak stwents of Mathematics and their chances of solving a problem correctly are $1 / 8$ and $1 / 12$ respectively. If the probability of their making cormon mistate is 1/1001 ard they obtain the same answer, find the chance that their answer is correct.
25. A bag contains an uminoun number of blue and red bails. If two balls are drawn at fandom, the probibility of drawing two red balls is five times the probability of draving two bilue balls. Furiemore, the probability of draving one ball of each colour is six times the probability of drawing tro blue balls. How many red and blue balls are there in the bay?
26. A thei has a busin of a keys, exactly one can opena lock If the thief tries to open the lock by tring the keys at random, what is the probability that he requires efactly k attempts, if he rejects the keys alrenty tried? Find the probability of the same event hien he does not reject the keys alreacty tried.
27. A frotlem in Minthematics is griven to there sturnts and their chances of solving it are $1 / 21 / 3$ and $1 / 2$. What is the probability that the probiem will be solved?
 4 biack bails. A hag and a bail out of it are picked at random. What is the prohahility that the ball is white?
28. Cands are draun one-by-one at random from a reil-siumped pack of 52 cards until 2 aces are obwined for the urst time. If in the number of cards required to be draith then show that

Wher: $2=n=50$.
30. A, B, C are events such that
$P(A)=0.3, P(B)=0.4, P(C)=0.8, P(A \cap B)=0.08, \quad P(A \cap C)=0.28$,
$P(A \cap B \cap C)=0.09$
If $\mathrm{P}(\mathrm{A} \cup B U C) \geq 0.75$, then show that $\mathrm{P}(\mathrm{B} \cap C)$ lies in the interval $(0.23,0.48)$.
31. A man takes a steo fortard with probability 0.4 and bacinards with probability 0.6 . Find the probibility that at the end of eleven steps, he is one step away from the staring point
32. Hugibens Problem A and B throw ahemanely a pair of dice in tint order. A wins if he soores 6 points hefore B gets 7 points, in which case B wins. If A starts the game, what is his probabiity of uinning?
33. A Dosw goes to whit folloning cre cf tree routes A, B, C. His choice of route is intopendent of the weather. If it rains, the probabilities of arriving late, folloning A, B, C are $0.06,0.15,0.12$ respectively. The corresponding probabilities, if it does not rain, are $0.05,0.10,0.15$.
a) Griven that on a sumy iny ie arives late, what is the probsoility that be took route C"? Assume that, on average, one in every four days is rainy:
b) Given that on a day he arrives late, hint is the probability that it is a rainy day.
34. Bonferronis inequnity, Grien $n\left(>1\right.$) events $A_{1}, A_{2}, \ldots A_{=}$shor: that
35. Show that for any nerents $A_{1} A_{2}, \ldots, A_{0}$
i) $P\left(\tilde{n}_{10} A\right)_{2} 1-\sum_{i=1}^{\dot{n}} P\left(\overline{I_{i}}\right)$
ii) $P\left(\cap_{i=1}^{x} A\right)=\sum_{i=1}^{n} P(A)-(n-1)$
36. If A and B are mutualiy exclusive and $P(A U B) \neq 0$, thea prove that $P(A / S U D)=\frac{P(A)}{P(A)+P(B)}$
37. If 2 n boys are divided into two equal groups, find the probabitity that the two tallest boys will be a) in different subgroups, and b) in the same subgroup.
38. A small boy is playing with a set of 10 coloured cubes and 3 empty boxes. If he puts the 10 cubes into the 3 boxes at random, what is the probability that he puts 3 cubes in one box, 3 in another box, and 4 in the third box?
39. The sample space consists of the integers from 1 to $2 n$, with are assigned probabilities to their logarithms. A) Find the probabilities, b) Sbow that the conditional probability of the integer 2 , given that an cren inieger occurs is
$\frac{\log 2}{n \log 2+\log n!}$.
40.a) Each of n boxes contains for white and six black balls, while another box contains

Frie white and five black balls. Λ box is ciosen at random from the $(n+1)$ boxer, and two balls are drawn from it, both being thic. The probability that five white and three block balls remain in the chosen box is 1.7. Find n.

40b). A point is selected at random inside a circie. Find the probability p that the point is closer to the centre of the circle than to is circumference.
41. What is the probability that two numbers chosen at random will be prime to eac' other?
42. In throwing a dice at a time, what is the probability of baving each of the poin's $1,2,3,4,5,6$ appears at least once ?
43. A bag contains 50 tickets numbered $1,2, \pm, \ldots, 50$ of which five are drawn at random and arranged in asconding order of mazniude ($x_{1}<x_{2}<x_{3}<x_{1}<x_{1}$), what is the probability that $x_{3}=30$?
44. Of the three inderendent events, the prombility that the first only to happen is $1 / 4$, the probabiity that the second unly to hespen is $1 / 8$ and the third unly to happen is $1 / 12$. Obtain the unconditional protanilities of the three events.
45. What is the least number of persons requered if the probability exceeds $1 / 2$ that two or more of them have the same birthday (year of birth need not match)?
46. If m things are distributed among ' a ' men and ' b ' women, then show that the chance that the number of things reccivcd $b: y$ men is
$\frac{1}{2} \frac{(b+a)^{x}-(b-a)^{x}}{(b+a)^{m}}$
47. A pair of dice is rolled until either 5 or a 7 appears. Find the probability that a 5 occurs first.
48. In a certain standard tests I and II, it has been found that 5% and 10% respectively of $10^{ \pm}$grade stivients earn grade A. Comment on the statement that the probability is $\frac{5}{100} \frac{10}{100}=\frac{1}{200}$ that a 10^{2} grade student chosen at random will earn grade A on both tests.
49. A bag contains three coins, one of which is coined with two beads while the other tho coins are fiir. A coin is chosen at random from the bag and tossed four times in succersion. If head turns up each time, what is the probability that this is the two headed coin?
50. A mar siands in a certain position (which we may call $t=$ crigin) and tosses a fac coin. If a head appenrs he moves one unit of length io the left. If a tail appear. he moves one unit to the right. After 10 tosses of the coin, filat are his pussib. pesitions and what are the probabilities?
51. There are 12 comparments in a train going from Madras w Eangalore. Five friend tavel by the train for some reasons could not meet each other at Madras static. before getting aboard. What is the probabiity that tie frve friends will be i different comparments?
52. The numbers 1,2,3,4,5 are written on frve cards. Three caris are draun in successior and at random from the deck, the resulting digits are nTiten from left to righ, What is the probabiity that the resulting three digit =umber will be even?
53. Suppose a dice are timronn at a time. What is the probabity of getting a sum ' S ' of points on the dice ?
54. A cerain malinemalician ajhays carries two matcin ooxes, ime he wants a maici stick he selects a box at random. Inevitably, a momen arpes fiten he findis a box empty. Find the prubabiily that the movemend firsi bux is emply, the seumu contains exactly r match sticks (assume that each bor contain N match-stick. initially).
55. There are 3 cands identical in size. The first card is red bota sides, the secand one is black both sides and the third one red one side and black otbet side. The cards are mixed up and placed flat on a table. One is picked at random and its uppe (visible) side was rei. What is the prubability that the uber sive is blace?
56. N different objects $1,2, \ldots$, a are distributed at random in a pleses marked $1,2, \ldots$ n. Find the probability that none of the objects occupies the ptace corresponding in its number.

Answers:

1. $1 / 2$
2. A) 23 b) $5: 6$ c) $3 / 4,3 / 4$
3. $1 / 3$
4. $1 / 3$
5. $1 / 10$
6. $2 / 3$
7. $2 / 5$
$\begin{array}{ll}\text { 8. } & \text { a) } 1 / 2 \\ \text { b) } 3 / 4\end{array}$
8. $43 / 216$
$\begin{array}{ll}\text { 10) } 1 / 3 & \text { b) } 1 / 3\end{array}$
9. $1 / 5$
10. $2 / 55$
11. $1-\pi / 8=0.6073$
12. $2 / 3$
13. 7
14. i) $\frac{7!6!}{12!} \quad$ ii) $\quad \frac{2(6!)^{2}}{12!}$
15. 7.55
16. $1 / 2$
17. $\frac{4(51-7)(50-7)(497)}{52.51 .50 .49}$
18. $\frac{91}{158844}$
19. $\frac{2}{n-1}$
20. 13:24
21. $\mathrm{Ped}=6$, Blue $=3$
22. $\quad 1 / n, 1, n\left(1-\frac{1}{n}\right)^{n-1}$
23. $3 / 4$

2S. 7:15
31. $(0.4)^{5}(0.6)^{5}$
32. $30 / 61$
33.
a) 0.5
b) $41 / 131$
37.
a) $\frac{\pi}{2 n-1}$
b) $\frac{n-1}{n-2}$
38. $\begin{array}{lll} & 3 & 10! \\ 31 \quad 41 & 9^{10}\end{array}$
39.
a) $\mathrm{K} \log 2 \mathrm{i}$
b) $(\log 2 i)(n \log 2+\log n!)$
40.
a) 4
b) $1 / 4$
41. $\pi\left(1-\frac{1}{r^{2}}\right)=\frac{6}{x^{2}}$
42. $\quad 1-n\left(\frac{5}{6}\right)^{x}+\binom{n}{2}\left(\frac{4}{6}\right)^{*}-\binom{n}{3}\left(\frac{3}{6}\right)^{*}+\binom{n}{4}\left(n \frac{2}{6}\right)^{*}-\binom{n}{5}\left(\frac{1}{6}\right)^{*}$
43. $\frac{\binom{20}{2}\binom{20}{2}}{\binom{50}{2}}$
44. $1 / 2,1 / 3,1 / 4$
45. 23
47. $2 / 5$
49. $8 / 9$
50.

$\begin{aligned} & \text { Dita } \\ & \begin{array}{l} \text { prat } \\ \text { fixn } \end{array} \end{aligned}$	-10	-8	-6	-4	-2	0	2	4	6	8	10
Prob	$\left(\frac{1}{2}\right)^{*}$	$\binom{10}{1}\left(\frac{1}{2}\right)^{4}$	$\left(\begin{array}{l}10\end{array}\right)\left(\frac{1}{2}\right)^{-0}$	(${ }^{\prime \prime}$) $\left(\frac{1}{3}\right)^{*}$	(4) ($0_{1} 0^{\circ}$	(100 ${ }^{10}$ ($\left.1_{1}^{1}\right)^{-}$	(: ${ }^{(1)}$ ((1)	$\left({ }^{\prime \prime}\right)\binom{1}{1}^{\circ}$	(io ${ }^{1}\left(\frac{1}{1}\right)^{*}$	$\left({ }^{(10}\right)\left(\frac{1}{1}\right)^{*}$	$\left(\frac{1}{2}\right)^{*}$

51. 55/144
52. $1 / 5$
53. $(-1)^{k}\binom{n}{k}\binom{n-6 k-1}{n-1} 16^{n}$
54. $\frac{\binom{2 \pi 7}{7}}{2^{2 x 7}}$
55. $1 / 2$
56. $\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}=\ldots+(-1)^{4} \frac{1}{n!}$

RAMDOMY゙ARIABLES AYD PROBABLLTY DISTRIBUTIONS

In the earlier pages, the idea of a function, subject io certain postulates, which assigned weigits called probabilities, to the points of the sample space, was introctuced. We then fad a probability function winich allowed us to compute probabilities for events. Now we deal with the concept of Random Variable.

Random Variable :
Scientific thenries on madels are nur way of depicting and endaining how ohservations come abour. Such theories are simplified statements containing essential features and make for easier comprehension and communication. In statistics, we use a mathematical approach since ive quantify our observations. Random variable is the rewult of such mathematical approach danling with the profabilities assigning to different cients of a random experiment. The set of possible outcomes for a random enperiment can be dancribed with the help of a real-valued variabie by assigning a single value of this variable to each outcome. For a two coin tossing experiment, the outcomes are two tuils, a tail and a head, a hend and a tail, or two heads. The sample space can be represented as (TT, TH, HT, HH). Here we express the outcomes by using the number of beads and so assigning the vaiues ($0,1,1,2$) respectively to those outcomes. Therefore, the ourcomes of this experiment can of denoted by the different values of the real-valued variable viz 0,1,2.

Any function or association that assigns a onique, real value to each sample point is called a chance or random variable. The assigned ralues are the values of the random rariable.

Random variables are symbolised by capital letters, most of X, and their values by lower case letters. The outcome of a random eaperiment determines a point i.e., the sample
 to one of a set of real numbers. This set of real numbers is called the range of the random variable. If the sample space is discrete, then the outcomes will be denoted by certain discrete values. The random variable associated with a discrete sample space is known as discrete random variable. Similarly, the random variable associated with continous sample space is known as continuous random variable.

Probability Function :

The association of probabilities with the various values of a discrete randon variable is done by reference to the probabilities in the sample space and through a system of relationships or a function is called a probability set function or, simply, a probability function.

Let the discrete random variable \hat{x} assme the values $x, x_{2} \ldots x$. Then the system of relations can be mitien as

$$
\mathrm{P}\left(\mathrm{X}=x_{i}\right)=p_{i}
$$

This is reat as "the probability that ter randon rariatle X take the value of x_{i} is p_{i}. The set of ordered pairs (x_{i}, p_{i}) constitutes a provability function nith numerical values to be provided for the x_{i} and p_{i} 's such that $p_{i}<0$ for all i and $\sum_{1} p_{i}=1$.

A discrete probability function is a set of ordered pairs of ralnes of a random variable and the corresponding probabilities.

For a two coin experiment, X takes the values $0,1.2$ with the probabilities $1 / 2,1 / 2,1 / 4$ respectively.

Sometimes probabiity function can be represented by a mopia or a mathematical function. In case of above example, the Xivalues and the corresponding probabilites an he represented with the Leip of tie following grapi.

Suppose X assume the values 1 and 0 with the probabilities p and $1-p$ respectively. This information an be given with the kelp of the following furction $p(x)$ defined by

$$
P(x)=p^{x}(1-p)^{1-x}, x=0,1
$$

This type of function which gives the probabilities of the different values assumed by a random variable is known as probability mass function or simply probability function Therefore, a function $p(x)$ is said to be a probability function of random variable or a distribution if
i) $\quad p(x) \geq 0$ for all x.

$$
\sum_{x} p^{\prime}(x)=1
$$

where $p(x)$ denotes the probability of the evers that the random variable X assumes the value x .

Distribution Function :

The law of probability distribution of a random variable is the rule used to find the prctaility of the rieat related to a random variables. For instance, the probability that the variable assumes a certain value or falls in a certain interval. The general form of the distribution law is Cistribution function, which is the probability that a random variable X assumes a value smeiler than a given x i.e. $F(x)=P(X \leq x)$.

The distribution furstion $\mathrm{F}(\mathrm{x})$ for any random variable possesses the following properies :
i) $\quad \mathrm{F}(-\infty)=0$
ii) $F(+\propto)=1$
iii) $F(x)$ does not decrease with an increase in x.

In the case of discrete random variable

$$
F\left(x_{2}\right)=\sum_{i=1}^{k} x_{i}=?
$$

Where $x_{1}, x_{2} \ldots, x_{1} \ldots$ are the values of the random variable. The graph of $F(x)$ in discrete mandom rariable case is generally as shown below:

It is seen from the above figure that the graph of $F(x)$ is a 'step function' havion jump $p\left(x_{1}\right)$ at $x=x_{1}$ and is constant berween each pair of values of x. It can also be proved that

$$
F\left(x_{,}\right)-F\left(x_{1-1}\right)=p\left(x_{1}\right)
$$

Therefore, distriouion function car also be used to indicate the distriounion of the random variable instead of probability function

Example:

A stufent is to mainh three historical events (Mahatma Gandi's birt year, Incia's freedom, and first Word War) with three years ($1947,1914,1869$). If be guesses, with no knowledge of the correct anstiers, what is the probability distribuion of the number of answers he gets comectiy?

Solution: Here the number of correct answers is the random variable, say X . Therefore, X assumes the vailes $0,1,2,3$ because there are three events to match with onty three years. Suppose the events are $\mathrm{E}_{1} \mathrm{E}_{2} \mathrm{E}_{3}$ and the correspording correct years are $\mathrm{Y}_{1}, \mathrm{Y}_{2} \mathrm{Y}_{3}$. Student §ets the correct answers when he she matches E_{1} to Y_{1}, E_{2} io Y_{2} and E_{3} to Y_{2}.

All mananings are wrong onty hiten heishe matchas E_{1} to $Y_{2} E_{2}$ to $Y_{,} E_{3}$ to Y_{1} or E_{1} to Y_{2}, E_{2} to $Y_{1} E_{2}$ to Y_{2}. But the total possible matchings are 6. Therefore, the probability of all matching to go wong is 2 '6=1/3. That is, the probability that X to take the vailue ' 0 ' is $1 / 3$.
 and the value ' 3 ' with $1 / 6$ probability.

So the probability distribution of the corrcet answers in the given matohing is

No of conect answers (x)	0	1	2	3
Probability	$1 / 3$	$1 / 2$	0	$1 / 6$

Example : Suppose a number is selected at random from the integers 10 through 30. Let X be the number of its divisors. Construct the probability function of X What is the probability that there will be 4 or more divisors?

Solution: X is the number of divisors of randomly selected number from the integers 10 through 30. Therefore, X is a random variable. The possible values thit X assumes are :

2, 3,4,5,6 depending upon the selected number. For example, if the selected number is eithe $1,2,3,5,7,11,13,17,19$ then X takes the value 2 . Similarly when the selected number is $4,6,8,10,14,15 \mathrm{X}$ takes 4 . Therefore, the different values of X and the number of their apperances we get the following:

X vaiues	1	2	3	4	5	6
No of appeamaces out ữ 20	1	g	3	4	1	3

Now the required probahility distribution is

x	1	2	3	4	5	6
$P(x)$	$1 / 20$	$g / 20$	$3 / 20$	$4 / 20$	$1 / 20$	$3 / 20$

The probability of X to take 4 or more

$$
\begin{aligned}
& =P(x=4 \text { or } 5 \text { or } 6)=P(x=4)+P(x+5)+P(x=6) \\
& \quad=\frac{4}{20}+\frac{1}{20}+\frac{3}{20}=\frac{8}{20}=\frac{2}{5}
\end{aligned}
$$

Mean, Variance, Standard Deriation of the Random Variable.
Le: X be a random variable with probability function as follows :

x	x_{1}	x_{2}	\ldots	\ldots	\ldots	x_{2}
$p(x)$	$p\left(x_{1}\right)$	$p\left(x_{2}\right)$	\ldots	..	$p\left(x_{2}\right)$	

The mean of X is defined as

$$
\begin{gathered}
x_{1} p\left(x_{1}\right)+x_{2} p\left(x_{2}\right)+\ldots+x_{x}\left(n_{n}\right) \\
\sum_{i=1}^{n} x_{1} p\left(x_{1}\right)
\end{gathered}
$$

Ihis is also known as mean of the distribution and generally denoted by μ.
The variance of X is defined as

$$
\sum_{i=1}^{n} x_{1}^{2} p\left(x_{i}\right)-\left[\sum_{i=1}^{\dot{n}} x_{i} p\left(x_{i}\right)\right]^{2}
$$

$$
\frac{\sum_{i}}{1}=_{i}^{2} p(-)-\mu^{2}
$$

מivere μ is iteman of X.
The variasee is generally cenoted by σ^{2}.
The stancare deviztion is the positive square foot of variance and is denoted ty 0 .
Emanie: : singie b-sided dis is tossed. Find the mean and variane of the number of puints on te wop tace.
 o: X is

x	1		2	3	4	5	6
$p(x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	

Tre menn $;$ is is civen by

$$
\begin{aligned}
& \sum_{i=1}^{n}=p\left(x_{1}\right)=x_{1} p\left(x_{1}\right)+x_{2} p\left(x_{2}\right) \ldots+x_{1} p\left(x_{2}\right) \\
& \text { Eare } p=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6} \cdot 4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6} \\
= & \frac{1}{6}(1+2+3+4+5+6) \\
= & \frac{1}{6} \frac{6 x_{i}}{2}=\frac{7}{2}
\end{aligned}
$$

Variance, σ^{*} is given by
$\sum_{m=1}^{\dot{n}} x_{1}^{2} p\left(x_{1}\right)-p_{p}^{2}$ where μ is mexn

Here

$$
\sum_{i=1}^{x_{1}} x_{1}^{2} p\left(x_{1}\right)=1^{2} \cdot \frac{1}{6}+2^{2} \frac{1}{6}+3^{3}-\frac{1}{6}+4^{2} \cdot \frac{1}{6}+5^{2} \cdot \frac{1}{6}+6^{2} \cdot \frac{1}{6}
$$

$$
\begin{aligned}
& =\frac{1}{6}\left[1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right] \\
& =\frac{1}{6} \frac{6 \times 7(2 \times 6 \times 1)}{6}=\frac{91}{6} \\
& \text { Variance } 5 \sigma^{2}=\frac{91}{6}-\left(\frac{7}{2}\right)^{2} \quad\left(\because p=\frac{7}{2}\right) \\
& =\frac{91}{6}-\frac{49}{4}=\frac{35}{12}
\end{aligned}
$$

Exercises:

1. One cube with faces numbers $1,2,3,4,5$ and 6 is tossed twice, and the recorced outcome consists of the ordered pair of numbers on the hidden faces at the Eirst and second tosses.
a) Let the random variable X takes on the value 0 if the sum of the numinis in the ordered pair is even and 1 if odd What is the probability function for this random variable?
b) Tet the random variahle X takes on the value 2 if hoth numbers in the ordered pair are even, 1 if exastly one is even, and 0 if neither is even Winas is the probability distribution of this random variable?
c) Let the random variable X be the number of divisors in the sum of the two faces. What is the probability function of X ?
2. Of six balls in a bag, two are known to be black. The balls are drawn one at a time from the bag and observed until both black balls are drawn. If X is the number of trials (draws) required to get the two black bails. Obtain the probability distribution of X
3. Suppose that the random variable X has possible values $1,2,3, \ldots$ and $P(x=j)=\frac{1}{2^{2}}$, $j=1,2, \ldots$
i) compute $\mathrm{P}(\mathrm{x}$ is even $)$,
ii) compute $\mathrm{P}(\mathrm{x}$ is divisible by 3$)$.
4. The probability mass function of a random variable X is zero except at the points $\mathrm{x}=$ $0,1,2$, . $1 t$ these points has the values $p(0)=3 c^{3}, p(1)=4 c-10 c^{2}$ and $p(2)=$ $5 \mathrm{c}-1$ for some $\mathrm{c}>0$.
i) Determine the value of c.
ii) Compute $\mathrm{P}(1<\mathrm{X} \leq 2)$.
iii) Descrite the distribution function and datw its graph
iv) Find the largest x such that $F(x)<1 / 2$
5. Lef $\begin{aligned} & \text { cencte the profits that a man makes in musiness. He may earn Ps.300n with }\end{aligned}$ probability 0.5 , tre may lose Rs 5000 with probability 0.3 and he may neiter eart nc: iose with probability 0.2. Caiculate his average profits.
6. A man wins a rupee for head and loses a rupe for tail when a coin is tossed. Surpose that he wosses once and quits if he rias but tries once more if he loses on the first toss. What are his expected winnings?
7. Turee boxes contain respectively 3 red and 2 black balls, 5 red and 6 blaze balls and 2 red and 4 black balls. One ball is drant from each box. Find the average number of black balls drann.
8. If the randiom variable, X iakes the values $12, \ldots . n$ respectively with probabilities $\frac{1}{n}, \frac{1}{n} \ldots . . . \frac{1}{n}$ find the meen and variance or X

Answers:

1.

a) | X | Prob |
| :--- | :--- |
| 0 | $1 / 2$ |
| 1 | $1 / 2$ |
| b) | |
| | |
| | 1 |
| | $1 / 4$ |
| 1 | $1 / 4$ |
| 2 | $1 / 4$ |

 c) \(X \quad\) Prob
 \(215 / 36\)
 \(312 \pi 6\)
 \(4 \quad 8 / 36\)
 6 1/36
 2. \(X\) Prob
 2 1/15
 \(3 \quad 2 / 15\)
 \(4 \quad 3 / 15\)
 \(5 \quad 4 / 15\)
 \(6 \quad 5 i 15\)

$\begin{array}{lll}\text { 3. } 1 / 3 & \text { ii) } 1 / 7\end{array}$
4.
i) $1 / 3$
ii) $2 / 3$
iii) 1
5. 0
6. 0
7. $\frac{266}{165}$
8. \quad Mean $=\frac{(n+1)}{2}$, Variance $=\frac{n^{2}-1}{12}$

DISCRETE DISTRIBUTIONS

In tre pranus pases, we dicussed about 'randinm variable', 'pmbatility' function', ets. Here We ciscuss sonx theoretical diserete eistributions in which variables are distributed according to some cefinite law which can be expressed mathematicaily.

Bernoulli Distribution : Suppose you want to study the probabiity of different events corroponding to tossing of a singl win experiment. The two possible events are getting a thiad or getting a taii. Define a rancom variable x assuming the values 1 and 0 coresponding to these two cuent vic Head and in respectinhy. If the probabitity of geting a head in tossing that coin is ' p ' then the probability that the random variable to take ' 1 ' is p and the probabity that the random varizeis to take " 0 ' is $1-p$. Thereforn the oistribution of the randiom variable X becomes
$\stackrel{I}{1} \quad \frac{\text { ITob }}{p}$

Ary experment wive there are onity trin possibie nutenmes vir, Suceess and failure is callad as Bonhoti mytintif Asingt tin of a Bernoulli experiment is known as Benoulli trial

Comesponding to any Bemouifi experiment, it is possible to defme a random variable X as given above.

A random variable X which takes two values 0 and 1 , with probability $\mathrm{q}=1-\mathrm{p}$) and p respectively is called Bernoulli variate and is said to have a Bermoulli distribution

Binomial Distribution :
Let a Bearorif experiment be peformed repeatedty and let the occurrence of an event in any trial be called a success and its non-occurrence a failure. Considet a series of n independent Bernourf trials (n being frite), in which the probability ' p ' of success in amy tial is constant for each trial. Then $q=1-p$ is the probabiity of failure inany trial Let the random variable X be the number of succerses in these trials.

The probabifity of x succeses and consequently ($n-x$) fafures in n independent triais, in a specified order (say) SS FF SSS FSFF (where S represents success and F failure) is given by compound probability as g్xiven below :
$P(S S F F, \ldots F S F F)=P(S) P(S) P(F) P(F) \ldots P(F) P(S) P(F) P(F)$

- p.p.qq....q p q q
$=p p \ldots p q q \ldots q(x \quad p \prime s$ and $(n-x) q$'s)
$=p^{x} q^{0-x}$

But x suecesses in a trials can occiar in $\binom{n}{z}$ ways and the probability for each of these ways is $p^{*} \varphi^{* *}$. Hence the probability of x successes in a trials in any order whatocever is given by the adition of individual probabilities and is given by $\binom{n}{x} p^{x} q^{x=}$. The number of successes in ntrials will be eithct 0 or 1 or $2 \ldots$ or n in any cexperiment.
$\mathrm{P}(\mathrm{x})=\mathrm{P}(\mathrm{X}=\mathrm{x})=\binom{n}{z} \quad P^{x} q^{n}$
Is true for all $x=0,1,2, \ldots$ n.
This function $P(X)=\binom{n}{x} \quad p^{x} q^{x-7}, x=0,1, \ldots, n$ is called the probability mass function of the Binomial distribution, for the ofvious reason that the probabilities of $0,1,2, \ldots n$ nuccesser, viz $q^{x} \cdot\binom{n}{1} \quad q^{n-1} p_{0}\binom{n}{2} \quad q^{n-2} \boldsymbol{r}^{2} \ldots .$. . p^{n} the the successive terms of the binomial expension $(q+p)^{3}$.

A raniom variable X is said to follow binomial distribution if its probability mass function is givea by
$P\left(x=\{)=P(x)=\binom{n}{x} \quad p^{x} q^{x}, x=0,1,2, \ldots\right.$. n; $q=1-p$.

The vaiues n and p of this distribution are known as the parameters of the distribution

Mean and Fariance of Binomial Distribation

$$
\begin{aligned}
& \text { We know, mean of any disctete distribution } \\
& =\sum_{p} r(\operatorname{rer})
\end{aligned}
$$

where $p(r)$ is the probability that the random variable X to take the value r. In case of binomial disurition x takes the values $r=0,1,2, \ldots ., n$ and $p r=\binom{n}{r} p^{r} q^{n 7}$ where n and p arc the
parameters of the binomial distribution.

$$
\begin{aligned}
\therefore \text { Mean } & =\sum_{r=}^{\infty} r\binom{n}{r} p^{r} q^{x-} \\
& =\sum_{r=0}^{\infty} r \frac{n!}{r!(n-T)!} p^{r} q^{n-1} \\
& =\operatorname{nip}_{r=}^{\infty} \frac{(n-1)!}{(r-1)!(n-)!} p^{r-1} q^{x-}
\end{aligned}
$$

$$
\begin{aligned}
& =n p\left[q^{1-1}+(n-1) C_{1} q^{n-2}+\ldots .+p^{n-1}\right] \\
& =n p(q>)^{r-1} \\
& =n p(\because p-q=1)
\end{aligned}
$$

Aㅊㅇ $\vec{n}=$ bnow Virianci $=\sum_{r} r^{2} p(r)-\left[\sum_{r} r p(r)\right]^{p}$

$$
=\sum_{r} r^{2} s(r)-\left(\langle s e c r)^{2}\right.
$$

in are of binomia dismibution

$$
\left(\because \sum, \frac{n!}{r \mid(n+j!} p^{r} q^{x>}=\pi p \text { provedcbove }\right)
$$

$$
=\quad n(n-1) p^{2}\left[\sum_{r=2}^{\infty} \frac{(n-2)!}{(r-2)!(n-1)!} p^{-2} q^{n-2}\right]+n p-(n r)^{2}
$$

$$
=n(n-1) p^{2}\left[q^{x-2}+(n-2) C_{1}+(n-2) C_{2}+\ldots p^{n-2}\right]+n p-(n p)^{2}
$$

$$
=\quad n(n-1) p^{2}(q+p)^{x-2}+n p-(n p)^{2}
$$

$$
=\quad n(n-1) p^{2}+n p-(n p)^{2}
$$

$$
=\quad \pi p[(n-1) p+1-\pi p]
$$

$$
=n p[n p-p+1-n p]
$$

$$
=n p[1-p]=n p q
$$

$$
\begin{aligned}
& =\sum_{r=}^{\dot{m}} \left\lvert\, r(-1)+\rho \frac{n!}{r!(n-)!} p^{+} q^{-7}-(n p)^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\quad \sum_{r=2}^{n} \frac{n!}{(p-2)!(n-T)!} p^{r} q^{27+n p-(n p)^{2}}
\end{aligned}
$$

So, Mean = np
Variance $=n p q$
Standard Deviation $=\sqrt{\text { Vartancs }}=\sqrt{x-9}$
Example : The mean and variance of binomial distribution with parameters n and p are 16 and 8. Find i) $P(x=0)$, ii) $P(x<2)$.

Solution: Wc know mean $=n p$ and varianze $=n p q$.
$\therefore \mathrm{qp}=16$ and $\mathrm{npq}=8$
Solving for n and p we get $n=32$ and $p=1 / 2$
NOW $P(X=0)=\binom{n}{0} \quad p^{0} \quad q^{n \rightarrow 0}=q^{n}$
(Eecause $p(x=r)=\binom{n}{r} \quad p^{r} q^{n}$
$\therefore P(x=0)=(1-P)^{n}=\left(1-\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{n}$ ($\because n=2, q \mathcal{Z}=1-\frac{1}{2}$)
ii) $\quad P(x \geq 2)=1+P(x<2)=1-[P(x=0)+P(x=1)]=1-P(x=0)-P(x=1)$

Bur $P(x=0)=\left(\frac{1}{2}\right)^{32} \quad$ (Λ s obtained above)
and $P(x=1)=\binom{n}{1} p^{1} q^{x-1}=32\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)^{x-2}$
$\therefore P(x \geq 2)=1-\left(\frac{1}{2}\right)^{32}-32\left(\frac{1}{2}\right)^{32}=1-33\left(\frac{1}{2}\right)^{32}$

Fxample: A perfect cuhe is thrown a large number of items in sets of 8 . The nccurrence of a 2 or 4 is called a success. In what proportion of the sets would you expect 3 successes.

Solution : In this problem we have to find the probability of geting 3 successes out of 8 trials. Tossing of a single cube is our triai. The probabiiity of success, p is getting ether 2 or 4. The number of cubes in the set is the number of trinis. If we define x as the number of successes in 8 trials, then x is distributed as a binomial variate with parameters 8 and p where p is the probability of success.

The probability of getting either 2 or 4 in tossing of a perfect cube $=2 / 6=1 / 3$.
$\therefore \mathrm{p}=1 / 3$
Hence $P(x=7)=\binom{n}{r} \quad p^{r} q^{x-T}$
and $P\left(x=\binom{n}{3} \quad P^{3} \quad q^{x \rightarrow}(\because \mathrm{X}\right.$ is a binomial variate $)$
$=\binom{8}{3}\left(\frac{1}{3}\right)^{3}\left(\frac{2}{3}\right)^{t \rightarrow} \quad(\because n=S, p=1 / 3, q=1-p)$
$=\quad 8 \times 7\left(\frac{1}{3}\right)^{1}={ }^{5}$
$=55 \times 32\left(\frac{1}{3}\right)^{8}$
$=0.2731$
\therefore The propertion of sets in wich we exper: 3 successes $=27.31 \%$.

Example :The pronnility 0^{-}a man hitring a target is $1 / 2$.
i) If he fires 7 times, wial is the projability of ins hithing the buget at least thice?
ii) How many times mus he fire so that the probahility of his hitting the target at least once is greater than $2 / 3$?

Solutions:

i) Consider 'firing ones' as a Permouti cial. Firing 7 times is the Binomial experiment with 7 independent Bernoult trials. If X is the number of hits in 7 trials, then the required probability of hitring the terest at least twice $=P(X=2)$.

We know,
$\mathrm{P}(\mathrm{X}<2)=1-\mathrm{p}(\mathrm{X}<2)$
$=1-\mathrm{P}(\mathrm{X}=0)-\mathrm{P}(\mathrm{X}=1)$
and $\mathrm{P}(\mathrm{X}=\mathrm{x})=\binom{n}{x} \quad p^{x} q^{x, 2} \quad$ where $\mathrm{n}=7, \mathrm{p}=1 / 4$, and $\mathrm{q}=1-\mathrm{p}=3 / 4$.
$P(X=0)=(3 / 4)^{7}$
$\mathrm{P}(\mathrm{X}=1)=\binom{7}{1} \quad\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^{6}=7 \frac{3^{6}}{4^{7}}$.
The required probability
$=1-\left(\frac{3}{4}\right)^{7}-7 \frac{3^{6}}{4^{7}}=\frac{4547}{8192}$.
ii) $\quad \mathrm{p}=1 / 4, \mathrm{q}=3 / 4$

We want to find n such that $P(X \geq 1)>23$
Or $\quad 1-P(X<1)>2 / 3$
Or $1-\mathrm{P}(\mathrm{X}=0)>2 / 3$

$$
\begin{aligned}
& \text { Or } 1-q^{a}>2 / 3 \text { when } q=3 / 4 \\
& \Rightarrow(3 / 4)^{n}<1 / 3 \\
& \Rightarrow n=4 .
\end{aligned}
$$

POISSON DISTRIBUTION

There are many situations where we must count the number of individuals possessing a certain characteristic yet bave difficulty in detining the basic experiment. In turn, it becomes difficult to say what is the probability of the occurrence of a single evert. For example i) number of telephone calls received at a particular telephone exchange, ii) emission of redioactive particles, iii) number of printing mistakes in a book In all these situations, it is easy to count the events, but what are the non events.

In situations like those mentioned above, we customarily resor to specifying a unit size or a time interval in which to observe the events etc. We find then that we are observing events that fluctuate around some mean value that might be defined in terms of some sort of undertying binomial parameters p and n as $n p$, a product never separable into its component parts and simply give the mean value. Therefore, in such situations, we assume that for a short enough unit of time or space, the probability of an event occurring is proportional to the length of time or size of the space. Wc also assume that for mon overlapping units, the rewults in one unit are of no value in predicting when or where another event will occur (independently). The above assumptions underlie the probability function given by
$p(x=z)=\frac{a^{7} \lambda^{x}}{n!}, x=0,1,23 \ldots \ldots$
where λ is the average number of times an event occurs in a unit internal and is called the parameter of a Poisson distribution, Poisson Distrioution as a limiting case of Binomial Distribution.

The ahonve mentioned Pnisson distribution can he viewed as a limiting case of the himmial distribution under the following conditions.
i) n, the number of trials in the binomial cxpcricment is infinitly large ic. $n \rightarrow \infty$.
ii) p, the probaibility of success in each trial is indefinitely small, i.e. $p-0$.
iii) $p p=\lambda$ is finite so that $p=\frac{\lambda}{\pi}, q=1-\frac{\lambda}{\pi}$.

We know, if X is a binomial variate with parameters n and p then
$P(Z \exists)=f(x)=\binom{n}{x} \quad P^{x} \quad q^{x T}, x=0,1,2 \ldots x$
where $\mathrm{n} \rightarrow \infty$ and $\mathrm{p} \rightarrow 0$.
Therefore, this probability

$$
\begin{aligned}
& =\operatorname{mim}_{\operatorname{mo}}\binom{\pi}{x} p^{x} q^{x} \\
& =\min _{x}\left(\begin{array}{c}
n \\
x
\end{array}\left(\frac{2}{n}\right)^{x}\left(1-\frac{\lambda}{n}\right)^{x=}\right. \\
& =\operatorname{Bin}_{x} \frac{=1}{x-2)!}\left(\frac{2}{n}\right)^{x}\left(1-\frac{2}{n}\right)^{x x} \\
& =\frac{2^{x}}{\approx i} \pi=\frac{n \cdot(n-1) \ldots(n \geq-1)}{n^{x}} \frac{\left(1-\frac{2}{n}\right)^{n}}{\left(1-\frac{i}{n}\right)^{x}} \\
& =\frac{2^{x}}{x!}=\left[1 \cdot\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)-\left(1-\frac{2-1}{n}\right)\left(1-\frac{2}{n}\right)^{x}\right] \\
& =\frac{1}{\left(1-\frac{\lambda}{n}\right)^{x}} \\
& =\frac{2^{x}}{21} \lim _{m-1}\left(1-\frac{\lambda}{r}\right)^{x} \\
& =\frac{\lambda^{x}}{x!} \lim _{\sim \rightarrow}\left(1+\frac{1}{m}\right)^{\geq 1} \\
& =\frac{2^{x}}{x 1}=\left[\left(1+\frac{1}{m}\right)^{m}\right]^{2} \\
& =\frac{2^{x}}{x!} \cdot= \\
& \therefore P(X=x)=\frac{0^{-1} \lambda^{x}}{x} \cdot \quad x=0.1 .2 \ldots
\end{aligned}
$$

This function is known as the Probability function of the Poisson distribution and λ is the parameter of the distribution.

Mean and Variance of the Poisson Distribution :

$$
\begin{aligned}
& \text { Mean }=\sum_{x=1}^{\dot{N}}=P\left(x_{p}\right) \\
& =\sum_{y-1}^{\infty}=\frac{y^{z} 2^{x}}{x_{1}^{1}} \\
& \left(\because P(x)=\frac{x^{z} 2^{z}}{x 1}\right. \text { In case of Poissuil distriburion) }
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x=0}^{\infty}=\frac{0^{-=} \lambda^{x}}{=1} \quad(\because \text { the values of Poisson variate are } 0,1,2, \ldots) \\
& =:=\sum_{2=-\infty}^{-\infty} \frac{\lambda^{x-1}}{x!} \\
& \left.=2+\frac{2}{1!}+\frac{\lambda^{2}}{2!}+-\right) \\
& =2=2 \\
& =\lambda
\end{aligned}
$$

Variance $=\sum_{i=1}^{+} x_{i}^{2} p\left(z_{i}\right)-\left[\sum_{i=1}^{-} x_{1} \quad x_{i}\left(z_{i}\right)\right]^{2}$ Contimed in hatiffate

Eyercises:

1. A mandom iniable X has a シitomial dintributon nith parmeters $n=4$ and $p=1 / 3$
i) Describe the probabiity mass function and skeich its graph
ii) Compure te probainities $\mathrm{P}(1<X \leq 2)$ and $\mathrm{P}(1 \leq \mathrm{X} \leq 2)$.
2. In a binomin distribution cossisting of 5 independeat trials, probabilities of 1 and 2
 distrinution.
3. Tae probability of a a na biting a carget is $1 / 3$.
i) If be fires 5 times witu is the enombity of bitting the target $=$: least twice ?
 is more than 90% ?
4. The andom variable X his a binc בivid distribution with $n-4, p-0.5$. Find $\{|X-2| z 1\}$

Answers:

1. $8 / 27,50 / 81$
2. 0.2
3. D) $131 / 243$
ii) 6
4. $5 / 16$

Problems in Probability

EXERCISE -1

1. Three points are taken at random on a circle. What is the chance that they determine an acute angled triangle?
2. Two coins C_{1} and C_{2} have a probability of falling heads p_{1} and p_{2}, respectively. You win a bet if in three tosses you get at least two, o heads in succession. You toss the coins alternately starting with either coin. If $p_{1}>p_{2}$, what coin would you select to start the game? Give reasons for your answer.
3. A box contains p white balls and q black balls, and beside the box lies a large pile of black balls. Two balls chosen at random are taken out the box. If they are of the same colour, a black ball from the pile is put into the box, otherwise, the white ball is put back into the box. The procedure is repeated until the last two balls are removed from the box and one last ball is put in. What is the probability that this ball is white? (Ans. 1 when p is odd and 0 when p is even)
4. If the probability of success is 0.01 , how many trials are necessary in order that probability of at least one success is $>\frac{1}{2}$?
5. Can the following sets serve as sample spaces of some experiments. If yes, give one experiment in each case.
i) $S=\{(x, y) / x, y$ are natural numbers, $1 \leq x \leq 6,2 \leq y \leq 6\}$
ii) $\mathrm{S}=\left\{\mathrm{x} / \mathrm{x}=\frac{p}{q}\right.$ where p and q are natural numbers such that $\mathrm{l} \leq \mathrm{p} \leq 6$,

$$
1 \leq \mathrm{q} \leq 6\} .
$$

6. State and prove multiplication theorem of probability.
7. A sportsman's chance of shooting an animal at a distance $r(>a)$ is $\frac{a^{2}}{r^{2}}$. He fires when $r=2 a$ and if he misses he reloads and fires when $r=3 a, 4 a, \ldots .$. If he misses at distance na, the animal escapes. What the odds against the sportsman?
8. A local post office is to send M telegrams and to distribute them at random over N communication channels. The channels are enumerated. Find the probability that exactly k_{1} telegrams will be sent over the first channel, k_{2} telegrams will be sent
over the second channel and so on, k_{N} telegrams over the $\mathrm{N}^{\text {th }}$ channel, with $\sum_{1}^{N} k_{i}=M$.
9. Let A, B and C be the three events with $P(B)$ and $P(C)>0$. If B and C are independent, show that $\mathrm{P}(\mathrm{A} / \mathrm{B})=\mathrm{P}(\mathrm{A} /(\mathrm{B} \cap \mathrm{C})) \mathrm{P}(\mathrm{C})+\mathrm{P}(A / B \cap \overline{\mathrm{C}}) P(\overline{\mathrm{C}})$. Conversely, if this relation holds, $\mathrm{P}(\mathrm{A} /(\mathrm{B} \cap \mathrm{C})) \neq \mathrm{P}(\mathrm{A} / \mathrm{B})$ and $\mathrm{P}(\mathrm{A})>0$, then B and C are independent.
10. In the game of tossing a fair coin, the first one to obtain n successes (heads or tails) wins. Show that the game is fair i.e,, each gambler has a probability of winning equal to $\frac{-1}{2}$.
11. If the coins are unbiased, the probability of getting exactly 50 heads in tossing of 100 coins is $\frac{1}{2}$. Comment.
12. What is the least number of persons required if the probability exceeds $\frac{1}{2}$ that two or more of them have the same birth day? (Year of birth need not match).
13. A company manufacturing cornflakes puts a card numbered 1 or 2 or $3 \ldots$ or r at random in each package, all numbers being equally likely to be drawn. If $n(>r)$ boxes of comflakes are purchased, show that the probability of being able to assemble at least one complete set of cards from the packages is .
$1-\binom{r}{1}\left(1-\frac{1}{r}\right)^{n}+\binom{r}{2}\left(1-\frac{2}{r}\right)^{n}+\ldots \ldots \ldots+(-1)^{r-1}\binom{r}{r-1}\left(1-\frac{r-1}{r}\right)^{n}$
14. The following data was given in a study of 1000 subscribers to a certain magazine. In reference to sex, marital status and education, there were 312 males, 470 married persons, 525 college graduates, 42 male college graduates, 147 maried college graduates, 86 married males and 25 married male college graduates. Show that the numbers reported in the study must be incorrect.

If 4 married couples are arranged in a row find the probability that no husband sits next to his wife.
16. A man forgets the last digit of a telephone number, and dials the last digit at random. What is the probability of calling no more than three wrong numbers?
17. What is more probable: to get one six with four dice, or to get two sixes in 24 throws of two dice?
18. $1 f P(E)=0.9$ and $P(F)=0.8$, show that $P(E \cap F) \geq 0.7$.
19. Consider an example whose sample space consists of a countable infinite number of points. Also show that not all points can be equally likely.
20. A game is played as follows. The gambler throws two dice. If the first throw he gets 7 or 11 he wins, and if he gets 2,3 or 12 he loses. For each of the other sums the game is continued in two ways. \&) the gambler continues throwing the two dice until he wins with a 7 or he loses with the result of the outcomes of the first throw. $\left.{ }^{\circ} \mathrm{H}\right)$ The gambler continue until he loses with 7 or wins with the result of the first throw. What is the probability of the gambler winning in case (a) and (b) ?
21. A store opens at 9 A.M and closes at 5 P...M. A shopper taken at random walks into this store at time x and out at time y (both x and y being measured in hours on the time axis with 9 A.M as origin) Describe the sample space of (x, y). Also describe, in terms of x and y the following event. The shopper is in the stores less than one hour.
22. A small boy is playing with a set of 10 coloured cubes and 3 empty boxes. If he puts the 10 cubes into the boxes at random. what is the probability that he puts 3 cubes on one box, 3 in another box, and 4 in the third box?
23. Describe how you explain to a layman the meaning of the following statement: ' An insurance company is not gambling with its clients because it knows with sufficient accuracy that will happen io every thousand or ten thousand or a million people even when the company cannot tell that will happen to any individual among them.'
24. Comment on the following statement:
i) Mutually exclusive events are independent
ii) Independent events need not be mutually exclusive.
25. Events $E_{1}, E_{2}, \ldots . . E_{n}$ are such that the probability of the occurrence of any specified r of them is $p_{r}, r=1,2, \ldots \ldots n$. Show that the probability of the occurrence of exactly m of the events $E_{i}, E_{2}, \ldots . . E_{n}$ is

$$
\binom{m}{n}\binom{n}{m} p_{m}-\binom{m+1}{m}\binom{n}{m+1} p_{n+1}+\ldots \ldots+(-1)^{n-m}\binom{n}{m}\binom{n}{n} p_{n}
$$

26. When is $P(A / B)+P(A+\bar{B})=1$?
27. A box contains n balls numbered $1,2, \ldots . . n$. We select at random r balls, a) with replacement b) without replacement. What is the probability that the largest selected number is m ?
28. If A and B are two events and the probability, $\mathrm{P}(\mathrm{B}) \neq 0$, prove that $\mathrm{P}(\mathrm{A})>$ or $<$ $P(A / B)$ according as $P(A / \bar{B})>$ or $<P(A)$.
29. State and prove addition theorem of probability.
30. N players $A_{1}, A_{2}, \ldots \ldots . ., A_{N}$ throw a biased coin whose probability of heads equals p. A_{1} starts (the game), A_{2} second etc. The first one to throw heads wins. Find the probability that $A_{k}\left(k 1,2, \ldots \ldots . A_{N}\right)$ will be the winner.
31. A and B altemately cut a pack of cards and the pack shuffled after each cut. If A starts and the game is continued until one cuts a diamond, what are the respective chances of A and B first cutting a diamond?
32. If n letters are placed in the corresponding n envelops at random, what is the probability that no letter is placed in the right envelop?
33. A bag contains three coins, one of which is coined with two heads while the other two coins are fair. A coin is chosen at random from the bag and tossed four times in succession. If heads turn up each time. what is the probability that this is the two headed coin?
34. Bertrand's Paradox: A chord AB is chosen at random in a circle of radius r . What is the probability that the length of $A B$ is less than r ?
35. Two points are selected at random on a line of length 'a'. What is the probability that none of these ire sections in which the line thus divided is less than $\frac{a}{4}$?
36. State and prove Bayes's theorem of probability.
37. A group of 2 N boys and 2 N girls is randomly divided into two equal groups. What is the probability that each group has the same number of boys and girls?
38. A man is equally likely to choose one of three routes $\mathrm{A}, \mathrm{B}, \mathrm{C}$ from his house to the railway station. and his choice of route is not influenced by the weather. If the weather is dry; the probabilities of missing the train by routes A, B, C are respectively $\frac{1}{20}, \frac{1}{10}, \frac{1}{5}$. If he comes out on a dry day and misses the train then what is the probability that the route chosen was C ?

On a wet day the respective probabilities of missing the train by routes $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $\frac{1}{12}, \frac{1}{5}, \frac{1}{2}$. On the average one day in four is wet. If he misses the train, what is the probability that the day was wet?
39. What is wrong with the following procedure ?

To find the probability that an Indian chosen at random was born in a given state, divide the number of favourable cases (1) by the total number of states (say 30), and obtain the answer $\frac{1}{30}$.
40. The letters of the word PEPPER are written on cards. After shuffling thoroughly, four cards are drawn randomly one after the other. What is the probability that the result is PEEP ?
41. A thief has a bunch of n keys, exactly one of which fits a lock. If the thief tries to open the lock by trying the keys at random, what is the probability that he required exactly k attempts if he rejects the keys already tried?
42. A point is chosen at random on a line of length ' l '. What is the probability that the ratio of the shorter to the longer segment is less than $\frac{1}{4}$?
43. Prove that $\left.\left.P\left[\left(E_{1} \cup E_{2}\right) / F\right)\right]=P\left(E_{1} / F\right)+P\left(E_{2} / F\right)-P\left[\left(E_{1} \cap E_{2}\right) / F\right)\right]$
44. Mrs Revathi types 15 letters per day and Mrs Gayathri types 5 letters per day for the department of Science of R.I.E. Mysore. Experience has shown that Mrs Revathi has a probability 0.99 of producing an error free letter and Mrs Gayathri has a probability 0.70 of doing the same. A letter without identification of the typist is placed on the Professor's table for signature. The letter has no error. What is the probability that the letter was typed by Mrs Gayathri?
45. A thief has a bunch of n keys, exactly one of which fits the lock. If the thief tries to open the lock by trying the keys at random, what is the probability that he required exactly k attempts if he rejects the keys aiready tried?
46. N identical balls are distributed among n boxes. What is the probability that a specified box will contain k balls.
47. Suppose that for the independent events $A . B$ and C we have $P(A)=a . P(A \cup B \cup$ $C)=1-b, \quad P(A \cap B \cap C)=1-c$ and $P(\bar{A} \cap \bar{B} \cap \bar{C})=x$.

Prove that the probability x satisfies the equation
$A x^{2}+[a b-(1-a)(a-c-1)] x+b(1-a)(1-c)=0$
Hence conclude that $\mathrm{c}>\frac{(1-a)^{2}+a b}{1-a}$
Moreover, show that $\quad P(B)=\frac{(1-c)(x+b)}{a x}, \quad P(C)=\frac{x}{x+b}$
48. If m things are distributed among ' a ' men and ' b ' women, show that the chance that the number of things received by men is odd is
$\frac{1}{2} \frac{(b-a)^{m}-(b-a)^{m}}{(b+a)^{m}}$

EXERCISES: 2

1. A factor of 60 is chosen at random. What is the probability that it has factors of both 2 and 5 ?
2. The numbers 3,4 and 5 are placed on three cards and then two cards are chosen at random.
a) The two cards are placed side-by-side with a decimal point in front. What is the probability that the decimal is more than $3 / 8$?
b) One card is placed over the other to form a fraction. What is the probability that the fraction is less than 1.5?
c) If there are 4 cards with numbers $3,4,5$ and 6 , then what are the probabilities of the above two cases?
3. A vertex of a paper isosceles triangle is chosen at random and folded to the midpoint of the opposite side. What is the probability that a trapezoid is formed?
4. A vertex of a paper square is folded onto another vertex chosen at random. What is the probability that a triangle is formed?
5. Three randomly chosen vertices of a regular hexagon cut from paper are folded to the centre of the hexagon. What is the probability that an equilateral triangle is formed?

A piece of string is cut at random into two pieces. What is the probability that the short piece is less than half the length of the long piece?

A paper square is cut at random into rectangles. What is the probability that larger perimeter is more than $1 / 1 / 2$ times the smaller?

The numbers 2, 3 and 4 are substituted at random for $a . b, c$ in the equation $a x+b$ $=c$.
a) What is the probability that the solution is negative ?
b) If c is not 4 , what is the probability that the solution is negative?

Each coefficient in the equation $a x^{2}+b x+c=0$ is determined by throwing an ordinary die. Find the probability that the equation will have real roots.

The numbers 1, 2 and 3 are substituted at random for a, b and c in the quadratic equation $a x^{2}+b x+c=0$.
a) What is the probability that $a x^{2}+b x+c=0$ can be factored?
b) What is the probability that $a x^{2}+b x+c=0$ has real roots?
11. Two faces of a cube are chosen at random. What is the probability that they are in parallel planes?
12. Three edges of a cube are chosen at random. What is the probability that each edge is perpendicular to the other two ?
13. A point P is chosen at random in the interior of square $A B C D$. What is the probability that triangle ABP is acute ?
14. Find the probability of the event of the sine of a randomly chosen angle is greater than 0.5.
15. Suppose you ask individuals for their random choices of letters of the alphabet. How many people would you need to ask so that the probability of at least one duplication becomes better than 1 in 2?
16. Six boys and six girls sit in a row randomly. Find the probability that i) the six girls sit together, ii) the boys and girls sit alternately?
17. If the letters of the word 'MATHEMATICS' are arranged at random, what is the probability that there will be exactly 3 letters between H and C ?
18. The sum of two non-negative quantities is equal to 2 n . Find the probability that their product is not less than $3 / 4$ times their greatest product.
19. If A and B are independent events then show that \bar{A} and \bar{B} are also independent events.
20. Cards are dealt one by one from weil-shuffled pack of cards until an ace appears.. Find the probability of the event that exactly n cards are dealt before the first ace appears.
21. If four squares are chosen at random on a chess-board. Ind the chance that they should be in a diagonal line.
22. Prove that if $P(A / B)<P(A)$ then $P(B / A)<P(B)$?
23. If n people are seated at a round table, what is the chance that the two named individuals will be nest to each other?
24. A and B are two very weak students of Mathematics and their chances of solving a problem correctly are $1 / 8$ and $1 / 12$ respectively. If the probability of their making common mistake is $1 / 1001$ and they obtain the same answer, find the chance that their answer is correct.
25. A bag contains an unknown number of blue and red balls. If two balls are drawn at random, the probability of drawing two red balls is five times the probability of drawing two blue balls. Furthermore, the probability of drawing one ball of each
colour is six times the probability of drawing two blue balls. How many red and blue balls are there in the bag?
26. A thief has a bunch of n keys, exactly one can open a lock. If the thief tries to open the lock by trying the keys at random, what is the probability that he requires exactly k attempts, if he rejects the keys already tried ? Find the probability of the same event when he does not reject the keys already tried.
27. A problem in Mathematics is given to three students and their chances of solving it are $1 / 2,1 / 3$ and $1 / 2$. What is the probability that the problem will be solved?
28. A bag A contains 3 white balls and 2 black balls and other bag B contains 2 white and 4 black balls. A bag and a ball out of it are picked at random. What is the probability that the ball is white ?
29. Cards are drawn one-by-one at random from a well-shuffled pack of 52 cards until 2 aces are obtained for the first time. If N is the number of cards required to be drawn, then show that
$p(N=n)=\frac{(n-1)(52-n)(52-n)}{50.59 \cdot 17.13}$
Where $2 \leq n \leq 50$.
30. A.B. C are events such that
$P(A)=0.3 \cdot P(B)=0.4, P(C)=0.5 . P(A \cap B)=0.08 . \quad P(A \cap C)=0.28$.
$\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=0.09$
If $P(A \cup B U C) \geq 0.75$, then show that $P(B \cap C)$ lies in the interval $(0.23,0.48)$.
31. A man takes a step forward with probability 0.1 and backwards with probability 0.6 . Find the probability that at the end of eleven steps, he is one step away from the starting point.
32. Huyghens Problem. A and B trow alternately a pair of dice in that order. A wins if he scores 6 points before B gets 7 points, in which case B wins. If A starts the game, what is his probability of winning?
33. A Doctor goes to works following one of three routes A, B,C. His choice of route is independent of the weather. If it rains, the probabilities of arriving late, following $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $0.06,0.15,0.12$ respectively. The corresponding probabilities, if it does not rain, are $0.05,0.10,0.15$.
a) Given that on a sunny day he arrives late, what is the probability that he took route C ? Assume that, on average, one in every four days is rainy.
b) Given that on a day he arrives late, what is the probability that it is a rainy day.
34. Bonferroni's Inequality. Given $n(>1)$ events $A_{1}, A_{2}, \ldots A_{n}$ show that

$$
\sum_{i=1}^{n} P\left(A_{i}\right)-\sum_{i<j} P\left(A_{i} \cap A_{j}\right) \leq P \bigcup_{i=1}^{n} P\left(A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)
$$

35. Show that for any n events $A_{1}, A_{2}, \ldots, A_{n}$
i) $P\left(\bigcap_{i=1}^{n} A_{i}\right) \geq l-\sum_{i=1}^{n} P\left(\overline{A_{i}}\right)$
ii) $P\left(\bigcap_{i=1}^{n} A_{i}\right) \geq \sum_{i=1}^{n} P\left(A_{i}\right)-(n-1)$
36. If A and B are mutually exclusive and $P(A U B) \neq 0$, then prove that $P(A / A \cup B)=\frac{P(A)}{P(A)+P(B)}$
37. If $2 n$ boys are divided into two equal groups, find the probability that the two tallest boys will be a) in different subgroups, and b) in the same subgroup.
38. A_small boy is playing with a set of 10 coloured cubes and 3 empery boxes. If he puts the 10 cubes into the 3 boxes at random, what is the probability that he puts 3 cubes in one box, 3 in another box, and 4 in the third box ?
39. The sample space consists of the integers from 1 to 2 n , which are assigned probabilities to their logarithms. A) Find the probabilities, b) Show that the conditional probability of the integer 2, given that an even integer occurs is

$$
\frac{\log 2}{n \log 2+\log n!}
$$

40.a) Each of n boxes contains four white and six black balls, while another box contains five white and five black balls. A box is chosen at random from the $(\mathrm{n}+1)$ boxes, and two balls are drawn from it, both being black. The probability that five white and three block balls remain in the chosen box is $1 / 7$. Find n.

40b). A point is selected at random inside a circle. Find the probability p that the point is closer to the centre of the circle than to its circumference.
41. What is the probability that two numbers chosen at random will be prime to each other?
42. In throwing n dice at a time, what is the probability of having each of the points $1,2,3,4,5,6$ appears at least once ?
43. A bag contains 50 tickets numbered $1,2,3, \ldots, 50$ of which five are drawn at random and arranged in ascending order of magnitude ($x_{1}<x_{2}<x_{3}<x_{4}<x_{5}$), what is the probability that $x_{3}=30$?
44. Of the three independent events, the probability that the first only to happen is $1 /$, the probability that the second only to happen is $1 / 8$ and the third only to happen is $1 / 12$. Obtain the unconditional probabilities of the three events.
45. What is the least number of persons required if the probability exceeds $1 / 2$ that two or more of them have the same birthday (year of birth need not match)?
46. If m things are distributed among ' a ' men and ' b ' women, then show that the chance that the number of things received by men is

$$
\frac{1}{2} \frac{(b+a)^{m}-(b-a)^{m}}{\left(b+a j^{m}\right.}
$$

47. A pair of dice is rolled until either 5 or a 7 appears. Find the probability that a 5 occurs first.
48. In a certain standard tests I and II. it has been found that 5% and 10% respectively of $10^{\text {th }}$ grade students earn grade A . Comment on the statement that the probability is $\frac{5}{100} \frac{10}{100}=\frac{1}{200}$ that a $10^{\text {th }}$ grade student chosen at random will earn grade A on both tests.

A bag contains three coins, one of which is coined with two heads while the other two coins are fair. A coin is chosen at random from the bag and tossed four times in succession. If head turns up each time, what is the probability that this is the two headed coin?
50. A man stands in a certain position (which we may call the origin) and tosses a fair coin. If a head appears he moves one unit of length to the left. If a tail appears, he moves one unit to the right. After 10 tosses of the coin, what are his possible positions and what are the probabilities?
51. There are 12 compartments in a train going from Madras to Bangalore. Five friends travel by the train for some reasons could not meet each other at Madras station before getting aboard. What is the probability that the five friends will be in different compartments?
52. The numbers 1,2,3,4,5 are written on five cards. Three cards are drawn in succession and at random from the deck, the resulting digits are written from left
to right. What is the probability that the resulting three digits number will be even?
53. Suppose n dice are thrown at a time. What is the probability of getting a sum 'S' of points on the dice?
54. A certain mathematician always carries two match boxes, each time he wants a match-stick he selects a box at random. Inevitably, a moment comes when he finds a box empty. Find the probability that the movement the first box is empty, the second contains exactly r match sticks (assume that each box contain N match-sticks initially).
55. There are 3 cards identical in size. The first card is red both sides, the second one is black both sides and the third one red one side and black other side. The cards are mixed up and placed flat on a table. One is picked at random and its upper (visible) side was red. What is the probability that the other side is black?
56. N different objects $1,2, \ldots, n$ are distributed at random in n places marked $1,2, \ldots \mathrm{n}$. Find the probability that none of the objects occupies the place corresponding to its number.

Answers:

1. $1 / 2$
2. A) $2 / 3$ b) $5 / 6$ c) $3 / 4,3 / 4$
3. $1 / 3$
4. $1 / 3$
5. $1 / 10$
6. $2 / 3$
7. $2 / 5$
8. a) $1 / 2 \quad$ b) $3 / 4$
9. $43 / 216$
$\begin{array}{ll}\text { 10. a) } 1 / 3 & \text { b) } 1 / 3\end{array}$
10. $1 / 5$
11. 2/55
12. $1-\pi / S=0.6073$
13. $2 / 3$
14. 7
15. i) $\frac{7!6!}{12} \quad$ ii) $\quad \frac{2(6!)^{2}}{12!}$
16. $7 / 55$
17. $1 / 2$
18. $\frac{4(51-n)(50-n)(49-n)}{52.51 .50 .49}$
19. $\frac{91}{1588+4}$
20. $\frac{2}{n-1}$
21. $13 / 24$
22. Red $=6$, Blue $=3$
23. $1 / \mathrm{n}, \operatorname{lin}\left(1-\frac{l}{n}\right)^{k-l}$
24. $3 / 4$
25. 7/15
26. $(0.4)^{5}(0.6)^{5}$
27. 30/61
28. a) 0.5 b) $+1 / 131$
29.

a) $\frac{n}{2 n-1}$
b) $\frac{n-1}{4 n-2}$
38. $\frac{310!}{3!3!+!3^{10}}$
39.
a) $\mathrm{K} \log 2 \mathrm{i}$
b) $(\log 2 i)(n \log 2+\log n!)$
40.
a) 4
b) $1 / 4$
41. $\quad \pi\left(1-\frac{1}{r^{2}}\right)=\frac{6}{\pi^{2}}$
42. $\quad 1-n\left(\frac{5}{6}\right)^{n}-\binom{n}{2}\left(\frac{4}{6}\right)^{n}-\binom{n}{3}\left(\frac{3}{6}\right)^{n}+\binom{n}{4}\left(n \frac{2}{6}\right)^{n}-\binom{n}{5}\left(\frac{1}{6}\right)^{n}$
43. $\frac{\binom{29}{2}\binom{20}{2}}{\binom{50}{2}}$
44. $1 / 2,1 / 3,1 / 4$
45. 23
47. $2 / 5$
49. $8 / 9$
50.

Dista nce from origin	-10	-8	-6	-4	-2	0	2
Prob	$\left(\frac{1}{2}\right)^{10}$	$\binom{10}{1}\left(\frac{1}{2}\right)^{10}$	$\binom{10}{2}\left(\frac{1}{2}\right)^{10}$	$\binom{10}{2}\left(\frac{1}{2}\right)^{10}$	$\binom{10}{4}\left(\begin{array}{l}\left.\frac{1}{2}\right)^{10}\end{array}\right.$	$\binom{10}{5}\left(\frac{1}{2}\right)^{10}$	$\binom{10}{6}\left(\frac{1}{2}\right)^{10}$

4	6	8	10
$\binom{10}{7}\left(\frac{1}{2}\right)^{10}$	$\binom{10}{8}\left(\frac{1}{2}\right)^{10}$	$\binom{10}{9}\left(\frac{1}{2}\right)^{10}$	$\left(\frac{1}{2}\right)^{10}$

51. 55/144
52. $1 / 5$
53. $(-1)^{k}\binom{n}{k}\binom{s-6 k-1}{n-1} 16^{n}$
54. $\frac{\binom{2 n-r}{n}}{2^{2 n-r}} \quad 55 . \quad 1 / 2 \quad 56 . \quad \frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}=\ldots+(-1)^{n} \frac{1}{n!}$.

Compiled by B.C. Basti

Probability

Objective Type Questions

1. The probability that at least one of A and B occurs is 0.6 . If A and B occur simultaneously with probability 0.3 , then $P(\bar{A})+P(\bar{B})$ is
a) 0.9
b) $\quad 1.15$
c) $\quad 1.1$
d) $\quad 1.2$
2. For three events A, B and C, P (exactly one of the events A or B occurs $)=P($ exactly one of the events B or C occurs $)=P($ exactly one of the events C or A occurs $)=p$ and $p(a l l$ the three events occur simultaneously) $=p^{2}$, where $0<p<1 / 2$. Then the probability of at least one of the events A, B and C occurring is
a) $\frac{3 p+2 p^{2}}{2}$
b) $\frac{p+3 p^{2}}{4}$
c) $\quad \frac{p+3 p^{2}}{2}$
d) $\frac{3 p+2 p^{2}}{4}$
3. Let E and F be two independent events. The probability that both E and F happen is $1 / 12$ and the probability that neither E nor F happens is $1 / 2$. Then
a) $\quad \mathrm{P}(\mathrm{E})=\frac{1}{3}, \mathrm{P}(\mathrm{F})=\frac{1}{4}$
b) $P(E)=\frac{1}{2}, P(F)=\frac{1}{6}$
c) $P(E)=\frac{1}{6}, P(F)=\frac{1}{2}$
d) $\quad \mathrm{P}(\bar{E})=\frac{1}{2}, \mathrm{P}(\bar{F})=1$
4. There are two balls in an um whose colours are not known (each ball can be either white or black). A white ball is put into the urn. A ball is drawn from the urn. The probability that it is white is
a) $\frac{1}{4}$
b) $\frac{1}{3}$
c) $\frac{2}{3}$
d) $\frac{1}{6}$
5. Let A, B, C be three mutually independent events. Consider the statements S_{1} and S_{2}.
$S_{1}: A$ and $B \cup C$ are independent.
$\mathrm{S}_{2}: \mathrm{A}$ and $\mathrm{B} \cap \mathrm{C}$ are independent.
Then,
a) Both S_{1} and S_{2} are true.
b) Only S_{1} is true.
c) Only S_{2} is true
d) Neither S_{1} nor S_{2} is true
6. Given that A, B, C are events such that $P(A)=P(B)=P(C)=\frac{1}{5}, P(A \cap B)=P(B \cap C)=0$ and $P(A \cap C)=\frac{1}{10}$. The probability that at least one of the events A, B or C occurs is
a) $\frac{3}{5}$
b) $\frac{1}{2}$
c) 1
d) $\frac{7}{10}$
7. Let A and B be two events such that $\mathrm{P}(\mathrm{A} \cap \bar{B})=0.20, \mathrm{P}(\bar{A} \cap \mathrm{~B})=0.15$ and $P(A \cap B)=0.10$, then $P(A \mid B)$ is
a) $\frac{2}{7}$
b) $\frac{5}{7}$
c) $\frac{1}{7}$
d) $\frac{3}{7}$
8. Let A and B be two events such that $P(A)=0.3$ and $P(A \cup B)=0.8$. If A and B are independent events than $P(B)$ is
a) $\frac{2}{7}$
b) $\frac{5}{7}$
c) $\frac{1}{7}$
d) $\frac{6}{7}$
9. A speaks the truth in 70 percent cases and B in 80 percent cases. The probability they will contradict each other in describing a single event is
a) $\quad 0.36$
b) $\quad 0.38$
c) 0.4
d) $\quad 0.42$
10. If $\frac{1+4 p}{4}, \frac{1-p}{3}$ and $\frac{(1-2 p)}{2}$ are the probabilities of three mutually exclusive events then
a) $\quad \frac{1}{4} \leq p \leq \frac{1}{2}$
b) $\frac{1}{3} \leq p \leq \frac{1}{2}$
c) $\quad \frac{1}{6} \leq p \leq \frac{1}{2}$
d) None of these
11. Suppose that $P(A)=\frac{3}{5}$ and $P(B)=\frac{2}{3}$. Then
a) $\quad P(A \cup B) \geq \frac{2}{3}$
b) $\quad \mathrm{P}(\mathrm{A} \cap \bar{B})=\frac{2}{3}$
c) $\quad \mathrm{P}(\mathrm{A} \cap \mathrm{B})>\frac{3}{5}$
d) $P(A \mid B)>\frac{9}{10}$
12. A fair die is thrown until a score of less than 5 is obtained. The probability of obtaining not less than 2 on the last throw is
a) $\frac{3}{4}$
b) $\frac{4}{5}$
c) $\frac{5}{6}$
d) $\frac{1}{3}$
13. An urn contains 6 white and 4 black balls. A fair die is rolled and a number of balls equal to that appearing on the die is chosen from the um at random. The probability that all the balls selected are white is
a) $\frac{1}{6}$
b) $\frac{1}{7}$
c) $\frac{1}{5}$
d) $\frac{1}{8}$
14. Seven digits from the numbers $1,2,3,4,5,6,7,8$ and 9 are written in the random order. The probability that this seven digit number is divisible by 9 is
a) $\frac{1}{7}$
b) $\frac{2}{7}$
c) $\frac{1}{9}$
d) $\frac{1}{3}$
15. Ten students are seated at random in a row. The probability that two particular students are not seated together is
a) $\frac{2}{3}$
b) $\frac{3}{4}$
c) $\frac{4}{5}$
d) $\frac{5}{6}$
16. Six boys and six girls sit in a row randomly. The probability that the boys and girls sit alternatively is
a) $\frac{1}{462}$
b) $\frac{1}{132}$
c) $\frac{1}{66}$
d) $\frac{4}{462}$
17. A three digit number is formed using the digits $1,2,3,4,5,6$ repetitions being allowed. The probability that the number is divisible by 4 is
a) $\frac{2}{9}$
b) $\frac{1}{4}$
c) $\frac{7}{36}$
d) None of these
18. A three digit number is formed using the digits $1,2,3,4,5,6$ without repetition of digits. The probability that the number is divisible by 4 is
a) $\frac{4}{15}$
b) $\frac{7}{30}$
c) $\frac{1}{5}$
d) None of these
19. Two cards are drawn at random from a pack of 52 carcs. The probability that both are aces is
a) $\frac{2}{221}$
b) $\frac{1}{221}$
c) $\frac{1}{1326}$
d) $\frac{3}{221}$
20. Two cards are drawn successively with replacement from a pack of 52 cards. The probability that both are aces is
a) $\frac{1}{169}$
b) $\frac{1}{196}$
c) $\frac{1}{221}$
d) None of these
21. A person draws a card from a pack of plaving cards, puts it back. shuffles the pack and again draws a card. He continues doing this until a spade card is seen. The chance that he will fail the first two times is
a) $\frac{9}{64}$
b) $\frac{1}{64}$
c) $\frac{1}{16}$
d) $\frac{9}{16}$
22. A card is drawn from an ordinary pack and a gambler bets that it is a spade or an ace. The odds against his winning the bet are
a) 4 to 13
b) $\quad 13$ to 4
c) 9104
d) 4 to 9
23. Two fair dice are tossed. Let x be the event that the first die shows an even number and y be the event that the second die shows an odd number. The events x and y are
a) mutually exclusive
b) independent and mutually exclusive
c) dependent
d) none of these
24. The probability in the toss of two dice we obtain the sum 7 or 11 is
a) $\frac{1}{6}$
b) $\frac{1}{18}$
c) $\frac{2}{9}$
d) $\frac{23}{108}$
25. The probability that in the toss of two dice an even sum or sum less than 5 is obtained is
a) $\frac{1}{2}$
b) $\frac{1}{6}$
c) $\frac{2}{3}$
d) $\frac{5}{9}$
26. Two events A and B have probabilities 0.25 and 0.50 respectively. The probability that both A and B occur is 0.14 . Then, the probability that neither A nor B occurs is
a) $\quad 0.39$
b) 0.25
c) 0.11
d) None of these
27. A bag contains 3 red, 6 white and 7 blue balls. Two balls are drawn. The probability that one is white and one is blue is
a) $\frac{13}{20}$
b) $\frac{7}{20}$
c) $\frac{6}{20}$
d) None of these
28. A bag contains 2 red, 5 white, 6 black balls. Three balls are drawn. The probability that all the coloured balls are drawn is
a) $\frac{4}{11}$
b) $\frac{2}{11}$
c) $\frac{1}{11}$
d) None of these
29. The probability that an event A happens in one trial of an experiment is 0.4 . Three independent trials of the experiment are performed. The probability that the event happens, at least once is
a) 0.936
b) 0.784
c) 0.904
d) None of these
30. Suppose the probability for the birth of a male child is 0.55 and that two successive births are independent. A woman has 5 children. The probability that she will have children of both sexes is
a) $\quad(0.55)^{3}$
b) $\quad(0.45)^{3}$
c) $\quad(0.55)^{3}(0.45)^{3}$
d) $\quad 1-\left\{(0.55)^{5}+(0.45)^{5}\right\}$
31. A student takes a TRUE or FALSE examination. He is completely unprepared and makes a random guess of the answer. Then the probability that he guesses correctly at least nine times out of 10 times is
a) $\frac{11}{1024}$
b) $\frac{1013}{1024}$
c) $\quad{ }^{10} C_{9}\left(\frac{1}{2}\right)^{10}$
d) None of these
32. The probability that a marksman will hit a target is 0.25 . Then, the probability that he has, at the most, 9 hits out of 10 shots is
a) $\quad{ }^{10} C_{1}(0.25)^{9}$
(0.75)
b) $\quad(0.75)^{10}$
c) $\quad 1-(0.25)^{10}$
d) $\quad 1-(0.75)^{10}$
33. India plays two matches each with West Indies and Australia. In any match, the probabilities of India getting $0,1,2$ points are $0.45,0.05,0.50$ respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is
a) 0.8750
b) 0.0875
c) 0.0625
d) $\quad 0.0250$
34. A coin is tossed 4 times. The probability of getting 3 heads is
a) $\frac{1}{8}$
b) $\frac{3}{8}$
c) $\frac{1}{2}$
d) None of these
35. 8 coins are tossed simultaneously. The probability of getting at least 6 heads is
a) $\frac{57}{64}$
b) $\frac{229}{256}$
c) $\frac{7}{64}$
d) $\frac{37}{256}$
36. The probability of an event A happening is 0.5 and of B happening is 0.3 . If A and B are mutually exclusive events, then the probability of neither A nor B occurring is
a) $\quad 0.6$
b) 0.5
c) $\quad 0.7$
d) None of these
37. It is known that at noon at a certain place, the sun is hidden by clouds on an average two days out of three. The probability that at noon on a: least four out of five specified future days the sun will be shining is
a) $\frac{11}{243}$
b) $\frac{10}{243}$
c) $\frac{1}{243}$
d) None of these
38. If A and B are two events such that $\mathrm{P}(\mathrm{A})>0$ and $\mathrm{P}(\mathrm{B}) \neq 1$, then $P(\bar{A} \mid \bar{B})$ is equal to
a) $\quad 1-P(A \mid B)$
b) $\quad 1-\mathrm{P}(\bar{A} \mid \bar{B})$
c) $\quad\{1-\mathrm{P}(\mathrm{A} \mid \mathrm{B})\} / \mathrm{P}(\bar{B})$
d) $\quad P(\bar{A}) \mid P(\bar{B})$
39. If A and B are any two arbitrary events then,
a) $\quad P(A \cap B) \geq P(A)+P(B)-1$
b) $\quad \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-1$
c) $\quad \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-1$
d) None of these
40. If A and B are independent events, then
a) $\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B})>1-P(\bar{A}) \cdot P(\bar{B})$
b) $\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B})<1-P(\bar{A}) \cdot P(\bar{B})$
c) $\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B})=1-P(\bar{A}) \cdot P(\bar{B})$
d) None of these
41. If A and B are mutually exclusive events, then $P(A \mid A \cup B)$ is
a) $\quad \mathrm{P}(\mathrm{A})$
b) $\quad \mathrm{P}(\mathrm{A}) /\{\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})\}$
c) $\quad \mathrm{P}(\mathrm{B}) /\{\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})\}$
d) None of these
42. If $A_{1}, A_{2}, \ldots, A_{n}$ are n independent events and $P\left(A_{i}\right)=\frac{1}{i+1}(1 \leq i \leq n)$ then the probability that none of the events occurs is
a) $\frac{1}{n+1}$
b) $\frac{n}{n+1}$
c) $\frac{n-1}{n+1}$
d) None of these
43. Three identical dice are rolled. The probability that the same number will appear on each of them is
a) $\frac{1}{6}$
b) $\frac{1}{36}$
c) $\frac{1}{18}$
d) $\frac{3}{28}$
44. The probability that at least, one of the events A and B occurs is 0.6 . If A and B occur simultaneously with probability 0.2 then $P(\bar{A})+P(\bar{B})$ is
a) 0.4
b) 0.8
c) $\quad 1.2$
d) None of these
45. A purse contains 4 copper coins and 3 silver coins. A second purse contains 6 copper coins and 2 silver coins. A coin is taken out of any purse. The probability that it is a copper coin is
a) $\frac{4}{7}$
b) $\frac{3}{4}$
c) $\frac{3}{7}$
d0 $\quad \frac{37}{56}$
46. If A and B are any two independent events such that $\mathrm{P}(\bar{A})=0.7, \mathrm{P}(\bar{B})=\mathrm{p}$ and $P(A \cup B)=0.8$ then p is
a) $\frac{5}{7}$
b) 1
c) $\frac{2}{7}$
d) $\frac{3}{7}$
47. There are four machines and it is known that exactly two of them are faulty. They are tested one by one in a random order till both the faulty machines are identified. The probability that only two tests are needed is
a) $\frac{1}{3}$
b) $\frac{1}{6}$
c) $\frac{1}{2}$
d) $\frac{1}{4}$
48. A fair coin is tossed repeatedly. If tail appears on first four tosses, then the probability of head appearing on fifth toss is
a) $\frac{1}{2}$
b) $\frac{1}{32}$
c) $\frac{31}{32}$
d) $\frac{1}{5}$
49. One bag contains 3 white and 2 black balls. A second bag contains 5 white and 3 black balls. A ball is drawn out of any bag. The probability that it is white is
a) $\frac{49}{40}$
b) $\frac{37}{40}$
c) $\frac{49}{80}$
d) None of these
50. The probability that out of 2×2 determinants by using 0 and 1 only, the value of determinant chosen is positive is
a) $\frac{1}{8}$
b) $\frac{3}{16}$
c) $\frac{1}{16}$
d) None of these

Key to Objective Questions on Probability

1.	c	2.	a
3.	a	4.	c
5.	a	6.	b
7.	a	8.	b
9.	b	10.	a
11.	a	12.	a
13.	c	14.	c
15.	c	16.	a
17.	b	18.	a
19.	b	20.	a
21.	a	22.	c
23.	d	24.	c
25.	d	26.	a
27.	b	28.	d
29.	b	30.	d
31.	a	32.	c
33.	b	34.	d
35.	d	36.	d
37.	a	38.	c
39.	a	40.	c
41.	b	42.	a
43.	b	44.	d
45.	d	46.	c
47.	b	48.	a
49.	c	50.	b

ByNMM. RaO

SYLLABUS : Vectors as directed line segment, Magnifude and direction of a vector, Equal Vectors, Unit vector, Zero vector, Position vector of a point, localized and free vectors, parallel and collinear vectors, Components of a Vector. Vectors in two and three dimensions, Addition of vectors, Multiplication of a vector by a scalar, position vector of the point dividing a given straight line in a given ratio, Application of vectors in problems of plane geometry.

1. Deflnitions:
(i) Scalars. A scalar is a physical quantity that is specified by magnitude only.' It is represented by a real number along with suitable unit. Thus length, mass, volume, temperature, density, speed are scalars.
(ii) Vectors. A vector is a physical quantity that is specified by both magnitude and direction. It is represented 'by a directed 'line segment. Thus displacement, velocity; acceleration, force are vectors.
2. (i) Vector as Directed Line Segment : A directed line segment is a line segment with an arrowhead showing direction. Its two end-points are distinguished as Initial and Terminal. The directed line segment whose initial point is A and terminal point B is denoted by the symbol $\overrightarrow{\mathrm{AB}}$. Its direction is from A to B i.e., from the initial point to the terminal point.

(ii) Magnitude and Direction of a Vector: In case we represent the vector \vec{a} by the line segment $\overrightarrow{A B}$, then length or magnitude of $\overline{A B}$ is given by

$$
a=|\vec{a}|=|\overrightarrow{\mathrm{AB}}|
$$

where A is called the initial point and B is called the terminal point.

POINTS TO REMEMBER

The direction of vector $\overrightarrow{A B}$ is defined from A to B.

3. Types of Vectors:

(i) Null Vector: When A and B coincide, we get a null or zero vector. Thus a vector whose length or magnitude is zero is called a null or zero vector. denoted by $\overrightarrow{0}$. Any non-zero vector is called a proper vector.
(ii) Unit Vector: A vector whose magnitude is unity is called a unit vector. If we divide a vector by its magnitude, we get a unit vector in the same direction.
Thus $\frac{\vec{a}}{a}$ is a unit vector in the direction of \vec{a}.
(iii) Equal Vectors: Two vectors \vec{a} and \vec{b} are said to be equal if they have the same magnitude, same or parallel direction in the same sense. It is written as $\vec{a}=\vec{b}$.
(iv) Collinear Vectors: Two or more than two vectors are called collinear vectors when they are paralled to the same line.
(v) Coplanar Vectors: Vectors are said to be coplanar when either they lie in the same plane or are parallel to the same plane.
(vi) Negative (or oppsite) Vectors : If the line vector $\overline{\mathrm{OA}}$ which has the same magnitude but in opposite direction to that the vector of a, then it is called the negative or opposite of a and is denoted by $-\vec{a}$ or $-\overrightarrow{\mathrm{OA}}$ (see Fig. 3.2).

Fig. 3.2.
(vii) Position Vectors: If the vector $\overline{\mathrm{OA}}$ represents the position of a point A relative to a fixed point O, then $\overrightarrow{O A}$ is called the position vector of the point A with reference to the point O as origin (or origin of reference).

Fig. 3.3.
(viii) Localised Vectors: A vector drawn parallel to a given vector through a specified point as the initial point, is known as a localised vector.
(iv) Free Vectors: If the initial point of a vector is not specified. it is said 10 be a free veconr.
(x) Like Vectors: Two vectors of any magnitude (or modulus) are said to be like vectors if their direction is the same.

Thus all vectors drawn in the same direction, whatever their magnitudes may be, are called like vectors (see Fig. 3.4).
(xi) Unlike Vectors: Two vectors of any magnitude are said to be unlike vectors if their dircctions be opposite as shown in the adjoining Fig. 3.5.

Fig. 3.4.

Fig. 3.5.
4. (i) Components of a Vector: Let i, j, k he the unit vectors along the axes of x, y, z respectively. If $\mathrm{P}(x, y, z)$ be any point in space, then

$$
\begin{aligned}
\overrightarrow{\mathrm{OP}} & =x i+y+z k \\
|\overrightarrow{\mathrm{OP}}| & =\sqrt{\left(x^{2}+y^{2}+z^{2}\right)}
\end{aligned}
$$

Fig. 3.6.
If $\vec{F}=F_{1} i+F_{2} j+F_{1} k$, then $F_{1} i, F_{2}, F_{1} k$ are called components of the vector \vec{F} along OX, OY, OZ respectively. \vec{F} is called resultant of $F_{1} i, F_{2} j, F, k$.
(ii) Any vector in space : $\operatorname{Lct} P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ be any two points in space, then

$$
\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{OQ}} \text { or } \overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{OQ}}-\overrightarrow{\mathrm{OP}}
$$

$(17$

$$
\overrightarrow{P Q}=(1,-1,) i+(1,-1,) j+(,,-\infty) k
$$

and

$$
|\overline{\mathrm{PQ}}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}+y_{1}\right)^{2}+\left(r_{2}-x_{1}\right)^{2}}
$$

(iii) Magnitude of a vector: lee PQ be a vector in the plane XOY whose initial puint is $\mathrm{P}\left(x_{1}, y_{1}\right)$ and terminal point $\mathrm{Q}\left(x_{2}, y_{2}\right)$. We know than $\left(x_{2}-x_{1}\right)$ and $\left(y_{2}-y_{1}\right)$ are ealled the compenents of vector PQ along the x and y-axis. respectively. $\left(x_{2}-x_{1}\right) i$ and $\left(y_{2}-y_{1}\right) j$ are called the component vectors of the vecoor PQ

The magnilude of $P\left(\begin{array}{l}\text { ann be determined by applying }\end{array}\right.$ the Pythagerean heorem. We have

$$
|\mathrm{PQ}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(1_{2}-1_{1}\right)^{2}}
$$

Thus, if $a=a, i+a j$, then

$$
|u|=\sqrt{a_{1}^{2}+u_{1}^{2}}
$$

Definition: The magnitude ormodulus ol a vector PQ denoted by I PQ I, or simply PQ. is the length ol the line segment $P($ ($)$.

Note that the magnitude of a vector is never negative. In particular, $|P Q|=|-P Q|$. Modulus of a zero vector is zero.

5. Operations on Vectors:

Addition of Vectors :

(i) Triangle Law of Addition of Two Vectors: The law stales that if two vectors are represented by the two sides of a triangle, taken in order. then their sum (or resultant) is represented by the third side of the triangle but in the reverse order.

Let \vec{a}, \vec{b} be the given vectors. Let the vector \vec{a} he represented thy the directed segment $\overline{O A}$ and the vector

His. 3.7.
\vec{h} he the directed segment $\overrightarrow{A B}$ so that the terminal point A of \vec{n} is the initial point of \vec{b}. Then the directed segment OB (i.e., $\overrightarrow{\mathrm{OB}}$) represents the sum (or resultant) of \vec{a} and \vec{b} and is
 written as $\vec{a}+\vec{b}$

Fig. 3.8.
Thus $\quad \overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}=\vec{a}+\vec{b}$.

Notes: 1. The method of drawing a triangle in order to define the vector sum $(\vec{a}+\vec{b})$ is called triangle law of addition of two vectors.
2. Since any side of a triangle is less than the sum of the other two sides.
\therefore Modulus of $\overrightarrow{\mathrm{OB}}$ is not equal to the sum of the moduli of $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{AB}}$.
(ii) Parallelogram Law of Vectors: In a parallelogram $O A B C$, if $\overrightarrow{O A}$ and $\overrightarrow{A B}$ represent \vec{a} and \vec{b} respectively, then the diagonal $\overrightarrow{O B}$ represents in magnitude and direction the sum $\vec{a}+\vec{b}$. This is known as parallelogram law of addition of vectors.

Flg. 3.9.
(iii) Propertics of Vector Addition :

1. Vector addition is Commutative : If \vec{a} and \vec{b} be any two vectors, then

$$
\vec{a}+\vec{b}=\vec{b}+\vec{a}
$$

Proof. Let the vectors \vec{a} and \vec{b} be represented by the directed segments $\overrightarrow{O A}$ and $\overrightarrow{\mathrm{AB}}$ respectively so that $\vec{a}=\overrightarrow{\mathrm{OA}}, \vec{b}=\overrightarrow{\mathrm{AB}}$.

$$
\begin{align*}
& \text { Now } \quad \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AB}} \\
& \qquad \overrightarrow{\mathrm{OB}}=\vec{a}+\vec{b} \\
& \text { Complete the } \| \mathrm{gm} \mathrm{OABC} \tag{i}\\
& \text { Then } \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{AB}}=\vec{b} \text { and } \overrightarrow{\mathrm{CB}}=\overrightarrow{\mathrm{OA}}=\vec{a} \\
& \therefore \quad \overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{CB}}=\vec{b}+\vec{a}
\end{align*}
$$

From (i) and (ii), we have

2. Vector Addition is Associative: If $\vec{a}, \vec{b}, \vec{c}$ are any three vectors, then

$$
\vec{a}+(\vec{b}+\vec{c})=(\vec{a}+\vec{b})+\vec{c} .
$$

[M. Imp.]
Proof. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ be represented by the directed segments $\overrightarrow{O A}, \overrightarrow{A B}, \overrightarrow{B C}$ respectively ; so that

$$
\vec{a}=\overrightarrow{\mathrm{OA}}, \quad \vec{b}=\overrightarrow{\mathrm{AB}}, \quad \vec{c}=\overrightarrow{\mathrm{BC}}
$$

Then

$$
\vec{a}+(\vec{b}+\vec{c})=\overrightarrow{\mathrm{OA}}+(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}})
$$

$$
\begin{array}{ll}
=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AC}} & {[\Delta \text { Law of addition }]} \\
=\overrightarrow{\mathrm{OC}} & \\
& \mid \Delta \text { Law of addition }]
\end{array}
$$

$$
\begin{equation*}
\therefore \quad \vec{a}+(\vec{b}+\vec{c})=\overrightarrow{O C} \tag{i}
\end{equation*}
$$

Again, $(\vec{a}+\vec{b})+\vec{c}=(\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AB}})+\overrightarrow{\mathrm{BC}}$

$$
\begin{array}{rlr}
& =\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{BC}} \quad & {[\Delta \text { Law of addition }]} \\
& =\overrightarrow{\mathrm{OC}} \quad & {[\Delta \text { Law of addition }]} \\
\therefore \quad(\vec{a}+\vec{b}) & +\vec{c}=\overrightarrow{\mathrm{OC}} & \ldots(i i)
\end{array}
$$

Fig. 3.11.
From (i) and (ii), we get

$$
\vec{a}+(\vec{b}+\vec{c})=(\vec{a}+\vec{b})+\vec{c} .
$$

3. Identity vector for addition: For every vector $a \cdot \vec{a}+\overrightarrow{0}=\vec{a}$, where 0 is the zero vector and is the identity vector for addition.

Proof. Let $\overrightarrow{\mathrm{OA}}=\vec{a}$ and $\overrightarrow{\mathrm{AA}}=\overrightarrow{0}$
Now by addition of two vectors

$$
\begin{aligned}
& \overrightarrow{\mathrm{OA}} & =\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AA}}=\vec{a}+\overrightarrow{0} \\
\therefore & \vec{a} & =\vec{a}+\overrightarrow{0} .
\end{aligned}
$$

4. Additive inverse of a vector: To every vector, a, there corresponds the vector -a (called its additive inverse) such that $a+(-a)=0$, where 0 is the zern vector.

Proof. Let $\overrightarrow{O A}=\vec{a}$: then $\overrightarrow{\Lambda O}=(-1) \vec{a}$.
Now $\overrightarrow{O A}+\overrightarrow{A O}=\overrightarrow{O O}$ (By definition of addition of (wo vectors)

$$
\vec{a}+(-\vec{a})=0 .
$$

(iv) Difference of Two Vectors:

Geometrical Representation of $\vec{a}-\vec{b}$

Let the vector \vec{a}, \vec{b} be represented by the directed segments $\overrightarrow{O A}, \overrightarrow{A B}$ respectively: so that

$$
\vec{a}=\overrightarrow{\mathrm{OA}, \vec{b}}=\overrightarrow{\mathrm{AB}}
$$

Produce BA to C , such that

$$
\begin{gathered}
A C=B A \\
\text { Then } \quad \overrightarrow{A C}=\overrightarrow{B A}
\end{gathered}
$$

$$
\begin{aligned}
= & =-\overrightarrow{\mathrm{AB}}=-\vec{b} \\
\therefore \quad \vec{a}-\vec{b} & =\vec{a}+(-\vec{b})=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AC}}
\end{aligned}
$$

$$
=\overrightarrow{O C} \quad[\text { By triangle law addition }]
$$

Hence $\vec{a}-\vec{b}$ is geometrically represented by the directed segment $\overrightarrow{\mathrm{OC}}$.
(v) Multiplication of a Vector by a Scalar: If \vec{a} be a vector and m a real positive number, then $m \vec{a}$ is defined to be a vector having direction as \vec{a} and m times its magnitude.

Geometrical Representation

Let the vector \vec{a} be represented by the directed segment $\overline{\mathrm{AB}}$.

Case I. Let $n t>0$. Choose a point C on $A B$ on the same side of A as B such that

$$
|\overrightarrow{\mathrm{AC}}|=m|\overrightarrow{\mathrm{AB}}|
$$

Fig. 3.13.
Then the vector $m \vec{a}$ is represented by $\overrightarrow{A C}$.
Case II. Let $m<0$.
Choose a point C on $A B$ on the side of A opposite 10 that of B such that

$$
|\overrightarrow{\mathrm{AC}}|=|m| \overrightarrow{\mathrm{AB}} \mid
$$

Fig. 3.14.
Then the vector $m \vec{G}$ is represented by $\overrightarrow{A C}$.
(vi) Properties of Scalar Multiplication :
(a) $m \vec{a}=\vec{a} \cdot m$
(b) $m(n \overrightarrow{\mathrm{~A}})=n(m \overrightarrow{\mathrm{~A}})$
(c) $(m+n) \overrightarrow{\mathrm{A}}=m \overrightarrow{\mathrm{~A}}+n \overrightarrow{\mathrm{~A}}$
(d) $m(\overrightarrow{\mathrm{~A}}+\overrightarrow{\mathrm{B}})=m \overrightarrow{\mathrm{~A}}+m \overrightarrow{\mathrm{~B}}$.

6. Section formula :

Statement. If \vec{a} and \vec{b} are the position vectors of two points A and I , then the point C which divides $A B$ in the ratio $m: n$, where m and n are positive real numbers. has the position vector.

$$
\vec{c}=\frac{n \vec{a}+m \vec{b}}{m+n}
$$

Proof. Let O be the origingfreference and lela and \vec{b} be the position vectors of the given points A and B so that

$$
\overrightarrow{\mathrm{OA}}=\vec{a}, \overrightarrow{\mathrm{OB}}=\bar{b}
$$

Let C divide $A B$ in the ratio m : n.

Fig. 3.15.

$$
\begin{equation*}
\therefore \quad \frac{\mathrm{AC}}{\mathrm{CB}}=\frac{m}{n} \tag{i}
\end{equation*}
$$

Hence m / n is positive or negative according as C divides $A B$ internally or externally.

We have to express the position vector $\overrightarrow{O C}$ of the point C in terms of those of A and B.

We rewrite (i as, $n \mathrm{AC}=m \mathrm{CB}$.
And obtain the vector equality, $n \overrightarrow{A C}=m \overrightarrow{C B}$. Expressing the vectors $\overrightarrow{A C}$ and $\overrightarrow{C B}$ in terms of the
position vectors of the end points, we obtain

$$
\begin{array}{rlrl}
& & n(\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OA}}) & =m \cdot(\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OC}}) \\
\Rightarrow \quad(m+n) \overrightarrow{\mathrm{OC}} & =n \overrightarrow{\mathrm{OA}}+m \overrightarrow{\mathrm{OB}} \\
\Rightarrow & & \overrightarrow{\mathrm{OC}} & =\frac{n \overrightarrow{\mathrm{OA}}+m \overrightarrow{\mathrm{OB}}}{m+n}=\frac{n \vec{a}+m \vec{b}}{m+n} .
\end{array}
$$

Position Vector of the Centroid of a Triangle :
The position vector of the centroid G of a triangle $\triangle B C$ is

$$
\frac{\vec{a}+\vec{b}+\vec{c}}{3}
$$

where $\vec{a}, \vec{b}, \vec{c}$ are positive vectors of vertices \wedge, B, C respectively.

Proof. $\vec{a}, \vec{b}, \vec{c}$ are position vectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively relative io any origin.

If D be the mid-point of $B C$, then its position vector is

$$
\frac{\dot{\vec{b}}+\overline{\vec{c}}}{2}
$$

|Mid-point formula|
The centroid G divides the median $\triangle I$ in the ration $2: 1$
ic.. $\quad \mathrm{CB}:(\mathrm{BD}=2: 1$
\therefore Position vector of G

$$
\begin{aligned}
& =\frac{2 \cdot\left(\frac{\vec{b}+\vec{a}}{3}\right)+1 \cdot \vec{a}}{2+1} \\
& =\frac{\vec{b}+\vec{c}+\vec{a}}{3}
\end{aligned}
$$

|Section formulas|
|Section formula|

Fig. 3.16.

-

Hence position vector of G

$$
\begin{equation*}
=\frac{\vec{a}+\vec{b}+\vec{c}}{3} \tag{i}
\end{equation*}
$$

7. Deflinitions:

(i) Linear Combination. A vector \vec{r} is said to be a linear combination of the vectors $\vec{a}, \vec{b}, \vec{c}, \ldots$, if there exist scalars x, y, z, \ldots, such that

$$
\vec{r}=x \vec{a}+y \vec{b}+z \vec{c}+\ldots
$$

(ii) Lineariy Dependent. A system of vectors $\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}$ is said to be linearly dependent if there exist scalars $x_{1}, x_{2}, \ldots, x_{n}$ (not all zero) such that

$$
x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\ldots+x_{n} \vec{a}_{n}=\overrightarrow{0}
$$

(iii) Linearly Independent. A system of vectors $\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}$ is said to be linearly independent if there exist scalars $x_{1}, x_{2}, \ldots, x_{n}$ (all zero) such that $x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}$ $+\ldots+x_{n} \vec{a}_{n}=0$ and a set of vectors $\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}$ is said to be linearly independent if every relation of the type $x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\ldots+x_{n} \vec{a}_{n}=\overrightarrow{0}$ implies $x_{1}=0, x_{2}=0, \ldots, x_{n}$ $=0$.

TEXT-BOOK EXERCISE 3.1
 TYPE-I
 (SOLVED EXAMPLES)

Example 1. Find the component of the vector $\overrightarrow{P Q}$ along the direction OX if P is $\left(x_{1}, y_{1}\right)$ and Q is $\left(x_{2}, y_{2}\right)$ with reference to rectangular co-ordinate $\mathrm{Ox} ; \mathrm{Oy}$. [T.B.Q. I]
Sol. In this case component of the vector $\overrightarrow{\mathrm{PQ}}$ along the direction $\mathrm{OX}=\mathrm{ON}-\mathrm{OM}=x_{2}-x_{1}$. Ans.

Example 2. Find the component of the vector $\overrightarrow{\mathrm{AB}}$ where A is $(1,0)$ and B is $(5,0)$ along the direction $y=-x$ in the increasing direction of x. [T.B.Q. 2]

Sol. In this case, the angle made by the vector with the directed line whose equation is $y=-x$ in the anti-clockwise direction is $\theta=315^{\circ}$.

Hence, the component has magnitude

$$
=|\overrightarrow{A B}|\left|\cos 315^{\circ}\right|
$$

Flg. 3.18.

$$
=4 \times \frac{1}{\sqrt{2}} \hat{i}
$$

$$
\begin{aligned}
& {\left[\begin{array}{rl}
\because \quad \cos 315^{\circ} & =\cos \left(270^{\circ}+45^{\circ}\right) \\
& =\sin 45^{\circ}=\frac{1}{\sqrt{2}}
\end{array}\right]} \\
& =2 \sqrt{2} \hat{i}
\end{aligned}
$$

where \hat{i} is the unit vector along x-axis.

PRACTICE EXERCISE 3.1 (i)

1. Find the component along $O X$ of the position vector of the point $P(2,5)$.
2. Find the component of the position vector of the point ($-2,-3,5$) along the direction OY of the axis of coordinates.
3. Find the component of the vector $\overrightarrow{A B}$ where A has coordinates $(1,0)$ and B has coordinates $(-3,0)$ along the line $y=x$ in the increasing direction of X .

TEXT-BOOK EXERCISE 3.2
TYPE-I
(SOLVED EXAMPLES)
Example 1. If \vec{a}, \vec{b} are position vectors of the points $(1,-1),(-2, m)$, find the value of m for which \vec{a} and \vec{b} are collinear.
[T.B.Q. 1]
Soi. Here $\vec{a}=\hat{i}-\hat{j}$ and $\vec{b}=-2 \hat{i}+m \hat{j}$
Since \vec{a} and \vec{b} are collinear.

$$
\therefore \quad \vec{a}=\lambda \vec{b} \text {, where } \lambda \text { is a scalar }
$$

$$
\Rightarrow \quad \hat{i}-\hat{j}=\lambda(-2 \hat{i}+m \hat{j})
$$

Comparing coefficients of \hat{i} and \hat{j}, we get

$$
1=-2 \lambda
$$

$$
\begin{array}{ll}
\Rightarrow & \lambda=-\frac{1}{2} \\
\text { Also } & \lambda m=-1 \\
\Rightarrow & m=-\frac{1}{\lambda}=-\frac{1}{(-1 / 2)}=2
\end{array}
$$

Hence $m=2$. Ans.
Example 2. If the position vector \vec{a} of the point $(5, n)$ is such that $|\vec{a}|=13$, find the value of n.
[T.B.Q. 2]
Sol. $\quad|\vec{a}|=\sqrt{5^{2}+n^{2}}$
We are given that

$$
\begin{aligned}
& & |\vec{a}| & =13 \\
\therefore & & \sqrt{5^{2}+n^{2}} & =13 \\
\Rightarrow & & 25+n^{2} & =169 \\
\Rightarrow & & n & = \pm 12 .
\end{aligned}
$$

Example 3. If $\mathrm{A}=(0,1), \mathrm{B}=(1,0), \mathrm{C}=(1,2)$, $\mathrm{D}=(2,1)$, prove that $\overline{\mathrm{AB}}=\overline{\mathrm{CD}}$.
[T.B.Q. 3]

$$
\text { Sol. } \quad \overrightarrow{\mathrm{AB}}=i-j
$$

and

$$
\overrightarrow{\mathrm{CD}}=i-j
$$

Now

$$
|\overrightarrow{\mathrm{AB}}|=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}
$$

and

$$
|\overrightarrow{C D}|=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2}
$$

1. As $|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{CD}}|$ and the direction of the two vectors are same.
$\therefore \quad \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{CD}}$. Hence proved.
Example 4. Find the co-ordinates of the tip of the position vector which is equivalent to $\overrightarrow{\mathrm{AB}}$, where
(i) $\mathrm{A}=(3,1), \mathrm{B}=(5,0)$
(ii) $\mathrm{A}=(-1,3), \mathrm{B}=(-2,1)$.
[T.B.Q. 4]
Sol. (i) $\overrightarrow{A B}=(5-3) i+(0-1) i$

$$
=2 i-j
$$

Hence, required co-ordinates are (2, -1). Ans.

$$
\text { (ii) } \quad \begin{aligned}
\overrightarrow{\mathrm{AB}} & =(-2+1) i+(1-3) j \\
& =-i-2 j
\end{aligned}
$$

Hence, required co-ordinates are ($-1,-2$). Ans.
Example 5. If $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are the vertices of a parallelogram and A, B, C have respectively the following co-ordinates,
(i) $(2,3),(1,4),(0,-2)$
(ii) $(-2,-1),(3,0),(1,-2)$.

Find the coordinates D.
Sol. (i) $\quad \mathrm{A}=(2,3), \mathrm{B}=(1,4), \mathrm{C}=(0,2)$
Let
$\mathrm{D}=(x, y)$

$$
\begin{aligned}
& \overrightarrow{\mathrm{OA}}=2 \hat{i}+3 \hat{j} \\
& \overrightarrow{\mathrm{OB}}=\hat{i}+4 \hat{j} \\
& \overrightarrow{\mathrm{OC}}=0 . \hat{i}-2 \hat{j}=-2 \hat{j} \\
& \overrightarrow{\mathrm{OD}}=x \hat{i}+y \hat{j} .
\end{aligned}
$$

In a ll gm ABCD, diagonals AC and BD bisect each other.

Position vector of P i.e., mid-point of $A C$ is given by

$$
\overrightarrow{\mathrm{OP}}=\frac{2 \hat{i}+3 \hat{j}-2 \hat{j}}{2}=\frac{2 \hat{i}+j}{2}=\hat{i}+\frac{1}{2} \hat{j}
$$

Position vector of P i.e., mid-point of $B D$ is given by

$$
\begin{aligned}
\overrightarrow{\mathrm{OP}} & =\frac{\hat{i}+4 \hat{j}+x \hat{i}+y \hat{j}}{2} \\
& =\frac{(1+x) \hat{i}}{2}+\frac{(4+y) \hat{j}}{2}
\end{aligned}
$$

Clearly $\hat{i}+\frac{1}{2} \hat{j}=\left(\frac{1+x}{2}\right) \hat{i}+\left(\frac{4+y}{2}\right) \hat{j}$.
Equating the cocfficients of \hat{i} and \hat{j}, we get

$$
\frac{1+x}{2}=1 \wedge \frac{4+y}{2}=\frac{1}{2}
$$

$$
1+x=2 \quad \text { i.e., }
$$

and $\quad 4+y=1 \quad$ i.e., $\quad y=-3$
Hence, the co-ordinates of D are $(1,-3)$. Ans.
(ii) Similar to part (i), please try yourself.

Example 6. \vec{a} is a position vector whose tip is ($1,-3$). Find the co-ordinates of the point B such that $\overrightarrow{\mathrm{AB}}=\vec{a}$, if A has co-ordinates $(-1,5)$. [T.B.Q. 6]

Sol. $\vec{a}=\hat{i}-3 \hat{j}$ and $\overrightarrow{A B}=\vec{a}$

$$
A=(-1,5) \quad \therefore \overrightarrow{O \Lambda}=-\hat{i}+5 j
$$

Now $\quad \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$
$\therefore \quad \overrightarrow{O B}=\overrightarrow{A B}+\overrightarrow{O A}$

$$
\overrightarrow{\mathrm{OB}}=(\hat{i}-3 j)+(\cdot \hat{i}+5 \hat{j})
$$

$$
=0 \hat{i}+2 \hat{j}
$$

Hence, the co-ordinates of B are $(0,2)$. Ans.
Example 7. If $x \hat{i}+y \dot{j}$ is a vector referred to two rectangular axes in a plane, show that

$$
|x \hat{i}+y \hat{h}|=\sqrt{x^{2}+y^{2}}
$$

Derive a similar result for a vector in 3-dimensional space.
[T.B.Q. 7]
Sol. (a) Length of the vector $\overrightarrow{\mathrm{OP}}=x \hat{i}+y \hat{j}$ is given by
$O P=\sqrt{O Q^{2}+Q^{2}}$ [From Pythagoras Theorem]
$=\sqrt{x^{2}+y^{2}} \quad[\because \mathrm{OQ}=x$ and $\mathrm{QP}=y]$

Thus, if $\vec{r}=x \hat{i}+y \hat{j}$, then $|\vec{r}|=\sqrt{x^{2}+y^{2}}$
(b) Length of the vector $x \hat{i}+y \hat{j}+z \hat{k}$.

Since $\mathrm{OZ} \perp$ plane XOY and $N P \| O Z$
$\therefore \mathrm{NP} \perp$ plane XOY
[Plane Geometry]
Also ON meets NP in that plane
$\therefore \quad \mathrm{NP} \perp \mathrm{ON} \quad$ [Plane Geometry] $\Rightarrow \quad \angle O N P=90^{\circ}$

Fig. 3.20.
Now, in re. $\angle \mathrm{d} \triangle \mathrm{ONP}$,

$$
\begin{align*}
\mathrm{OP}^{2} & =\mathrm{ON}^{2}+\mathrm{NP}^{2} \\
& {\left[\mathrm{By} \mathrm{Py}^{2} \text { hagoras Theorem }\right] } \\
& =\left(\mathrm{OA}^{2}+\mathrm{AN}^{2}\right)+\mathrm{NP}^{2} \\
& =\mathrm{OA}^{2}+\mathrm{OB}^{2}+\mathrm{NP}^{2} \quad\left[\mathrm{OAN}=90^{\circ}\right] \\
& \left.=x^{2}+y^{2}+z^{2}\right] \\
& {[\because \mathrm{OA}=x, \mathrm{OB}=y, \mathrm{NP}=z] } \\
\mathrm{OP} & =\sqrt{x^{2}+y^{2}+z^{2}} \\
\text { Thus, if } \vec{r} & =x \hat{i}+y \hat{j}+z \hat{k}, \text { then } \tag{i}\\
|\vec{r}| & =\text { length of the vector } \vec{r}=\mathrm{OP}
\end{align*}
$$

or

$$
\begin{equation*}
|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}} \tag{i}
\end{equation*}
$$

Hence, the length of the vector $\vec{r}=x \hat{i}+y \hat{j}+z k$ is the positive square root of the sum of squares of its components.

Example 8. Find the distance between the points $\mathrm{A}(2,3,1), \mathrm{B}(-1,2,-3)$.
[T.B.Q. 12]
Sol. $\because \quad A \equiv(2,3,1)$ and $B \equiv(-1,2,-3)$
\therefore
and

$$
\overrightarrow{O A}=2 \hat{i}+3 \hat{j}+\hat{k}
$$

$$
\overrightarrow{\mathrm{OB}}=-\hat{i}+2 \hat{j}-3 \hat{k}
$$

$$
\overrightarrow{\triangle B}=\overrightarrow{O B}-\overrightarrow{O A}=(-i+2 \hat{j}-3 k)-(2 \hat{i}+3 j+k)
$$

$$
=(-1-2) \hat{i}+(2-3) j+(-3-1) k
$$

$$
=-3 i-j-4 k
$$

Hence

$$
\begin{aligned}
|\overrightarrow{\mathrm{AB}}| & =\sqrt{(-3)^{2}+(-1)^{2}+(-4)^{2}} \\
& =\sqrt{9+1+16}=\sqrt{26} .
\end{aligned}
$$

Example 9. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ have position vectors $(2,0,0),(0,1,0),(0,0,2)$, show that $\triangle A B C$ is isosceles. [T.B.Q. 13]
Sol. $\because \quad A \equiv(2,0,0), B \equiv(0,1,0), C \equiv(0,0,2)$
$\therefore \quad \overrightarrow{\mathrm{OA}}=2 \hat{i}+0 \hat{j}+0 \hat{k}$,

$$
\begin{aligned}
\overrightarrow{\mathrm{OB}} & =0 \cdot \hat{i}+1 \cdot j+0 \cdot k \\
\overrightarrow{\mathrm{OC}} & =0 \cdot \hat{i}+0 \cdot \hat{j}+2 \hat{k} \\
\overrightarrow{\mathrm{AB}} & =\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}} \\
& =(0 \hat{i}+1 \hat{j}+(0 \cdot \hat{k})-(2 \hat{i}+0 \cdot j+0 k) \\
& =(0-2) \hat{i}+(1-0) \hat{j}+(0-0) k \\
& =-2 \hat{i}+j
\end{aligned}
$$

$$
\text { Now. } \quad \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}
$$

$$
\overrightarrow{B C}=\overrightarrow{O C}-\overrightarrow{O B}
$$

$$
=(0 . \hat{i}+0 . j+2 \hat{k})-(0 . i+1 . j+0 . k)
$$

$$
=(0-0) \hat{i}+(0-1) \hat{j}+(2-0) \hat{k}
$$

$$
\overrightarrow{A C}=\overrightarrow{O C}-\overrightarrow{O A}
$$

$$
=(0 \hat{i}+0) \hat{j}+2 k)-(2 \hat{i}+10 \hat{j}+0 . k)
$$

$$
=(0-2) \hat{j}+(0-0) \hat{j}+(2-0) k
$$

$$
=-2 \hat{i}+0 \hat{j}+2 \hat{k}=-2 \hat{i}+2 \hat{k}
$$

$$
|\overrightarrow{A B}|=\sqrt{(-2)^{2}+(1)^{2}}=\sqrt{4+1}=\sqrt{5}
$$

$$
|\overrightarrow{B C}|=\sqrt{(-1)^{2}+(2)^{2}}=\sqrt{1+4}=\sqrt{5}
$$

$$
|\overrightarrow{\Lambda C}|=\sqrt{(-2)^{2}+(2)^{2}}=\sqrt{4+4}=\sqrt{8}
$$

Since, $\quad|\overrightarrow{A B}|=|\overrightarrow{B C}|$ i.e. $A B=B C$

Hence, $\triangle \mathrm{ABC}$ is an isosceles triangle. $[\because$ lts two sides are equall Ans.

PRACTICE EXERCISE 3.2 (i)

1. Prove by vectors that the points $\mathrm{P}(-2,1), \mathrm{Q}(-5$, $-1)$ and $R(1,3)$ are collinear.
2. If vectors $\vec{a}=2 \hat{i}+4 \hat{j}-5 k$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$. Find $|\vec{a}+\vec{b}|$.
3. Express $\overline{\mathrm{PQ}}$ in terms of unit vectors i and j when the points are :
(i) $\mathrm{P}(5,-7), \mathrm{Q}(-3,2)$ (ii) $\mathrm{P}(1,2), \mathrm{Q}(-6,5)$. Find $|\overrightarrow{P Q}|$ in each case.
4. If the co-ordinates of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are $(1,2),(2,1),(2,3)$ and (3,2) respectively, show that $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{CD}}$.
5. Find the co-ordinates of the tip of the position vector which is equivaient to $\overrightarrow{\mathrm{AB}}$, where the co-ordinates of A and B are $(-2,5)$ and $(-3,2)$ respectively.
6. If the position vector \vec{a} of the point $(n,-6)$ is such that $|\vec{a}|=10$. find the value of n.
7. If \vec{a} be the position vector whose tip is $(3,-2)$. find the co-ordinates of a point B such that $\overrightarrow{A B}$ $=\vec{a}$. the co-ordinates of A being $(-1,3)$.
8. Find the value of x so that the points $A(x,-1)$; $B(2,1)$ and $C(4,5)$ are collinear.
9. Show that the vectors $\vec{a}=2 \hat{i}, \vec{b}=-\hat{i}+4 \hat{j}$. $\vec{c}=-i-4 j$ form an isosceles triangle.
10. ABCD is a $l \mathrm{gm}$, if the co-ordinates of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $(2,3),(1,4)$ and $(0,-2)$ respectively, find the co-ordinates of D.

ADDITIONAL SOLVED EXAMPLES
 SECTION- A
 [2 marks questions]

Es Example 1. Show that the three points $\mathrm{A}(2,-1,3), \mathrm{B}(4,3,1)$ and $\mathrm{C}(3,1,2)$ are collinear.

Sol.

$$
\overrightarrow{\mathrm{OA}}=2 \hat{i}-j+3 k
$$

$$
\mathrm{OB}=4 \hat{i}+3 \hat{j}+k
$$

and

$$
\overrightarrow{\mathrm{OC}}=3 \hat{i}+\hat{j}+2 \hat{k}
$$

$$
\therefore \quad \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}
$$

$$
=(4 \hat{i}+3 \hat{j}+k)-(2 \hat{i}-j+3 k)
$$

$$
=2 \hat{i}+4 \hat{j}-2 \hat{k}
$$

$$
\begin{aligned}
\overrightarrow{\mathrm{BC}} & =\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OB}} \\
& =(3 \hat{i}+\hat{j}+2 \hat{k})-(4 \hat{i}+3 \hat{j}+k) \\
& =-\hat{i}+2 \hat{j}+k
\end{aligned}
$$

Now,

$$
\begin{aligned}
\overrightarrow{\mathrm{AB}} & =2 \hat{i}+4 \hat{j}-2 \hat{k} \\
& =-2(-\hat{i}-2 \hat{j}+\hat{k})=-2 \cdot \overrightarrow{\mathrm{BC}}
\end{aligned}
$$

Thus, $\overrightarrow{A B}$ is parallel to $\overrightarrow{B C}$, hut one point B is common. Hence, the three given points A, B, C are collinear.

Proved.
Example 2. Let a be a given vector whose initial point is $P^{\prime}\left(x_{1}, y_{1}\right)$ and terminal point is $Q\left(x_{2}, y_{2}\right)$. In each of the probiems (i) to (v), find the magnitude and component of the vector along x and y directions.
(i) $\mathrm{P}(2,3) ; \mathrm{Q}(4,6)$
(ii) $\mathrm{P}(-1,3) ; Q(1,2)$
(iii) $\mathrm{P}(0,2) ; \mathrm{Q}(5,-3)$ (iv) $\mathrm{P}(-1,-2) ; \mathrm{Q}(-5,-6)$
(v) $\mathrm{P}(2,4) ; \mathrm{Q}(-5,-3)$.

Sol. (i) In this $x_{1}=2, x_{2}=$ 4, $y_{1}=3, y_{2}=6$ and if $\overrightarrow{\mathrm{PQ}}=\vec{a}$. then

$$
\begin{aligned}
& \vec{a}=(4-2) \hat{i}+(6-3) \hat{j} \\
&=2 \hat{i}+3 \hat{j} \\
& \text { lis components along }
\end{aligned}
$$ x-axis and y-axis are respectively 2 and 3. Ans.

Fig. 3.21. and $\quad|\vec{a}|=\sqrt{2^{2}+3^{2}}=\sqrt{4+9}=\sqrt{13}$. Ans.
(ii) In this $x_{1}=-1, x_{2}=1, y_{1}=3, y_{2}=2$ and if $\overrightarrow{\mathrm{PQ}}=\vec{a}$. then

$$
\begin{aligned}
\vec{n} & =\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j} \\
& =(1+1) \hat{i}+(2-3) \hat{j}=2 i-j \\
|\vec{a}| & =\sqrt{2^{2}+1^{2}}=\sqrt{5} . \text { Ans. }
\end{aligned}
$$

nod component of \vec{a} nlong x-axis and y-axis are respectively 2 and -1 . Ans.
(iii) In this $x_{1}=0, x_{2}=5, y_{1}=2, y_{2}=-3$.

If $\overrightarrow{P R}=\vec{a}$, then

$$
\begin{aligned}
\vec{a} & =\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j} \\
& =(5-0) \hat{i}+(-3-2) \hat{j} \\
& =5 i-5 \dot{j} \\
|\vec{a}| & =\sqrt{5^{2}+(-5)^{2}}=\sqrt{25+25}=5 \sqrt{2} . \quad \text { Ans. }
\end{aligned}
$$

Its component along x-axis and y-axis are 5 and -5 respectively. Ans.
(iv) In this guestion $x_{1}=-1, x_{2}=-5, y_{1}=-2$. $y_{2}=-6$ and if $\overrightarrow{\mathrm{PQ}}=\vec{a}$, then

$$
\begin{aligned}
\vec{a} & =\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j} \\
& =(-5+1) \hat{i}+(-6+2) \hat{j} \\
& =-4 \hat{i}-4 \hat{j} \\
|\vec{a}| & =\sqrt{(-4)^{2}+(-4)^{2}} \\
& =\sqrt{16+16}=4 \sqrt{2} . \quad \text { Ans. }
\end{aligned}
$$

Its components along x-axis and y-axis are -4 and -4 respectively.
(v) In this question $x_{1}=2, x_{2}=-5, y_{1}=4, y_{2}=-3$ and if $\overrightarrow{P Q}=\vec{a}$, then

$$
\begin{aligned}
\vec{a} & =\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j} \\
& =(-5-2) i+(-3+4) \hat{j} \\
& =-7 \hat{i}-7 \hat{j} \\
|\vec{a}| & =\sqrt{(-7)^{2}+(-7)^{2}}=7 \cdot \sqrt{2} . \quad \text { Ans. }
\end{aligned}
$$

and its components along x-axis and y-axis are respectively (-7) and (-7). Ans.

Example 3. Show that the points ($2,-1,3$), $(3,-5,1)$ and $(-1,11,9)$ are collinear.

Sol. Let $A \equiv(2,-1,3), B \equiv(3,5,1)$,

$$
C=(-1,11,9)
$$

Clearly, $\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}$

$$
\begin{aligned}
& =(3 \hat{i}-5 \hat{j}+\hat{k})-(2 \hat{i}-\hat{j}+3 \hat{k}) \\
& =(3-2) \hat{i}+(-5+1) \hat{j}+(1-3) \hat{k} \\
& =\hat{i}-4 \hat{j}-\hat{k}
\end{aligned}
$$

and

$$
\begin{aligned}
\overrightarrow{\mathrm{AC}} & =\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{OA}} \\
& =(-\hat{i}+11 \hat{j}+9 \hat{k})-(2 \hat{i}-\hat{j}+3 \hat{k}) \\
& =(-1-2) \hat{i}+(11+1) j+(9-3) k \\
& =(-3 \hat{i}+12 \hat{j}+6 \hat{k})=-3(\hat{i}-4 \hat{j}-2 \hat{k})
\end{aligned}
$$

$$
\therefore \quad \overrightarrow{A C}=-3 \overrightarrow{A B}
$$

\therefore The two vectors are parallel but A is common to both. Hence the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ must be collinear.

Example 4. If \vec{a} is a non-zero vector, find a scalar k such that $|\overrightarrow{k a}|=1$.

Sol.

$$
|\overrightarrow{k a}|=1
$$

(Given)

$$
\begin{array}{lc}
\Rightarrow & |k \| \vec{a}|=1 \\
\Rightarrow & |k|=\frac{1}{|\vec{a}|} \\
\therefore & \ddots \vec{a} \neq \ddot{0} \text { (Given) } \Rightarrow|\vec{a}|=0] \\
& \ddots k= \pm \frac{1}{|\vec{a}|} \text { Ans. } \\
& 1 \cdot|x|=\lambda \text { where } \lambda \geq 0 \Rightarrow x= \pm \lambda \mid
\end{array}
$$

Example 5. Find the terminal point of the vector PQ whose initial point is $\mathbf{P}(2,3)$ and components along x and y dircction are 1 and 2 respectively.

Sol. Let the coordinates of the terminal point Q be (x, y). Then components of the vector PQ along x and y directions are $(x-2)$ and $(y-3)$ respectively.

Therefore, $x-2=1$ or $x=3$
and

$$
\begin{aligned}
y-3=2, & \text { or } y=5 \\
& \text { (by the given conditions) }
\end{aligned}
$$

Hence, the terminal point O is $(3,5)$. Ans.
Example 6. Find all the values of λ such that $(x, y, z) \neq 0$ and $(i+j+3 k) x+(3 i-3 j+k) y+$ $(-4 i+5 j) z=\lambda(i x+j y+k z)$ where i, j, k are unit vectors along the co-ordinate axis.

Sol. The given relation can be written as

$$
\begin{aligned}
{[(1-\lambda) x+3 y-4 z] i+[x-} & (3+\lambda) y+5 z] j \\
& +[3 x+y-\lambda z] k=0
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow(1-\lambda) x+3 y-4 z & =0 \\
x-(3+\lambda) y+5 z & =0 \\
3 x+y-\lambda z & =0
\end{aligned}
$$

Since $(x, y, z) \neq(0,0), 0)$ i.e. the ahove equation will have non-trivial solution if

$$
\begin{aligned}
& \left|\begin{array}{ccc}
-1 \lambda & 3 & -4 \\
1 & -(3+\lambda) & 5 \\
3 & 1 & -\dot{\lambda}
\end{array}\right|=0 \\
\Rightarrow & \lambda^{3}+2 \lambda^{2}+\lambda=0 \text { or } \lambda(\lambda+1)^{2}=0
\end{aligned}
$$

Hence $\lambda=0,-1,-1$. Ans.
Example 7. Show that the three points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ with position vectors $-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}, 7 \vec{a}-\vec{c}$ are collinear.

Sol. Let O be the origin of reference
Then $\quad \overrightarrow{\mathrm{OA}}=-2 \vec{a}+3 \vec{b}+5 \vec{c}$.

$$
\begin{aligned}
\overrightarrow{\mathrm{OB}} & =\vec{a}+2 \vec{b}+3 \vec{r} \\
\overrightarrow{\mathrm{OC}} & =7 \vec{a}-\vec{c} \\
\therefore \quad \overrightarrow{\mathrm{AB}} & =\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}} \\
& =(\vec{a}+2 \vec{b}+3 \vec{c})-(-2 \vec{a}+3 \vec{b}+5 \vec{c})
\end{aligned}
$$

or

$$
\begin{equation*}
\overrightarrow{\mathrm{AB}}=3 \vec{a}-\vec{b}-2 \vec{c} \tag{i}
\end{equation*}
$$

Also
or

$$
\begin{array}{ll}
& \overrightarrow{\mathrm{AC}}=3(3 \vec{a}-\vec{b}-2 \vec{c}) \\
\therefore \quad & \overrightarrow{\mathrm{AC}}=3 \overrightarrow{\mathrm{AB}} \tag{ii}
\end{array}
$$

(ii) Shows that the vectors $\overrightarrow{A C}$ and $\overrightarrow{A B}$ have the same or parallel supports.

But these vectors have a common initial point A. proving thereby that $\overline{\mathrm{AC}}$ and $\overrightarrow{\mathrm{AB}}$ have the same support.
\therefore A, B, C are collinear.
Hence proved.
Example 8. If the mid-points of the consecutive sides of a quadrilateral are joined, then show by vector method that they form a parallelogram.

Sol. Let a, b, c, d, be the position vector of the vertices A, B, C, D of the quadrilateral $A B C D$. Let P. Q. R. S be the mid-points of the sides. Then their position vectors are respectively.

Fig. 3.22.

$$
\frac{1}{2}(a+b), \frac{1}{2}(b+c), \frac{1}{2}(c+d), \frac{1}{2}(d+a)
$$

Now $\overrightarrow{P Q}=$ position vector of $Q-$ position vector of P

$$
=\frac{1}{2}(b+c) \cdot-\frac{1}{2}(a+b)=\frac{1}{2}(c-a)
$$

Similarly,

$$
\mathrm{SR}=\frac{1}{2}(c-a)
$$

$$
\therefore \overrightarrow{P Q}=\overrightarrow{S R} \Rightarrow P Q=S R \text { and also } P Q \| S R .
$$

Since a pair of opposite sides are equal as well as parallel, PQRS is a parallelogram.

Example 9. ABCD is a parallelogram and P is the point of intersection of its diagonals, O is the origin. Prove that

$$
\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}=4 \overrightarrow{O P} .
$$

Sol. $\because P$ is the mid- point of $A B$

$$
\therefore \quad \overrightarrow{O P}=\frac{\overrightarrow{O A}+\overrightarrow{O C}}{2}
$$

or

$$
\begin{equation*}
2 \overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{O C} \tag{i}
\end{equation*}
$$

Again. $\because P$ is the mid-point of $B D$

$$
\therefore \quad \overrightarrow{\mathrm{OP}}=\frac{\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OD}}}{2}
$$

Fig. 3.23.
or

$$
\begin{equation*}
2 \overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OD}} \tag{ii}
\end{equation*}
$$

Adding (i) and (ii), we get

$$
2 \overrightarrow{O P}+2 \overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{O C}+\overrightarrow{O B}+\overrightarrow{O D}
$$

or

$$
4 \overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{OD}}
$$

Example 10. Three vectors of magnitude $a, 2 a$, $3 a$, mect in a point and their directions are along the diagonals of three adjacent faces of a cube. Find their resultant.

Sol. Let the vectors of magnitudes $a, 2 a, 3 a$ act along OP, OQ, OR respectively. Then vectors along OP, OQ, OR are

$$
a\left(\frac{i+j}{\sqrt{2}}\right) \cdot 2 a\left(\frac{i+j}{\sqrt{2}}\right) \cdot 3 a\left(\frac{k+i}{\sqrt{2}}\right) \text { respectively: }
$$

Their resultant, say \vec{R}, is given by

$$
\begin{aligned}
\overrightarrow{\mathrm{R}} & =a\left(\frac{i+j}{\sqrt{2}}\right)+2 a\left(\frac{j+k}{2}\right)+3 a\left(\frac{k+i}{\sqrt{2}}\right) \\
& =\frac{a}{\sqrt{2}}(4 i+3 j+5 k) \\
\therefore \quad|\overrightarrow{\mathrm{R}}| & =\sqrt{\frac{a^{2}}{2}(16+9+25)}=5 a . \text { Ans. }
\end{aligned}
$$

Example 11. Find the position vector of the centroid of the $\triangle A B C$ when the position vectors of its vertices are $(1,3,0),(2,1,1),(0,-1,0)$ respectively.

Sol. The position vectors of A, B and C relative to an origin O are
$\overrightarrow{\mathrm{OA}}=\hat{i}+\hat{j}+0 \hat{k}, \hat{\mathrm{OB}}=2 \hat{i}+\hat{j}+\hat{k}, \overrightarrow{\mathrm{OC}}=0 \hat{i}-\hat{j}+0 \hat{k}$
If G be the centroid of the triangle, the position of the centroid is

$$
\left(\frac{1+2+0}{3}, \frac{3+1-1}{3}, \frac{0+1+0}{3}\right)
$$

or

$$
\left(1,1, \frac{1}{3}\right)
$$

i.e. $\quad \overrightarrow{\mathrm{OG}}=\hat{i}+\hat{j}+\frac{1}{3} k$. Ans.

Example 12. Show that the vectors

$$
\vec{a}=3 \sqrt{3} \hat{i}-3 \hat{j}, \vec{b}=6 \hat{j} \text { and } \vec{c}=3 \sqrt{3} \hat{i}+3 \hat{j}
$$

form the sides of an equilateral triangle.
Sol.

$$
\begin{aligned}
\vec{a}+\vec{b} & =(3 \sqrt{3} \hat{i}-3 \hat{j})+6 j \\
& =3 \sqrt{3} \hat{i}+3 \hat{j}=\vec{c} .
\end{aligned}
$$

Since

$$
\vec{a}+\vec{b}=\vec{c}
$$

and

$$
\begin{aligned}
|\vec{a}| & =\sqrt{(3 \sqrt{3})^{2}+(-3)^{2}} \\
& =\sqrt{27+9}=-\sqrt{36}=6 \\
|\vec{b}| & =\sqrt{0+36}=6 \\
|\vec{c}| & =\sqrt{(3 \sqrt{3})^{2}+(3)^{2}} \\
& =\sqrt{27+9}=\sqrt{36}=6
\end{aligned}
$$

Hence $\vec{a}, \vec{b}, \vec{c}$ form the sides of an equilateral triangle.
[se Example 13. Let a, b, c be the position vectors of three points A, B, C. If three numbers $\alpha_{0} \beta, \gamma$ (not all zero) can be found such that

$$
\alpha a+\beta b+\gamma=0
$$

and $\quad \alpha+\beta+\gamma=0$
show that the points A, B and C are collinear.
Sol. $\quad \alpha a+\beta b+\chi=0$
or

$$
\begin{equation*}
\alpha a+\beta b=-\gamma \tag{i}
\end{equation*}
$$

Also $\quad \alpha+\beta=-\gamma(\because \alpha+\beta+\gamma=())$

$$
\begin{gathered}
\therefore \quad \alpha a+\beta b=(\alpha+\beta) c \\
\quad c=\frac{\alpha a+\beta b}{\alpha+\beta}
\end{gathered}
$$

or
$\Rightarrow C$ divides the join of A and B in the ratio $\beta: \alpha$.
$\therefore A, B$ and C are collinear.
Example 14. Show that the points with position vectors $\hat{i}+2 \hat{j}, 3 \hat{i}-2 \hat{j}$, and $2 \hat{i}$ are collinear.

Sol. Let A, B, C be the points with the given position vectors

$$
\therefore \quad \overrightarrow{\mathrm{OA}}=\hat{i}+2 \hat{j}, \overrightarrow{\mathrm{OB}}=3 \hat{i}-2 \hat{j}, \overrightarrow{\mathrm{OC}}=2 \hat{i}
$$

Now $\quad \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$

$$
=(3 \hat{i}-2 \hat{j})-(\hat{i}+2 \hat{j})=2 \hat{i}-4 \hat{j}
$$

$$
\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OA}}=2 \hat{i}-(\hat{i}+2 \hat{j})=\hat{i}-2 \hat{j}
$$

$\therefore \quad \overrightarrow{A B}=2 \overrightarrow{A C}$
Hence, the vectors $\overrightarrow{A B}, \overrightarrow{A C}$ having the same initial point A are parallel. It follows that A, B, C are collinear.

Example 15. If $\vec{a}=(2,6), \vec{b}=(5,15)$ and $\vec{c}=(4$, 12), find λ if $2 \vec{a}+3 \vec{b}=\lambda \vec{c}$.

Sol. Two vectors are equal if and only if their corresponding components are equal.

$$
\begin{aligned}
\text { Now } & & 2 \vec{a}+3 \vec{b} & =2(2,6)+3(5,15) \\
& & & =(4,12)+(15,45)=(19,57) \\
& \text { and } & & \lambda \vec{r}
\end{aligned}=\lambda(4,12)=(4 \lambda, 12 \lambda) .
$$

[5 Example 16. If the vectors $2 \hat{i}+p \hat{j}+\hat{k}$ and $-5 \hat{i}+3 \hat{j}+q \hat{k}$ are collinear, find the values of p and q.

Sol. Since, the given vectors $2 \hat{i}+p \hat{j}+k$ and $-5 \hat{i}+3 \hat{j}+q \hat{k}$ are collinear, we have $2 \hat{i}+p \hat{j}+k=\alpha$ $(-5 \hat{i}+3 \hat{j}+q \hat{k})$ for same values of λ.
$\Rightarrow \quad(2+5 \alpha) i+(p-3 \alpha) j+(1-q \alpha) k=0$
$\Rightarrow \quad 2+5 \alpha=0 . p-3 \alpha=0,1-q \alpha=0$
$\Rightarrow \quad \alpha=-\frac{2}{5}, p=\frac{-6}{5}$ and $q=\frac{1}{\alpha}=\frac{-5}{2}$
Hence.

$$
p=\frac{-h}{5} \text { and } q=\frac{-5}{2} \quad \text { Ans. }
$$

ADDITIONAL PRACTICE EXERCISE 3 (a)

1. Show that the three points $\mathrm{A}(6,-7,-1)$. $B(2,-3,1)$ and $C(4,-5,0)$ and collinear.
2. Show that the three points $\mathrm{A}(1,-4,-2)$. $\mathrm{B}(2,-2,1)$ and $\mathrm{C}(0,2,-1)$ are collinear.
3. Show that the three points $\mathrm{A}(3,-5,1)$, $B(-1,0,8)$ and $C(7,-10,-6)$ are collinear.
4. Show that the three points $\mathrm{A}(2,-4,1)$. $B(4,4,3)$ and $C(3,0,2)$ are collinear.
5. Show that the three points $\mathrm{A}(4,5,-5)$. $B(0,-11,3)$ and $C(2,-3,-1)$ are collinear.
6. Find the lengths of the sides of the triangle $\triangle B C$ whose vertices havaposition vectors $\mathrm{A}(3,4,5)$, $B(4,3,2), C(3,-6,-3)$.
7. Find a unit vector parallel to the sum of the vectors

$$
a=2 i+4 j-5 k, \quad b=\hat{i}+2 \hat{j}+3 k
$$

8. Define zero vector. What carl you say about its direction ? For any three vectors, a, b and c, prove that

$$
a+(b+c)=(c+b)+c
$$

9. Show that the points given by $i-2 j+3 k$, $2 i+3 j-4 k,-7 j+10 k$ are collinear.
10. Show that the three points whose position vectors are $A(-2,3,5), B(1,2,3), C(7,0,-1)$ are collinear.
11. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are points with position vectors $2 i+4 j-k, 4 i+5 j+k$ and $3 i+6 j-3 k$, show that the $\triangle A C B$ is right angled.
12. Show that any three vectors in the same plane are linearly dependent ie. if a, b, c are three vectors, show that there exists α, β, γ not all z.cro such that $\alpha a+\beta b+\gamma_{c}=0$. What about vectors more than three in number?
13. Show that in 3 dimensional space, three vectors are linearly invependens if and only if they do not lie in a plane.
14. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ have position vectors ($2,0,0$), $(0,1,0),(0,0,2)$, show that $\triangle A B C$ is isosceles.
15. If the vectors a, b, c, d represent the consecutive sides of a quadrilateral, show that the necessary and sufficient condition that the quadrilateral be a parallelogram, is that $a+c=0$ or $b+d=0$.
16. Find the magnitude of the vector $\vec{a}=2 \hat{i}-3 \hat{j}+\hat{k}$.
17. Find the distance between the points $\wedge(2,3,1)$ and $B(-1,2,-3)$, using vector method.
18. Show that the points $A(2,-1,1), B(1,-3,-5)$ and $C(3,-4,-4)$ are the vertices of a right-angled triangle.
19. If $\overrightarrow{A B}=2 \hat{i}+j-3 k$ and the co-ordinates of A are ($1,2,-1$). find the co-ordinates of B.
20. Find a unit vector parallel to the sum of vectors $\vec{a}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+k$.

ADDITIONAL SOLVED EXAMPLES
 SECTION-B
 [4 marks questions]

Example 1. Four points A, I, C, D with position vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ respectively are such that

$$
\vec{l}-\vec{b}+2 \dot{c}-4 \vec{l}=01 .
$$

Show that the four points are coplanar. Also, find the position vector of the point of intersection of lines $\Lambda \mathrm{C}$ and BI).
[C.B.S.E. 1995, Delhi (Set I, II. III)]
Sol. It is given that $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are the position vectors of the points, A, B, C, D respectively.

$$
\begin{array}{ll}
\text { Now. } & \overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}, \overrightarrow{O C}=\vec{i}, \vec{O} \vec{a}=\vec{a} \\
\therefore & \overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\vec{h}-\vec{a} \\
& \overrightarrow{B C}=\overrightarrow{O C}-\overrightarrow{O B}=\vec{c}-\vec{b} \\
& \overrightarrow{C D}=\overrightarrow{O D}-\overrightarrow{O C}=\vec{d}-\vec{c}
\end{array}
$$

The given points will be coplanar if $\overrightarrow{A B}, B C$ and $\overrightarrow{C D}$ are coplanar.

$$
\begin{array}{ll}
\text { But } & 3 \vec{a}-\vec{b}+2 \vec{r}-4 \vec{d}=0 \quad \text { [Given] } \\
\Rightarrow & 3 \vec{n}+2 \vec{c}=\vec{b}+4 \vec{d} \\
\Rightarrow & \frac{3 \vec{a}+2 \vec{c}}{5}=\frac{\vec{b}+4 \vec{d}}{5} \\
\Rightarrow & \frac{3 \vec{a}+2 \vec{c}}{3+2}=\frac{\vec{b}+4 \vec{d}}{1+4}
\end{array}
$$

1. 11.S represents the position vector ar a pesintlying on the join of \wedge and C which divides $\triangle C$ in the ratio 3:2.
R.H.S. represents the position vector of a point lying on the join of B and D which divides $B D$ in the ratio 1:4.

Since L.H.S $=$ R.H.S.
\therefore They represent the same point ic. the point of imersection of $\triangle \dot{C}^{\circ}$ and BD).

Since intersecting lines are coplanar, therefore the points A.B. C. D are coplanar.

Asses. position vector of the points eff intersection is

$$
\frac{3 \vec{l}+2 \vec{c}}{5} \text { or } \frac{\vec{b}+4 \vec{l}}{5}
$$

Example 2. Show that a quadrilateral is a parallelogram if and only if its diagonals bisect each other.

Sol. Let ABCD be the given parallelogram whose diagonals AC and BD intersect at point P.

Let $D P: P B=m_{1}: m_{2}$ and $\mathrm{AP}=m_{3} \mathrm{AC}$, where m_{1}, m_{2} and m_{3} are positive real numbers.
\because Plies on DB, therefore, by section formula

$$
\text { Also } \quad \begin{align*}
\mathrm{AP} & =\frac{m_{2} \mathrm{AD}+m_{1} \cdot \mathrm{AB}}{m_{2}+m_{1}} \tag{i}\\
\mathrm{AP} & =m_{3} \mathrm{AC} \\
& =m_{3}(\mathrm{AB}+\mathrm{BC}) \tag{ii}\\
& =m_{3}(\mathrm{AB}+\mathrm{AD})
\end{align*}
$$

Fig. 3.25.
\therefore From (i) and (ii), we get

$$
\frac{m_{2} \mathrm{AD}+m_{1} \mathrm{AB}}{m_{2}+m_{1}}=m_{3} \mathrm{AB}+m_{3} \mathrm{AD}
$$

or, $1 \ldots+\left(\frac{m_{2}}{m_{2}+m_{1}},-m_{3}\right) \mathrm{Ad}+\left(\frac{m_{1}}{m_{2}+m_{1}}-m_{3}\right) \mathrm{AB}=0$

$$
\text { As } A D \text { and } A B \text { are not parallel and zero vectors. }
$$

$$
\therefore \quad \frac{m_{2}}{m_{2}+m_{1}}-m_{3}=0 \text { and } \frac{m_{1}}{m_{2}+m_{1}}-m_{3}=0
$$

or

$$
\frac{m_{2}}{m_{2}+m_{1}}=m_{3} \quad \text { and } \quad \frac{m_{1}}{m_{2}+m_{1}}=m_{3}
$$

or

$$
\frac{m_{2}}{m_{2}+m_{1}}=\frac{m_{1}}{m_{2}+m_{1}}, \therefore m_{1}=m_{2}
$$

$$
\therefore \quad m_{3}=\frac{m_{2}}{m_{2}+m_{2}}=\frac{m_{2}}{2 m_{2}}=\frac{1}{2}
$$

Hence the diagonals of the parallelogram bisect each other.

Conversely: If the diagonals bisect each other, then

$$
A B=A P+P B=P C+D P=D C
$$

and $\quad-A D=A P+P D=P C+B P=D C$
ie. - $A B$ and $D C$ are parallel and equal.
and $\quad A D$ and $B C$ are parallel and equal.
Hence, ABCD is a parallelogram.
Proved.
 the mid-points of the two non-parallel 'sides of a trapezium is parallel to the parallel sides and equal to half of their sum.
[T.B. Misc. Ex. Q. 10$]$

Sol. Let $A B C D$ be a trapezium in which $A B \|$ DC. Let E, F be mid-points respectively of the two non-parallel sides BC, AD.

Take A as the origin of reference.
\therefore Position vector of A is $\overrightarrow{0}$.

Fig. 3.26.

Let \vec{b}, \vec{d} be the position vectors of B. D respectively with A as the origin of reference, so that

$$
\begin{equation*}
\overrightarrow{\mathrm{AB}}=\vec{b}, \overrightarrow{\mathrm{AD}}=\vec{d} \tag{i}
\end{equation*}
$$

Since $D C \| A B$ there exists a scalar t such that

$$
\begin{equation*}
\overrightarrow{\mathrm{DC}}=t, \overrightarrow{\mathrm{AC}} \text { ie., } \overrightarrow{\mathrm{DC}}=t, \vec{b} \tag{ii}
\end{equation*}
$$

\therefore Position vector $\overrightarrow{\mathrm{AC}}$ of c is given by

$$
\overrightarrow{A C}=\overrightarrow{A D}+\overrightarrow{D C}
$$

[By Triangle law of addition]
or

$$
\overrightarrow{\mathrm{AC}}=\vec{d}+t \cdot \vec{b}
$$

[From (i) and (ii)]
Since E is midpoint of line joining B, C with position vectors $\vec{b}, \vec{d}+i, \vec{b}$ respectively
\therefore By mid-point of formula,
Position vector of

$$
\begin{equation*}
\mathrm{F}=\frac{\vec{b}+(\vec{d}+1 \cdot \vec{b})}{2}=\frac{\vec{d}+(1+1) \vec{b}}{2} \tag{iii}
\end{equation*}
$$

Again, since F is mid-point of line joining A. D with position vectors $\overrightarrow{0}, \vec{d}$ respectively.
\therefore By mid-point formula,
Position vector of $\mathrm{F}=\frac{0+\vec{d}}{2}=\frac{\vec{d}}{2}$
$\therefore \overrightarrow{F E}=$ Position vector of $E-$ Position vector of F

$$
=\frac{\vec{d}+(1+t) \vec{b}}{2}-\frac{\vec{d}}{2}
$$

[From (iii) and (iv)]

$$
\overrightarrow{\mathrm{FE}}=\frac{1}{2}(1+1) \vec{b}
$$

or

$$
\overrightarrow{\mathrm{FE}}=\frac{1}{2}(1+t) \overrightarrow{\mathrm{AB}}
$$

[From (i)]
which shows that FE\|AB and hence to DC. Proved.
Example 4. "The mid-points of two opposite sides of a quadrilateral and the mid-points of the diagonals are the vertices of a parallelogram" Prove using vectors.
[T.B. Misc. Exr. Q. I/]

Sol. Let the position vectors of the vertices B, C, D of the quadrilateral ABCD referred to A as origin be b, c, d respectively.

Fig. 3.27.
Let E and F be the mid-points of the diagonals $A C$ and BD. Let M and N be the mid-points of the sides $A B$ and DC. Join NF. NE, ME and MF.

Now p.v. of $\mathrm{M}=\frac{1}{2} b$ and p.v. of $\mathrm{N}=\frac{1}{2}(c+d)$
Also p.v. of $E=\frac{1}{2} c$ and p.v. of $F=\frac{1}{2}(b+d)$

$$
\begin{align*}
\therefore \quad \overrightarrow{\mathrm{MF}} & =\text { p.v. of } \mathrm{F}-\text { p.v. of } \mathrm{M} \\
& =\frac{1}{2}(b+d)-\frac{1}{2} b=\frac{1}{2} d \tag{i}
\end{align*}
$$

$\overrightarrow{\mathrm{ME}}=$ p.v. of $\mathrm{E}-$ p.v. of M

$$
\begin{equation*}
=\frac{1}{2} c-\frac{1}{2} b=\frac{1}{2}(c-b) \tag{ii}
\end{equation*}
$$

$$
\overrightarrow{\mathrm{EN}}=p . v . \text { of } N-p . v . \text { of } E
$$

$$
\begin{equation*}
=\frac{1}{2}(c+d)-\frac{1}{2} c=\frac{1}{2} d \tag{iii}
\end{equation*}
$$

and

$$
\begin{align*}
\overrightarrow{\mathrm{FN}} & =p \cdot v \cdot \text { of } \mathrm{N}-p \cdot v \cdot \text { of } \mathrm{F} \\
& =\frac{1}{2}(c+d)-\frac{1}{2}(b+d) \\
& =\frac{1}{2}(c-b) \tag{iv}
\end{align*}
$$

From (i) and (iii), $\overrightarrow{M F}=\overrightarrow{\mathrm{EN}}$ ic. MF and EN are equal and parallel.

From (ii) and (iv), $\overrightarrow{M E}=\overrightarrow{F N}$ ie. $M E$ and $F N$ are equal and parallel.

Hence ENFM is a parallelogram.
tar Example 5. If the sum of two unit vectors is a unit vector, prove that the magnitude of their difference is $\sqrt{3}$.

Sol. Let $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{AB}}$ be two unit vectors \vec{a} and \vec{b}. Then by Triangle Law of addition.

$$
\begin{aligned}
& \vec{a}+\vec{b}=\overrightarrow{\mathrm{OB}} \\
\therefore & \quad|\vec{a}|=1,|\vec{b}|=1
\end{aligned}
$$

and

$$
|\vec{a}+\vec{b}|=1
$$

(Given)
$\therefore \quad \mathrm{OA}=\mathrm{AB}=\mathrm{OB}=1$
Let $\overrightarrow{A C}=-\vec{b}$, then $A C=|\overrightarrow{A C}|=|-\vec{b}|=|\vec{b}|=1$.
Since $O A=A B=A C$, then by Geometry $\triangle B O C$ is a right triangle, rt. $\angle \mathrm{d}$ at O .

$$
\vec{a}-\vec{b}=\vec{a}+(-\vec{b})=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{OC}}
$$

$\therefore \quad|\vec{a}-\vec{b}|=|\overrightarrow{O C}|=O C$
Now $\quad B C^{2}=O B^{2}+O C^{2}$
$\therefore \quad O C=\sqrt{B C^{2}-O B^{2}}$
or

$$
O C=\sqrt{2^{2}-1^{2}}=\sqrt{4-1}=\sqrt{3}
$$

Hence the magnitude of their (two unit vectors) difference is $\sqrt{ } 3$.

Example 6. D, E, Fare the mid-points of the sides of a triangle $\triangle B C$. For any point O show that

$$
\overrightarrow{O \Lambda}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O D}+\overrightarrow{O F}+\overrightarrow{O F}
$$

[7.B. Misc. Ex. Q. 23]
Sol. Let a, b, c be the position vectors referred to O of the vertices A, B, C of the triangle $A B C$.

Then $\overrightarrow{O A}=a, \overrightarrow{O B}=b$ and $\overrightarrow{O C}=c$
ie. $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=a+h+c$.
Also let D. E. F be the midpoints of the sides $A B$. BC and CA .

Then $\overline{O D}=$ position vector of D

$$
\begin{aligned}
& =\frac{1}{2}(p \cdot v \cdot \text { of } A+p \cdot v \cdot \text { of } B) \\
& =\frac{1}{2}(a+b) .
\end{aligned}
$$

Similarly $\overrightarrow{\mathrm{OE}}=\frac{1}{2}(b+c)$ and $\overrightarrow{\mathrm{OF}}=\frac{1}{2}(c+a)$
$\therefore \overrightarrow{\mathrm{OD}}+\overrightarrow{\mathrm{OE}}+\overrightarrow{\mathrm{OF}}=\frac{1}{2}(a+b)+\frac{1}{2}(b+c)+\frac{1}{2}(c+a)$

$$
=a+b+c=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OC}} \text {, from (i) }
$$

Hence proved.

Example 7. What is the geometric significance of the relation

$$
|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| ?
$$

Sol. Let $\vec{a}=\overrightarrow{A B}$ and D
$\vec{b}=\overrightarrow{\mathrm{AD}}$. Complete the parallelogram $A B C D$. Join $A C$ and
BD.

$$
\begin{aligned}
\overrightarrow{\mathrm{AD}} & =\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}} \\
& =\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AD}}
\end{aligned}
$$

Fig. 3.29.

$$
[\because \quad \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AD}}]
$$

$$
=\vec{a}+\vec{b} . \quad \therefore \quad|\vec{a}+\vec{b}|=|\overrightarrow{\mathrm{AC}}|
$$

$$
\text { Again } \overrightarrow{D B}=\overrightarrow{D A}+\overrightarrow{A B}
$$

$$
=-\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{AD}}=\vec{a}-\vec{b}
$$

$$
\therefore \quad|\vec{a}-\vec{b}|=|\overrightarrow{\mathrm{DB}}|
$$

$$
\text { But } \quad|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|
$$

(Given)

$$
\therefore \quad|\overrightarrow{A C}|=|\overrightarrow{D B}|
$$

or

$$
A C=D B
$$

i.e., diagonals of the parallelogram are equal.
\therefore The parallelogram is a rectangle (by Geometry) and hence $\vec{a} \perp \vec{b}$.
EXP Example 8. Prove that the straight line joining the mid-points of the diagonals of a trapezium is parallel to the paralled sides and half of their differences.

Sol. Let a, b, c, d be the position vectors of the angular points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ respectively w.r.t. any origin of the trapezium $A B C D$ whose sides $A B$ and DC are parallel.

Let i be the unit vector ${ }^{\wedge}$ in the direction of the paral-

Fig. 3.30 .
lel sides $A B$ and $D C$.

$$
\begin{equation*}
\therefore \quad \overline{\mathrm{AB}}=\mathrm{ABi} \text { and } \quad \overline{\mathrm{DC}}=\mathrm{DCi} \tag{i}
\end{equation*}
$$

where $A B$ and $D C$ are scalars.
Let P be the mid point of diagonal $A C$ and Q be the mid-point of diagonal BD.

$$
\text { p.v. of } P=\frac{1}{2}(a+c)
$$

p.v. of $\mathrm{Q}=\frac{1}{2}(b+d)$ respectively.
$\therefore \quad \overrightarrow{P Q}=p . v$. of $Q-p . v$. of P
$=\frac{1}{2}(b+d)-\frac{1}{2}(a+c)$
$=\frac{1}{2}(b-a)-\frac{1}{2}(c-d)$

$$
=\frac{1}{2} \overrightarrow{\mathrm{AB}}-\frac{1}{2} \overrightarrow{\mathrm{DC}}=\frac{1}{2}(\mathrm{AB} i-\mathrm{DC} i)
$$

$$
=\frac{1}{2}(\mathrm{AB}-\mathrm{DC}) i
$$

This slows that the line $P Q$ is parallel to the unit vector i i.e. parallel to the parallel sides $A B$ and $D C$. Also PQ is half of the difference of $A B$ and $D C$.

Hence proved.
57. Example 9. If \vec{a}, \vec{b} are the position vectors of A, B respectively, find that of a point C in AP produced such that $A C=3 A B$; and that of a point D in $B A$ produced such that $B D=2 B A$.

Sol. Lecl O be the origin of reference.

Let \vec{a}, \vec{b} be the position vectors of A. B respectively.

$$
\begin{align*}
\overrightarrow{A B} & =\overrightarrow{O B}-\overrightarrow{O A} \\
& =\vec{b}-\vec{a} \tag{i}
\end{align*}
$$

Fig. 3.31 .
(i) Since $\quad A C=3 A B$

$$
\therefore \quad \overrightarrow{A C}=3 \overrightarrow{A B}=3(\vec{b}-\vec{a}) \quad[\text { Using }(i)]
$$

Now in $\triangle A O C$,

$$
\begin{aligned}
\overrightarrow{O C} & =\overrightarrow{O A}+\overrightarrow{A C} \\
& =\vec{a}+3(\vec{b}-\vec{a})=3 \vec{b}-2 \vec{a}
\end{aligned}
$$

Hence the position vector of C is $3 \vec{b}-2 \vec{a}$.
(ii) It is given that $\mathrm{BD}=2 \mathrm{BA}$

$$
\therefore \quad \overrightarrow{\mathrm{BD}}=2 \overrightarrow{\mathrm{BA}}=-2 \overrightarrow{\mathrm{AB}}=-2(\vec{b}-\vec{a})=2(\vec{a}-\vec{b})
$$

$1 \because$ From (i) $\overrightarrow{\mathrm{AB}}=\vec{b}-\vec{a}]$
In $\triangle O B D$.

$$
\begin{aligned}
\overrightarrow{\mathrm{OD}} & =\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{BD}} \\
& =\vec{b}+2(\vec{a}-\vec{b})=2 \vec{a}-\vec{b}
\end{aligned}
$$

Hence the position vector of D is $2 \vec{a}-\vec{b}$.

Example 10. The position vectors of four points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are $\vec{a}, \vec{b}, 2 \vec{a}+3 \vec{b}, \vec{a}-2 \vec{b}$ respectively. Express the vectors $\overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{DB}}, \overrightarrow{\mathrm{BC}}$ and $\overrightarrow{\mathrm{CA}}$ in terms of \vec{a} and \vec{b}.

Sol. Let O be the origin of reference
We are given the position vectors of four points \wedge B, C and D.

Fig. 3.32.
$\therefore \quad \mathrm{OA}=\vec{a}, \quad \overrightarrow{\mathrm{OB}}=\vec{b}$

$$
\overrightarrow{\mathrm{OC}}=2 \vec{a}+3 \vec{b}, \quad \overrightarrow{\mathrm{OD}}=\vec{a}-2 \vec{b}
$$

(i) $\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OA}}=2 \vec{a}+3 \vec{b}-\vec{a}=\vec{a}+3 \vec{b}$
(ii) $\overrightarrow{\mathrm{DB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OD}}=\vec{b}-(\vec{a}-2 \vec{b})=\vec{b}-\vec{a}+2 \vec{b}$

$$
=3 \vec{b}-\vec{a}
$$

(iii) $\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OB}}=2 \vec{a}+3 \vec{b}-\vec{b}=2 \vec{a}+2 \vec{b}$
(iv) $\overrightarrow{C A}=-\overrightarrow{A C}=-(\vec{a}+3 \vec{b})$.

Example 11. Show that the line segment joining the mid-points of two sides of a triangle is parallel to the third side and is half its. length.

Sol. Let A of $\triangle A B C$ bc considered as the origin of

Fig. 3.33. vectors. Let C_{1}, B, be the mid-points of sides $A B, C A$ respectively.

$$
\text { Then } \begin{aligned}
& \frac{1}{2} \overrightarrow{A B}=\overrightarrow{A B}_{1}, \frac{1}{2} \overrightarrow{A C}=A C_{1} \\
& \text { Now, } \\
& \vec{C}_{1} B_{1}=\overrightarrow{C_{1} A}-\overrightarrow{B_{1} A} \\
&{\overrightarrow{C_{1} B}}_{1}=\frac{1}{2} \overrightarrow{C A}-\frac{1}{2} \overrightarrow{B A}=\frac{1}{2}(\overrightarrow{C A}-\overrightarrow{B A}) \\
&=\frac{1}{2}(\overrightarrow{C A}+\overrightarrow{A B})=\frac{1}{2} \overrightarrow{C B} .
\end{aligned}
$$

The above equality shows that $\overrightarrow{C_{1} B}$, and $\overrightarrow{C B}$ have the same direction ; in other words, $C, B, \| C B$

Further. $\quad C_{1} B_{1}=\left|C_{1} B_{1}\right|=\frac{1}{2}|\overrightarrow{B C}|=\frac{1}{2} B C$.
Ex Example 12. The points D, F:, F divide the sides $\mathrm{BC}, \mathrm{C} \triangle, \mathrm{Al}$ of n triangle in the ratio $1: 4,3: 2$ and 3:7 respectively. Show that sum of the vectors $\overrightarrow{\mathrm{AD}}, \overrightarrow{\mathrm{BE}}, \overrightarrow{\mathrm{CF}}$ is a vector parallel to $\overline{\mathrm{CK}}$ where k divides $A B$ in the ratio $1: 3$

Sol. Let a, b, c be the pesition vectors of the points A. B. C respectively

Then by the question, we have

$$
\begin{aligned}
& \text { p.r. of } \mathrm{D}=\overrightarrow{\mathrm{OD}}=\frac{1 \cdot \vec{c}+4 \cdot \vec{b}}{1+4}=\frac{\vec{c}+4 \vec{b}}{5} \\
& \text { p.v. of } \mathrm{E}=\overrightarrow{\mathrm{OE}}=\frac{3 \cdot \vec{a}+2 \cdot \vec{c}}{3+2}=\frac{3 \vec{a}+2 \vec{c}}{5} \\
& \text { r. of } \mathrm{F}=\overrightarrow{\mathrm{OF}}=\frac{3 \cdot \vec{b}+7 \cdot \vec{a}}{3+7}=\frac{3 \vec{b}+7 \vec{a}}{10} \\
& \text { r. of } \mathrm{K}=\overline{\mathrm{O}} \overline{\mathrm{~K}}=\frac{1 \cdot \vec{b}+3 \cdot \vec{a}}{1+3}=\frac{\vec{b}+3 \vec{a}}{4}
\end{aligned}
$$

Now $\overrightarrow{A D}=\overrightarrow{O D}-\overrightarrow{O A}=\frac{\vec{c}+4 \vec{b}}{5}-\vec{a}=\frac{\vec{c}+4 \vec{b}-5 \vec{a}}{5}$

$$
\bar{B} \vec{E}=\bar{O} \vec{B}-\bar{O} \overline{\mathrm{~B}}=\frac{3 \vec{a}+2 \vec{c}}{5}-\vec{b}=\frac{3 \vec{a}+2 \vec{c}-5 \vec{b}}{5}
$$

$$
\mathrm{CF}=\overrightarrow{\mathrm{OF}}-\overrightarrow{\mathrm{OC}}=\frac{3 \vec{b}+7 \vec{a}}{10}-\vec{c}=\frac{3 \vec{b}+7 \vec{a}-10 \vec{c}}{10}
$$

$$
\therefore \overrightarrow{A D}+\overrightarrow{\mathrm{BE}}+\overrightarrow{\mathrm{CF}}=\frac{\vec{c}+4 \vec{b}-5 \vec{a}}{5}+\frac{3 \vec{a}+2 \vec{c}-5 \vec{b}}{5}
$$

$$
+\frac{3 \vec{b}+7 \vec{a}-10 \vec{c}}{10}
$$

$$
\begin{equation*}
=\frac{1}{10}(3 \vec{a}+\vec{b}-4 \vec{c}) \tag{i}
\end{equation*}
$$

and

$$
\begin{aligned}
\overrightarrow{\mathrm{C}} \overrightarrow{\mathrm{~K}} & =\frac{\vec{b}+3 \vec{a}}{4}-\vec{c}=\frac{\vec{b}+3 \vec{a}-4 \vec{c}}{4} \\
& =\frac{10}{4}\left(\frac{3 \vec{a}+\vec{b}-4 \vec{c}}{10}\right) \\
& \left.\left.=\frac{5}{2}(\overrightarrow{\mathrm{D}}+\overrightarrow{\mathrm{BE}}+\overrightarrow{\mathrm{C}}) \quad \right\rvert\, \mathrm{U} \operatorname{sing}(i)\right)
\end{aligned}
$$

Hence $\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{BE}}+\overrightarrow{\mathrm{CF}}$ is parallel $\mathrm{N}, \overrightarrow{\mathrm{CK}}$.

Example 13. If a and b are two vectors represented by $O A$ and $O B$, and if C is a point in the line AB such that $\mathrm{AC}: \mathrm{CB}=m_{1}: m_{2}$, that is $m_{2} \mathrm{AC}$ $=m_{1}, \mathrm{CB}$, where m_{1} and m_{2} are positive real numbers then,

$$
c=\mathrm{OC}=\frac{m_{2} a+m_{1} b}{m_{1}+m_{2}} .
$$

Proof. From Fig. 3.34

$$
O A=O C+C A
$$

Therefore, $m_{2} \mathrm{OA}=m_{2} \mathrm{OC}+$ $m_{2} \mathrm{CA}$, since m_{2} is a positive real number.
Also, $\quad \mathrm{OB}=\mathrm{OC}+\mathrm{CB}$ or, $\quad m_{1} \mathrm{OB}=m_{1} \mathrm{OC}+m_{0}$ CD, since m_{1} is a positive real number.
...(ii)

Fig 3.34.

Adding (i) and (ii), we get

$$
m_{2} \mathbf{O A}+m_{1} \mathbf{O B}=\left(m_{2}+m_{1}\right) \mathrm{OC}+m_{2} \mathrm{CA}
$$

$$
\begin{equation*}
+m_{1} \mathrm{CB} \tag{iii}
\end{equation*}
$$

$$
\text { But } \begin{aligned}
m_{2} \mathrm{AC} & =m_{1} \mathrm{CB}, \\
m_{2} \mathrm{CA}+m_{1} \mathrm{CB} & =0
\end{aligned}
$$ or

Hence, from (iii), we get
or

$$
\begin{gathered}
m_{2} \mathrm{OA}+m_{1} \mathrm{OB}=\left(m_{2}+m_{1}\right) \mathrm{OC} \\
\text { or } \quad c=\mathrm{OC}=\frac{m_{2} \mathrm{OA}+m_{1} \mathrm{OB}}{m_{2}+m_{1}}=\frac{m_{2} a+m_{1} b}{m_{2}+m_{1}}
\end{gathered}
$$

Note: If $m_{2}=m_{1}$, that is, if C is the mid-point of $A B$, then

$$
O A+O B=2 O C
$$

or

$$
c=\mathrm{OC}=\frac{\mathrm{OA}+\mathrm{OB}}{2}=\frac{a+b}{2} .
$$

Example 14. Show that the medians of a triangle are concurrent.

Sol. Let the position vectors of the vertices A. B. C of a triangle $A B C$ with respect to any origin be a. b, c.

The position vectors of the mid-points D. E. For the sides are

Fig. 3.35.

$$
\frac{1}{2}(b+c), \frac{1}{2}(c+a), \frac{1}{2}(a+b) \text { respectively. }
$$

Position vector of the point G dividing $A D$ in the ratio 2 : 1 is

$$
\begin{equation*}
\frac{2 \cdot \frac{1}{2}(b+c)+1 \cdot a}{2+1}=\frac{1}{3}(a+b+c) \tag{i}
\end{equation*}
$$

By symmetry, we see that this point also lies on the other two medians.

Thus the medians of a triangle are concurrent. Also the position vector of the point of concurrence, is $1 / 3$ (a, b, c): a, b, c being the position vectors of the vertices of the triangle.

The point of concurrence of the medians of a triangle is called its centroid.

Example 15. $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are the vectors forming the consecutive sides of a quadrilateral. Show that a necessary and sufficient condition that the figure be a parallelogram is that $\vec{a}+\vec{c}=\overrightarrow{0}$ and this implies $\vec{b}+\vec{d}=\overrightarrow{0}$.

Sol. $\triangle B C D$ is a quadrilateral.

$$
\begin{aligned}
& \overrightarrow{\mathrm{AB}}=\vec{a}, \overrightarrow{\mathrm{BC}}=\vec{b}, \overrightarrow{C D}=\vec{r} \\
& \overrightarrow{\mathrm{DA}}=\vec{d}
\end{aligned}
$$

Fig. 3.36.

$$
\overrightarrow{A B}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}=\vec{a}+\vec{b}
$$

Also

$$
\therefore \quad(\vec{a}+\vec{b})+\vec{c}=-\vec{d}
$$

$$
\begin{equation*}
\therefore \quad \vec{a}+\vec{b}+\vec{c}+\vec{d}=\overrightarrow{0} \tag{i}
\end{equation*}
$$

Now if $\triangle B C D$ is a parallelogram. then, $A B$ and $D C$ are parallel and equal.

$$
\therefore \overrightarrow{\mathrm{AB}}=-\overrightarrow{\mathrm{CD}}, \quad \therefore \quad \vec{a}=-\vec{c} \quad \text { or } \quad \vec{a}+\vec{r}=\overrightarrow{0}
$$

Hence the condition is necessary. Also with the help of (i), we get in this case

$$
\vec{b}+\vec{d}=\overrightarrow{0} .
$$

Sufficient. Since $\vec{a}+\vec{c}=\overrightarrow{0}, \quad \therefore \quad \vec{a}=-\vec{c}$

$$
\begin{array}{ll}
\therefore & \overrightarrow{A B}=-\overrightarrow{C D} \\
\therefore & \overrightarrow{A B}=\overrightarrow{D C}
\end{array}
$$

Thus $\triangle B$ and $D C$ are parallel and equal.
When $\vec{a}+\vec{c}=\overrightarrow{0}$, we have from (i), $\vec{b}+\vec{d}=\overrightarrow{0}$.

$$
\therefore \quad \vec{b}=-\vec{d}
$$

$$
\therefore \quad \overrightarrow{B C}=-\overrightarrow{D A}, \quad \therefore \quad \overrightarrow{B C}=\overrightarrow{A D} .
$$

Hence. $\triangle B C D$ is a parallelogram

Example 16. Show that points
$\bar{a}+2 \bar{b}+3 \bar{c},-\bar{a}+2 \bar{b}-4 \bar{c}, 3 \bar{a}+3 \bar{c}, 2 \bar{a}+3 \bar{b}+10 \bar{c}$
are coplanat, $\bar{a}, \bar{b}, \bar{c}$ being any three non-zero, non-coplanar vectors.

Sol. Let the four points in order be A, B, C, D and let O be the origin. Then

$$
\begin{aligned}
& \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}=-2 \bar{a}-7 \bar{c} \\
& \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OA}}=2 \bar{n}-2 \bar{b} \\
& \overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{OD}}-\overrightarrow{\mathrm{OA}}=\bar{a}+\bar{b}+7 \bar{c} .
\end{aligned}
$$

The given points will be coplanar if $\overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{AD}}$ are coplanar. In that case we can find scalars x and y such that

$$
\begin{array}{rlrl}
-2 \bar{a}-7 \bar{c} & =x(2 \bar{a}-2 \bar{b})+y(\bar{a}+\bar{b}+7 \bar{c}) \\
\Rightarrow & -2 & =2 x+y, 0=-2 x+y,-7=7 y
\end{array}
$$

The values $x=-1 / 2, y=-1$ satisfy all the three equations. Thus we can express one vector $\overrightarrow{\mathrm{AB}}$ as linear combination of the other two vectors $\overrightarrow{A C}$ and $\overrightarrow{\mathrm{AD}}$.
$\therefore \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{AC}}, \overrightarrow{\mathrm{AD}}$ are coplanar and hence the given points are coplanar.

Example 17. Find by vector method the perimeter of the triangle whsoe vertices are the points $(3,1,5),(-1,-1,9)$ and $(0,-5,1)$.

Sol. Let the vertices A, B and C of a triangle $A B C$ be the points $(3,1,5),(-1,-1,9)$ and $(0,-5,1)$ respectively. Then the position vectors of A, B and C referred to $(0,0,0)$ as origin are

$$
\overrightarrow{\mathrm{OA}}=3 \hat{i}+\hat{j}+5 k ; \quad \overrightarrow{\mathrm{OB}}=-\hat{i}-\hat{j}+9 \hat{k}
$$

and $\quad \overrightarrow{O C}=-5 j+k$

$$
\therefore \quad \overrightarrow{A B}=p . v . \text { of } B-p . v . \text { of } A=\overrightarrow{O B}-\overrightarrow{O A}
$$

$$
=(-\hat{i}-j+9 k)-(3 \hat{i}+j \dot{j}+5 k)
$$

$$
==-4 \hat{i}-2 \hat{j}+4 \hat{k}
$$

Similarly, $\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OB}}=(-5 j+k)+(-i-j+9 k)$

$$
=\quad=\hat{i}-4 \hat{j}-8 \hat{k}
$$

and $\quad \overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{OA}}-\overrightarrow{\mathrm{OC}}=(3 \hat{i}+\hat{j}+5 k)-(-5 \hat{j}+k)$

$$
=3 \hat{i}+6 \hat{j}+4 k
$$

$$
\therefore \quad A B=|\overrightarrow{A B}|=\sqrt{(-4)^{2}+(-2)^{2}+4^{2}}
$$

$$
=\sqrt{16+4+16}=6
$$

$$
B C=|\overrightarrow{B C}|=\sqrt{1^{2}+(-4)^{2}+(-8)^{2}}=\sqrt{1+16+64}=9
$$

$$
C A=|\overrightarrow{C A}|=\sqrt{3^{2}+6^{2}+4^{2}}=\sqrt{9+36+16}=\sqrt{61}
$$

\therefore The required perimeter $=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$

$$
=6+9+\sqrt{61}=15+\sqrt{61} .
$$

Example 18. Write down the equation of the line through the points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$.

Sol. The position vectors of P and Q are respectively

$$
\begin{aligned}
& \overrightarrow{\mathrm{OP}}=x_{1} \vec{i}+y_{1} \vec{j}+z_{1} \vec{k} \\
& \mathrm{OQ}=x_{2} \vec{i}+y_{2} \vec{j}+z_{2} \vec{k}
\end{aligned}
$$

If R is any point with position vector

$$
\overrightarrow{\mathrm{OR}}=x \vec{i}+y \vec{j}+z \vec{k}
$$

then there exists a real number λ such that

$$
\mathrm{PR}: \mathrm{RQ}=\lambda: 1 . \text { Then }
$$

$$
x \vec{i}^{\prime}+y \overrightarrow{j^{\prime}}+j \overrightarrow{k^{\prime}}=\overrightarrow{\mathrm{OR}}
$$

$$
=\frac{x_{1} \vec{i}^{\prime}+y_{1} \vec{j}^{\prime}+z_{1} \vec{k}+\lambda\left(x_{2} \vec{i}^{\prime}+y_{2} \vec{j}^{\prime}+\vec{z}_{2} \vec{k}^{\prime}\right)}{1+\lambda}
$$

Hence

$$
x=\frac{x_{1}+\lambda x_{2}}{1+\lambda}, y=\frac{y_{1}+\lambda y_{2}}{1+\lambda}, z=\frac{z_{1}+\lambda z_{2}}{1+\lambda}
$$

i.c. $x-x_{1}=\frac{\lambda}{1+\lambda}\left(x_{2}-x_{1}\right), \quad y-y_{1}=\frac{\lambda}{1+\lambda}\left(y_{2}-y_{1}\right)$,

$$
z-z_{1}=\frac{\lambda}{1+\lambda}\left(z_{2}-z_{1}\right)
$$

Eliminating λ, we get

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

which is the equation of the line PQ since any $\mathrm{R}(x, y$, z) therein satisfy these equations.
tsf Example 19. Find the unit vectorin the direction of the vector $r_{1}-r_{2}$, where $r_{1}=\hat{i}+2 \hat{j}-\hat{k}, r_{2}=$ $3 \hat{i}+\hat{j}-5 \hat{k}$.

$$
\begin{array}{ll}
\text { Sol. Let } & \left.\begin{array}{rl}
\vec{r} & =\vec{r}_{1}-\vec{r}_{2} \\
& =(\hat{i}+2 \hat{j}-\hat{k})-(3 \hat{i}+j-5 k) \\
& =(1-3) \hat{i}+(2-1) \hat{j}+(-1+5) k \\
\therefore & \\
& \vec{r}
\end{array}\right)=-2 \hat{i}+\hat{j}+4 k \\
& |\vec{r}|=\sqrt{(-2)^{2}+(1)^{2}+4^{2}}=\sqrt{4+1+16}=\sqrt{21}
\end{array}
$$

\therefore a unit vector in the direction of vector \vec{r}

$$
\begin{aligned}
& =\frac{\vec{r}}{|\vec{r}|}=\frac{-2 \hat{i}+\hat{j}+4 k}{\sqrt{21}} \\
& =\frac{-2}{\sqrt{21}} \hat{i}+\frac{1}{\sqrt{21}} \hat{j}+\frac{4}{\sqrt{21}} \hat{k} .
\end{aligned}
$$

ADDITIONAL PRACTICE EXERCISE 3 (b)

1. Show that the four points \triangle, B, C, D with position vetors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ respectively such that $3 \vec{a}-2 \vec{b}+5 \vec{c}-6 \vec{d}=0$, arc coplanar. Also, find the position vector of the point of intersection of the lines $A C$ and $B D$.
2. Show that the four points $P, Q, R . S$ with position vectors $\vec{p}, \vec{q}, \vec{r}, \vec{s}$ respectively such that $5 \vec{p}-2 \vec{q}+6 \vec{r}-9 \vec{s}=0$, are coplanar. Also find the position vector of the point of intersection of the lines PR and QS.
3. Show that the four points A, B, C, D with position vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ respectively such that $3 \vec{a}+4 \vec{b}-5 \vec{c}-2 \vec{d}=0$ are coplanar. Also, find the position vector of the point of intersection of the lines $A B$ and $C D$.
4. Show that the four points M, N, R, S with position vectors $\vec{n}, \vec{n}, \vec{r}, \vec{s}$ respectively such that $2 \vec{m}+3 \vec{n}-4 \vec{r}-\vec{s}=0$ are coplanar. Also, find the position vector of the point of intersection of the lines $M N$ and $R S$.
5. In a regular hexagon $A B C D E F$. prove that

$$
\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{AF}}=3 \overrightarrow{\mathrm{AD}} .
$$

6. If two concurrent foreses are represented by $\lambda \overrightarrow{A O}$ and $\mu \overrightarrow{O B}$ prove that their resuitant is $(\lambda+\mu)+\overrightarrow{O C}$, where C divides $A B$ such that $\lambda \mathrm{AC}=\mu \mathrm{CB}$.
(M. Imp.)
7. Prove that
(i) $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$
(ii) $|\vec{a}|-|\vec{b}| \leq|\vec{a}-\vec{b}|$
(iii) $|\vec{a}-\vec{b}| \leq|\vec{a}|+|\vec{b}|$.
8. If \vec{a} and \vec{b} are the vectors forming consecutive sides of a regular hexamon $A B C D E F$ express the vectors $\overrightarrow{C D}, \overrightarrow{D E}, \overrightarrow{E F}, \overrightarrow{F A}, \overrightarrow{A C}, \overrightarrow{A D}, \overrightarrow{A E}$ and $\overrightarrow{\mathrm{CF}}$ in terms of \vec{a} and \vec{b}.
9. ABCDE is a pentagon. Prove that

$$
\overrightarrow{A B}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CD}}+\overrightarrow{\mathrm{DE}}+\overrightarrow{\mathrm{EA}}=\overrightarrow{0}
$$

10. Prove that the sum of all the vectors drawn from the centre of a regular octagon to its vertices is the zero vector.
11. Find the coordinates of the point which divides the line joining $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ in the ratio $m:!$.
12. Show that the three medians of a triangle meet at a point called the centroid of the triangle which trisects each of the medians.
13. D, E, F are the mid-points of the sides of a triangle $\triangle B C$. Show that for any point O.

$$
\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O D}+\overrightarrow{O E}+\overrightarrow{O F}
$$

14. D. E. F are the middle points of the sides BC, $C A$. $\triangle B$ respectively of a triangle $\triangle B C$. Show that
(i) EF is parallel to BC and half of its length.
(ii) The sum of the vectors $, \overrightarrow{\mathrm{AD}}, \overrightarrow{\mathrm{BE}}, \overrightarrow{\mathrm{CF}}$ is zero.
(iii) The mediams have a common point of trisection, i.e., they are concurrent.
15. ABCD is a parallelogram and P is the intersection of the dingonals: () is any poine. Show that

$$
\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}=4 \overrightarrow{O P}
$$

16. Prove that the straightine joining the mid-points of he diagonals of a trapezium is parallel to the parallel sides and half their difference.
17. The sides of a parallelogram are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \dot{j}+3 \hat{k}$. Find the unit vectors parallel to the diagonals.
18. If the position vectors of P. Q. R, S are

$$
2 \hat{i}+4 \hat{k} .5 \hat{i}+3 \sqrt{3} \hat{j}+4 \hat{k},-2 \sqrt{3} \hat{j}+k .2 \hat{i}+k
$$

prove that RS is parallel to P'() and is two-third of $P(Q)$
19. $P(2,-1,3),(2(8,5,-6)$ and $R(4,1,(1)$ are the vertices of a triangle. Show that $P Q=3 P R$ and the direction cosines of $Q R$ are

$$
\frac{-2}{\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{-3}{\sqrt{17}}
$$

20. If the position vectors of P and Q are $2 \hat{i}+3 \hat{j}+7 k$ and $4 \hat{i}-3 \hat{j}-4 \hat{k}$ respectively. find $\overrightarrow{P Q}$ and determine its direction cosines.
21. Show that the three points having position vectors $\vec{a}-2 \vec{b}+3 \vec{c} \cdot-2 \vec{a}+3 \vec{b}+2 \vec{c},-8 \vec{a}+13 \vec{b}$ are coilinear, whatever be $\vec{a}, \vec{b}, \vec{c}$.
22. Show that the vectors $(\vec{a}-2 \vec{b}+3 \vec{c})$, $(\vec{a}-3 \vec{h}+5 \vec{c})$ and $(-2 \vec{a}+3 \vec{b}-4 \vec{c})$ arc coplanar where $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar.
23. Show that the vectors $(2 \vec{a}-\vec{b}+3 \vec{c}) \cdot(\vec{a}+\vec{b}-2 \vec{c})$ and $(\vec{a}+\vec{b}-3 \vec{c})$ are not coplanar.
24. Show that the vectors $(2 \hat{i}-\hat{j}+k),(\hat{i}-3 \hat{j}-5 \hat{k})$ and $(3 \hat{i}-4 \hat{j}-4 k)$ are coplanar.
25. Prove that the points with position vectors $(-j-k) \cdot(4 \hat{i}+5 j+k), \quad(3 \hat{i}+9 j+4 k) \quad$ and $(-4 \hat{i}+4 \hat{j}+4 k)$ are coptinar.

MATHEMATICAL MODELING

G Ravindra
RIE (NCERT), MYSORE

A mathematical model is a simplified mathematical representation of a real situation with a mathematical system (a model is something which represents something else). Although a real situation involves a large number of variables and constraints, usually a small fraction of these variables and constraints truly dominate the behaviour of the real system. Thus the simplification of the real system should primarily concentrate on identifying the dominant variables or constraints as well as other data pertinent to problem solving. The assumed real system is abstracted from the real situation by identifying dominant factors (variables, constraints etc) that control the behaviour of the system and such a system always serves as a data for mathematical modeling. A mathematical model is robust if small changes in variables lends to a small change in the behaviour of the model.

The set of natural numbers with usual addition and multiplication form a good mathematical model of a real situations concerned with counting process. Vectors are excellent mathematical models that predict and explain many physical phenomena with perfect accuracy. The concept of direction which is so vague in the physical world is precisely explained by identifying the concept of vector as that of location or coordinate system. (Such an identification is guaranteed by the famous result that every finite dimensional vector space is isomorphic to Euclidean space R^{n}). We will discuss in greater details some more models in a later section.

Mathematical models are normally thought of as instrument for selecting a good course of action from the set of courses of action that is covered by the model (here a course of action could be a strategy of selecting a content or some such thing). However the models have another very important use: they can be used heuristically (that is an instruments of discovery). They provide an effective tool with which one can explore the structure of a problem
and uncover possible course of action that were previously overlooked. For example vectors as models have lead to discovery of several outstanding and useful results in the vectors space theory. The models concerned with drawing of implication diagram (Venn diagram) of given concepts give rise to some very interesting conjectures and their solution later. A good mathematical model presents many features or many predictors of the data that is, a good mathematical model is one in which many dependent variables are expressed through functions.

Types of models:

There are three types of models which are commonly used: iconic, analogue, and symbolic.

Iconic models are images; they represent the relevant properties of the real situations. For example, Photographs, maps, model aeroplane, drawings of some mathematical objects ets. Iconic model of the sun and its planets in planetorium or model of a field map is scaled down where as a model of atom is scaled up. Iconic models are generally specific, concrete and difficult to manipulate for experimental purposes.

Analogues use one set of properties to represent another set of properties. For example graphs are analogues that use geometric magnitudes and location to represent a wide variety of variables and the relationship between them. Contour lines on a map are analogues of elevation. Bar diagrams are analogues of some statistical information. Flow chart is an analogue of some logical sequence. In general analogues are less specific, less concrete but easier to manipulate than iconic models.

Symbolic models use symbols, numbers to represent variables and relationship between them. Hence they are the most general and abstract type of models. Linear programming model, simple harmonic motion model are some of the examples of symbolic models. Symbolic model are most widely used and result oriented, and the other models (iconic and analogue)
are sometimes used as initial approximations which are subsequently refined in to a symbolic model. Symbolic models take the form of mathematical relationships (usually equations or inequations) that reflect the structure of that which they represent.

Process of Modeling

The process of modelling is depicted in the following figure

The first step is formulation of the model itself. This step calls for identification of assumptions that can and should be made so that the model conclusions are as accurate as expected. The selection of the essential attributes of the real system and omission of the irrelevant ones require a kind of selective perception which is more an art than a science and which cannot be defined by any precise methodology.

The second step is to analyse the formulated model and deduce its conclusions. It may involve solving equations, finding a good suitable algorithm, running a computer program, expressing a sequence of logical statements - whatever is necessary to solve the problem of interest related to the model.

The final step, interpretation involves human judgement. The model conclusions must be translated to real world conclusions cautiously without discrepancies between the model and its real world referent.

Mathematical Modeling in contrast to experimentally based Scientific Method.
The following figure depicts the process of scientific method.

Here first step is development of a hypothesis which is arrived at generally by induction following a period of informal observation. An experiment is then devised to test the hypothesis of the experiments, if the result contradicts the hypothesis, the hypothesis is revised and retested. The cycle continues until a verified hypothesis or 'theory' is obtained. The first result of the process is Truth, Knowledge or Law of Nature. In contrast to model conclusions theories are independently verifiable statements about factual matters. Models are invented; theories are discovered. Thus modeling is very important but certainly not unique method to deal with complicated real world.

Some mathematical models.

1. (a number theoretic model)

In a party of people with atleast two persons, we are always assured of atleast two persons who know same number of persons in the party.
Here the real situation is the party of people in which a person may have an acquaintance with another person. The conclusion is that there are atleast two persons having the same number of acquaintances in the party We now proceed to model the situation as follows:

Let $P_{1}, P_{2} \ldots \ldots \ldots P_{n}$ be the persoris in the party and let d_{i} be the number of persons known to P_{i} in the party. Here once the identification of the variables d_{i} is done, the rest follows by contrapositive argument.

If the conclusion is wrong then there is a set S of $n-1$ persons in the party such that each has distinct number of acquaintances and each knows atleast 1 and atmost $n-2$ members in S. That is, each number d_{i} corresponding to a member in S in unique, and atleast 1 and atmost $n-2$. This amounts to getting $n-1$ distinct integers in the set $\{1,2, \ldots \ldots ., n-2\}$, a contradiction.

Thus we arrived at the model conclusion by logical sequence of arguments

2. (a maxima - minima model)

Suppose an open box is made from a rectangular piece of tin a sq.mts. by b sq.mts. by cutting out equal squares at each corner and folding up the remaining flaps. What size square should be cut out so that the box will have maximum volume ?

We first draw analogue of the given situation as a prelude to construction of symbolic model (see the following figure).

Analogue of the given situation:

Volume of the open box $=V(x)=x(2-2 x) .(v-2 x)$
Surface area $=a b-4 x^{2}$

First we identify the most significant variable in the given situation. Let \times be the length of a side of any of these four squares (all of which are of equal area). The objective is to find a value for x which maximizes $V(x)=x(a-2 x)$ $(b-2 x) . \quad V=0$ and $V^{\prime}<0$ imply that the square of dimension $\left(a+b+\sqrt{a^{2}+b^{2}-a b}\right) / 6$ be cut out so that the box has maximum volume. Here we note that maximization of surface area $a b-4 x^{2}$ need not imply maximization of volume $V(x)=(a-2 x)(b-2 x)$.

Applying the same method to the cutout squares, we can make new open boxes with optimal utility. Thus, this model provides a method and solution to make open boxes with optimal use of given rectangular tin sheet.

3. Graphs (Networks) as Mathematical Model:

A graph (or network) is a non-empty set V together with an irreflexive and symmetric relation E on V. The elements of V are marked as vertices and the elements of E are marked as edges (not necessarily straight) joining the vertices in a pair belonging to E. Two vertices are adjacent if they are joined by an edge. For example, if $V=\{a, b, c, d\}$ and $E=\{(a, b),(a, d),(b, d),(b, c)\}$ the pictorial representation of the graph is as that in the following figure 1.

Fig. 1

Fig. 2

Since the graphs are the most generalized algebraic structure, they often work as excellent models of many real situations. The following examples are just three of those several situations which are easily modeled as graphs.
(i) Shortest path problem: Suppose that we have a map of the form shown in the above figure 2 in which the letters A-L refer to towns which are connected by roads. If the lengths of these roads are as marked in the diagram what is the length of the shortest path from A to L ?

There are several methods which can be used to solve this problem. Possibly the simplest of these is to make a model of the graph by knotting together pieces of a string whose lengths are proportional to the lengths of the roads. In order to find the shortest path we hold the knots corresponding to A and L and pull tight and measure the distance corresponding to the tight strings. However there is a more mathematical way of approaching this problem using graph theory.
(ii) Scheduling Problem: Consider a collection $C=\left\{C_{i}\right\}$ of course being offered by a major university. Let T_{i} be the time interval during which course C_{i} is to take place. We would like to assign courses to classrooms, so that no two courses meet in the same room at the same time.

We treat C_{i} as the vertices of the graph G in which C_{i} and C_{i} are joined by an edge if and only if T_{i} and T_{j} have not empty intersection. We colour the vertices of G such that no two vertices joined by an edge have the same colour. Here each colour corresponds to a classroom. For such graph (called interval graphs) there is an efficient algorithm for colouring its vertices with minimum number of colours. In fact for such graphs the minimum number of colours is equal to the maximum number of mutually adjacent vertices.

Tg

Time Intervals
(iii) Shortage of Chemicals Problem: Suppose $c_{1}, c_{2}, \ldots \ldots \ldots, c_{n}$ are chemical compounds which need to be refrigerated under closely monitored conditions. If a compound c_{i} must be kept at a constant temperature between t_{i} and t_{i}^{\prime}, the problem is to find minimum number of refrigerators needed to store all the compounds?

Let G be the interval graph with vertices $c_{1}, c_{2}, \ldots \ldots \ldots c_{n}$ and connect two vertices by a line whenever the temperature intervals of their corresponding compounds intersect. It is not difficult to verify that the intervals ($\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}}$) satisfy The Helly property (A family of subsets of a set X is said to satisfy the Helly property if pairwise nor-empty intersection of members of S imply total non empty intersection of the members of S).

If Q is a clique of G, then the time intervals corresponding to its vertices will have a common point, say t, by Helly property. Therefore a refrigerator set at a temperature t will be suitable for storing the chemicals representing the vertices of Q. Thus a solution to the minimization problem will be obtained by finding minimum clique cover of G. (A clique is a graph in which any two vertices are joined by a line. In fig. 1 , the sub graphs on $\{a, b, d\}$ and $\{b, d, c\}$ will provide a minimum clique cover).

Mathematical modeling plays a great role in teaching Mathematics

Some of the most important components of teaching a concept in mathematics are:
(i) Motivation for the concept
(ii) Simplification of the concept
(iii) Problem solving.

Motivation for learning a mathematical concept may be within the mathematics itself or outside the mathematics and a real world situation. For instance, it is very difficult to choose an example of a infinite set from a real world situation; so in such a situation the set of natural numbers can be taken as a motivating factor for the concept of 'infinite sets'. On the other hand a
great deal of real world motivate and exemplify several concepts like vector, derivative, integral etc.

By simplication of a concept C we mean breaking of the concept C into simpler sub concepts or more precisely it is identification of meaningful restrictions f on C such that C_{1} (the restricted C) has a simpler characterization than that of C . Once a concept is simplified into $\mathrm{C}_{1}, \mathrm{C}_{2} \ldots, \mathrm{C}_{k}$, one is naturally tempted to find various inter-relations among the sub concepts C_{1} and that is how the concept C in particular and mathematics in general becomes richer.

Content in mathematics can be analysed into content proper (what to teach) and its inner organization, the latter being most closely related to leaching methods. Teaching methods can be analysed into presentation of the subject matter (use of mathematical models etc) and organization of class room work, the former being most closely related to content and mathematical modeling. The analogue model of this para is as follows:

TEACHING MATHEMATICAL CONCEPTS

PROF. K. DORASAMI

The study of mathematics deals with certain objects such as Natural numbers, Circles; Triangles, Functions and Proof.

In learning about these mathematical objects, we are concerned with what these objects are. For example,

1. What an angle is, how to call whether or not something is a rectangle, what is the definition of a parallelogram.
2. What are the relations among mathematical objects.

When we learn what an object is, we are learning a concept of that object.

When we teach students what an object is, and how to identify it, we are teaching a concept of that object.

Concepts are the most basic learnable objects and the first things learned by young children.

By means of concepts, other concepts and other kinds of subject matter are learned.

A concept is the meaning of a term used to designate the concept.
According.to Hunt, Marin, and Stone (1966), "A concept is a decision rule which, when applied to the description of an object, specifies whether or
not a name can be applied". Thus a student who knows the definition of a circle as the locus of points in a plane from a given point in the plane has a rule that can be used to teil whether any given object is to se called a circle.

Moves in Teaching a Concept

Some concepts are taught, for others the term designating the concepts are used.

For example, a teacher who had deliberately taught a concept of a finite set might not teach a concept of an infinite set but would simply use the term.

1. Defining

Because most concepts in mathematics are precise, definitional moves can be used.

Definition is an elegant move since it employs minimum language. But the very elegance may be a block to learning.

Definitions are of:en written in the form (1) is a (2) such that (3).
The first space is filled by the term being defined, the second space is filled by a term denoting: a superset in which the set of objects denoted by the term defined as included, and third space is filled by one or more conditions that differentiate the set of objects denoted by the term defined from all the other subsets of the superset.

2. Status a Sufficient Condition or Sufficient Condition Move

It is the form in which a characteristic or a property of an object is stated that identifies it as a sufficient condition.

A rhombus is an equilateral parallelogram. Being an equilateral parallelogram is sufficient for being rhombus.

The sufficient condition is more clear in the statements.
"If a quadrilateral is an equilaterał parallelogram, it is a rhombus".
"If a parallelogram is a square, it is a rhombus". Other forms are:
A triangle is a right angled triangle provided that it has one right angle.
The logic of the move of sufficient condition enables a student to find examples of objects denoted by a concept, assuming such an example exists.

3. Giving One or More Examples

Examples are objects denoted by the concept i.e. members of the set determined by the concept.

Examples clarify concepts because they are definite, specific, and if well chosen, familiar.

Teachers frequently elicit examples of concepts from students to decide whether the students have acquired the concepts.

Examples cannot be given for every concept. For example, even prime number greater than 2, greatest integer and for self-contradictory concepts like square circle, six-sided pentagon.

4. Giving an Example Accompanied by a Reason Why it is an Example

Accompanying an example with a reason that it is an example is an effective move because the reason is a sufficient condition.

This move is helpful to slow learners, because the logical connection is made explicit by supplying a reason.
$4 \dot{x}^{2}+9 y^{2}=36$ is an ellipse because it is of the form $a^{2} x^{2}+b^{2} y^{2}=a^{2} b^{2}$ 40 is an even number since it is divisible by 2.

5. Comparing and Contrasting Objects Denoted by the Concept

By comparing objects of the concept being taught with objects with which students are familiar, a bond of association can be established between familiar and less familiar.

In teaching a concept of parallelogram, the teacher may compare it with non-parallelogram (trapezium)

Comparison points out similarities. But since objects compared are not identical, a contrast identifies some of the differences, if not all.

If a teacher has taught a concept of equal set and then teaches a concept of equivalent set, the next step may be contrast these two concepts in order that the students do not miss the distinction between them

6. Giving a Counter Example

A counter example is an example that disproves a false definition of a concept:

Two kinds of counter examples are possible for an incorrect definition.

1. Give a number (an example) of the set determined by the term defined that is not a member of the set determined by the defining expression.
2. Given a member (an example) of the set determined by the defining expression that is not a member of the set determined by the term defined.

Though this kind of move is effective in sustaining thinking and ultimately facilitating comprehension of the desired concept, students may
feel that the teacher was badgering and embarrassing them. Teachers have to exercise good judgement when deciding how frequently to use counter example moves.

7. Stating a Necessary Condition

If two sides are parallel, a quadrilateral is a parallelogram. This statement indicates the , absence of a necessary condition for a quadrilateral to be a parallelogram.

One form of the definition of a parallelogram. With the necessary condition is,

If both pairs of opposite sides are parallel, a quadrilateral is a parallelogram.

Another form in which a necessary condition is stated uses only if.
Example: A quadrilateral is a parallelogram only if both pairs of sides are parallel.

A necessary condition move enables a student to identify examples of objects not denoted by a concept.

8. Stating a Necessary and Sufficient Condition

This move is used, if a condition by which objects can be denoted by a concept is both necessary and sufficient condition. One form for this is the explicit use of the terms necessary and sufficient, as
it.is both necessary and sufficient that a parallelogram be equilateral for it to be a rhombus. Another form is the use of if ard only if. Thus the statement is equivalent to,

A parallelogram is a rhombus if and only if it is equilateral.
The definition in terms of necessary and sufficient condition proceeds by subsuming the set of objects to be defined from all other subsets of the superset. Thus, a definition of a rhombus might be;

A parallelogram hàving pair of adjacent, congruent sides is a rhombus.
The definition implies that there are two conditions necessary for an object to be a rhombus:

1. being a parallelogram. and
2. having a pair of adjacent congruent sides. The combination of these two necessary condition is sufficient.

But for some students, the necessary and sufficient conditions in the above statement may not be clear. For them, the teacher can make use of if and only if form.

A sufficient condition move enables a student to identify examples and a necessary condition miove enables students to identify non-examples of a concept. A combination of these enables students to discriminate both examples and non-examples of a concept.

An object not in the set determined by a concept is a non-example of the concept.

9. Giving Non-examples

Like the move of giving examples, giving non-examples helps to clarify a concept. Definition of a concept following examples and non-examples of the concept is a common move for a teacher.
10. Giving a Non-example Accompanied by a Reason Why it Is a Non-example

This move is similar to that of giving an example together with a reason that is an example. The reason that accompanies the non-example is the failure to satisfy a necessary condition.

Its logic is that of conditional reasoning,
"If a quadrilateral is not a parallelogram, it is not a rhombus. This quadrilateral is not a parallelogram. Therefore it is not a rhombus".

Strategies of Teaching a Concept

A strategy is defined as a temporal sequence of moves.
So, theorétically, there are thousands of strategies for teaching a concept, of which some are logically impossible.

Examples of Some Strategies of Teaching a Concept

1. Definition - Example - Example with a reason

- Non-example with a reason

2. Example - Non-example - Comparison and Contrast - Characteristic Definition - Example with a reason - Non-example with a reason.

In such strategies, the definition identifies the necessary and sufficient conditions, examples clarifies them and reasons reinforce necessary and sufficient conditions.

Use of Concepts

1. Knowledge of a concept helps in classifying given objects into examples and non-examples of the concept.

Since we can classify, we can discriminate. For example, a student who has concept of thombus can pick out rhombus from other quadrilaterals. 2. Knowledge of concepts helps in communication.

Communigation breaks when people do not have the knowledge of certain concepts.

A definition of a term tells you both how to use the term and also how to avoid using it. Example: A rhombus is an equilateral parallelogram.

This definition tells that a rhombus means, "an equilateral parallelogram". And if tine students do not have the concept of an equilatera! parallelogram, the teacher can think of the definition -

An equilateral paralielogram is a four sided figure whose sides are line segments having the same length.
3. Concepts helps in generalisation.
4. Concepts help in discovery of new knowledge.

What is Action Research?

It is a problem-solving approach which heips a practitioner to perceive, understand and assess the situation, and it further facilitates a systematic analysis and working out plausible solutions for the unsatisfactory concition. With this, dfferent alternative solutions can be tried out and finally an intervention can be worked out with which the problem can be solved sacisfactorily.

STEPS IN THE ACTION RESEARCH

1. Perception of the Problemfdissatisfied state.
2. Analysis of the Probiemidissatisfied state.
3. Understanding the dymamics / causes.
4. Development of propositions (Tentative theory).
5. Prioritizing proposition.
6. Deveiopment of Action Hypothesis
7. Planning for Intervention.
8. Execution of Intervention.
9. Evaluation of Intervention.
10. Decision (Refiection, Explanation and Understanding of Acton).

Planning for Action Research

What to plan?

- Trme
- Human resources and materials
- Coliaborators
- Tools and techniques
- Intervention activites
- Coliection of evidence

Action Hypothesis

- It includes the proposed intervention stated as capable of minimizing the problem or elevating the situation from dissatisfactory condition to a satisfactory condition.

Why is planning necessary?

Planning is necessary for the following reasons: It

- gives drection to the AR study.
- enabies adivance preparations.
- ensures optimal efficiency.
- faciltates achieving economy of time and effort.
- minimises ad-hoc decisions, digessions and wastrge.
- enables monitoring of the study.
- ensures smooth sailing of the study.

Aspects of Planning

- Concern
- Subjects
- Objectives of the study
- Forming theory/Propositions -Prioritization
- Action Hypothesis
- Intervention strategies
- Schectuing of activities/tasks
- Listing and procuring resources
- Anticipated problems and contingency plan

What techniques can be used to gather evidence in AR studies?

- Interview
-Video-Recording
- Observation
- Tape Recorder

Tools and techniques in AR
What kinds of tools?

- Achievement test
- Diagnostic test
.Psychological tests
-Questionnaires
-Interview schedules
-Checklists

Execution of the Intervention

- Execute the intervention as planned.
- Keep ail the precautions in mind.
- Note down/record all intended processes.
- Terminate each session smoothly.

What next?

- Coliection of evidence/data
- Scoring and tabulation
-Graphical representation of data

EVALUATION OF THE EFFECTIVENESS OF THE INTERVENTION

- What knd of data di we need to evaluate the efiecuveness of the interventoon?

- Compretrensive

(Both qualitative and quantitative)

- Dependable
- Reievent
- Objective
- Mutuple Sources

Graphical representation of data

- Bar Diagram
- Histogram
- Polygon
- Pie Diagram

Evaluation, Reflection, Decision Making
The data/information that is in descriptive form (word form) are qualitative data.

The data that are expressed in the form of numbers which lend themselves for further manipulation are quantitative data.

Analysis and Interpretation

In Anatysis we organize data and subject it to needed maniputation to elicit meaning. Analysis means categorizing, ordering, manipulating and reading meaning to facilitate discussion and interpretation

At the Incerpretadon stage, we draw perthent inferences in the context of the Action Hypothesis. This leads to decision making.

Reflection

- Is the new Practice effective?
- Should I continue with my old practice?
- Is the solution to the impending problem effective?
- Did the intervention bring about improvement to a satisfactory level?
- Is there a scope for enhancing my competence further?

Descriptive statistics only!!

No Inferential statistics in AR

- Descriptive measures are apt for intact groups studied in Action Research.
- The measure(s) describe the group studied only.
- Inferential statistics has no place in AR as samples are not studied.

Decision Making

- Shail I terminate the intervention?
- Shail I not effect a change in the exsung practice?
- Shall I incorporate the new tested intervention in my functioning?
- Shall I try another strategy?
- Are there more effective ways of acrieving the goads?
- What changes should I make in the next spirat?

Characteristics of AR

- It is a smali scaie intervention made by a practitioner.
- AR is undertaken in a specific context. The findings are NOT GENERALIZABLE.
- AR is a reflective practice that enhances one's own efficiency.
- AR is practitioner's privilege.
- AR proceeds in a spiral(s).

Contexts of Action Research

- All Professions and professionals
- In Education, Teachers too.
- (1) Classroom leve|
- (2) HM- School leve
- (3) CRC, BRC, BEO, DEO, ... CPI
- (4) Teacher-Educators
- (5) Educationa plamers, managers, admunistrators

WHY ACTION RESEARCH? It is because it;
\therefore improves one's own professional skills.
*improves the learning environment.

* enhances the quality and/or quantity of desired results.
* solves an immediate problem.
* provides local-specific solutions.
- facilitates overall effectiveness of practice of a profession.

A change towards higher level of performance is frequently short lived; after a 'shot in the arm', the practice returns to previous level..... A successful change indudes, therefore,

three aspects:

1. Unfreezing the present level
2. Moving to the new leved, and
3. Freezing the practice at new level

Why should I Conduct Action

 Research?- Are you a professional?
- Are you a ceflectre practrioner?
- Do you desire to inprove yaur professional skils?
- Are you dissatsified with what yau have been dong?
- Do you want to be more effective in yar Anctoreng?
- Do you want your action to yield befter resuta?
- Do you want to wark systematically while adatessing aprobem on hand?
- Are yau unhaspy with the statis qu?
- Do you wante as a professtonal, to evakure raur actions abjectivety?
aLet us all hope that we all become professionals and reflective in our pursuits

If your answer is 'YES'

-Then you will start seriously thinking about Action Research and you will remain a 'Reflective Practitioner'.
sThank you

SIGNIFICANCE OF VALUE EDUCATION

The problem of value educallon of the young is assuming Increasing prominence In educatlonal discusslons during recent times. Parents, teachers and soclety at large have been concerned about values and value educatlon of children. National policy on Education (NPE) 1086 and revised NPE 1902 has given all importance to the promotion of Value Education in Schools. Education is expected to play a major role in promoting national development in all its ramifications. At the same time, it should bring harmonious development of all the faculties lowards adequate preparation for life. The present situation in India demands a system of education, which, apart from strengthening national unity, must strengthen sccial solidarity through meaningful and constructive value education.

The worldwide resurgence of interest in value education has been explained as the natural response of the modern industrialized societies to the serious erosion of moral values in all aspects of life and the crisis of values experienced in müdern times.

It is now commonplace to say that sweeping political, economic and social changes have overtaken human civilization during the past few centuries and these have been largely responsible lor the predicament of modern man. The factors such as personal greed, meanness, selfishness, indifference to others' interests and laziness also have brought about largescale corruption in almost all spheres of life - personal and public, economic and political, moral and religious. We can achieve a better moral standard in our democratic way of national life if we become more industrialized and thus overcome mass poverty and the general feeling of insecurity which gives rise to greed.

We are witnessing a tremendous value crisls throughout the world today. A lackadalsical alllude towards value and its instltultions is ublqultous everywhere around the globe. As the vitallty of human belief in values is dying out in évery land, the younger generation has started to pooh-pooh the unique religious epics of antiquity and religious institutions, giving room for corrosion of godliness and erosion of spinitual and moral values. As a result, the mind of man has been laciniated and divided into small fractions and fragments which makes the value content of human life a diminishing factor in modem times.

The reappearance of barbaric qualities of selfishness, clashes and conflagration and other destructive forces which are burning the sociely, give clear indication of the degenerating process of human society. Now, there is an urgent need for a great effort to revive and reform the values of human life and to rejuvenate the foundation of the new clvillization.

Concerted efforts and continuous dependence on good books and institutions will give students sterling and inspiring qualilies of concentration, infinite love, justice, honesty, purity, selfistıness, wisdom, .faithfuiness, humility, forgiveness, mercy, trustworthiness, respect for others, obedience, sincerity and a host of other virtues which are $\sin \theta$ qua non to build the equipment of life. This should be the central theme of value education. Whatever be the cause of the present value crisis, there is no gain - saying the fact that the weakening of moral values in our social life is creating serious social and ethical conflicts. It is this changing context - the declining moral standards in personal and public life on the one hand, and the national ideological commitment to the yalues of democracy, socialism, secularism and modemization on the other - that constituted the driving force behind the recommendations stressing the importance of value education in educational institutions.

Whille there is general dissatlsfaction with the fall In moral standards of both young and the old and disenchantment with the disregard to moral values witnessed in personal and public life, there has been no concerted attempt on the part of the society to address ilself squarely to the problem of value education. Unfortunately, education is becoming day by day more or less materialistic and the vakue traditions are being slowly given up. A modem Indian is being educated mainly with the bread and butter aim of education; as a result most of cur graduates run after money, power and comforts, without caring for any type of vatue.

The degeneration in the present day life, the demoralization of public and private life, the utter disregard for values, etc. are all traceatle due to the fact that moral, religious and spiritual education has not been given due place in our educational system.

The Education Commission of 1964-66 says that "a serious defect in the school curriculum is the absence of provision for education in social, moral and spiritual values'. In the life of the majority of Indians, religion is a great motivauing force and is intimalely bound up with the formation of character and the inculcation of ethical values.

A national system of education that is related to life, needs and inspiration of the people cannot afford to ignore this purposeful force. Value crisis of the present day life is baffing the minds of educators and the educands as weil. The effect of the value crisis on present day life is witnessed in the following :

- The democratic ideology that has been accepted by our country is yet to be actualized in the form of social and economic democracy as to realize democratic values guaranteed by the Constitution of India.
- The individual is becoming a prey to the contradictory values and is being convented as a conisequence inlo an extreme radical, a reactionary, a skeptic or cynic.
- The present Indian educational system is reflecting more or less borrowed Ideologies and philosophies and the national values are relegated to the back.
- The teacher-educators and teachers are not being clearly oriented to the national values and ideas, ideal and ideologies that they have to inculcate in the students. Hence, they are not in a position to play their role as value educators.
- The student community is drowned in neck-deep poverty, ignorance and unhealthy surroundings. Hence, they are not in a position to comprehend the real values of our contemporary India.
- Our curriculum does not reflect human values and the value system, hence our schoois and colleges have become examination centers and not value centers.

The probiem with value education, it appears, is that while everybody is convinced of its imponance, it is not clear as to what it precisely means and what it involves. in our educational reconstruction, the problem of an integrated perspective on values is pivotal, for its solution alone can provide organic unlty for all the multfarlous actluttes of a schnon or college corriculum programme. An integrated education can proulde for integrated grouth of personallty and integrated educatlon !s not poss!ble without Integration of values.

In yalue educatlon, as in any other areas of educat!on, what is asked of the teacher is a total commitment to the deve!opment of rationa! autonomy in both thought and action.

It should be noted that the most important aspect of value education consists not in unwilling adherence to a sct of rulcs and regulations but in the
bullding and strengthening of posltive sentlments for people and ideals. Value education should prepare individuals for participation in social life and acceplance of social rules. What is more important in value education is that schools should provide a healthy climate for sharing responsibilities, community life and relationships.

The new National Curriculum Framework for School Education (NCFCE) prepared by NCERT gives uppermost importance to Value Education in schools. NCERT has been contributing richly to the area of Value Education by way of organizing inservice education courses for key level persons, preparation of instructional materials, etc. The RIE, inysore under the Couorinatorship of Dr Frahallada has brought out a 606 page material titted "TREASURE TROVE CF VALUES" which consists of Anecdotes. Fables. Stories, Legends, Biugraphies and Fük Tales related to values which will be of great use at primary stage.

Also, 115 page Package on Value Education has been brought out by RIEM consisting of importance of Value Education, approaches to Value Education, Lesson Flanning in Value Education. The package will be useful for the teachers for the inculcation of values at primary school stage.

Regional Nodal Centre on Value Education at RIEM

The NCERT, New Delhi has been icentified by the MHRD (Department of Education). Government of India as the nodal center for strengthening value education in the country at schooi level. Subsequently, a National Resource Centre for Value Education (NHCVE) has been set up in order to plan and implement programmes on value oriented education. NCERT, New Dethi has launched a National Programme for Strengthening Value Education. This programme has been visualized as a national leve! initiative to sensitize parents, teachers, teacher educators, educational administrators, policy makers, community agencies etc. about the need for promotion of value
oriented education. The focus of the programme is on generating awareness, materiai development, teachers training, development of school programmes, promotion of research and innovations in the area of education of human values and development of a framework of value education for the school system.

In this context, a Regional Nodal Centre (RNC) has been set up at the RIE, Miysore from September 2002 which will be responsible for linkages networking, monitoring and follow up etc. at the State, District and grassroct level for implemeniation of value education programmes. The Centre will fake Lip the responsibility of organizing National Consultation and Regional Workshop on Value Education with iocus on strategies of awareness generation, material development and teacher's training. The RivC comprises of representatives drawn from SCERTs, |ÂSEs, CTEs, DIETs, NGOs, School Euards, Bureau of Textbüoks and eminent professiunals/educationists frum the southern states

THREEDIMENSIONALGEOMETRY

1. Lines in Space
2. Planes and Sphere
by
Dr.N.A.RMO

THREE DIME:SICHML GECTEETRY

The applications of vector algetra in three cimensional
geometry are given in these lecture notes. the reader is requested to learn the technicues of vector algebra to see how the cocrdinate geometry can be made simple with the help of vectors. He is also requested to translate these results to the Cartesian form also.

The derivation of the formula for the snortest distarce betireen two lines in space may be reac only by keeping the tiaching aid (aiscussed in the lesson) by the side, so that the concepts may beccme more clear.

There will be t:wo parts on the applications of vecto=s; the first will ceal with the lines in space while the seconc with the planes.
I. Lines in ícace :

Length of a vector: ie have alzeady seen that the position vector of any point p in the 3 itimensional space R^{3} is given by

$$
\vec{I}=x i+y j+z k \text { where } i, j, k \text { are the unit vectors in three }
$$ perpendicular directions and x, y, z are the cocrcimates of the point P. The position vector

$$
\vec{I}=x i+y j+z k
$$

can also be writien as $\vec{r}=(x, y, z)$
The length of the vector \vec{r} is given by $|\vec{z}|=\sqrt{x^{2}+y^{2}+z^{2}}$

Distance Formula :

From the triangle O.чB,
It is clear that
$\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$.
This is the way to express any vector $\overrightarrow{\mathrm{AB}}$.
If $\overrightarrow{O r}_{1}=\vec{r}_{1}$ and $\overrightarrow{O B}=\overrightarrow{r_{2}}$
where $r_{1}=(x, y, z)$ and $r_{2}=\left(x_{2}, y_{2}, z_{2}\right)$

Then, $\vec{r}=\overrightarrow{A B}=\overrightarrow{r_{2}}-\vec{i}$,

$$
\begin{aligned}
|\vec{I}| & =\left|\overrightarrow{I_{2}}-\vec{I}_{1}\right| \\
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
\end{aligned}
$$

This is called the distance formula.
Section Formula : we find the position vectc= of the joint which divides the line joining two given points in the given =atio.

Let A and $=$ be any two points in the 3 -dimensional space whose position vectors $\bar{a}=\overrightarrow{\vec{a}}$ and \vec{b} respectively. Let F be the point which divioes the Line segment aB such that if : $P B=m$ n. he wish to fire the position vector \vec{I} of tile point F. Without loss generality, we can assume that 0 is the ozidir.

$$
\begin{aligned}
& \vec{a}=x_{1} i+y_{1} j+z_{1} k \\
& \vec{b}=x_{2} i+y_{2} j+z_{2} k
\end{aligned}
$$

Let $\vec{I}=x i+y j+2 k$
Since p divides $A B$ in the $=a さ i o m: n$, we have

$$
\frac{\mathscr{F}}{F B}=\frac{m}{n}
$$

Here m / n is positive or negative according as, \mathcal{F} divides $\dot{A} B$ internally or externally.
From the above, we oct n. $=\mathrm{m} . \mathrm{PB}$
ie. $n(\vec{I}-\vec{a})=\ldots .(\vec{b}-\vec{I})$
or $(n+m) \vec{I}=m \vec{b}=n \vec{a}$
or $\vec{r}=\frac{n \vec{e}+m \vec{b}}{n+m}$
This is called the section formula in the vector form.
If we substitute the Cartesian coordinates

$$
\begin{aligned}
& \vec{I}=x_{i}+y_{j}+z k \\
& \vec{a}=x_{1} i+y_{1} j+z_{1} k \\
& \vec{b}=x_{2} i+y_{2} j+z_{2} k
\end{aligned}
$$

in the above result, and compare the coefficients of i, j, k, we get

$$
\begin{aligned}
& x=\frac{m x_{2}+n x_{1}}{m+n} \\
& y=\frac{m y_{2}+n y_{1}}{m+n} \\
& z=\frac{m z_{2}+n z_{1}}{m+n}
\end{aligned}
$$

which is the section formula in the Cartesian coorainates.

Middle Point :

```
From the section formula, it is cleaz that the positicn vector of
```

the middle point of the join
of two points with position
vectors \vec{a} and \vec{b}, is given by
$\vec{I}=\frac{\vec{a}+\vec{b}}{2}$

Components of a vector:

In the figure,
$\overrightarrow{u_{i}}=\vec{I} \quad \cos Q$
and $\overrightarrow{C i}=\vec{I} \sin \vec{V}$
where θ is the angle that the vector \vec{I} makes with x-axis.

Direction Ratios of a Vector :

Ir $\vec{I}=a i+b j+c k$, then a, b, c are called the direction
ratios of the vector \vec{I}.
Direction cosines : If α is the angle that the vector \vec{I} make s with the $x \rightarrow$ direction, then

$$
\begin{aligned}
\cos \alpha & =\frac{\vec{I} \cdot \vec{i}}{|r||i|} \\
& =\frac{(a i+b i+c k) \cdot i}{|\vec{r}|}
\end{aligned}
$$

$=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}$
 y-ij.rection and z-iirection respectively, then

$$
\begin{equation*}
\cos F=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}} \tag{i1}
\end{equation*}
$$

$200 \cos \gamma=$

$$
\begin{equation*}
\frac{e}{a^{2}+b^{2}+c^{2}} \tag{iii}
\end{equation*}
$$

If $\cos \alpha=\{, \cos E=m$ and $\cos z=n$, then

$$
1, m, n \text { are callec direction cosines. }
$$

If we adc the squares $\mathrm{o}^{\text {(}}$ (i), (ii) and (iii), we get

$$
1^{2}+m^{2}+n^{2}=1
$$

Therefore, the relation between the cirection ratios and the direction cosines is

$$
\begin{aligned}
& a: b: c=1: m: n \\
& \text { with } \\
& 1^{2}+m^{2}+n^{2}=1
\end{aligned}
$$

parallel vectors have equal direction ratios :

Let $\vec{v}_{i}=a i+b j+c k$ and if \vec{v}_{2} is a vector parallel to \vec{v}_{1}, then

$$
\vec{v}_{2}=\lambda \vec{v}_{1} \text { for some scalar } \lambda .
$$

Then, $\vec{v}_{2}=\lambda a i+\lambda b j+\lambda c k$
Hence the cirection ratios of \vec{v}_{2} are $\lambda a, \lambda 6, \lambda c$ or a, b, c.

Like aaral-el vectors have equal direction cosines :

$$
\text { If } \vec{v}_{1}=a x+b j+c k
$$

and \vec{v}_{2} is a vector parallel to \vec{v}_{1}, then $\vec{v}_{2}=\lambda \vec{v}_{i}$

$$
=\lambda a i+\lambda b j+\lambda c k
$$

The direction cosines of the \vec{v}_{1} are
$l=\frac{a}{\left|v_{1}\right|}, m=\frac{b}{\mid \cdot 0,1}, \quad n=\frac{c}{\left|\cdot \theta_{1}\right|}$
Similarly the direction cosines of the \vec{v}_{2} are
$\frac{\lambda a}{\left|\lambda v_{1}\right|}, \quad \frac{\lambda e}{\left|\lambda v_{1}\right|}, \frac{\lambda c}{\left|\lambda s_{1}\right|}$
ie.
$\frac{a}{|v,|}, \frac{b}{|n,|}, \frac{c}{\mid v, 1}$
miso, it is clear that unlike parallel vectors have equal (and opposite sign) direction cosines.

Example:

1. For the vector $\overrightarrow{=}=2 i+2 j-k$, the direction ratio is $2: 2:-i$ and the direction cosines are $\frac{2}{|I|}, \frac{2}{|r|}, \frac{-1}{|I|}$
1.e $\frac{2}{3}, \frac{2}{3}, \frac{-1}{3}$

It means that the vector $\vec{I}=2 i+2 j-k$ makes the following angles with i direction, j dizecticn and k direction respectively.

$$
\cos ^{-1}\left(\frac{2}{3}\right), \cos ^{-1}\left(\frac{2}{3}\right), \cos ^{-1}\left(-\frac{1}{3}\right)
$$

2. The vectors $2 i+2 j-k$ and $4 i+4 j-2 k$ have the same direction ratios and direction cosines. (They are parallel).
3. The vectors $2 i+2 j-k$ and $\operatorname{Hi}-\mathcal{H} j+2 k$ have the same direction ratios. They have direction cosines equal in magnitude but opposite in sign. (The vectors are unlike parallel vectors).
4. Show that the points $A(2,3,4), B(-1,2,-3)$ and $C(-4,1,-10)$ are collinear.
There are several ways of answering this question: we can show that the area of the triangle $A B C$ is zero or we can also show that

$$
|\overrightarrow{A C}|=|\overrightarrow{B C}|=2|\overrightarrow{A C}|
$$

But it is easier to show that the direction ratios of $\overrightarrow{A B}$ and $\overrightarrow{B C}$ are equal (or proportional).

$$
\begin{array}{r}
\text { Uizection ratios }=\overrightarrow{A B} \text { ane }(-1,-2:(-2-3):(-3-4) \\
\\
\text { i.e. }-\hat{A}:-1:-7
\end{array}
$$

Dizection＝atios $0=\overrightarrow{E C}$ are also－ミ：－1：－7．
Hence $\overrightarrow{A B}$ is paニEl－el to 䔍，showing that
Macle bet：uenr zine vectc＝s ：The angle betionen the vectors can be

$$
\begin{aligned}
& \vec{c} \cdot \vec{a}=|\vec{a}||\vec{b}| c c s \\
& \operatorname{Ccs}=\vec{a} \cdot \vec{t} \\
& |\vec{d}||\vec{b}|
\end{aligned}
$$

Veここロエial Eruaこここ！of a line in space ：

He find the veこここ＝equation of tin line $A B$ winch passes thエcuch a given fixed point ．aria is parallel to e given line L্，（vecioz \vec{b} ）．

Tare any point C ，as origin of
reference．Let $\overrightarrow{\bar{c}}$ zs the position
 vector of the oliver point a，let z se any vector pa＝aliel to the given line aB．

Let \vec{I} ，be the position vecioz of any point P on the given line． iii have

$$
\begin{aligned}
\vec{I} & =\overrightarrow{C ?} \\
& =\vec{C}+\vec{M} \\
& =\vec{a}+\vec{I}
\end{aligned}
$$

The vector $\overrightarrow{\vec{j}}$ ，being parallel to the vector \vec{b} ，must be of the form

$$
\vec{W}=t \vec{b}=c=\text { some suitable scalar } t \text {. }
$$

The before，

$$
\vec{I}=\vec{a}+t \vec{b}
$$

is the resuirec equation of the straight line．

Cartesian Form : To get the Cartesian foin of the above equation, we can substitute the coordinates of the points
or put $\vec{I}=x i+y j+z k$
$\vec{a}=a_{1} i+a_{2} j+a_{3} k$
$\vec{b}=b_{1} i+b_{2} j+b_{3} k$
Then we get
$x i+y j+z k=\left(a_{1} i+a_{2}^{j}+a_{3} k\right)+t\left(b_{1} i+b_{2} j+b_{3} k\right)$
Hence, (comparing coefficients of i, j, k), we get

$$
t=\frac{x-a_{1}}{b_{1}}=\frac{y-\bar{z}_{2}}{b_{2}}=\frac{z-a_{3}}{b_{3}}
$$

The cartesian equation of the line is

Equation of the straight line through given timon points: We wish to find the equation of the straight line which passes through the tiv given points is and B.

Take any point C as origin. Let \vec{a} and \vec{b} be the position vector s of the points i and \exists respectively.
Then the line $A B$ is parallel to the vector $\vec{b}-\vec{a}$. it passes through A. Hence the equation of the line $A B$ is given by

$$
\vec{I}=\vec{a}+\lambda(\vec{b}-\vec{a}) \text { where } \lambda \text { is a parameter. }
$$

Cartesian Form: The cartesian form of the above equation is obtained by putting

$$
\begin{aligned}
& \vec{\Sigma}=x i+y j+z k \\
& \vec{a}=a_{1} i+a_{2} j+a_{3} k \\
& \vec{b}=b_{1} i+b_{2} j+b_{3} k
\end{aligned}
$$

and comparing the coefficients.

$$
\begin{aligned}
& x i+y j+z k=\bar{c}_{1} i+\bar{a}_{2} j+z_{3} k+\lambda\left\{\left(b_{1} i+z_{2} j+b_{3} k\right)-\right. \\
& \left.\left(a_{1} \dot{i}+\varepsilon_{2} j+\varepsilon_{3} k\right)\right\} \\
& =a_{1} i+\bar{a}_{2} i-\bar{a}_{2} k+\hat{n}\left\{\left(b_{1}-\bar{a}_{9}\right) i+\left(b_{2}-\bar{a}_{2}\right) i+\left(b_{3}-a_{3}\right) x\right\}
\end{aligned}
$$

rerce we get

$$
\therefore=\frac{x-\bar{c}_{1}}{x_{1}-\bar{c}_{1}}=\frac{y-a_{2}}{b_{2}-\bar{c}_{2}}=\frac{z-\bar{a}_{3}}{z_{3}-a_{3}}
$$

The caこtesian＝azm of the eouation is

$$
\frac{x-\bar{a}_{1}}{\bar{x}_{1}-\bar{a}_{1}}=\frac{y-\bar{a}_{2}}{z_{2}-\bar{a}_{2}}=\frac{z-\bar{c}_{3}}{b_{3}-a_{3}}
$$

Linea＝lv inceneraent vectors in \hat{R}^{3} ：
Lė̇rition：Triee vectors $\vec{a}, \vec{b}, \vec{c}$ in it $\vec{a}^{3}=E$ saic to be linea＝ly incenencent $z=\vec{a}+\vec{b}+\vec{b}=0, \alpha, \dot{F}, \gamma$ being scalars， implies $\alpha=B=Z=0$ ．The vectors are saic to be Linearly depencent if they are not linea＝ly inceperaent．In other waras， the vecto＝s $\vec{a}, \vec{\rightharpoonup}, \vec{c}$ ars suid to be Iinea＝ly depercent if the＝e exisis some nor $=$ ero scalars α, \hat{H}, γ sucr．that $\alpha \vec{e}+j \vec{b}+r \vec{c}=0$ ．
 lineerly depencent $\left(\alpha_{0}=2, S=1, \mathcal{K}=1\right)$ ．Eut the vectors $a=(1,2,1)$ arce $E=(2,3,5)$ are Iineaさiy iraependent．

Ihecrem：n necessary and sufficient concizion for three poiriss with position vectc＝$\vec{a}, \vec{b}, \vec{c}$ to be collinezI is that thereexis：s scalais $\alpha, \mathcal{Z}, \gamma$ not allzero，such that

$$
\alpha \vec{a}+\vec{F} \vec{b}+\gamma \vec{c}=0, \quad \alpha+\beta+\gamma=0
$$

Pエロニさ：（Suだミニミency paz．）
Let there be scala＝s α, β, γ not all zero，such that
$\alpha \vec{a}+\beta \vec{b}+\gamma \vec{a}=0, \alpha+\beta+\gamma=0$
without loss cf generality，we take $\sigma \neq 0$ ．
Ihen $\alpha+\beta=-\gamma \neq 0$
I is giver that $\quad \alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}=0$ ．
$\Rightarrow \vec{x} \vec{c}+\beta \vec{b}=-\gamma \vec{a}$

$$
\begin{aligned}
& \Rightarrow \frac{\alpha \vec{a}+\beta \vec{b}}{\alpha+\beta}=\frac{-\gamma}{\alpha+\beta} \vec{c} \\
& \Rightarrow \frac{\alpha \vec{a}+\beta \vec{b}}{\alpha+\beta}=\vec{c}
\end{aligned}
$$

Here we have shown that \vec{c} is the position vector of the point \mathbb{C} which divides the line joining the points A (with position vector \vec{a}) and the point B (with position vector \vec{b}) in the ratio $\beta: \alpha$ Thus the points A, B and C are collinear.

Necessary P..It : Let the points h, \exists, C be collinear. The position vectors of A, B, C are $\vec{a}, \vec{b}, \vec{c}$ respectively.

He can assume that the point C divides the line segment $A B$ in the ratio $\alpha: \beta$
Then $\vec{c}=\frac{\alpha \vec{b}+\beta \vec{a}}{\alpha+\frac{\beta}{\alpha}} \quad \therefore(x+\beta) \vec{c}=\alpha \vec{b}+\beta \vec{a}$
put $\quad \alpha+\beta=-\gamma$
Then we get $\alpha \vec{b}+\beta \vec{x}+\gamma \vec{c}=0$ and $\alpha+\bar{\beta}+\gamma=0$.

Hence the proof.
Note: 1. he have proved that if the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear then, the vectors $\vec{a}, \vec{b}, \vec{c}$ are linearly dependent. In other words, if the vectors are linearly independent then the points need not be collinear. 2. It is easy to see that the vectors \vec{a} and $\alpha \vec{a}$ are collinear as well as linearly independent.
3. If \vec{a} and \vec{b} are tiro non zero non collinear vectors, then they are linearly independent. For, if they are linearly dependent, then there exists non z ere scalars α, β such that $\alpha \vec{a}+\beta \vec{b}=0$.
If $\alpha \neq 0 \quad$ then $\vec{a}=-\frac{B}{\alpha} \vec{C}$
which implies that \vec{a} and \vec{b} are collinear, contrary to our assumption.

4．Ir the same way we car＝＝Ove that if $\vec{a}, \vec{b}, \vec{c}$ are three non zezo non coplar．a＝veここここs，ther they are Linearly indepencent．
misle between anv t：：に lines：
Let $\vec{I}_{1}=\vec{a}_{1}-\lambda \vec{b}_{1}$
and $\overrightarrow{\mathrm{I}}_{2}=\overrightarrow{\mathrm{a}}_{2}+\overrightarrow{\vec{b}_{2}}$
be any two stニaignt－ines，in space．Then the angle betioen them can de founc out \equiv f fo－10\％s：
The angie detween $\overline{=}$ ，anc \vec{I}_{2} is equai to the ancle b－tween \vec{b}_{1} and \vec{b}_{2}
But $\vec{v}_{1} \cdot \vec{b}_{2}=\left|v_{1}\right|\left|v_{2}\right| \cos E$
$\cos \theta=\frac{\vec{b}_{1} \cdot \vec{b}_{2}}{\left|b_{1}\right|\left|b_{2}\right|}$
is the ancle betweer \vec{I}_{1} and \vec{I}_{2} ．
The above meti：od can de araliec ever．if the equations are in the Cことことうan form．

Nここe：The anoie θ こaiにu－atec abcve does not insicate that the two

Si：ew lines：In the plane，wheneve＝two stiaignt lines aIe not cerallel，ther they ir．teこsect at scme point．But the situation is ċEfezent in the space．There can ze straight lines which are几either paraliel ne＝intezsecting．Sucn lines co not lie in a sEngle plane；ano Eze cElled skew lines．
Lefinitinn：Iwo stzaisht li̇nes in A^{3} wnich are not coplenar are called skew lines．

LE天initizn：The length c＝the comon perpendicular to the skev：lines is cこllea the shoエさest eizstance between the ske：lines．

Hove：The terche＝can nake the iceas of skew lines clear with the help of a teaching aia ciescribed heze：Take two Iods $A B$ and $C D$ ． Iie one thi of a threac to a point I on $A B$ and the other end to a point \mathcal{L} on CL．Holc the＝oos $M B$ anc $C U$ at cifferent levels and make
 parallel). Now $|F Q|$ is shores distance between the lines.

To find an exveassion for the straztest distance :

Let the skew lines be

$$
\vec{r}_{1}=\vec{a}_{1}+\lambda \vec{b}_{1}
$$

and $\vec{z}_{2}=\vec{a}_{2}+\overrightarrow{b_{2}}$

Since $P Q$ is perpendicular to both
\vec{b}_{1} and \vec{b}_{2}, it is clear that $P Q$
is parallel to $\vec{b}_{1} \times \vec{b}_{2}$
The unit vector \vec{n} along $\overrightarrow{p a}$ is given by

$$
\vec{n}=\frac{\vec{b}_{1} \times \vec{b}_{2}}{\left|b_{1} \times b_{2}\right|}
$$

Let $\overrightarrow{P G}=d \vec{n}$:where d is the shortest distance between the given time skew lines.

Let S and \bar{T} be any two points with position vectors \vec{a}_{1} and \vec{a}_{2} on the lines $A B$ and $C D$ respectively. If P is the angle between $P Q$ and $S T$, then $P Q=S T$ cos

This can be realized by taking the projection of $S T$ along the direction of PG .

$$
\begin{aligned}
& \text { Then } \\
& \cos \theta=\frac{\overrightarrow{P U} \cdot \overrightarrow{S T}}{|P G||S T|} \\
&=\frac{d \vec{n} \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)}{d|S T|} \\
&=\frac{d\left(\vec{b} \times \vec{b}_{2}\right)}{\left|b_{1} \times b_{2}\right|} \cdot \frac{\left(\overrightarrow{a_{2}}-\vec{a}_{1}\right)}{d|S T|} \\
&=\frac{\left(\vec{b}_{1} \times \vec{b}_{2}\right)}{\left|b_{1} \times b_{2}\right|} \cdot \frac{\left(\vec{a}_{2}-\vec{a}_{1}\right)}{|S I|}
\end{aligned}
$$

$$
C=P U=S T \operatorname{Cos}
$$

$$
\begin{equation*}
=\frac{\left(b_{1} \times b_{2}\right) \cdot\left(a_{2}-c_{1}\right)}{\left|b_{1} \times b_{2}\right|} \tag{A}
\end{equation*}
$$

（The distance a is to be taken as pesizミive）．
Solves Examples：

```
1. Find the shortest cissiance bミtimeen =he vectozs
    I}=i+j+\lambda(2i+j+k
    and }\mp@subsup{\vec{I}}{2}{}=2i+j-k+\mu(こi-5j - 2in
Ans: !!eze in this p=c⿱lem,
        a
        a
```

Substituting these values in the formula (M)

$$
0=\frac{\left(z_{1} \times b_{2}\right) \cdot\left(a_{2}-\varepsilon_{1}\right)}{\left|b_{1} \times b_{2}\right|}
$$

he get $d=\frac{10}{\sqrt{59}}$

$\vec{I}_{1}=\vec{a}_{1}+\lambda \vec{b}$ and
$\vec{I}_{2}=\vec{a}_{2}+\mu \vec{b}$
be the two parallel lines
in the space．
Then the two vectors \vec{I}_{1} and $\overrightarrow{=}_{2}$ can be consiciereu to be in one plane．＇d＇as shown in the figure is the shortest dister：ce between the lines．
$d=\left(\overrightarrow{a_{2}}-\vec{a}_{1}\right) \sin \because \ldots(1)$ from the triangle ABC.
But we know that
$\left(\vec{a}_{\vec{a}}-\overrightarrow{c i}_{1}\right) \times \frac{\vec{b}}{1 \vec{b}}=\left|\vec{a}_{2}-\vec{a}_{1}\right|\left|\frac{\vec{b}}{\left.\right|_{b i}}\right| \sin \theta \cdot \vec{n}$

Since d is always considered to be positive, substituting the values of $\sin \hat{\theta}$ in (1), we get

$$
\begin{align*}
d & =\left(a_{2}-a_{1}\right) \frac{a_{2}-a_{1}}{\left(a_{2}-a_{1}\right)} \times \frac{\mid \vec{b}}{|\vec{b}|} \\
& =\left|\frac{\vec{b}}{|b|} \times\left(\vec{a}_{2}-\vec{a}_{1}\right)\right| \tag{2}
\end{align*}
$$

2. Find the angle between the pair of lines $\vec{r}_{\hat{p}}=4 i-j-j(i+2 j-2 k)$ and $\vec{I}_{2}=(i-j+2 k)+\mu(2 i+4 j-4 k)$. Also Find the shortest distance between them.
ans: Note that the lines are parallel to the vector $i+2 j-2 k$ and hence the angle between them is zero. Both are of the form

$$
\begin{aligned}
& \vec{r}_{1}=a_{1}+\lambda b \\
& \vec{E}_{2}=a_{2}+\mu b
\end{aligned}
$$

Hence this problem cannot be solved by the method we adopted for problem 1. Now we use the result (2).

$$
\begin{aligned}
d & =\left|\frac{\vec{b}}{|b|} \times\left(a_{2}-a_{1}\right)\right| \\
& =\left|\frac{(i+2 j-2 k) x}{\mid i+2 j-2 k) \mid}(i-j+2 k)-(4 i-j)\right| \\
& =\left|\frac{(i+2 j-2 k)}{3} \times(-3 i+2 k)\right| \\
& =|y 3 i(4)+j(6-2)+k(6)| \\
& =\frac{\sqrt{68}}{3}
\end{aligned}
$$

3. Find the shortest: distance between the pair of lines

$$
\begin{aligned}
& \vec{I}=i-j-k+(2 i-j) \text { and } \\
& \vec{I}=4 i-k+(2 i+3 k)
\end{aligned}
$$

miso fine whether =hey intersect.
ans: Substituting in the formula (1), we can see that the shortest cistance is

$$
\begin{aligned}
d & \left.=\frac{(3 i-i) \times(2 i+3 k) \cdot(3 i-i)}{\left|b_{1} \times b_{2}\right|} \right\rvert\, \\
& =\frac{(-3 i-0 i+2 k) \cdot(3 i-i)}{\left|b_{1} \times b_{2}\right|} \\
& =\frac{-9+9}{94} \\
& =0
\end{aligned}
$$

The given lines do intersect.
4. Determine whether the following lines intersect.

$$
\begin{aligned}
& \frac{x-1}{2}=\frac{v+1}{3}=z \\
& \frac{x+1}{5}=\frac{y-2}{1}, z=2
\end{aligned}
$$

ans : the first set of equations can be written as (when we take the comr:on ratio as λ).
$x=2 \lambda+1 \quad \vec{I}=x i+y j+z k$
$y=3 \lambda-1 \quad=(i-j)+\lambda(2 i+3 j+k)$ \qquad
$z=\lambda$
Similarly the secund set of equations can be written as
$x=5 \mu_{\mu}-1$
$y=1 / 4+2$
$z=c \mu+2 \quad \vec{z}=(-i+2 j+2 k)+\mu(5 i+j)$

How as in exercise (3) above, we can show that the shoriest distance d between the lines (1) and (2) is not zero. Hence they do not intersect.

5．Find the angle between the pair of lines with direction エミここっく $1,1,2$ and $\sqrt{3}-1,-\sqrt{3}-1,4$ ．

Ans：The vector equation of the 1 st line is woven by $\overrightarrow{r_{1}}=1 i+1 j+2 k$
and the second line is given by
$\vec{I}_{2}=(\sqrt{3}-1) i+(-\sqrt{3}-1) j+4 k$
The angle between the til lines is given b：

$$
\begin{aligned}
\cos \theta & =\frac{\vec{r}_{1} \cdot \overrightarrow{r_{2}}}{\left|r_{1}\right|\left|I_{2}\right|} \\
& =\frac{(i+i+2 k) \cdot(\sqrt{3}-1) i+(-\sqrt{3}-1) i+4 ;)}{\left|r_{1}\right|\left|r_{2}\right|} \\
& =\frac{\sqrt{3}-1+\frac{-\sqrt{3}-1+8}{\sqrt{6} \cdot \frac{1}{24}}}{} \\
& =y 2 \\
\theta & =60^{\circ}
\end{aligned}
$$

mssiaments self lest ：
1．Einc the angie between the pair of lines whose direction ratios are：
i） $1,2,-2 ; 2,4,-4$
ii） $5,-i 2,13 ;-3,4,5$
iii）$\quad 1,2,1 ; 2,1,-1$

2．Determine whether the following pairs or lines intersect：
i）$\quad r_{1}=3 i+2 j-4 k+\lambda(i+2 j+2 k)$
and $r_{2}=5 j-2 k+\mu(3 i+2 j+6 k)$
ii）$\frac{x+4}{3}=\frac{y-i}{j}=\frac{z+j}{4}$
and $\frac{x+1}{1}=\frac{y-1}{1}=\frac{z-5}{2}$

3．Finc the ancle between the lines
i）$\quad I_{i}=3 i+2 j-4 k+\lambda(i+2 j+2 k)$
ano $I_{2}=5 j-2 k+\mu(3 i+2 j+6 k)$
ii）$\frac{x-4}{1}=\frac{v-1}{1}=\frac{z+3}{2}$ and $\frac{x-1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$

4．Einc the shcここest cistance beti：气en the lines whose cirecこion こaさミos aエe
$1,2,-2$ anc $2,4,-1$ ．

5．Finc the sho＝test distance between
$I_{1}=i+j+k+\lambda(3 i-j)$
and $I_{2}=4 i-k+m(2 i+3 k)$

PLuME:

a plane is completely determined by any one of the following :
i) Three non collinear points.
ii) \quad line arc a point not on the line
iii) Two intersecting lines
iv) Distance of the plane Edom the origin and a normal vector to the plane.
v) m point on the plane ara a normal vector to the plane.

Here $\because \mathrm{H}$ fisc vector equation of the plane for some of the above cases.

1. Find the vector equation of the plane thro.çin a given point ard perpendicular to a given direction :

Let i be the given point with position vector \vec{a}, through winch the plane EFGrl passes. Let \vec{m} be the direction which is perpencicular to the plane EFOH.

be want to find the equation of the plane EFGri.
Let F be any arbi=ニary point on the plane, whose position vector is \vec{I}. $\overrightarrow{A F}=\vec{I}-\vec{a}$

The plane is perpencicula= to \vec{m}
Therefore, \square
is the vector equation of the clan EEGri.
Examcie: Equation of the plane passing through the point (\exists, b, c,) and pezendicular to the line with direction ratios μ, \dot{B}, C is given by $\left(\overrightarrow{=}-\left(a_{1} i+b_{i} j+c, k\right) \cdot(a i+B j+c k)=0\right.$
If we $\because i s h$ to have the Cartesian equation, then take $\vec{I}=x i+y j+z k$
we get
$(x-a) i+,(y-b) j+,(z-c), k \cdot(a i+B j+c k)=0$
i.e. $A\left(x-a a_{1}\right)+B\left(.-b_{1}\right)+c\left(z-c_{1}\right)=0$
is the equation of the required plane.
2. Find the vector equation of the plane perpendicular to a given direction and at a given distance from the origin:

Given that the plane EFG: is
pe=pendialar to \vec{n}, and the
cistence $O N=d$ from the $c=i g i n$.
Consider the vector inf.
$\overrightarrow{i p}=\vec{I}-d \vec{n}$
miso $\overrightarrow{N P}$ is perpencicula= $20 \vec{n}$
Therefore, $\overrightarrow{N P} \cdot \vec{n}=0$
i.e. $\overrightarrow{\vec{I}-\vec{n})} \overrightarrow{\vec{n}=\vec{c}} \cdot \vec{n}=0$ Since $n \cdot n=1$
is the required equation.

Cartesian equation: $\quad P u t \vec{Z}=x i+y j+3 k$
and $\vec{n}=1 i+m j+n k$, then we have $(x i+y j+3 k) \cdot(1 i+m j+n k)=d$
ie. $1 x+m y+n z=d$ is the required equation where $1, m, n$ are the direction cosines of the normal to the plane.
3. Equation of the plane passing through given point and perpendicular to the given direction:

The plane passes through the point A (position vector $\overrightarrow{\vec{c}}$) and perpencicular to the direction \vec{n}.
Let P be any arbit=ar! point on the plane, with position vector $\underset{\sim}{\mathrm{I}}$.
Then rp is pezpencicular to n given

$$
(\hat{I}-\hat{a}) \cdot \vec{n}=0
$$

This is the reruized equation.
4. Equation of the plane passing through given point and parallel to tho given lines:
Let \vec{a} be the position vector of the point hg through which the plane passes. Let \vec{b} and \vec{c} be the vectors parallel to nB and nC. Let P be any arbitrary point on the plane (position vector \vec{I}).
Then, $\overrightarrow{O P}=\overrightarrow{O_{M}}+\overrightarrow{A P}$.
Unis can be written as

$$
\vec{I}=\vec{a}+t \vec{b}+p \vec{c}
$$

\vec{a}

where t and p are some scalars.
5. Equation of the plane through three given points:

Let $\vec{a}, \vec{b}, \vec{c}$ be the position
vectors of three given points
\dot{A}, B, C on the plane EFGri.
Then $\begin{aligned} \overrightarrow{A B} & =\vec{b}-\vec{a} \\ \overrightarrow{A C} & =\vec{c}-\vec{a}\end{aligned}$
If P is any arbitrary point on the plane, whose position vector is \vec{I}, then

$\vec{I}=\vec{a}+t(\vec{b}-\vec{a})+p(\vec{c}-\vec{a})$
where t and p are some scalars.
is the required equation.

Example: Find the eưation of the plane t:irough the points
$A(2,2,-1), B(3,4,2), C(7,0,6)$
Ans: $\overrightarrow{\underline{I}}=\vec{a}+t(\vec{b}-\vec{a})+p(\vec{c}-\vec{a})$ is the equation.
To find the scalars t and p we can follow the followinc method : $(x, y, z)=(2,2,-1)+t(1,2,3)+p(5,-2,7)$

$$
t-5 p=x-2
$$

$$
2 t-2 p=y-2
$$

$$
3 t+7 p=z+1
$$

Solving any tivo equations for t and p and substituting in the thira equation, me get
$5 x+2 y-3 z-17=0$
which is the recuired equation of the plane. (See the textbook for an altmative method).

Anale between $t \because c$ olanes :
L et $\vec{I} \cdot \vec{n}_{q}=d_{1}$
Let a plane p and let $\vec{r} \cdot \vec{n}_{2}=d_{2}$
be another plane 6 where \vec{n}_{1} and \vec{n}_{2} are perpendicular to the planes P and C.
Then the angle between the planes P and C is the angle between their perpendiculars. If θ is the angle between P and C, then

$$
\cos \theta=\vec{n}_{1} \cdot \vec{n}_{2}
$$

 macle between a line and a plane :

Let $\vec{I}=\vec{a}+\lambda \vec{b}$
be the line which makes
an angie E.isth the plane
$\vec{I} \cdot \vec{n}=c$
From the figure, it is clear that

$$
\cos \phi=\frac{\vec{b} \cdot \vec{n}}{|b|}
$$

Since $\theta=\frac{\bar{\pi}}{2}-\dot{C}$
We have $\sin \hat{\theta}=\operatorname{Cos} \mathbb{C}$

$$
\sin \dot{\omega}=\frac{\vec{b} \cdot \stackrel{\rightharpoonup}{n}}{|\vec{b}|}
$$

where θ Es the angle between the line and the plane.

Disience of a point fin af Plane :

Let 1 , be the plane and P be the given point. We wish to find the percencicular distance from P to 1_{1}.

Consider a plane l_{2} through the point F and parsilel to the plane 1_{1}.

If $\vec{I} \cdot \vec{n}=\underset{=}{ }$ is, the equation of the plane i_{1}, tron $(\overrightarrow{=}-\vec{a}) \cdot \vec{n}=0$ is the equation of the $=$ lane L_{2} (because the unit vector n is perpendicular= to 1_{2} also). The equation of 1_{2} can also be written as

$$
\vec{I} \cdot \vec{n}=\vec{a} \cdot \vec{n}
$$

This means that $\vec{a} \cdot \vec{n}$ is the perpendicular distance of the plane 1_{2} from the point C.

Therefore, the distance from P to the plane l_{1}
$=$ tie dis:nce between the tho parallel planes
= Cl:! - C: :
$=\hat{a} \cdot \vec{n}-\mathrm{d}$
The =issuance f nom p to $l_{1}=|\vec{a} \cdot \vec{n}-d|$

Alt= native Method:

Let \vec{a} be the position vector of the given point a and let
$\underline{Z} \vec{n}=\mathrm{q} \quad \ldots$ (1)
be the equation of the plane $l_{\text {, }}$. be :rant to fine the distance al where L is the foot of the perpendiceilar from a on 1_{1}.

The equation of the line through A and normal the plane l_{1} is given by $\vec{r}=\vec{a}+t \vec{n}$....(2) where t is scalar:

To find the position vector of the point L, we solve (1) ane (2). i.e. At the point of intersection of this line with the plane, we have so that $t=\frac{(a+t \hat{n})}{n^{2}}$

```
Tlue posz土iu:: \becausee=こ== =: L is given by
                \overline{c}-\frac{=-\overline{a}\cdot\hat{n}}{\mp@subsup{\overline{n}}{}{2}}\overline{n}
Tile 1e：ッご ハー
\[
=\quad-
\]
\[
=\overrightarrow{\bar{a}}-\frac{\overline{\bar{j}} \cdot \vec{n} \vec{n}-\vec{a} \mid}{\bar{n}^{2}} \quad \vec{n}
\]
\[
=c-\equiv \cdots{ }^{n}\left|, f c=n^{2}=|n|^{2}=1\right.
\]
```

Solvec＝xeニニミミロェ：
1．Sho\％tha＝こhe－inj：：nhose vector equition is

$$
I=(-i-\therefore-\dot{I}+\cdots(i-j+\infty k)
$$

 $\sin =\frac{\text { s．}}{2}$
$\operatorname{Sir} \hat{\imath}=\frac{(\underline{-}-\ldots)}{\sqrt{1 \varepsilon}} \cdot \frac{(i+5 i+k)}{\sqrt{27}}=0$
$F=0$ ．They ミェe こミニミilel．
The distance $=1 \vec{\equiv} \cdot \vec{\therefore}-0 \mid$

$$
=2 i-i-5 k) \cdot \frac{(i+5 i+k)}{\sqrt{27}}-\frac{5}{\sqrt{27}}
$$

$$
=\frac{10}{\sqrt{27}}
$$

2. Show that the plane whose vector equation is

$$
\vec{I} \cdot(i+2 j-k)=3
$$

contains the line whose vector equation is

$$
\vec{I}=i+j+(2 j+j+4 k)
$$

Ans: $\sin \theta=\frac{(2 i+i+i k) \cdot(i+2 i-k)}{x \times x}$

$$
=0
$$

Hence the Line and Plane are parallel. The distance $=|\vec{a} \cdot \vec{n}-d|$

$$
\begin{aligned}
& =(i+j) \cdot \frac{(i+2 i-k)}{\sqrt{6}}-\frac{3}{\sqrt{6}} \\
& =\frac{1+2}{\sqrt{6}}-\frac{3}{\sqrt{6}} \\
& =0
\end{aligned}
$$

Hence the line Lies on the plane.
3. Find the vector equation of the line passing through $(3,1,2)$
and perpendicular to the plane $\vec{r} \cdot(2 \pm-j+k)=4$ 。 Find also the point c intersection of this line and the plane. fins: The plane is $\vec{I} \cdot(2 i-j+k)=4$.
Hence $\vec{n}=2 i-j+k$ is perpendicular to the plane. The in e has to pass through the point $(3,1,2)$.
Hence the equation of the line is $\vec{r}=(3 i+j+2 k)+\lambda(2 i-j+k)$
The point of intersection of the line and the plane will be given by
solving $\vec{I} \cdot(2 i-j-k)=4 \quad \ldots(1)$
$\vec{I}=(3 i+j+2 k)+\lambda(2 i-j+k) \ldots(2)$
Substituting (2) in (i), we get
$4=6-1+2+\lambda(4+1+1)$
$\lambda=-y_{2}$
The point of intersection is
$(3 i+j+2 k)+(-i 2)(2 i-j+k)$
$=\left(2, \frac{3}{2}, \frac{3}{2}\right)$.

SPHERE

Definition: The set of all points in the space, each of which is at a constant distance $a(>0)$ from a fixed point \cup is called a sphere.

The fixed point l is called the centre and the constant distance 'a' is culled the radius of the sphere.

Cer:=al $£ 0=\mathrm{m}$ of a sphere :

Let \vec{c} be the position vector $=$ of
the centre of the sphere, of
radius a >0.
Let $\overrightarrow{=}$ be the position vector of
any arbitrary point P on the sphere.
Then, $|\overrightarrow{C P}|=a$

$\Rightarrow \mid$ Position vect
$\Rightarrow|\vec{I}-\vec{c}|=a$
This is the vector equation of the sphere in the central form.
Co= 1: In particular

$$
|\bar{I}|=a \text { is the equation of the sphere whose cent=e }
$$

is the origin and radius is a.
Cor 2: $\vec{r}-\vec{c}$

$$
\begin{aligned}
&=\left(x_{i}+y_{j}+z k\right)-\left(c_{1} i+\varepsilon_{2} j+c_{3} k\right) \\
&=\left(x-c_{1}\right) i+\left(y-c_{2}\right) j+\left(z-\epsilon_{3}\right) k \\
&\left(x-c_{1}\right)^{2}+\left(y-c_{2}\right)^{2}+\left(z-c_{3}\right)^{2}=a^{2}
\end{aligned}
$$

is the equation of the sphere with centre $\left(c_{1}, c_{2}, c_{3}\right)$ and radius a.

Diameter form of the sphere :

Let \vec{a}, \vec{b} be the position vectors of the extremities A and B of the diameter AB of the sphere. Let \vec{I} be the position vector of any point ? on the surface of the sphere.
Then, $\begin{aligned} \vec{M} & =\vec{I}-\vec{a} \\ \overrightarrow{B I} & =\vec{r}-\vec{b}\end{aligned}$

It is clear from geometry that

$$
\frac{\overrightarrow{A B} \cdot \overrightarrow{B P}=0}{(\vec{I}-\vec{a}) \cdot(\underline{I} \cdot \hat{b})=0}
$$

which is the equation of the sphere whose diameter is the join of $A(\vec{a})$ and $B(\vec{b})$.

Cartesian Form:

Let $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ be the extremities of the diameter hi of the sphere. Let $P(x, y, z)$ be any point on the surface of the sphere. Then,
$\bar{I}-\vec{a}=\left(x-x, i+\left(y-y_{p}\right) j+\left(z-z_{1}\right) k\right.$
$\vec{r}-\vec{b}=\left(x-x_{2}\right) i+\left(y-y_{2}\right) j+\left(z-z_{2}\right) k$
$(\vec{I}-\vec{a}) \cdot(\vec{r}-\vec{b})=0$
becomes

$$
\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)+\left(z-z_{1}\right)\left(z-z_{2}\right)=0
$$

which is the Cartesian equation of the sphere whose diameter is the join of the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$.

Solved Examples :

1. i plane passes through a fixed point $A(\gamma, \beta, \gamma)$. Sion that the locus of the foot of perpendicular to it from the origin is the sphere $x^{2}+y^{2}+z^{2}-x x-\beta y-y z=0$

Ans:

$$
\left(x_{i}-j+2 . \cdot\left(x-\alpha^{\prime} \dot{z}+\left(\because-j j_{j}+(z-\gamma) k=0\right.\right.\right.
$$

$$
\text { IE. } x^{2}+y^{2}-z^{2}-x \alpha-y\{-z=0
$$

2. I゙Iove that the Incus of the circular sector of the sphere

$$
\text { Ans: The given spileze is } \overline{=}=5 \text {. }
$$

The centre is the origin ane the radius is 5 .
The given mane can se written as

Hence the distance of the plane : =om
the centre is $p=3$.
i.e. $|0: i|=3$

Then \mid iVF $\mid=C^{2}-C \cdot:^{2}$

$$
\begin{aligned}
& =5^{2}-3^{2} \\
& =4 \text { units }
\end{aligned}
$$

3. Erove that the plane $x+2 y+2 z=15$ cuts the sphere $x^{2}+y^{2}+z^{2}-2 y-1 z-11=0$ in a circle. Fino the centre and radius of the =ircle.
mas: The equation of the sptieze is $x^{2}-y^{2}+z^{2}-2 y-4 z-11=0$ Its center is $(0,1,2)$ and racius $=4$. The distance of the pine from the centre of the sphere is

$$
\begin{array}{rlr}
p & =\left|\frac{0+2+4-15}{\sqrt{1+4+4}}\right| & \\
& =3 & p<r
\end{array}
$$

Ha. The plane cuts the sphere in circle.

$$
\begin{aligned}
& \text { Let } f(x, y,=) \text { be the Econ of the } \\
& \text { pe zpendiculity from } 0 \text { on the plane. } \\
& - \\
& C D=(x i+y j+3 k) \\
& \overrightarrow{\mathrm{F}_{-}}=(x-a) \dot{\underline{P}}+(y-p) \vdots+(z-r) k
\end{aligned}
$$

Then,
radius of the circle is
$=M$
$=\sqrt{e p^{2}-C N^{2}}$
$=\sqrt{r^{2}-p^{2}}$

$=\sqrt{7}$
Let (α, β, γ) be the coordinates of $I I$. N lies on the plane.
$\therefore \alpha+2 \beta-2 \gamma-15=0$
Also Cull is parallel to the normal to the plane.

$$
\begin{aligned}
& \frac{\alpha}{1}= \frac{B-1}{2}=\frac{z-2}{2}=k \\
& \alpha=k, \quad \beta=2!+1, \quad F=2 k+2
\end{aligned}
$$

Substituting these values in the above, be get
$k+4 k+2+4 k+4-15=0$
$k=1$
$\alpha=1, \beta=3, \gamma=4$
Hence the centre $\cup(1,3,4)$
and the radius is $\sqrt{7}$.

PROJECTS IN MATHEMATICS

Prof N M Rao

1. Area of the Circle

Objective : To find the area of the circle by using the area of small sectors.

Description :

Take a circle of radius r. Consider a sector of the circle of arc length 1 and divide the sector intn n small triangles as shown in the figure.

The area or eacn triangle $=\frac{1}{2} r b$ where $\mathrm{b}=\frac{1}{n}$.

The total area of the sector of arc length $1=n(1 / 2 \mathrm{rb})$

$$
=1 / 2 r(n b)
$$

$$
=1 / 2 \mathrm{rl}
$$

$$
\text { since } 1=n b
$$

In the same way, the area of the circle $=1 / 2 \mathrm{rc}$, where c is the circumference of the circle.
Area of the circle $=1 / 2 \mathrm{rc}$

$$
\begin{aligned}
& =1 / 2 r(2 \pi r) \\
& =\pi r^{2}
\end{aligned}
$$

2. Pentagonal Numbers

Objective : To enable the students to acquire the knowledge of pentagonal numbers.

Description:

Numbers can be represented in certain patterns. One of the patterns is by representing the dots. The below shown are the pattern of pentagonal numbers.

$1,5,12,22, \ldots$. are called pentagonal numbers. These pentagonal numbers are obtained by adding triangular numbers and square numbers. The pattern thus formed with these numbers are

Triangular Numbers + Square Numbers $=$ Pentagonal Numbers

	+	1		
1	-	4		$=$
3	-	9		5
6	+	16		12
10	+	25		22
10				

Thus pictorially they can be represented as

The bindis can be pasted on chart paper and the patterns of the pentagonal numbers can be enjoyed by the students.

1. The students can be asked to guess the next pentagonal numberand verify it afterwards by adding the corresponding triangular and square numbers.
2. The students can also be asked to find a formula to represent the triangular, square and pentagonal numbers

3. Tetrahedral Numbers

Objective : To enable th students to acquire the knowledge of the development of fifth tetrahedral number through Pythagorean, triangular numbers.

Procedure :

The first six Pythagorean numbers are $1,3,6,10,15$ and 21 . They are represented as follows:

1	1	1	1	1	1	1	1	
1	2	3	4	5	6	7	8	The Natural Numbers
1	3	6	10	15	21	28	36	The Triangular Numbers
1	4	10	20	35	56	84	120	The Tetrahedral Numbers

The tetrahedral number is built up from Pythagorean, triangular numbers as follows:

Taking clue from the above table, a model of the tetrahearal numbers is formed by keeping the patterns one upon the other as follows:

1. Keep one ball on the top step.
2. Below that, keep a step having three balls.
3. Next step contains 6 balls.
4. Next lower step contains 10 balls.
5. The fifth step contains 15 balls.

Now the complete model contains $15+10+6+3-1=35$ balls - A tetrahedral number is built up from triangular numbers. Similarly any tetrahedral number can be built up as the sum of triangular numbers.

The students can be asked to prepare a vertical model of the above. They can also be asked to guess a formula to find tetrahedral numbers.

4. Path of Pursuits

Objective: To find the paths of four ants placed at the comers of the square, each one moving in the direction of the ant in front of it. (This path is called the path pursuits).

Take a piece of stiff card board and mark a square $A B C D$ of side 10 cm . Mark the point A_{1} on $A B$ at $1 / 2 \mathrm{~cm}$ distance from A. Similarly mark B_{1}, C_{1} and D_{1} at $1 / 2 \mathrm{~cm}$ from B, C and D respectively. Now mark A_{2} at a distance of $1 / 2 \mathrm{~cm}$ from A_{1}, on the line $A_{1} B_{1}, B_{2}$ at $1 / 2 \mathrm{~cm}$ from B_{1} on the line $B_{1} C_{1}$ and so on. Continue in this way until the center of the square is reached. These envelopes are known as curves of pursuit. Since they are the paths which four ants originally placed at the comers of the square, would follow if they were always to walk in the direction of the ant in front of them.

1. Can you stitch the path of pursuits on a black coloured cloth using white thread?
2. Where is the point at which all four ants meet each other in the end ?
3. Read the chapter on envelopes and evolutes (geometry) to understand the significance of this path.

5. Building Trignometrical Tables

Objective: A simple device can be constructed by the students that will enable them to make their own table of trigonometric ratios for the sine and cosine.

Procedure :

1. On a graph paper, draw a circle with a radius of 10 cm .
2. Cut thin strip of cardboard atleast 12 cm long.
3. Draw a line down the center of the strip.
4. Attach one end of the strip to the center of the circle.
5. At the other end of the strip, 10 cm from the point where it is attached to the circle, make a small hole and attach a piece of thread.
6. At the opposite end of the string, attach a weight to serve as a plumb line.

The strip $O B$ can be rotated around the point O so that $O B$ makes different angles θ with x -axis. The hanging plummet BD cuts the x -axis at the point C . Count the number of spaces of length of the cord BC . Since hypotenuse is fixed at 10 cm , we can easily determine sine ratio. $\operatorname{Sin} \theta=\mathrm{BC} / 10$. As we change the angle by moving the cardboard strip, we can observe the change in the value of $\sin \theta$. Similarly the value of $\cos \theta$ can also be read by counting the number of spaces of horizontal axis $\mathrm{OA} \cdot \operatorname{Cos} \theta=\mathrm{OC} / 10$.

$$
5
$$

From this we can get the value of $\tan \theta, \cot \theta, \sec \theta$ and $\operatorname{cosec} \theta$. There may be some error in counting the lengths of $B C$ and $O C$. Therefore, students are asked to compare these values of $\sin \theta, \cos \theta$, etc. with the standard values given in the trigonometric tables.

6. Solids of Revolution

Objective: To show that various geometrical figures when revolved around a particular axis give various solids.

How to use this aid
The teaching aid consists of a motor and various objects of following shapes:
a) circular
b) parabolic
c) triangular or angular
d) square or rectangular

The objects are fixed to a pen refill, that should be attached to the motor which rotates about its axis. We get the following solids of revolution.
a)

b)

PARABOLOID

7. Path of the Moving Chord Inside a Circle

Objective: To illustrate that, the path of the moving chord of constant length inside a circle is a circle and to find out the radius of this inner circle.

PQ is a chord of constant length which moves inside the circle of a radius R , centred at the point A. What is the path of $P Q$? The students can move the stick $P Q$ inside the circle and convince themselves that the path of the moving chord $P Q$ of constant length inside a circle in a circle. They can repeat the experiment and verify the above fact. It is also clear that the center of the new circle is also A. What is the radius of this inner circle?

To find the radius of the inner circle see Fig. (2). In which $\mathrm{BD}=\mathrm{a}$ (length of the chord)

$$
\begin{aligned}
& A B=R \text { (radius of the outer circle) } \\
& A C=r \text { (radius of the inner circle) }
\end{aligned}
$$

By Pythagoras theorem,

$$
\begin{aligned}
& A B^{2}=A C^{2}+B C^{2} \\
& \mathrm{R}^{2}=\mathrm{r}^{2}+\left(\frac{a}{2}\right)^{2} \\
& \mathrm{r}=\sqrt{R^{2}-\frac{a^{2}}{4}}
\end{aligned}
$$

1. What happens if the length of the chord $P Q$ is equal to the diameter of the bigger circle?
2. What happens if the length of the chord PQ is equal to the radius of the bigger chord?

8. Conic Sections

Objective: To show that when a right circular cone is cut in four specific ways we get conic sections namely (1) circle, (2) parabola, (3) ellipse and (4) hyperbola.

- Hold the model and chart side by side, disjoint the right circular cone at the place marked ' 1 ' and see that the edge of the surface is a circle i.e. we get a circle by cutting the right circular cone perpendicular to its axis by a plane.
- Similarly disjoint the cone at the place marked ' 2 ' and see that the edge of the surface is a parabola, i.e. when we cut the cone parallel to one of its side we obtain parabola.
- Disjoint the cone at the place marked ' 3 ' and see that the edge of the surface is an ellipse, i.e. when we cut the cone at an inclined angle we get ellipse.

9. Logic Box

Objective: To enable the students to understand the conjunction $\left(^{\wedge}\right)$ and Disjunction (v) of two statements and draw their truth tables.
$\mathrm{P}^{\wedge} \mathrm{Q}=\mathrm{P}$ and Q (Conjunction)
$\mathrm{P} v \mathrm{Q}=\mathrm{P}$ or Q (Disjunction)
How to use the Teaching Aid:

1. Connect the battery to the circuit. The circuit is now ready to operate.
2. The Ps and Qs switches, are connected in the series circuit. The circuit is given by

(i) When the switches Ps and Vs are both switched on the light is on ($\mathrm{T}^{\wedge} \mathrm{T}=\mathrm{T}$).
(ii) When either of the switches are off the light is off $(T \wedge F=F)$.
(iii) When both the switches are off, the light is off $(F \wedge F=F)$.

The truth table for the given "And" circuit is :

Ps	Os	$\mathrm{Ps}^{\wedge} \mathrm{Qs}$
T	T	T
T	F	F
F	T	F
F	F	F

This is called the conjunction.
3. Now see the disjunction (v) circuit.

Pp and Qp are connected in parallel circuit. The circuit is shown as

(i) When both Pp and Qp are switched on, the light is on ($\mathrm{T} \vee \mathrm{T}=\mathrm{T})$.
(ii) When either Pp or Qp are switched on, the light is on ($\mathrm{T} \vee \mathrm{F}=\mathrm{T}$).
(iii) When both Pp or Qp are switched off, the light is off $(\mathrm{F} \vee \mathrm{F}=\mathrm{F})$.

The truth table is given by

Pp	Qp	$\mathrm{Pp} \vee \mathrm{Qp}$
T	T	T
T	F	T
F	T	T
T	F	F

The 'OR' circuit is off only when both Pp and Qp are off. This is called the disjunction of P, Q (Read as P or Q).

Verify whether the following statements are true or false :

1. (Conjunction) : Either $2+3=6$ and $4+5=9$.
2. (Disjunction): Either $2+3=6$ or $4+5=9$

Justify your answer using the logic box.

10. Magic Square

Problem

Prepare a magic square by putting the given numbers between 1 and 20 in the holes of given 3×3 box such that sum of columns, rows and diagonals should be 21 .

x_{1}	x_{2}	x_{3}
y_{1}	y_{2}	y_{3}
z_{1}	z_{2}	z_{3}

Solution

The least sum from 3×3 magic square will be 15 , a multiple of 3 . Let the sum be "a". To find the numbers in the magic square first subtract 15 from "a" divide by 3 and add 1.
$\frac{a-15}{3}+1=C$
C will occupy the position of z_{2}. The number at x_{3} will be $c+1$. Similarly $y_{2}=x_{3}+3$, $z_{1}=y_{2}+3\left(x_{3}+6\right)$. From these four numbers we get $z_{3}=a-\left(z_{1}+z_{2}\right), x_{2}=a-\left(z_{2}+y_{2}\right)$, $z_{1}=a-\left(x_{2} x_{3}\right), y_{3}=a-\left(x_{3}-z_{3} 0\right.$.

Here the given sum is 21 . From (1) $z_{2}=\frac{21-15}{3}+1=3$
$x_{3}=3+1=4, y_{2}=4+3=7, z_{1}=7+3=10$ or $4+6=10$, $z_{3}=21-(10-3)=8, x_{2}=21-(3-7)=11, y_{1}=21-16=5$ $x_{1}=21-(11-4)=6, y_{3}=21-(4-8)=9$.
Therefore, a magic square of sum 21 is as follows:

6	11	4
5	7	9
10	3	8

This method can be applied for any 3×3 magic square.

1. Students are advised to try to form a different magic square in which the sum is 21 .
2. Form a magic square of sum 15.
3. Model of $\mathbf{a}^{3}-\mathrm{b}^{3}$

Objective : This mode! is to illustrate that

$$
\begin{aligned}
& a^{3}-b^{3}=(a-b) a^{2}+(a-b) a b+(a-b) b^{2} \\
& =(a-b)\left(a^{2}+a b+b^{2}\right)
\end{aligned}
$$

Model: There are three wooden blocks of the following dimensions as shown :
(i) $(a-b) \times a \times a$

(ii) $(a-b) \times a \times b$

(iii) $(a-b) \times b \times b$

The three wooden blocks can be arranged in such a way that the complete assembly looks like $a^{3}-b^{3}$, i.e. a small cube of volume b^{3} has been removed from cube of volume a^{3} units.

The students are requested to assemble the wooden blocks and convince themselves about the result :

$$
\begin{aligned}
& (a-b) \times a \times a+(a-b) \times a \times b-(a-b) \times b \times b \\
= & (a-b) a^{2} \div(c-b) a b+(a-b) b^{2} \\
= & (a-b)\left(a^{2}-a b+b^{2}\right) \\
= & a^{3}+a^{2} b+a b^{2}-a^{2} b-a b^{2}-b^{3} \\
= & a^{3}-b^{3}
\end{aligned}
$$

12. Envelopes

Objective: To enable the students to understand the locus of a point and envelope of a set of lines.

Analysis: A set of points obeying a rule is called locus and a set of lines obeving a rule is called an enveiope.

Experiment :

Cut a hole whose radius is the diameter of a one rupee coin, in a piece of cardboard. Roll the coin, without slipping, round the hole. What is the locus of
(a) the center of the coin?
(b) a point on the circumference?

Answer :

(i) If B is any point on the coin, then the locus of B is the diameter of the hole.
(ii) If $B E$ is the diameter of the coin, the locus of E is the perpendicular diameter of the hole.
(iii) The locus of A , the center of the coin, is a circle.
(iv) The envelope of $B E$ is an astroid.

13. Tangrans

Objective : To form the geometrical shapes of squares, rectangles, hexagon, trapezium, etc. from the given pieces and to improve the mental ability of students.

Construction:

1. Take a square cardboard ABCD of side length 20 cms .
2. Draw the diagonal segment AC as shown in the figure.
3. The points E and F are mid points of $A B$ and $B C$ respectively. Draw EF
4. G is the midpoint of EF . Draw GD
5. Construct the line segment $E H$ perpendicular on $A C$ from the point E.
6. Draw a line segment GI , from the point G parallel to BC to cut the line $A C$ at the point I.

By curting along the lines as shown in the figure, we get tan gram pieces.

How to use

Take out all the seven tan gram pieces. Ask the learner to arrange the given pieces.
(i) to form a square
(ii) to form a rectangle

D

(iii) to form a hexagon

14. Probability Curve Experiment

Objective: This is a wooden model to show that the marbles flowing through a series of nails in the form of Pascal's triangle, will settle down in the shape of a Normal Probability Curve.

How to use it
The nails are fixed on a wooden board according to the Pascal's Triangle as shown in the figure. Above the nails, a metal box is fitted to pour the marbles uniformly. As we pour the marbles in the metal box, they come and settle in the columns in the form of normal probability curve as shown.

Principle

When we pour the marbles at the top, at the first nail, half of the marbles will flow by the left side of the nail and half the marbles will flow by the right side of the nail as shown:

The marbles coming to left nail in the second row will have two equal possibilities to go to the $3^{\text {rd }}$ row, $1 / 4$ to the left and $1 / 4$ to the right. Similarly the marbles coming to the right nail in the second row will have two equal chances to go to the $3^{\text {rd }}$ row, $1 / 4$ to the left of it and $1 / 4$ to the right of it. Hence in the second row, the marbles flow will be as follows: $1 / 4$ in the left, $1 / 4+1 / 4=1 / 2$ in the center and $1 / 4$ in the right. Similarly in the third row, the marbles flow as follows: $1 / 8,3 / 8,3 / 8$ and $1 / 8$. If we continue in this way, in the eight row marbles flow as follows:
$\frac{1}{256}, \frac{8}{256}, \frac{28}{256}, \frac{56}{256}, \frac{70}{256}, \frac{56}{256}, \frac{28}{256}, \frac{8}{256}, \frac{1}{256}$
In other words, if we pour 256 marbles from the top, then in a normal case, the number of marbles setting in each column will be as shown below.
15. Relation between the volume of sphere and volume of cube, constructed from the sphere

Objective: To see the relation between the volume of the original sphere and the volume of the interior of the simple cube constructed from the sphere.

How to use:

Take a sphere of radius ' R ' and cut the sphere into eight equal parts as shown below:

Join them from the reverse direction to form an object similar to a cuboid as shown below. Note that there will be some empty space in the middle of this cuboid.

The comparison is between the varus.- of the sphere and volume of the interior (empty space) of the constructed simple cube.

Volume of sphere $=\frac{4}{3}-R^{3}$
Volume of cube $=(2 R)^{3}=8 R^{3}$
Volume of the interior empty space of $=8 R^{3}-\frac{4}{3} \pi R^{3}$.

$$
\begin{aligned}
\% \text { of empty space in the cube } & =\frac{8 R^{3}-(4 / 3) \pi R^{3}}{(4 / 3) \pi R^{3}} \times 100 \\
& =\left(\frac{6-\pi}{\pi}\right) \times 100
\end{aligned}
$$

Note that this expression is independent of R .
The percent of empty space remains the same, even if the diameter of the sphere changes.

16. Pythagoras Theorem (Perigal's Dissection Method)

Objectives: To show that in a right angled triangle $\mathrm{ABC}, \mathrm{AC}^{2}=A \mathrm{~B}^{2}+\mathrm{BC}^{2}$ where AC is the hypotenuse, by the Perigal's Dissection Method.

Procedure :

There is a wooden model and a chart. In the chart.

$A B C$ is the given right angled triangle. $B C R S$ is the square on the side $B C . O$ is the point of intersection of the diagonals $B R$ and $C S$. Draw a line parallel to $A C$ through O. Also draw a line perpendicular to $A C$ through O. They divide the square BCRS to four parts $1,2,3,4$ as shown in the figure.
a, b, c, d are mid points of $A C, C P, P Q$ and $Q A$ respectively. Draw lines parallel to the line $A B$ through a and c. Draw lines perpendicular to the line $A B$ through b and d. These four lines divide the square $A C P Q$ into five parts $1,2,3,4$ and 5 as shown.

There are five plastic cut pieces which are congruent to the shapes $1,2,3,4$ and 5 .
Place these plastic pieces numbered $1,2,3$ and 4 on the square on $B C$ and piece numbered 5 on the square on $A B$ as shown in the figure.

Now place the same five pieces on the square on the hypotenuse AC . The five places exactly fit in the square on the hypotenuse (the areas are equal).

The above method justifies that

$$
\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}
$$

Remember that it is not a proof.

The teachers and the students are welcome to give a mathematical proof for the Perigal's method.

17. Pythagoras theorem (Bhaskaracharya's Dissection Method)

Objectives: To show that in a right angled triangle $\mathrm{ABC}, \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$ where AC is the hypotenuse, by Bhaskaracharya's Dissection Method.

Procedure

This teaching aid consists of a chart and some wooden cut pieces as shown in the following figure.

$A B C$ is a right angled triangle. $A C P Q$ is the square on the side $A C$. Draw lines parallel to $A B$ from the vertices Q and C. Also draw lines parallel to $B C$ from the vertices P and A, and hence divide the square $A C P Q$ into four triangles congruent to the triangle $A B C$ and a square in the center whose side length is $(B C-A B)$ as shown in the figure.

Now,
Area of the square ACPQ
$=4(1 / 2 \times A B \times B C)+(B C-A B)^{2}$
$=4(1 / 2 \times A B \times B C)-B C^{2}+A B^{2}-2 B C \cdot A B$
$=2 \mathrm{AB} \cdot \mathrm{BC}+\mathrm{BC}^{2}+\mathrm{AB}^{2}-2 \mathrm{AB} \cdot \mathrm{BC}$
$=B C^{2}-A B^{2}$
$\therefore A B^{2}+B C^{2}=A C^{2}$

By keeping the wooden pieces in the appropriate places, the students can convince themselves that the result is true.

Now try to give a complete mathematical proof for Bhaskaracharya's method.

18. Pythagoras Theorem (Chau Pei's Dissection Method)

Objectives: To show that in a right angled triangle $A B C, A C^{2}=A B^{2}+B C^{2}$ where $A C$ is the hypotenuse, by using the expansion of the expression $(a+b)^{2}$:

This teaching aid consists of a chart and some wooden cut pieces.

In the right angled triangle $A B C$, the lengths of the sides are a, b respectivety whue the length of the hypotenuse is c .

Take a plastic square piece $P Q R S$ of side length $a+b$ as shown in the figure.

Then TUVW is a square whose side length is c .
Area of $P Q R S=(a+b)^{2}$

$$
\begin{equation*}
=a^{2}+b^{2}+2 a b \tag{1}
\end{equation*}
$$

Area of $\mathrm{PQRS}=$ Area of the square TUVW -4 (Area of the triangle PVW)

$$
\begin{align*}
& =\quad c^{2}+4(1 / 2 \times a \times b) \\
& =\quad c^{2}+2 a b \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \text { From (1) and (2) } \\
& \qquad \begin{array}{l}
a^{2}+b^{2}+2 a b=c^{2}-2 a b \\
a^{2}+b^{2}=c^{2} \\
A B^{2}-B C^{2}=A C^{2}
\end{array}
\end{aligned}
$$

By keeping the plastic pieces in the appropriate paces, the students can convince themselves that the result is true.

The students can also be asked to prove mathematically that the four triangles are congruent to each other. Probably this method was adopted by the Chinese Mathematician Chou Pei (AD 40). Please see the book 'History of Mathematics' by Smith.

19. Fibonacci Sequence

Objective: This is a model, to show the physical meaning of the 'FIBONACCI SEQUENCE'.

The Fibonacci sequence is $1,1,2,3,5,8,13,21,34,55,80 \ldots \ldots$

The Problem :

The problem can be stated as follows. A man brought a pair of rabbits and bred them. The pair produced one pair of offspring after one month and a second pair of offspring after the second month. Then they stopped breeding. Each new pair also produced tow more pairs in the same way and then stopped breeding. How many new pairs of rabbits did he get each month ?

Let us write down in a line, the number of pairs in each generation of rabbits.

1. First we write the number I for the single pair we started with (l new pair).
2. Next we write the number 1 for the pair they produced after a month (1 new pair).
3. The next month, both pairs produced. So the next number is 2 (2 new pairs).
4. Now the original pair stopped producing. The first generation (1 pair) produced 1 pair. The second generation (2 pairs) produced 2 pairs. So the next number we write is $1+2$ or 3 . (Total 3 new pairs).
5. Now the first generation stopped producing. The second generation (2 pairs) produced 2 pairs. The third generation (3 pairs) produced 3 pairs. So, the next number we write is $2+3$ or 5 . (Total 5 new pairs).
6. Each month, only the last two generations produced. So, we can get the next number by adding the last two numbers in the line.
7. The numbers we get in this way are called Fibonacci numbers.

Reference : Land - Language of Mathematics

20. Circling a Square

Objective: This chart can be used to explain "How to construct a circle whose area is equal to the area of the given square using a scale and compass only". (approximately equal).

How to use it

1. In the above figure, "circling a square" $A B C D$ is a square which is to be transformed into a circle so that their areas are equal.
2. AC and BD are the diagonals of the square intersecting at O .
3. EW is a line passing through M, O and N , where M and N are the midpoints of $A D$ and $B C$ respectively.
4. With ' O ' as center and OA as radius, a circle is drawn such that it intersects $E W$ at E.
5. EM is divided such that $E P=2 P M$.
6. With ' O ' as center and OP as radius another circle is drawn. The area of this circle is approximately equal in the area of the square $A B C D$.

Reference : Indian Mathematics and Astronomy by S. Balachandra Rao.
Note : The above problem, "Constructing a circle whose area is equal to the area of the given square" had remained unsqlved for centuries in the history of Mathematics. The above method of construction is given by the ancient "Indian Mathematicians" in "Sulva Sutra".

21. Squaring a circle

Objective: This chart can be used to explain "How to construct a square whose area is equal to the area of the given circle usine a pass only". (Approximately equal).

How to use it :

1. In the figure, "Squaring a circie, $\mathrm{r}\langle\mathrm{K} \mathrm{S}$ Is a circle whıch is to be transformed into a square, so that their areas are equal. O is the center of the circle and PR is the diameter of the circle.
2. $P O$ is bisected at H and $O R$ is trisected at T nearer R.
3. $T Q$ is drawn such that $T Q \perp P R$ and a chord $R S$ is placed such that $R S=T Q$.
4. ' P ' and ' S ' are joined and $O M$ and $T N$ are drawn parallel to RS.
5. A chord is drawn such as $\mathrm{PK}=\mathrm{PM}$ and a tangent PL is drawn to the circle at P such that $P L=M N$. RL, RK and KL are drawn.
6. A point ' C ' is marked on $R K$ such that $R C=R H$ and $C D$ is drawn such that $C D$ is parallel to KL , meeting RL at D . Now a square is constructed on RD. Area of this square is equal to the area of the circle $P Q R$ approximately.

Reference: Indian Mathematics and Astronomy by S. Balachandra Rao.
Note : The above problem "Squaring a circle", i.e. to construct a square whose area is equal to the area of the given square using a scale and compass, had remained unsolved for centuries in the history of Mathematics. But ancient Indian Mathematicians solved the above problem in "Sulva Sutras". The above method of construction is given by "Srinivasa Ramanujan".

22. Buttons and Beads Puzzle

Objective: To improve the mental ability of students
Needed : Cardboard, string, two buttons and two beeds

How to prepare it :

23

Insert the string through the two beads and insert one end of the string, through hole A and attach a button larger than the hole. In the same direction, thread the other end of the string through hole C and attach a button as in figure 2 .

How to use it

The string is looped through hole B , as in figure 3. Now to loop it back under itself as in figure 4, the loop is first threaded up in hole A and cover the button and then likewise in hole C. Now the puzzle is ready for someone to try to undo the loop and get the beads together.

23. Quadratic Equation Solver

Objective : To enable the user to solve quadratic equations.

How to use it :

The aid consists of three scales namely A, B, C of which the scale B can be moved.

Suppose we have to solve the quadratic equation $x^{2}+6 x+8=0$.
Step 1: Move sliding scale B so that 0 (zero) on it coincides with 6 (six) (coefficient of x) on scale A.
Step 2: \quad Note corresponding reading on scale C which is 9 (nine).
Step 3: Subtract 8 (eight) (constant term or equation) from 9 (nine). The result is 1 (one).
Step 4: On scale C search the position of number 1 (one). There will be 2 (two) positions on scale C where you find 1 (one).
Step 5: Note the corresponding two readings on scale B. They are -2 and -4 . Hence, -2 and -4 are the solutions of the equation $x^{2}+6 x+8=0$.

Reference: Teaching of Mathematics by SK Aggarwal.

24. Four Colour Theorem

Objective : This is a model to show that the four colour theorem fails to hold in a 3dimension object.

Analysis :

There is a celebrated theorem called 'four colour theorem' which states that four colours are sufficient to colour any map in the plane in such a way that the neighbouring states do not get the same colour.

Model

A cylindrical hole is constructed in the center of a sphere (football). A horizontal line is drawn around the sphere to make it into two semi-spheres. The horizontal line is connected to the two poles in four different places as shown in the figure. Now the sphere has five regions each having a common boundary with all the remaining four regions.

Therefore, this model requires five colours.

1. Does it disprove the four colour theorem ? (If not, why?).
2. Can you produce a map in the plane, which actually requires four colours ?
3. Euler's Formula $V+F=E+2$

Objective: To stow that the Euler's formula 'Vertices + Faces $=$ Edges +2 ' is satisfied by al the convex polyhedra.

Teaching Aid:

This teaching aid consists of a vertical stand in which all the five regular polyhedra (tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron) made from thermacol and fixed. There are some other convex polyhedra also.

Procedure

The children will have to count the number of vertices, faces and edge of each one of these objects and make a table to find the relation between them.

	Name	No. of Faces	No. of Edges	No. of Vertices	V+F	$\mathrm{E}+\mathbf{2}$
1.	Tetrahedron	4	6	4	$4-4$	$6-2$
2.	Hexahedron	6	12	8	$8+6$	$12+2$
3.	Octahedron	8	-	-	-	-
4.	Dodecahedron	12	-	-	-	-
5.	Icosahedron	20	30	12	32	32

Can you produce a polyhedra which does not satisfy the Euler's formula?

26. Tower of Hanoi

Objective: It is a puzzle called Tower of Hanoi for high school students to develop the inductive reasoning.

Puzzle:

Three vertical rods are fixed on a metallic plate. Un one end of the rods, five discs of different sizes have been inserted, the largest disc being at the bottom, in the decreasing order of size.

You will have to put all the discs on any other rod, replacing one at a time and not placing a larger disc on a smaller disc. How many trials are needed to replace all the five discs?

How to do

Children can try by taking two discs first. They will see that the number of trials needed are 3 . They can repeat this experiment by increasing the number of discs.

At last they can see that if the number of discs are n, then the number of trials required to replace them is $2^{n}-1$.

27. Interchanging the Railway Wagons

Problem :

There is a railway line along $A B$ and a slanting line S is connected to $A B$ as shown in the figure. The length of the shunting place S will be sufficient for the wagons W_{1} and W_{2}, but will not be sufficient for the engine E to move. Using the engine E, interchange the positions of the wagons W_{1} and W_{2}.

The children can find the answer to this questions, themselves, by moving wagons W_{1} and W_{2} through the engine E to different directions. Repeated trials will help to improve their thinking and reasoning powers.

28. Elliptic Carrom Board

Objective: To enable the students to experience a geometrical property of ellipse.

Carrom Board :

An elliptic carom board is prepared, in which the two foci S_{1} and S_{2} are marked. Keep one carom coin each at S_{1} and S_{2}. The coin at S_{1} is pushed to hit any side of the wall of the board. After hiring the wall, the coin S_{1} will hit the coin at S_{2} and throw it away.

Reason

The perpendicular $P R$ to the wall of the ellipse at any point P divides the angle S_{1} $P S_{2}$ equally. Hence the angle of incidence $S_{1} P R$ and the angle of reflexion $R P S_{2}$ are equal.

1. What happens if the point P is on the line $S_{1} S_{2}$?
2. What happens if the point P is on the perpendicular bisector of the line $S_{1} S_{2}$?

Dr B S P Raju

Sinking Fund

Sinking fund is a kind of reserve by which a provision is made to
a) reduce a liability i.e. redemption of debentures or repayment of loan,
b) replace depreciating assets,
c) renew a lease,
d) replace wasting assets i.e. mines.

Let the amount of debt be $\mathrm{A} ; \mathrm{E}$ be the installment amount to credit to sinking fund and ' r ' be the interest rate per annum in decimal form that accrues to sinking fund.

Let us consider the case for 3 years.
At the end of the first year, the amount in S.F. (Sinking Fund) is Rs.E.
At the end of II year, this becomes $E(1+r)$ rupees. (by compound interest formula).
At the beginning of III year, he adds another E rupees so the amount in S.F. is $E(1+r)+E$.

At the end of III year, this becomes
$\{E(1+r)+E\}\{1+r\}$
At the beginning of the IV year again he adds E Rupees.
Hence S.F. $=[\{E(1+r)+E\}\{1+r\}]+E$.
But this is equal to A .
i.e. $E(1+r)^{2}+E(1+r)+E=A$.
$\mathrm{E}\left\{1+(1+r)+(1+r)^{2}=\mathrm{A}\right.$.
$\therefore E=\frac{A}{1+(1+r)+(1+r)^{2}}$
But $1+(1+r)+(1+r)^{2}$
$=1\left\{\frac{(1+r)^{3}-1}{1+r-1}\right\}$
$=1\left\{\frac{(1+r)^{3}-1}{r}\right\}$
$\therefore E=\frac{\mathrm{Ar}}{(1+\mathrm{r})^{3}-1}$
In general for n years,

$$
\begin{aligned}
E & =\frac{A}{1+(1+r)+(1+r)^{2}+(1+r)^{3}+\ldots+\left(1+r^{n}\right)} \\
& =\frac{A}{1\left\{\frac{(1+r)^{n}-1}{1+r-1}\right\}}=\frac{A}{\left(\frac{(1+r)^{n}-1}{r}\right)} \\
& =\frac{A r}{(1+r)^{n}-1}
\end{aligned}
$$

Problem :

A mortgage of Rs. $10,000 /$ - is due in 5 years. It calls for interest payments of 8% payable annually to the creditor. What is the annual payment? The debtor decides to make equal payments at the end of each year for 5 years into a sinking fund investment that earns 4% compounded annually, to accumulate Rs. $10,000 /-$ in 5 years. What is the annual payment to the sinking fund, construct a sinking fund schedule.

Interest $\frac{10,000 \times 1 \times 8}{100}=800 /-$ payable annually.
Installment for payment to sinking fund $=E=\frac{A r}{(1+r)^{n}-1}$

$$
\begin{aligned}
& =\frac{10000 \times 0.04}{(1+0.04)^{5}-1}=\frac{400}{0.2166528} \\
& =1846.272
\end{aligned}
$$

$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Period } & \begin{array}{c}\text { Interest at } \\ 4 \%\end{array} & \begin{array}{c}\text { Payment to } \\ \text { Sinking } \\ \text { Fund }\end{array} & \begin{array}{c}\text { Increase in } \\ \text { S.F. Col. } \\ 2+3\end{array} & \begin{array}{c}\text { Amount in } \\ \text { S.F. }\end{array} & \begin{array}{c}\text { Book Value } \\ \text { of Debt }\end{array} \\ \hline 0 & -- & -- & -- & -- & 10,000 \\ \hline 1 & 0 & 1846.272 & 1846.272 & 1846.272 & 8.153 .728 \\ \hline 2 & 73.85088 & 1846.272 & \begin{array}{c}1846.272+ \\ 73.85088= \\ 1920.1228\end{array} & \begin{array}{c}1846.272+ \\ 1920.1228 \\ = \\ 3\end{array} & 6233.606 \\ & & & 3766.3948\end{array}\right]$

1. In order to purchase new carpeting and furniture, the Healys decided to deposit Rs.50/- in a S.B. account at the end of each month for 2 years. How much will they have available at that time, if the interest rate is 5% compounded monthly.

Problems on Partnership

X starts a business on $1^{\text {st }}$ January 1987 with Rs.5000/-. Y joins on $1^{\text {st }}$ May 1987 with Rs.10,000/-.
On $1^{\text {st }}$ July, Z comes in as a parther with Rs. $15,000 /$ -
And on the same date, X contributes Rs.5000/- and Y contributes Rs.10,000/as further capital.
The profits for the year ended $31^{\text {st }}$ December 1987 amounted to Rs. 16,000/-. The partners agree to share the profits in proportion of their capitals. Find their profits.

X: $\quad 5000$ for 12 months

$$
\begin{aligned}
& 5000 \times 12=60,000 \\
& 5000 \times 6=\underline{\underline{30.000}} \\
& \underline{90.000}
\end{aligned}
$$

5000 for 6 months

Y: $\quad 10,000$ for 8 months
$10000 \times 8=80,000$
10,000 for 6 months
$10000 \times 6=\frac{60.000}{1.40,000}$
$Z: \quad 15,000$ for 6 months
$15000 \times 6=90,000$
Their profits should be $90: 140: 90$ i.e. $9: 14: 9$
$\therefore \quad X ' s$ profit is $16,000 \times \frac{9}{32}=4,500 /-$
Y's profit is $16,000 \times \frac{14}{32}=7,000 /-$
Z 's profit is $16,000 \times \frac{9}{32}=4,500 /-$

Admission of a Partner

1. Change in the profit sharing ratio.

Ex: If A, B and C are partners sharing in the ratio $6: 5: 3$ and later they admit D for $\frac{1}{8}$ share. What is the new and sacrificing ratio?

Solution: Old ratio is $6: 5: 3$

$$
\text { D's ratio is } \frac{1}{8} \text { (given). }
$$

A's, B's and C's combined share in the new firm $=1-\frac{1}{8}=\frac{7}{8}$.
A will get $\frac{6}{14}$ th of the remaining $\frac{6}{14} \times \frac{7}{8}=\frac{6}{16}$.

B will get $\frac{5}{14}$ of the remaining $\frac{5}{14} \times \frac{7}{8}=\frac{5}{16}$.
C will get $\frac{3}{14}$ of the remaining $\frac{3}{14} \times \frac{7}{8}=\frac{3}{16}$.
New profit sharing ratio $\frac{6}{16}: \frac{5}{16}: \frac{3}{16}: \frac{2}{16}$ i.e. $6: 5: 3: 2$.
Sacrificing ratio of A is $\frac{6}{14}-\frac{6}{16}=\frac{48-42}{112}=\frac{6}{112}$.

Sacrificing ratio of B is $\frac{5}{14}-\frac{5}{16}=\frac{5}{112}$
Sacrificing ratio of C is $\frac{3}{14}-\frac{3}{16}=\frac{24-21}{112}=\frac{3}{112}$.
\therefore Sacrificing ratio $=\frac{6}{112}: \frac{5}{112}: \frac{3}{112}=6: 5: 3$.

Goodwill

Goodwill is the attracting force, which attracts the customers towards products of the firm. It is the value of customer's confidence in the business. It is an intangible and invisible asset.

Goodwill $=$ Actual profit earned - Normal profit.
Goodwill $=$ Certain number of times the average profit.
Ex : A and B are equal partners in a firm. Their capitals show credit balances of Rs.18000/- and Rs.12000/- respectively. A new partner C is admitted with $1 / 5^{\text {th }}$ share in the profits. He brings Rs.14000/- for his capital. Find the value of goodwill of the firm at the time of C's admission.

Solution: For $1 / 5^{\text {th }}$ of share C contributes Rs.14000/- (given).
Full capital of the new firm $=14000 \times 5=70,000 /$-.
But combined total capital of the three partners $=18000 \div 12000 \div 14000=44000$.
\therefore Total value of firm's goodwill $=70000-44000=26000$.

Adjustment of Capital

Ex: A, B and C have been sharing their profit and loss in the ratio of $6: 5: 3$. They admit D to a $1 / 8^{\text {th }}$ share. D brings Rs. $16000 /$ - for his share of capital. All the partners decide to make the balance of their capital accounts in the profit sharing ratio, calculate their capital.

Solution: Combined share of A, B and C in the new firm $=1-\frac{1}{8}=\frac{7}{8}$.
A's new share $\frac{6}{14}$ of $\frac{7}{8}=\frac{6}{14} \times \frac{7}{8}=\frac{6}{16}$.
B's new share

$$
=\frac{5}{14} \times \frac{7}{8}=\frac{5}{16} .
$$

C's new share

$$
=\frac{3}{14} \times \frac{7}{8}=\frac{3}{16} .
$$

\therefore New profit sharing ratio among A, B, C and D is $\frac{6}{16}: \frac{5}{16}: \frac{3}{16}: \frac{2}{16}=6: 5: 3: 2$.
For $1 / 8^{\text {th }}$ share, the new partner D brings Rs. 16,000 .
\therefore Total capital of new firm will be $8 \times 16,000=1,28,000 /$.
\therefore A's capital in new firm $=1,28,000 \times \frac{6}{16}=48,000 /$ -
B's capital in new firm $=1,28,000 \times \frac{5}{16}=40,000 /-$.
C's capital in new firm $=1,28,000 \times \frac{3}{16}=24,000 /$.

D's capital in new firm $=1,28,000 \times \frac{2}{16}=16,000 /-$.

On the Retirement or Death of a Partner

Ex: If A, B, C and D are partners sharing in the ratio of $6: 5: 3: 2$. D retires from the firm. Calculate the new ratio after D 's retirement.

Combined share of A, B and C (after excluding D).

$$
=1-\frac{2}{16}=\frac{14}{16}
$$

A's share out of $\frac{14}{16}$ is $\frac{6}{16}$.
\therefore A's share out of 1 is $\frac{\frac{6}{16}}{\frac{14}{16}}=\frac{6}{16} \times \frac{16}{14}=\frac{6}{14}$

III ${ }^{\text {ly }} \mathrm{B}$'s share is $\frac{5}{14}$.
C's share is $\frac{3}{14}$.
$\therefore \quad$ New ratio is $\frac{6}{14}: \frac{5}{14}: \frac{3}{14}$.

Gain in ratio :

$$
\begin{aligned}
\text { A's gain } & =\text { New share }- \text { old share } \\
& =\frac{6}{14}-\frac{6}{16}=\frac{6}{112} . \\
\|^{\text {ly }} \text { B's gain } & =\frac{5}{112} . \\
\text { C's gain } & =\frac{3}{112} .
\end{aligned}
$$

Bills of Exchange

Definition :

A bill of exchange is an instrument, an unconditional order, signed by the maker, directing a certain person to pay a certain sum of money only to or to the order of a certain person or to the bearer of the instrument.

Discounting of the bill :

The drawer may wait for the entire period of the bill to receive its payment. If he is in the immediate need of funds, he can get the bill discounted with the bank. The drawer transfers the possession and also the ownership of the bill. The bank charges certain interest, here known as discount for the period it has advanced the amount. On due date, the bank will present the bill to the drawer and receive the payment.

Discount is always charged for a period between the date of discounting and due date.

Ex: A draws a bill on B for Rs.3,000 - on January 1, 1994 pavable after 3 months. The bill is discounted by A, as he is in the immediate need of funds. Calculate the discount in the following cases :
a) The bill has been discounted at 12% on January 4 .
b) The bill has been discounted at 12% on February 4 .
c) The bill has been discounted at 12% on March 4 .
a) Discount $=3000 \times \frac{12}{100} \times \frac{3}{12}=90$.
b) Discount $=3000 \times \frac{12}{100} \times \frac{2}{12}=60$.
c) Discount $=3000 \times \frac{12}{100} \times \frac{1}{12}=30$.

Retiring a bill under rebate :

Payment of the bill is generally made after the expiry of the specified period. The drawee may make the payment of the bill even before the date of maturity of the bill. In case of receiving payment of the bill even before the due date of the bill, the drawer allows certain discount, here known as "rebate" as a customary trade practice.

Ex : Ansar accepts a bill drawn by Azar for Rs.8000/- on March 15, 1999 payable after 4 months. According to the trade practice in the industry cash rebate at 6% p.a. is allowed. Calculate the amount of rebate in the following cases.
a) Ansar makes payment on April 18, 1999
b) Ansar makes payment on May 18, 1999.
c) Ansar makes payment on June 18, 1999 .

Solution:

a) Rebate $8000 \times \frac{6}{100} \times \frac{3}{12}=$ Rs.120/-
b) Rebate $8000 \times \frac{6}{100} \times \frac{2}{12}=$ Rs. $80 /-$
c) Rebate $8000 \times \frac{6}{100} \times \frac{1}{12}=$ Rs. 40%.

Depreciation :

Depreciation means a fall in the quality, quantity or value of an asset.
I. Factors that cause depreciation

1. Wear and tear due to actual use.
2. Efflux of time - mere passage of time will cause a fall in the value of an asset even if it is not used. Ex. A patent right acquired on lease for 10 years loses $1 / 10$ of its value for every year, even if it is not actually used.
3. Obsolescence - a new invention or a permanent change in demand may render the asset useless.
4. Accidents - when a fixed asset is damaged by an accident, naturally it loses its value.

Except a few cases like land and paintings, all assets depreciate.
Generally, depreciation is used only in respect of fixed assets (are those that are not meant to be sold but are meant to be utilized in the firm's business). Ex. Machinery. Patents, Buildings and goodwill.

II. Need for providing depreciation

1. To assess the profit correctly. Cost of the fixed asset used up in the period should be treated as cost or expense.
2. To estimate the value of the assets possessed by the firm
3. The amount so kept out of profits for depreciation will be made available for the replacement of the asset when its life is over.

Factors for calculating depreciation:

1. The cost of the asset
2. The estimated residual scrap value at the end of its life.
3. The estimated number of years of its life. Not the actual but the number of years it is likely to be used by the firm). A machinery may be capable of running for 30 years, but say, due to new inventions, it will be in use only for 10 years; then the estimated life is 10 years and not 30 years).

Methods of calculating depreciations :

a) Straight line Method or Fixed Percentage on Original cost or Fixed Installment Method

$$
\frac{\text { Cost }- \text { Estimated Scrap Value }}{\text { Estimated Life }}
$$

Note: In the case of companies, the scrap value is assumed to be 5% of the original cost of the asset.

This method is useful when the service rendered by the asset is uniform from year to year.

Example 1: A company purchased a lathe machine in the year 1995-96 at a cost of Rs. $40,000 /$-. At the end of its estimated life of 10 years, it is expected to give Rs.5000/- when sold as scrap. Calculate the annual depreciation value.

$$
\frac{40,000-5,000}{10}=\frac{35,000}{10}=3,500 /- \text { per year }
$$

Example 2: A firm purchased machinery for Rs.22,500/- on 1.1.1998 and spent for its installation Rs.2,500/-. Its life was estimated to be 4 years with a scrap value of Rs.5000/-. Calculate the amount of depreciation.

Purchase cost of the machinery : Rs.22,500/Installation charges (to be regarded as cost : Rs. 2.500/of the machinery)

Rs.25,000/-
Scrap vale of the machinery at the end of : Rs. 5.000/its life

Depreciation of the machinery : Rs.20,000/-
Depreciation for each year is $\frac{20,000}{4}=$ Rs.5,000/-.

b) Written down value method:

In this method, the percentage of deprecation is fixed, but it applies to the value at which the asset in the beginning of the year.

Example : At the rate of 10%, what is the amount of depreciation in the third year, if the cost of the machinery in the beginning is Rs.20,000/-

Depreciation for the $1^{\text {st }}$ year $20,000 \times \frac{10}{100}=2,000 /$.
\therefore Cost of the asset in the beginning of $2^{\text {nd }}$ year is $20,000-2,000=18,000 /=$.
Depreciation for the $2^{\text {nd }}$ year $18,000 \times \frac{10}{100}=$ Rs. 1,800/-.
\therefore Cost of the asset in the beginning of $3^{\text {rd }}$ year is $18,000-1,800=16,200 /$.
\therefore Depreciation for the $3^{\text {rd }}$ year $16,200 \times \frac{10}{100}=$ Rs. $1,620 /$.
Uses : Depreciation in earlier years will be heavy, but will be light as the asset gets old. Repairs on the other hand are light in the earlier years and heavy later.

The total of the two - depreciation and repairs - will be roughly constant.

c) Sum of the Digits Method :

The amount of depreciation for each year is calculated by the formula :
$\frac{\text { Remaining life of the asset (including the current year) }}{\text { Sum of all the digits of the life of the asset in years }} \times \cos t$ of the asset
Example : For an asset costing Rs.50,000/-, Life is estimated for 10 years.
What is the amount to be provided for depreciation in the first year and also in second year?

Solution: Sum of all the digits of the life of the asset in years is

$$
1+2+3+4+5+6+7 \div 8-9+10=55 .
$$

\therefore Amount of depreciation for the first year $=\frac{10}{55} \times 50,000=9091$.
\therefore Amount of depreciation for $2^{\text {nd }}$ year $=\frac{9}{55} \times 50,000=8181$.
d) Depletion Method: This method is used in the case of mines, quarries, etc.

Depreciation is calculated per tonne of output.
Example : Cost of mine is Rs. $20,00,000$ and it is estimated that the total quantity of mineral in the mine is Rs. $5,00,000$ tonnes.

The depreciation per tonne of output is

$$
\frac{20,00,000}{5,00,000}=\text { Rs. } 4 .
$$

If the output for the first year is 40,000 times, then, the depreciation is $40.000 \times 4=$ Rs. $1,60,000 /-$

If the output for $2^{\text {nd }}$ year is 60,000 tonnes.
then the depreciation is $60.000 \times 4=$ Rs. $2.40,000 /-$.

e) Machine Hour Rate Method

Effective life of machine may be 20.000 hours.
Example : An asset which costs Rs. 45.000 - has a useful life of 24 years and a salvage value (Trade-in-vaiue) of Rs. $3000 /$-. What will be the depreciation expense for the first $\left(1^{\text {st }}\right)$ year, the $10^{\text {th }}$ year and the $24^{\text {th }}$ year if the sum of year's digit method is used?

Ans: Rs.3,360/-; Rs.2,100.-; Rs.140/-

ANNUITY
Meaning: An annuity is a series of equal periodic payments or deposits with the interest on each one being compound interest.

TYPES OF ANNUITY (by date of payment)

ORDINARY ANNUITY : Payments are made at the end of the payment intervals.

ANNUITY DUE: Payments are made at the beginning of the payment intervals.

DEFERRED ANNUITY : Payments are made at the end of the payment intervals but do not start until after a designated period of time.

Example for Ordinary Annuity

Find the amount of an ordinary annuity of five deposits of Rs.1000/- each made at the end of each year for 5 years, if the interest rate is 4% compounded annually.

The first deposit of Rs. 1000/- is for 4 years;
The second deposit of Rs.1000/- is for 3 years;
The third deposit of Rs. 1000/- is for 2 years;
The fourth deposit of Rs.1000/- is for 1 year; and fifth receives no interest.

$$
\begin{aligned}
& \therefore S=1000(1.0 .4)^{4}-1000\left(1.04^{3}+1000(1.04)^{2}+1000(1.04)+1000\right. \\
&=1000(1.1698586)+1000(1.1248640)+1000(1.08160)+ \\
& 1000(1.04)+1000 \\
&=5416.32
\end{aligned}
$$

Example for Annuity Due

If a payment of Rs. 100 today and a like payment at the end of each year for 5 years, how much will be on deposit at the end of 6 years, if the interest rate is 5% compounded annually.

The first deposit of Rs.100/- is for 5 years.
The second deposit of Rs.100/- is for 4 years.
The third deposit of Rs.100/- is for 3 years.
The fourth deposit of Rs.100/- is for 2 years.
The fifth deposit of Rs.100/- is for I year.
The sixth deposit of Rs. $100 /$ - is for 0 years.

Example for Deferred Annuity

I deposited a sum of Rs.5000/- in TISCO on $1^{\text {st }}$ January, for secured premium notes. The company agreed to pay me back at the rate of Rs.2000/- every year for about 5 years from the beginning of $1^{\text {st }}$ January 1996.

FORMULA TO FIND THE AMOUNT OF ORDINARY ANNUITY

Let P stands for the Principal; r for interest rate per annum expressed in decimal form n for number of years the money is left in deposit, and A for amount or principal plus interest.

The first instalment paid at the end of $1^{\text {st }}$ year will be in deposit for ($\mathrm{n}-\mathrm{t}$) years. By using the compound interest formula this amounts to $P(1+r)^{n-1}$.

III $\left.\right|^{\text {ry }}$ the second instalment paid at the end of $2^{\text {nd }}$ year amounts to $P(1+r)^{n-2}$.

$$
\begin{aligned}
\therefore A & \left.\left.=P(1+r)^{n-1}+P\right) 1+r\right)^{n-2}+\ldots .+P(1+r) \div P \\
& =P\left\{(1+r)^{n-1}+(1+r)^{n-2}+\ldots .+(1+r)+1\right\} \\
& =P\left\{1+(1+r) \div(1+r)^{2} \div \ldots . .+(1+r)^{n-2}+(1+r)^{n-1}\right\} \\
& \text { (writing in reverse order) } \\
& =P\left\{\frac{1\left\{(1+r)^{n}-1\right\}}{1+r-1}\right\}=P\left\{\frac{(1+r)^{n}-1}{r}\right\}
\end{aligned}
$$

 formula)

For annuity done $A=P\left[\frac{(1+r)^{n+1}-1}{r}\right]-P$.

PRESENT VALUE OF AN ANNUITY

The inverse of finding the amount of an annuity is finding the present value of the annuity.

Present value of an annuity is the amount of money to be deposited in the beginning so that one can withdraw a fixed amount of money at the end of each year for n-years, at which time the original investment and the interest (earned compoundiy) exhausted completely.

Example: At age 21 Ram receives an inheritance of 20 equal annual payments of Rs.2000/- each, the first payment coming due at age 22. If money is worth 4% compounded annually, what is the cash inheritance at age 21 ?
The cash inheritance is the present value of annuity.

FORMULA TO FIND THE PAYMENT VALUE OF ANNUITY

Let p is the present value, it is same as Principal, r is the interest rate per annum expressed in decimal form, E is the amount that can be withdrawn at the end of every year.

Consider the case for two years only.
At the end of the $1^{\text {st }}$ year, the amount becomes

$$
p(1+r)
$$

But \because E rupees is withdrawn, the principal at the beginning of the second year is $p(1$
$\div r)-E$.
So by the end of $2^{\text {nd }}$ year, this becomes $\{p(1+r)-E\}\{1+r\}$

But this is equal to E.

$$
\begin{aligned}
& \therefore\{p(1+r)-E\}\{1-r\}=E \\
& \text { ie. } p(1-r)-E=E(1-r)^{-1} \\
& p(1-r)=E(1+r)^{-1}-E \\
& \left.=E\{1-r)^{-1}-1\right\} \\
& \therefore P=\left\{(1-r)^{-2}+(1-r)^{-1}\right\}
\end{aligned}
$$

Consider the case for 3 years.

At the end of $1^{\text {st }}$ year, the amount becomes $p(1-r)$.
\because E rupees is withdrawn, the principal becomes

$$
p(1-r)-E .
$$

By the end of $2^{\text {nd }}$ year this becomes

$$
\{p(1+r)-E\}\{1+r\}
$$

\because E rupees is again withdrawn, the principal becomes

$$
[\{p(1+r)-E\}\{1+r\}]-E
$$

By the end of $3^{\text {rd }}$ year, this becomes

$$
[\{p(1+r)-E\}\{1+r\}-E][1+r]
$$

But this is equal to E.

$$
\begin{aligned}
& \therefore[\{p(1-r)-E\}\{1+r\}]-E[1+r]=E \\
& \Rightarrow[\{p(1-r)-E\}\{1+r\}-E]=E(1+r)^{-1} \\
& \Rightarrow[\{p(1+r)-E\}\{1+r\}]=E(1-r)^{-1}-E
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow p(1+r)-E=E(1-r)^{-2}-E(1+r)^{-1} \\
& \Rightarrow p(1+r)=E(1-r)^{-2}+E(1+r)^{-1}-E \\
& \Rightarrow p=E\left\{(1+r)^{-3}-(1-r)^{-2}+(1+r)^{-1}\right\}
\end{aligned}
$$

Similarly for n years, we can derive

$$
p=E\left\{(1+r)^{-1}-(1+r)^{-2} \div(1+r)^{-3}+\ldots . .-(1+r)^{-n}\right\}
$$

The expression within the brackets is sum of n terms of a G.P. with

$$
\left.\left.\begin{array}{rl}
a & =(1-r)^{-1} \text { and } r=(1-r)^{-1} \\
\therefore \quad p & =E\left\{(1+r)^{-1}\left[\frac{1-\left\{(1+r)^{-}\right\}^{n}}{1-(1+r)^{-1}}\right]\right\} \\
& =E\left\{(1-r)^{-1}\left[\frac{1-(1+r)^{-n}}{1-\frac{1}{1+r}}\right]\right\} \\
& =E\left\{(1 + r) ^ { - 1 } \left[\frac{1-(1+r)^{-n}}{1+r-1}\right.\right. \\
1+r
\end{array}\right]\right\}\left\{\begin{array}{l}
r \\
\end{array}\right.
$$

G. Ravindra Principal

USE OF VENN DIAGRAMS IN TEACHING-LEARNING OF MATHEMATICS

G. Ravindra
Regional Institute of Education (NCERT), Mysore

ABSTRACT

In this article an attempt has been made to discuss the effectiveness of Venn Diagrammatic Representation Approach (VDRA) in Teaching-Learning of Mathematics

Introduction

Mathematics plays a central role in Science and Technology. The Numbers, which are so fundamental to Mathematics, encompass all disciplines of study and all walks of life. The Pythagoreans (around BC540) literally worshipped the natural numbers and they believed that the entire Universe was made up of these numbers. Mahavira(AD 850) stressed the importance of Ganita (Mathematics) in all the three Worlds. But this subject of supreme importance also seems to pose almost insurmountable difficulties for the great majority of the students.

Is Mathematics difficult?

Several studies have observed that many of the students at school level find mathematics a difficult subject and large number of students fail in this subject. Mathematics is difficult not because of abstraction, as has been generally perceived, it is because of precision. Mathematics is difficult because, unlike any other discipline, it demands complete precision (King, 1992). One of the vast areas of the world of contemplative beauty is mathematics and this alone is sufficient reason for the study of mathematics. However, there is one comment that the inadequacies in teaching of mathematics have created the gap between the scientific community and the rest of the humanity, and thereby hamper the growth of our society. Thus there is a need for overcoming the inadequacies in teaching of

Mathematics. Any model of teaching of mathematics should ensure that mathematics is taught the way mathematics is and mathematics is learnt the way mathematics is.

Teaching is a great art

Taking an active role in the learning process of the child is one of the greatest joys of teaching. Teachers have natural curiosity to observe how children grow and discover the world around them. Teachers feel that they want to be there, to help and play an important role in facilitating their learning. This is a tremendous job. One of the basic teaching functions is to "check for understanding"(Rosenshine, 1983). Similarly " assess student comprehension " (Good \& Grouws, 1979) as one of their instructional behaviours for effective mathematics teaching. Shavelson (1979) ${ }^{7}$ argued that it is important for the teacher to estimate the " states of mind" of their students and that these estimates provide essential information for deciding what and how to teach.

The way mathematics is being taught is going through a dramatic change. The introduction to the study of "Numbers and numerations" starts when the children begin to gather objects and then form groups or sets. Soon they need a way to describe the numbers of objects in the sets. To begin with, these descriptions are verbal - they count by saying the names of numbers as objects are singled out. Symbols for numbers are eventually introduced and then they learn to write numbers. It is most likely that children learn maths today by beginning with real-life problem or situation that needs to be solved. They are given freedom to use techniques that might be uniquely theirs. The premise is that children as well as teachers are most likely to remember the things that they grapple with and resolve. To-day Maths curriculum is so different from what we were taught. What was emphasised then is not emphasised now. New names have been given to old
procedures, and some procedures that took forever to master are no longer taught because a calculator can provide the answer at the push of a button.

The mathematics teacher while developing the problem solving ability among students, often follows two basic steps (Hayes,1981)3: problem representation and problem solving. In the problem representation, a problem is converted from a series of words and numbers into an internal mental representation of the relevant terms. In problem solutions, operations are performed so as to deduce a solution to the problem from the internal mental representation.

Bertrand Russell (1917)' rightly points out "Mathematics is the study of assertions of the form ' p implies q ', where p and q are each statements about objects that live in mathematical world". Thus mathematics is a study of Sets where a set is identified with a 'precise property', a property that is true or false, not both. But strangely the Sets do not find the right kind of importance in the teaching learning process of mathematics in school education. In the process of making mathematics more functional, the most fundamental element of mathematics -" Set"is not used properly as it should have been.

With these in mind, an attempt was made to study the Role of Venn Diagrams in Teaching and Learning of Mathematics

Venn Diagram and its importance

John Venn ${ }^{\varepsilon}$ introduced Venn diagrams in 1880. A Venn diagram represents pictorially interrelations among sets (well defined properties) each of which is denoted by a closed region without holes. Though there are other diagrams like line diagram, directed graph, etc. to illustrate relationships, Venn diagram has an advantage of space over theothers.

Given two well defined properties p, q, the possible relations between them can be represented by Venn diagram in one of the following ways.
a)

q (or p)

$$
\text { ' } p \Rightarrow q^{\prime} \text { or ' } p \text { is } q^{\prime} \text { or ' } p \text { is part of } q^{\prime}
$$

b)

P and q (which in non-empty)
Some of p is q
c)

No p is q

Rationale

The author while doing mathematics, and while teaching mathematics at different levels (graduates and post-graduates) gained adequate experience of

Venn diagrams. This experience of more than two decades made him believe that Venn diagrams could best be employed in:

- Better understanding of mathematics because of their visual effect:
- Providing clarity in teaching-learning of mathematics:
- Finding inter-relations among mathematical properties holistically and accurately, and better analysis of the properties:
- "Conjecturing" as a consequence of natural creation of some new portion in Venn diagram (For Example - See Annex -1). This Venn diagram motivated the author ${ }^{5}$ to conjecture C_{1} and C_{2}. See dotted lines in the diagram) and these conjectures are unsolved problems for more than two decades.

Keeping these observations in mind, the author tries to present the salient features of the two simple studies involving the use of Venn Diagrammatic Approach (VDRA) in teaching-learning of Mathematics.

Experiment-1

It was the purpose of the study to determine the direct effect of Venn Diagrammatic Representation Approach training on student teachers and to assess the transfer of training to them. The training focussed on different components involved in Venn diagrams - like encoding of information, inferring and mapping the relationships before applying them to specific problem situations establishing the emptiness or non-emptiness of a section of the Venn diagram. The author himself gave training during this period. Students were given frequent opportunities to practice and apply the related components in varied contexts.

The second session of the training programme was for the students to apply successfully the components involved in establishing the relationships. A typical exercise given was - " Draw and Justify Venn Diagram of the,,". At the end, the author asked students "Is Venn diagram useful in teaching learning of mathematics? If 'Yes', why?" A summary of 110 responses received is given below: mathematics. The reasons given by them are -

- Venn diagrams are better tools for understanding because of their visual effect:
- Venn diagrams being pictorial representations convey accurate meaning what words cannot (A picture worth thousand words). The concepts explained through Venn diagrams are better retained for longer duration:
- Venn diagrams are self-explanatory; convey the meaning at a glance, have no language bias and easily understood by all types of students:
- Through Venn diagrams, abstract ideas are grasped easily and are kept at the concrete level of understanding:
- Relations between two or more concepts can be more easily and effectively learnt by Venn diagrams than by using symbols:
- Venn diagrams will reduce the verbal explanation of teachers and students and the school students feel happy to draw Venn diagrams:
- Venn diagrams help students to solve problems on sets more accurately and with better confidence and thereby reducing the mistakes/errors:
- Venn diagrams develop power of reasoning:
- With Venn diagrams, one can simultaneously inter-relate many properties:
- One can get new results from the basic elements of Venn diagram.

Experiment-2

The purpose of the experiment-2 was to investigate the questions raised in the experiment-1. Specifically, the investigation was designed to address the issues of influences of age and ability on direct effect of training. The training was administered in two sessions, focussing on the component processes involved in Venn diagram.

Lessons (related to Maths and life - See examples in Annex-2) were taught to three different terminal groups(Grades V, X and XII) separately by author spending one hour per day for two days in case of X and $X I I$ and 40 minutes per day for three days for V Standard. V and X grade students did not have any idea of

Venn diagrams earlier and the lessons to them included a brief introduction on Venn diagrams.

Sample

The sample for the studies is students of Regional Institutes of Education, Bhopal and Mysore and Demonstration Multipurpose School (DMS) attached to RIE, Mysore. The samples particularly for Experiment -2 consisted of 33 fifth Grade students, 48 tenth Grade students and 21 twelfth Grade students from DMS and these students were new entrants. The data for the analysis come from the pre-test, post-test information and other information gathered during the intervention programme. These data were collected on separate occasions. The students age ranges from 10 years (Grade-V) to 20 years (undergraduates).

Result

Though the author did not carry out a rigorous research, still felt it is worth sharing these with his fellow professionals. Some of the experiences he had during the processes and different stages of experiments have been very briefly given.

Grode	Pre-test		Post-test		\dagger	df	P
	Mean	SO	Mean	SO			
$\begin{gathered} V \\ N=33 \end{gathered}$	2.61	1.68	581	2.44	7.62	32	0.00
$\begin{gathered} X \\ N=48 \end{gathered}$	3.40	2.31	5.71	3.48	5.32	47	0.00
$\begin{gathered} \text { XII } \\ N=21 \end{gathered}$	8.24	4.67	16.61	4.96	5.17	20	0.00

The t-values in the above table clearly show that significant difference between the pre-test and post-test scores implying that VDRA has definite influence on the performance of the students at all levels.

These data suggest that VDRA, in teaching of mathematics, offers a more positive view of students' learning than that through mere verbal statements.

Implications

For text-book writers

Abstract

The findings of these studies give a clear direction for the textbook writers to include Venn Diagrammatic Representation Approach (VDRA) wherever they are appropriate and also to reduce the verbal statements by introducing Venn Diagrammatic Representations.

For Teachers

While transacting mathematics content, VDRA is quite helpful in making their ideas clear and also helps in vivid presentation of the content by reducing the verbal statements. It is necessary for them to focus on different components of VDRA (both separately and collectively) giving adequate opportunities for the students to make mathematical representations and think all plausible relationships while solving any of the mathematical problems.

For Students

The method help in better understanding and also encouragesto go for higher order thinking processes like conjecturing, problem solving; decision-making and creativity.

For Evaluators

From the point of view of the evaluator, the study suggests that marking and scoring is much more objective and easier -because of clear visibility of sections of Venn diagram representing relationships.

Conclusion

Considering the vital role that Venn Diagrammatic Representation Approach (VDRA)plays in Mathematics learning, this approach can be effectively used in the classroom instruction.

References

1. Bertrand Russell, (1917) Mysticism and Logic, New York: Doubleday.
2. Good,T.L \& Grouws, D.A(1979) The Missouri Mathematics Effectiveness Project: An Experimental Study in Fourth grade classrooms, Journal of Educational Psychology,71,355-62.
3. Hayes,J.R (1981) The Complete Problem solver, Philadelphia: Franklin Institute Press.
4. King.J.P (1982) The Art of Mathematics, New York: Plenum Press.
5. Ravindra,G (1976) Inter-relationship among Graph Invariants. Doctoral thesis. IIT, Madras.
6. Rosenshine, R (1983) Teaching Functions in Instructional Programmes. The Elementary school Journal, 83, 335-351
7. Shavelson,R.J (1978) Teachers' Estimates of Students' state of mind and behaviour, Journal of Teacher Education, 29(50), 37-40.
8. Venn,J (1880) On the Diagrammatic and Mechanical Representation of Propositions and Reasoning, The London, Edinburgh and Dublin Philosophical Magazine and journal of Science, 9, 1-18.

9. Examples of the content selected for VDRA:

Find inter-relations (mathematical) among the following:
(a) South Indians. Indians and Kannada speaking people
(b)Similar triangles, congruent triangies, equilateral triangles, right angle triangies, quadrilaterals and Polygons
2. VDRA expectations for (a) and (b)
(a)

(b)

> S-Similar triangles C-Congruent triangles E - Equilateral triangles R-Right angle triangles Q-Quadrilaterals P-Polygons
> Note:Provide, to complete justification, one example for spaces(Gaps) 1,2,3,4,5,6,7,8. .
3. An example of creativity shown by the child of V grade during Experiment -2 KSP - Kanrada Speaking feople SI - South Indians I - Indians

APPENDX 1

By prof, Shamanna

Session

On

Managerial Skills for Teachers

Date : 20-06-2003

MAIN AREAS:

1. Doing Vs getting things done. The critical role of Teachers in improving quality of education.
2. Achieving Excellence is a function of sharpening Managerial skills.
3. Kaizen-Japanese Tool.
4. Planning - Coordinating - Communicating.
5. Learning as a collaborative process.
6. Team work.
7. Characteristics of Teachers.
8. Changing Role.

IMPROVING QUALITY OF EDUCATION

A. Role of a Teacher

1. Develop team spirit and enthusiasm for learning
2. Promoting discipline and commitment
3. Setting an example
4. Managing change - Change agent
5. Effectiveness and efficiency.

B. Characteristics of a Faculty Member

1. He is hard working and regular in his habits.
2. He has excellent character and gives importance to professional ehtics.
3. He has good knowledge of the subject
4. He is highly motivated and works with team spirit
5. He has genuine concern for his students and has good communication skills.
6. He has an open mind and is flexible in teaching methods in the class room
7. He gives importance to quality, excellence and promoters positive attitudes with students
8. He has good knowledge the problems of students and rules and regulations

DOING THINGS

GETTING THINGS DONE

1. COORDINATION
2. COMMUNICATION
3. PLANNING
4. INSPIRING
5. SOLVING PROBLEMS
6. TEAM WORK SKILLS

PROCESS OBSERVATION

GROUP DYNAMIICS

Observers Task

(You are required to observe carefully and make N (TES on the following questions)

1. Observe the process of communication in the Group - What they talk is less important. How they talk is more important.
2. Make brief notes regarding your impression and observations you will have to share your impressions and provide honest feed back to them later.
3. Observed the non-veroal communications - Gestures, facial expression and the posture while they are discussing.
4. You may prepare yourself to answer briefly the questions listed below:
a. How did the group make the decisions?

By concensus?
By majority?
b. How did it solve the conflict
c. Do you think the group was effective? Give reasons
d. Did the group members were listening to each other?
e. Did the group have a leader?
f. Who dominated the discussions?
g. What suggestions you have to improve their performance? For specific individuals? For group?

Imporant :-

You will be invited to share your comments and give feed back to group members. Please give brief and frank comments with a view to help members improve their performance.

Notes
\qquad
\qquad
K.Shamanua Ph.D (USA)

Training and Management Consultant
No. 141, $15^{\text {th }}$ Cross, Anikethana Road,
Kuvempunagar, Mysore - 570023
E-mail :profshamanna@yahoo.co.in
Tel. (R) 344479 (O) 547619 appropriate choice.

1. Messages are the most easily understood when:
(a) you use your full command of the language.
(b) they are sent in terms the receiver understands.
2. Complex informatiun is more easily understood when you:
(a) impruve clarity by using specilic examples and analogies.
(b) tell the listener to pay carefulatlention.
3. Key concepts are beller remembered when you:
(a) use repetition to reinforse them.
(b) express yourself clearly.
4. Organizing a message before transmilting it:
(a) often takes more time than it is worth.
(b) makes it easier to understand.
5. The sender can determine the receiver's undersianding by:
(a) asking if he or she understands.
(b) ashing the receiver to report what he or she heard.
6. Listening is more effective when you:
(a) concentrate on the sender and what is being said.
(b) anticipate what the speaker is going to say
7. Understanding is easier when you:
a suspend judgment until the sender finishes the message.
b) assume you know the senders posillon and judge accordingly.
8. U'inderstanding can be improved by the listener:
(a) periodically paraphrasing the message back to the sender.
(b) interrupting to express feelings and emolions.
9. Good listeners:
(a) have their response ready when the sender stops talking.
(b) ask questions when they don't understand.
10. Sending and receiving are both enhanced when:
(a) the parties maintain good eye contact.
(b) the parties are defensive and challenge one another.

Encourage leam members to review communications skills using this same exercise. Then compare noles and discuss how 10 improve . This will be another cooperative step in building a stronger leam effor.

SEPARATE FACT FROM INFERENCE

Read the narration carefully which follows. Then see how well you can distinguish a FACT from an INFERENCE

Shama, a buyer with the XYZ company, was scheduled for a 100° clack meeting in Singh's office to discuss the terms of a large order On the way to that office, the buyer slipped on afreshly waxed floor and as a result received a badly bruised leg. By the time Singh was notified of the accident. Shama was on the way to the hospital for X-ray. Singh'called the hospital to enquire but no one there seemed to know anything about Shama. It is possible that Singh called the wrong hospital.

Examine the statements below. Without discussion, put a tick mark against each statement, as to whether it is a fact or an inference (in the Personal Choice Column)

Statements

1. Mr. Shama is a buyer
2. Shama was supposed to meet with Singh.
3. Shama was scheduied for a 100^{\prime} clock meeting
4. The accident occured at the $X Y Z$ company
5. Shama was taken to the Hospital for X-Ray.
6. No one at the hospital which Singh called knew anything about Shama.
7. Sing had called the wrong hospital.

Now discuss your personal choices with the group, and enter group choices in the appropriate column.

Appendix 2

A model lesson plan

By Prof. K. Dorasami

Name of the Student Tencher:

Clase:	IX
Subject:	Mathematics
Course: Mlgebra	
Unit :	Matrices
Topic : Identity Matrix	
Date :	
Time :	

INSTKUCTIUNaL OBJLCTIVE:
at the end of this lesson, a student will be able to

1. define an identity matrix
2. state the characteristics of an identity matrix
3. cite examples of identity metiix (or) identify identity matrices from the given matrices
4. relate identity matrix with other types of matrices
5. state the condition for a matrix co bd (or not to be) an identity matrix.

TEんCHING POINTS

an icientity matrix is a scua, e matrix haning principle aiagonal elements as one and non aiagonal elements as zero.

PKEVIOUS KNOwLetGE

1. A squa.e matrix is a matrix with equal number of rows and columns.
2. Symmetric matrix is a secuence matrix whose transpose is the given matrix.

Introduction

1. T: (Surveys the whole class and seeks the class attention)
In tue last class vif learnt about square
matrix. What is a scuare matrix?.. S_{5}
 and columns are equal.
2. T : S_{5} said that if a matrix has equal rows and columns, then it is a squase matrix. Can someone give a square matrix in which the rows and columns are not equal. (u_{2} raises his hand) Yes s_{2} ?
Gives a counter example to show that the defining expression is not the definition of sciuare matrix.
3. I : cood. It is á square matrix. When is a matrix said to be a square matrix. Scen you? If a matrix has same number of rows and columns then it is a sciuare matrix.
4. 1: Very good. Now we are going to learn about a special kind of square matrix caled an Identity Natrix (writes the concept nime on the board). This is an important idea as we will be making use of it later in our study on properties of matrix multiplication. ILENTITY MATRIX
i:xpected 1. arnirg outcomes

-

©ecurntial Learning Activitios with Elecktoord work Invuilt 上vaiuatior

Compaies and contiasts the Examples and n 万on examples c.nd identifies the characteristics of identity matrix.

Levelopment of the coricept
Let us consiaer the matrices (vrittos a set of matrices on the chalk board). The matrices labelled as I are icentidy mitrices, others are square matrjoes that are not labelled as identity matrices.

What is it that identity antrices have in common that does not xceur in mirices that are not

$$
\begin{aligned}
& I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& I=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-0 & 0 & 1 & 0 \\
-0 & 0 & 0 & 1
\end{array}\right) \\
& A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) B=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
&\left.C=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \quad L \neq \begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right) \\
& E=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

8. $\stackrel{1}{10}$: The principal diagonelelements are one and othur are zero.
9. T : Very gooci! The name identity matrix which we have been using for this group (indicates the identity matrices on chalk board) means a square matri-x in which the diagonal elements art zero.
Now consider the matrix (writes a matrix with diagonal elem-rts as thrée and non diagonal elements as zero..s). Why is not this an identity matrix?....s 4 ?

$$
\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

Expected Learning Outcomes

Gives reason (lack of necerssary condition) for the square matrix as the non-example of ici.ntity matrix.

Recognises n:n examples and gives dason for a scuare matrix to be ei ron example of identity matrix.

Secuential Learning nctiviti:s with inbuilt,

Eviluation

10. $S_{4}:$

The diaconal elemints are not one in this matrix. So it is not an ideritity matrix.
11. T: O.K. Are there matric.s with diagonal elements as one whicir re not identity matrices? why? (a number of pupils rais their huad) $Y: u S_{A}$?
12. $S_{\Lambda}:$ we can have scuare matrices viith diagomal 'ments as one and non diagonel elements as non zero. Becruse il matrix to be identity matrix it must also have zero as the non aiagonal el ments.
13. T: kight. he have segi. that th.ec are two cori itions necessary for a s! urira motrix to be an. 1dentity matrix. (vrites them on the boara).
neview and tvaluntion
What is an identity matrix?....s 11
whet atcributes vill you finci in all identit y matiices ?
An identity matrix is a kind of \qquad
matiix ?
What similirities and aifferences do you fina between iaentity matrix and symnetric metrix ? Today vie learnt. that identity mairix is a
kind oi symmetric matrix (and rupresents the
conceptual hierarchy among the concepts discussed so far).

Bo.ckboard vork

1. i. a square matrix cioss not hove one as diagonel element, it is not an identity matrix.
2. If it does not rave non diagonil $\in l e m a n t s$ as zero, it cunnot bu in identity matrix.

Matrix

Kectangle Niatrix Scuár: Matrix
How
Column
Syrmetric matrix

APPENDIX 3

MATHEMATICS FOR AESTHETIC REASONS

Compiled by

Prof. G. Ravindra

- The famous FOURS: Cognitive (Truth), Metaphysical (Reality), Ethical (Justice), Aesthetical (Beauty).
- "Beauty is truth, Truth is beauty" - that is all ye know on earth, and all ye need to know (John Keats).
- Mathematicians do mathematics for aesthetic reasons.
- One of the vastest areas of world of contemplative beauty is mathematics. This alone is sufficient reason for study of mathematics (King, 1992).
- Mathematics possesses not only truth but supreme beauty - a beauty cold and austere, like that of a sculpture without appeal to any part of weaker nature, sublimely pure, and capable of stern perfection such as only the greatest art can show (Bertrand Russel).
- Mathematicians know beauty when they see, it for that is what motivates them to do mathematics in the first place. And they know where to find truth:
- Despite an objectivity that has no parallel in world of art, the motivation and standards of creative mathematics are more like those of art than of
science. Aesthetic judgements transcend both logic and applicability in the rankings of mathematical theorems: beauty and elegance have more to do with the value of a mathematical idea than does either strict truth or possible utility (Lynn Steen, Ex-President of the Mathematical Association of America).
- To create consists precisely in not making useless combinations and in making those which are useful and which are only a small minority. Invention is discernment, choice .. The useful combinations are precisely the most beautiful, I mean those best able to charm this special sensibility that all mathematicians know, best of which the profane are so ignorant as often to be tempted to smile at it. (Henri Poincare. The Foundation of Sgemu, 1929).
- Our present system of mathematics instruction which turns on the concept that mathematics is best presented through emphasis on its value as scientific tool. We can overselves do no harm. by trying another approach by presenting to our students early on those characteristics of mathematics which in Poicare's words contain "this character of beauty and elegance and which are capable of developing in us a sort of aesthetic emotion".
- The ideas brought fourth from the Unconscious and handed over to the conscious invariably possess the stamp of mathematical beauty (Poincare).

2

APPENDIX 4

QUESTIONNAIRE TO TEST CREATIVITY IN TEACHING AND LEARNING

By
Dr. (Mrs.) Kalpana Venugopal
Lecturer in Education
RIE, Mysore

1. I give notes for exercises following the lessons.

Always/Sometimes/Never
2. I encourage students to take a few topics in the syllabus as seminars/assignmerts.

Always/Sometimes/Never
3. The home assignments are mostly the textbook exercises following the lesson.

Always/Sometimes/Never
4. I try to employ multisensory/direct experience approach in teaching.

Always/Sometimes/Never
5. I permit students to give their examples/anecdotes/explanation in the course of my teaching in the class.

Always/Sometimes/Never
6. I do not like to waste time on discussing any issues which come u:D during the course of the classwork.

Always/Sometimes/Never
7. I believe in the maximum use of the school laboratories by the students

Always/Sometimes/Never
8. While solving problems \mid wait for students to arrive at the solutions themselves.
9. The students feel free to ask any question/seek clarification during the course of teaching.

Always/Sometimes/Never
10. I welcome their ides/suggestions regarding any aspect of the subject

Always/Sometimes/Never
11. I make sure that at the end of any discussion/argument, my point of view is final.

Always/Sometimes/Never
12. I do not make a value judgement concerning a student's interpre:ation of an aspect.

Always/Sometimes/Never
13. I feel humiliated when a student is able to give additional information/solve a problem quicker than me.

Always/Sometimes/'Never
14. I do not believe in their imagination going wild.

Always/Sometimes/'Never
15. I keep my self updated with the latest information in my area.

Always/Sometimes/Never
16. I cannot supply information beyond that which is available in the textbook.

Always/Sometimes/Never
17. I accept and encourage students to discover something new/different on their own.

Always/Sometimes/iNever
18. I ghe praise frequently.

Alviays'Sometimes/Never
19. At the end of a lesson I give a few open ended questions as class/home assignment.

Always/Sometimes/Never
20. The test papers I set include questions from the lesson exercises.

Always'Sometimes/ivever
21. I set a few analytical/application questions which need not be covered in the syllabus.

Always/Sometimes/Never
22. I expect students to answer the questions in the examination from the notes I have given.

Always/Sometimes/Never
23. I do not set individual goals for the less abled children.

Always/Sometimes/Never
24. I am unable to give students a personal feedback about their performance.

Always/Sometimes/Never
25. I am innovative in engaging my students in some activities in my area.

Always/Sometimes/Never
26. I am able to identify the hidcien talents in students.

Always/Sometimes/Never
27. I encourage students to interpret their experiences through various media.

Always/Sometimes/Never
28. 1 am able to motivate students in various school activities.

Always/Sometimes/Never
29. I allow students to express their feelings.

Always/Sometimes/Never
30. I enable students to apply knowledge gained, to their daily living.

Always/Sometimes/Never
31. I cannot show courtesy to students.

Always/Sometimes/Never
32. I am successful in getting students to assume responsibility.

Always/Sometimes/Never
33.1 involve students in planning/consultation in classwork which nvolves them.

Always/Sometimes/Never
34. I cannot admit a mistake before students when results show I am wrong. Always/Sometimes/Never
35. I help pupils accept one another.

Always/Sometimes/ivever
36. I make each student feel he has a contribution to make.

Alw'ays/Sometimes/Never
37. I help students feel that they belong.

- Always'Sometimes/:Never

38. I let students know that I have confidence in them.

Always/Sometimes/IVever
39. I cannot become a part of the group when they work in groups.

Always'Sometimes/ivever
40. I let pupils know I like them.

Always/Sometimes/ivever

PRE-TEST

1. Draw and justify the Venn diagrams of the following :
i) one-one function
ii) onto function
iii) constant function
iv) continuous function
v) polynomial function
2. "No relation is also a relation". How do you justify this statement ?
3. Prove that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
4. What logical difficulties do you find in teaching complex number as $x+i y,\left(x, y \in R, i^{2}=-1\right)$? Explain.
5. Does zero vector have direction? Justify your answer.
6. "If 2 is not a prime number, then 2 is an even number". Write the inverse of the proposition.
7. Define $f(0)$ so that $f(x)=\frac{x}{1-\sqrt{1-x}}$ becomes continuous at $x=0$.
8. The sum of two numbers is 48 . Find the numbers when their product is maximum.
9. Find $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$
10. If a manufacturer's total cost function C is
$C=\frac{x^{2}}{25}+2 x$, then find
i) average cost function
ii) marginal cost function
11. If P is a probability function then show that $\mathrm{P}(\phi)=0$.
12. Prove or disprove : If P is a probability function and $\mathrm{P}(\mathrm{A})=0$ then $\mathrm{A}=\phi$.

POST - TEST

1. Draw and justify Venn Diagram of the following: (i) Continuous functions, (ii) Differentiable functions, (iii) one-one and onto functions.
2. If N is the set of all natural numbers then construct a one-one function from $N \times N$ into N by using fundamental theorem of Arithmetic.
3. For any natural number n, prove that $2^{n}>n$ without using principle of mathematical induction.
4. Prove or disprove:

If r is rational and x an irrational, then $r . x$ is an irrational number.
5. Explain why no part of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ lies between the lines $x-a=0$ and $x+a=0$
6. Find the present value of an ordinary annuity of 24 payments of Rs.100/each made monthly and earning interest at 9% per year compounded monthly.
7. Three forces $5 p, 5 p$ and $10 p$ act along the sides $A B, B C$ and $C A$ of a given equilateral triangle $A B C$. Will the system be in equilibrium? Why?
8. Find the degree of the differential equation
$\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x \log \frac{d^{2} y}{d x^{2}}$
9. A determinant is chosen at random from the set of all determinants of orjer 2 with elements 0 or 1 only. Find the probability that the determinant chosen is non-zero.
10. There are 10 pairs of shoes in a cupboard from which 4 shoes are picked at random. Find the probability that there is atleast one pair

21-DAY TRAINING PRỌGRAMME FOR MATHEMATICS PGTs OF NVS
02-06-2003 to 22-06-2003
PROVISIONAL TIME TABLE

Day \& Date	$\begin{aligned} & 9.00 \mathrm{am}- \\ & 9.30 \mathrm{am} \end{aligned}$	$\begin{aligned} & \hline 9.30 \mathrm{am}- \\ & 11.00 \mathrm{am} \end{aligned}$	$\begin{aligned} & 11.30 \mathrm{am}- \\ & 1.00 \mathrm{pm} \end{aligned}$	$\begin{aligned} & 2.00 \mathrm{pm}- \\ & 3.15 \mathrm{pm} \end{aligned}$	$\begin{aligned} & 3.30 \mathrm{pm}- \\ & 5.00 \mathrm{pm} \end{aligned}$	$\begin{aligned} & 5.00 \mathrm{pm}- \\ & 5.30 \mathrm{pm} \end{aligned}$
Monday $2-6-03$	- Registration and Inauguration		Identification of difficult areas BCB	$\begin{aligned} & \text { Pretest } \\ & \text { BCB } \end{aligned}$	NMR	Library BSPR
Tuesday 3-6-0.3	Reporting of previous day's work	GR	BSPR	NBB	BCB	Library BSPR
Wednesday $4-6-03$	-do-	GR	NMR	NBB	BCB	Library BSPR
Thursday $5-6-03$	-do-	DB	NMR	DB	NBB	Library BSPR
Friday $6-6-03$	-do-	NMR	DB	NBB	GR	Library BCB
Saturday $7-6-03$	-do-	NMR	DB	NBB	BCB	$\begin{aligned} & \text { Library } \\ & B C B \end{aligned}$
Sunday $8-6-03$	\ldots GROUP WORK \ldots _					
$\begin{gathered} \text { Monday } \\ 9-6-03 \end{gathered}$	Reporting of previous dav's work	GR	NBB	BSPR	NMR	$\begin{aligned} & \text { Library } \end{aligned}$
Tuesday 10-6-03	-do-	KD	NMR	NBB	DB	$\begin{aligned} & \text { Library } \\ & \text { BCB } \end{aligned}$
Wednesday $11-6-03$	-do-	KD	BSPR	DB	NBB	Library NMR
Thursday 12-6-03	-do-	KD	NMR	NNP	MVG	Library NMR
Friday 13-6-03	-do-	DB	MVG	NNP	NMR	Library NMR
Saturday 14-6-03	-do-	DB	BSPR	MVG	NBB	Library DB
Sunday $15-6-03$	GROUP WORK					
Monday $16-6-03$	Reporting of previous day's work	BSU	CGV	BSPR	MVG	Library BSU
Tuesday 17-6-03	-do-	BCB	DB	MVG	BSU	$\begin{aligned} & \text { Library } \\ & \text { BSU } \end{aligned}$

Wednesday $18-6-03$	-do-	DB	BSU	BSPR	MVG	Library BSU
Thursday $19-6-03$	-do-	GTN	ASNS	BCB	BSPR	Library BSU
Friday $20-6-03$	-do-	BSPR	KV	NMR	KD	Library DB
Saturday $21-6-03$	-do-	S	S	NMR	BCB	Library DB
Sunday $22-6-03 ~$	-do-	Post-test BCB	BCB	BSPR	BSU	Valedictory

Venue: Chemistry Lecture Theatre
11.00 am to 11.30 am and 3.15 pm to 3.30 pm - Tea Break
1.00 pm to 2.00 pm

GR G.Ravindra

NMR N.M. Rao
DB D. Basavayya
NBB N.B. Badrinarayana
ESPR B.S.P. Raju Commercial Mathematics, Vectors
BSU B.S. Upadhyaya Mathematical Logic, Boolean Algebra
CGV C.G. Venkatesha Action Research Murthy

NNP N.N. Prahallada Value Education
ASNS A.S.N. Rao Sindhe Higher Order Thinking
KV Kalpana Venugopal Creativity in Teaching and Learning, Adolescent

MVG M.V. Gopalakrishna Conic Sections, Advanced Level Problem Solving
BCB
B.C. Basti -

GTN G.T. Narayana Rao
S Shamanna

KD K. Dorasami . Teaching of concepts in Mathematics, Evaluation in Mathematics Psychology
Meaning of Mathematics, Logical Thinking.
Venn diagrams, Problems on continuous functions and Mathematical Modelling Statics, 3D Geometry, Mathematics Laboratory

Probabiliy, Statistics, Computers
Dynamics

Calculus, Differential Equations
Popular Talk
Popular Talk

REGIONAL INSTITUTE OF EDUCATION, MYSORE-570 006 DEPARTMENT OF EXTENSION EDUCATION

Twenty-One Day Training Programme for PGTs in Mathematics for Navodaya Vidyalayas

1.	Rakesh Kumar Sinha PGT Maths JNV Ministry of HRD (Department of Education) Hansdiha, Dumka Jharkhand 814 145.
2.	Rani Mathew C. JNV Minicoy Lakshadweep
3.	Bidyadhar Sahu JNV Bagudi Balasore Orissa
4.	Seshanooj Sarkar Alirajpur District Jhabua Madhya Pradesh
5.	Abdhesh Jha PGT (Maths) JNV Rothak West Sikkim PO Naya Bazaar Sikkim 737 121

6.	Pradyumna Kumar Moharana JNV, Kherigadevat Essagash, Guita Madhya Pradesh 473375
7.	Mahesh M. JNV, Chikmagalur District Karnataka 577112
8.	Vijaya Naithani JNV, Chara District Udupi Karnataka (Hyderabad Region) 576112
9.	Ravindra Kumar Rudra PGT (Maths) JNV, Manpur District Indore Madhya Pradesh. 453661
10.	P.S Rajput JNV Panghata Narwar District Shivpuri Madhya Pradesh 473865
11.	A.S. Rawat 'JNV, Shyampu: District Sehore Madhya Pradesh. 466651

12.	Sasi Kumar, D. PGT (Mathematics) JNV, Mahadevpur Lohit District 792 103 (Transfered to JNV, Hassan, Karnataka)
13.	P. Sundara Kumar JNV, Canacona South Goa Goa 403 701
14.	V.B. Vaidya A/P: Navegaon Banch District Gondia Maharastra 441 T02
15.	Asokan N.M. JNV Almatti D S Bijapur District Karnataka $586 ~ 201 ~$
16.	V. Nagarajan JNV, Selukate Wardha Maharastra 442 001
17.	Y. Ranga Rao JNV Narayanpur Taluk Basavakalyan Bidar Karnataka

18.	V. Srinivas Rao JNV, Yenigadale District Kolar Karnataka .563 156
19.	V. Ramakrishnaiah JNV, Doddaballapur Bangalore (Rural) Karnataka 561 203
20.	Gopinath Meethale Veetil JNV, Tamenglong Manipur $795 ~ 141$
21.	Prabhash Chandra Jha Tinsukia, JNV Assam 786 126
22.	P. Mary Janet Daisy JNV, Hondrabalu Chamarajanagar District Karnataka
24.	Mary Thomas JNV, Nalbari Bartala P.O. Nalbari District Assam 781 138 JNV Panchavati Rangat, Middle Andaman Andaman and Nicobar Island

25.	K. Parvathi JNV Khurai Sagar district Madhya Pradesh 470 117
26.	Sanjay Kumar Jena JNV, Pailapool Cachar Assam
27.	Manoj Kumar Singh JNV, Rangia, Kamrup P.O. Jamtola District Kamrup Assam
28.	Rakesh Kumar Singh JNV Kharedi District Dahod Gujarat 389 151
29.	Umesh Chandra Jhankar JNV Belpada Jistrict Bolangir Kumar Tiwari Orissa I67 026 District Dewas Miadhya Pradesh

31.	Krishna Kumar Mishra JNV, Khumbong Imphal, West Manipur 795 113.
32.	Sucy Stanly JNV Mayannur Trichur District Kerala 679 105
33.	Adode Ganesh Mahdavrao (Khedgaon) Taluk Dindori District Nasik Maharastra 422 205.
34.	M. Lokanadham JNV, Chikkajogihally District Bellary Karnataka 583 126
35.	Rajesh Kumar JNV, Akkalkuwa District Nandurbar Maharastra
Mar	

[^0]: The Intersection A B is a convex set.

