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PREFACE

The 21-day training programme in Mathematics for the PGTs of NVS,
New Delhi was held in RIE. Mysore from 2™ 10 22 June 2003.

The programme was arranged ai the request of NVS, New Delhi. The main
objective of the programme was 10 enrich the content level of the teachers as per the
revised curriculum.

The present volume contains a detailed report as well as some enrichment
material other than the ones given in the training programme to be used in the
classroom transactions. | am extremely happy to place on the record that all the
participating teachers took great interest in learning new ideas and that they were
very punctual in their schedule of training.

I am grateful to Prof. J.S. Rajput, Director. NCERT, for having selected RIE,
Mysore as the venue for the programme. My thanks are also to authorises NVS,
New Delhi for not only providing funds for the programme but also deputing
Mr. Palaniappan. Principal, NVS, Mandya as a liaison officer from NVS.

I am indeed thankful to Prof. (5. Ravindra. Principal, RIE, Mysore, for giving
Sull cooperation and guidance to conduct the programme. | also wish to thank all the
resource persons and guest lecturers who have greatly contributed and shared their

valuable experiences with the participants.



My thanks are also to my colleagues in Mathematics Department for their
support, guidance and participation, both during planning and conduct of the
programme. 1 wish 1o thank my colleagues in other sections and departments for their

cooperation.

Lastly, 1 express my thanks to the administrative and accounts staff for their

help in making the programme a grand success.

B.C. BASTI
Academic Coordinator



ABOUT THE TRAINING PROGRAMME

Need to upgrade periodically the professional competence of teachers at all
levels in general and senior secondary teachers in particular cannot be
overemphasised. In order 10 improve the capabilities of the teachers in content and
pedagogy, the NVS arranges inservice training of teachers at various levels in the
Jorm of orientation and refresher courses. In recent times, introduction of career
advancement schemes have made it obligatory for ’the plus two level teachers 1o
undergo refreshers courses of three weeks duration. Hence there is a felt need for a
training or enrichment package designed 1o cater to the special needs of plus two level
teachers. The present programme was held at RIE, Mysore from 2™ 10 22" June 2003
Jor PGTs in Mathematics of NVS. The programme was planned and implemented by
the Mathematics section of DESM of RIE. In addition to the Mathematics faculty,
Jaculty members from the Department of Education also worked as resource persons.
Guest lectures and popular talks were arranged using the expertise of external
resource persons of eminence.

The main objectives of the training programme was 1o
(1) enrich the content competency of teachers so that they can execute the revised

curriculum with greater confidence.
(i) make the teachers aware of recent thrust areas in the field of education so as 1o

improve their professional competence and



(iiiy make them familiar with certain skills and strategies required for effective
teaching in the present day classrooms.

The programme consisted of four lecture sessions per day and compulsory
reference work in the library at the end of each day. The topics for the lecture sessions
were included after identification of difficult areas, identified in a special session on
the very first day. The topics covered were as mentioned below:

(1) Calculus (Differential and Integral)

(i) Differential Equations

(i) Statics and Dynamics

(iv) 3D Geomerry

(V) Probability and Siatistics

(Vi) Computers (with hands on experience)
(vii) Mathematical Logic

(viil) Boolean Algebra

(ix) Teaching of Concepts in Mathematics
(X) Evaluation in Mathematics

(xi) Conic Sections and Advanced Level Problem Solving
(xii) Value Education

(xii) Action Research

(xiv) Creativity in Teaching and Learning

(xv) Commercial Mathematics



(xvi) Linear Programming
(xvii) Mathematical Modelling
(xviii) Mathematics Laboratory

Pre-test and Posi-test were conducted for the teachers 1o study the impact of
the training programme.

To sumup varieties of experiences were provided to the participants in order to
enhance content enrichment and professional competence. It is hoped that the
programme has sufficiently motivated the teachers which is also revealed by the

Pre-test and Posi-test conducted during the programme.

B.C. BASTI
Academic Coordinator
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SETS, REIATIONS AND FUNCTIONS

BY
B.C. BASTI

Introduction : an overview.

In this write up (Instructional material) an
attempt has been made to discuss the important con-
cepts of ‘sets relations and functions. Although these
concepts are as old as man’s history of civilization,
formal introduction of these concepts into mathe-
matics has been very recent. Through the use of
these concepts one gains an understanding of the
structures and patterns that occur in Mathematics.
Pedagogically it has veen widely acccpted that the
concept of sets greatly helps unification of several
branches of Mathematics at the school level.

The topic of ‘sets’ invariably finds a place in the
school curriculum all over the world, As an introdu-
ction to modern or the so called new Mathematics
and as a “language”, its importance is accepted.

Sets — Preliminaries

The words, class ‘collection’ ‘assemblage’
are synonemous because they convey the idea of a
‘set’. Intuitively a set is a ‘collection’ of objects.
The objects may be physical objects, numbers, any
kind of symbols or even ideas.

In Mathematics, the term ‘set’ is used to mean a
‘well-defined’ collection of objects. Why do we
insert the adjective ‘well defined’ in the description of
the term ‘set’? Let us study a few examples of
‘collections’ of objects.



All states 1n the Indian Union
All rivers of Karnataka
All multiples of the nnmber 7

1
2
3

Fx. 4, Some interestine hnolks
5. The,students of that class
6

The collection of'al‘l circles having a given
point as their centre

Ex. 7. The good films produced in Bombay in the
year 1981

A scrutiny of the ‘collections’ given in the above
list reveals that in the case of examples 1, 2, 3, 6,
there i1s no difliculty 1 identifying the objects present
in each collection. Whether an ouject is in the given
set or not can be clearly judged in these cases. But
the collections in examples 4, S and 7 have been des-
cribed by the words like ‘interesting” ‘that class’ and
‘good films’. These descriptions render the sets
‘ambiguous’. We are unable to identify clearly the
objects of these collections.

Hence the collections in examb]es L, 2. 3. 6are
‘well dcﬁngd' ~. they are examples-of sets. Where as
those in examples 4, 5, 7 are Not well defined collec-
tions.

A set is therefore a well defined collection. The
following collections are well defined.

1. The set of all lines passing through a given
~ point.

2. The set of all two legged animals.

3.

The set of all primes less than 14.

The et o 1) ~r.nloyeed aFihe NN

Z.
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Each of the above is an example of a well defined
collection because in these cases the basic require-
ment that ‘‘given any object what so ever and a set, it

must be possible to determine whether or not the
object is in the set in question” 1is satisfied.

Exercise :

which of the following collections are sets ?

a) Rational numbers.

b) The students studying this book.

c) The paintings in Salarjung Museum
d) The contents of little boys" pockets

e) The ripe oranges

Notation and representation of sets

[t is customary to denote sets by capital letters,
A, B, Cetc. The objects in a set are called ‘members
of the set’ or ‘elements of the set’, The ‘elements’ of
any set are usually denoted by small letters a, b, c etc.

If 'a” is an elemant of A then we write ac 4 read
as (a belongs to 4). Tne notation ag A indicates
that ‘a’ does not belong to A.

There are two ways of representing a set.

I. (n the first method we make a list of all the
members of the set, separating them by commas, and
we enclose them within ‘braces’ or flower brackets.
This method is called roster method or tabular form.

3



Ex. 1. The set A ofall numerals on the dial of a
clock can be represented by roster method
as .
A=l 28,4556, T 8.9 10 0L, 112
Ex. 2." The solutions of the equation x?—5x +4=0
arc listed as the set'(l,4) using roster

method.

Ex. 3. The set of all days of the week' by roster
method of representation becomes

(Sunday, Monday. Tuesday, Wednesday, Thursday,
Friday, Saturday).
1L The second method of designating a set is_

called ‘rule method’ or ‘set builder form’. In this
method, a rule or. a common property of all the

elements 1s stated.

For example, to represent a set B of afl even.
numbers, we use the letter x (usually) to represent an
arbitrary element and write

B=(x/x is even).
Which reads -
““Bis a set of all x such that x is even".
If § is.the set of all elements x with the property p
by set builder method we write.
S= {x/x has the property p}
Here the property p is called the defining property.

BRe- ds SN=IC0 203 @ S )
in the set builder from N=(x/xis a natural

number).

4



Ex!' 2. C=set of all " capital cities iz Europe in thé
set builder form
C=[x/x is a capital city in Europe]
Exercise :  Express the following sets in (1) roster
form (2) set builder form.
a) All integers between —5 and 435
b) Solution of x*—3x+2=0.
c) All equilateral triangles in a plane.
d) All plays written by Shakespeare.

e) All noble laureates from India.
At this stage we mention two important rules in

the representation of sets.

)’ The order in which the elements are listed in
a set is immaterial, since we are interested in the set
as a whole.
for s Ae=l 2 5.8 6,4 ]
this set can as well be written as
A=1[2,3,4,56].
Similarly the set [ 2, 0, 1 ]is the same as the set
[®,1,2]

2y Each element of a set is listed once only.

Example 1. Let the scores of five students in an
examination be given by
57,81, 81,73, 44,

The sct representing these scores is
== [57, Bl; 75, 44]

s



Note that in S the score 81 is, listed once only,
even though if appears twice in the original list.

Ex. 2% [, 1,2+2.5,7] is the same sef as
bl 205, 7,
Q': Why should duplication or reptition be
avoided while listing the elements in a set ?
give reason.

Finite sets, infinite set, Empty set,

Consider (1) the set [5S]=A
(2 B='ld; €1, 05
@) C= [x/xisan mteger]
(4) D= The set of all stars of first
magnitude

Let us examine each of these sets as to the number
of elements it has.

The set A has a single clement in it. We call this
set a ‘singleton’. This set bas the least number of
clements.

The set 5 has five elements in it. [t’s elemets can
be counted as 3.

The set though has a large number of elements
has only a finite number of elements.

The set C has infinitely many elements in {i]
meaning that, the process of listing its elements wil

never end. Another example of a set with infinitely
many eclements is the ‘ver nfa'l nniree de = Yer toa-
Al 11N

§



It is clear that sets may bc of any size in so far as
the number of elements are concerned.

In the above examples, 4, B, and D are finite sets
while'C is an infinite set.

Frequently we even {ind it convenient to consider
a set containing no elements, such as, the set of all
points at which two parallel lines intersect.

Ex. 2 The set of all common factors of 3 and 7,

Ex. 3. The set of even primes greater than 5 and less
than 20.

These set arz all sets with 70 elements, in them.
Such a set is referred to as empty or nult set. Null set
is denoted by the symbol ¢ or { }.

Subsets and Equal sets ;  Equivalent sets :

If every element of set A is also an element of
the set B3 then A is called the subset of B. A is a subset
of B if and only if.

FFor all x, x= A-+xe . We denote this
relationship by Ac B. We write "4 is contained in B
or B A4 (B contains A).

|

. ACB — forall x xe A< —=xe B |

Ex. I. A=[x/xis «. Counting number]
e de=t1.2,8 ey S}
B=43,35% T .} =[5, 10,15; 20mz s |



Observe that B, C & D are subsets of 4. The sets
B, C, D are constructed by selecting the elements from

A

For all xie px xeB—xe ie BcA
Fx.xeCoxe die CcA
X xeD—xeAie DcA
Ex.2: A={l,2,3,10,11]

B= [10, 11]. Here BcA4 “.* all the eclements of
B are elements of A. But A4 has some elements that

are not found in B.

In thiis example B is called a proper subset of 4,

B Det A 56 & 18 18] B={05G 7, §]
C=I[7, ¢ 9], D=[3], E=[10].

Here B, C, D, E are all proper subsets of A
* Not all elements of A arein BorCor Dor £. It
1s impertant to note that

1) Every set is a subset of itself
2) Null set is a subset of cvery set

Though these stalements surprise us, they are
the direct consequences of the definition of a subset
e)

1) AcA —forall x xeA—->xeA which is always
true. Hence AcA, A is an Uniproper subset of A.

2) ¢cA —. Everyelement of ¢ is also an ele-
ment of A. Trouble would arise if there is some

element in ¢ which fails to be in A. Since ¢ has no

&



elements at all the requirement of a subset is trivially
sattsned for ‘g, ** Hense b €AY In fact"d is ' Subset of
mﬁew et!" ¢ is ah“Improper subset'of any ‘set'<Note
that ¢ and the given set itself are the two impropér
subsets of any given.set>.

Ex. A= [0, 1, 2]. Let us list all its subsets.

O] [1]1[2] [0, 1] [0, 2] [1, 2 Jare the proper sub-
sets of A and
[0, I, 2] and ¢ are its improper subsets.

Equal sets: Two sets are said to-be equal if
they have 1demtca11y same elements—

A (1, 2, 4] and B=[l, 2, 2"] are equal sets
A =B.

Ex. 2, A=[!,2,2,1] and B= [l, 2} are iden-
tical sets or epual sets, A=B.
TR T

%3k et T3, 6l=A

Here A=B
6, 1, 5]=B

These are equal sets. Here every clement of A

is an element of B. ie. AcB
and' every element of B is also an element of A

ie. BcA.

- From this example we pnote that A=B if |
AcBand BcA

A=Bif AcBand BcA

1} 1
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Here A and B are equivalent, because their ele-
ments can be matched or a oné-one correspondence
is possible between their elements:

Ex. d: [12 22 3 4. Tl
byt
VoL

[13’ 1 ’ 13- 13............’]=B

As in ex. 3 here also, A and B are cqivalent. In
Ex. 3 & 4, A and B being infinite scts, we donot ask
“Do they have same number of clements 7 instead
‘we sct up a one-one Correspondence for the clements
of A and B and decide that these sets are equivalent.
Are all equal sets equivalent ? the answer is obviously
i =

Cardinal numbers and Infinite sets :

The concept of ‘counting numbers’ or ‘natural
numbers’ as a set, was developed b~cause of man's
desire to compare sets of various objects. Consider a
set of ren books, a basket of ten apples, a pack of ten
wolves-all these sets have /0 objects in them. This
fact as we know, iIs arrived at, by the counting

process.

1Y What is the principle underlying the process of
counting 7 Recall, that counting involves a ‘matching
process’ or setting up a ‘one-to-one correspondence’



Equivalent sets :

RAMA
KRISHNA
CHRIST

Fig. 1

Ex. 1. A=[ Rama. Krishna, Christ ]
B=[ Seetha, Radha. Meera ]

Here, A and B are not equal sets but,
A and B have both three elements in them. We say

A and B are equivalent sets.
ie. the elements of these sets can be marched

Ex. 2. A=The cricket team from England
B=The Cricket team from India.
. Note that the players are different in each team
but A and B have same number of players
. A and B are equivalent sets,
B 3. A=l 85 deneics ]
B=[3, 6,9, 12...x]
A and B are infiinte sets.
We can match the elements of A and B or set up

a one-one Correspondence between the elements of
and A B as shown here.



between elements of the given set and the elements o
some standard counting set. The set of natural num-
bers ‘N’ is the standard counting set.

The set A= [a, b, ¢, d, ], has 5 elements in it
because A is equivalent to the set.

Ns=[1, 2, 3, 4, 5] which is.the subset of N. We
say 5 is the cardinal number of this finite set A. Note
that A is equivalent to N..

If A [3,3%3% e 3]

We know that here A i1s equivalent to the finite
STlSEE A==l 2 dans n] of N. So the cardial num-
ber of this finite set Ais ‘n’. A is equivalent to n,.
If two finite sets are equivalent they have the same
cordinal number.

It is now clear that the cardinal Number of any
finite set is a specific natural number.

Infinite sets have a special property which makes
them interesting to study.

We have ceen that two finite sets are equivalent
iff they contain samc number of elements.

B Iig Newilet Nes] U2 3.0k |=[x/x& N]
E=[2,4, 6............ J=[x/x=2n,)
neNj
sels

N and E are equivalent sets: Note that E, here
1s a proper subset of N. ic. not all elements of N are



elements of E. We can still set up a one- One
correspondance between N & E

NE. Iy 2 Sl n
= & & I
Vol I

BE 2 W e 2 ) A P

~ N s equivalent to E

Clearly, the infinite set N is- equivalent .to its
proper subset E of even numbers.

AT T S .,

Bx. [
[— 1 -2, ——3_ ............ K
[0,

I\

pE
P
Q
Note that I is an infinite set and

PcIl Pisa proper subset of 1

Ol Q =1 [

. I is equivalent to P (its proper subset)
[ is equivalent to Q (its proper subset)

This property of *“‘a set being equivalent to a pro-
per subset of itself " is characteristic of ‘Infinite sets’.

So we state.

< A set is infinite, if it is equivalent to a proper
subset of itself, otherwise it is finite> .
]

The cardinal iumber of the standard counting
set N does not correspond to any finite natural
numbcr as N is an infinite set. The cardinal number

3



of Nis sometimes denoted by a (alpha null). All
infinite sets which are equivalent to the set N have
the-same cardinal number « (alpha null).

The idea of cardial numbers was first developed
by Georg Cantor 1naremarkable series of articles
published in 1872. Prior to Cantor's study of in-
finite Msets, athematicians .used the symbol o indis-
’crlmmatcly to indicate the '‘number’ of elements in all
kinds of infinite sets. Cantor's work revolutionised
the concept of ‘infinity’ in mathematics.

Exercise :

(1) How many elements are in [a, a, a, a, a]
(2) Can there be unequal empty sets 7 Explain.
(3) Extend the definitions of unlon and 1nter-
setion“to-n sets. n—finite-+ve mteger)
(4) Find all subsets of [0, 1, 2].
State whether each statement is correct ?
(a) [i,4, 3]=04,3; 1]
(b) [4]e [(4)]
(c) [4] c [4)]
(d) [¢] a subset of every set
(e) [123 132 & s 23]
(5) State” whether following sets are finite or
infinite
(a) Set all lines parallel to X-ax is
(b) Set of all circles through the origin (.60)
(c) The sct of all animals living on Earth

4



Yenn diagrdms and Universal set.

To understand the relationships among sets,
as also properties of sets, we often use simple dia-
grams called Venn diagrams. These  are strictly
schematic representations.  Although they cannot
be used to prove statements, they are excellent visual
aids to verify important set relationships. [n these
diagrams sets are represented by circular areas.

Ex: The concept of AcB A # B is shown in the
venu diagram as

% O
@ AcB ©OR AcB

Fig 2
Ex, 2

Fig 3
This diagram illustrate the 1—I correspondence
between the sets
A=[l, 2, 3] and B={a, b, ]
A is equivalent to B.



Universal set: In any discussion on sets, all
sets under investigation will very likely be subsets of
a fixed set. We call this set ‘Universal sst’ or ‘Uni-
verse of discoursel. We denote this by set U.

ex : | Any study about population of human
beings, will have the set of all human beings in this

world.as the Universal set.

Ex: 2: If A= the set of rectangles.
B= the set of all circles
C= “LBeisel of all triangles

the Universal set for these sets is the set of all plane
figures.

In a Venn diagram, Universal set U is usualy
represented by a rectangle. All the subsets of the
Universal set are shown as circles 1u this rectangle.

For Ex. 3 the venn diagram is shown here.

Fig 4.



Exercise : Let (Q=I[x/x is a quadrilateral]
H=I[x/x is a rhombus]
R=I[x/x is a rectanglel

S=I[x/x is a square)

Decide which sets are the proper subsets ef
others. Draw Venn diagrams to illustrate their re-
lationships:

Exercise 2 : Draw Venu diagram to jllustrate the
sets,

A =The set of all boys in your state
B =Set of all boys in your school
C=The set of all boys in your mathematics class

OPERATIONS ON SETS

[n arithmetic we are taught how to add, sub-
tract and multiply numbers. What exactly in done in
each of these processes 7 Recall that for each pair of
numbers x and-y, We assign.zg,numbqr Xy called
the sum of x and y, a number x—y called the
difference of x and y- -and a m{mber Xy ualled the
product of X and y, Chis pl;ocess ofassrgmqg (associ—
ating) a nurqber with a pain 'of numbers is nothing but
‘binary operation’ on numbers. In fact tl;c funda-
mental operations on numbers are all ‘binary oper-
ations'.

Let us extend the idea of ‘operation to sets. We
wish to construct new sets from the given sets, while

|7



there are various ways of assigning a ‘new set’ to a
given pair of sets, we in this section, discuss three

important ways of constructing new sets by devising
binary operations called

1) Union 2) Intersection 3) difference of
sets. We later see that these operations have certain.
properties similar to the usual operations of arith-

metic.

Union of sets

5=/ R

O —
%c%

Fig 5.

Consider A==[1,2,5]
B=[a;n,m,o]

Letus form the set €= [ 1,2, 3,d; liy /11,0 ]
Note that C is the set of all those elements
which ‘are eitherin 4 or B or both, In other

words.

C= [x/xe A or x& B]
Note that we have used ‘or’ in the inclusive sense.

|8



We refer to C as the ‘Union’ of 4 and B, and we
write

Ce=d U B ( A union B)
Refer to the Venn diagram Fig 6
Shaded portion represents AUB
Ex. 2: Let A=[1,2,34,5]
| B= 9988 61
easily, C=A4UB=[1,2,3,4,5,8,6]
AU B=C satisfics the property
C=[ xlxeA or xeB]

A b,
d(_\\
A— L B

g
\5—Xs/ 6/
k:?ﬁ’g/

Fig 6.

Shaded portion in fig 6

represents .1UD.

EBx. 35 e A=a bae]
B=a]

Heses AUl= [a, by¢ )= 4 itsell

| 9



The shaded postion tn AUB is fig 2.1 (c)

Fig 7.

We now define AUB the union of any sets 4 and B

‘AUBs{x/xeA or xels }

If A=N (set of nat. numbers), By wfxe=xZ, xed}
' " then AUB=4.

Union of scts as a binary operation on sets. To

each pair of scts 4 and 7, a set called AUB is assign-
ed such that

AUB-=[ x[/xc4 or xeB]
Remarks : By the definition of "'union’ the following
properties directly follow,
1) The set A U Bisidentical with the set BUA
2) The set AUDB contains the set 4 as well as B

je. A —~AUD
L AUDL

2*



3) i A4 < Baswe have already seen AUB=28
itself

4) The union of any set with itsel ~ is the given
sel itself ie. AUA=4
Exercise
1) What is AUB it either 4 or B is anempty
set 7

2) IFor what choice of sets do we get AUB=¢ ?

3) Giveancxample ofa set A UB such that
A U Bisequivalent to A or B

4)  Write the venn diagram to represent the set
AUBUC ftorsets A, B, C

Intersection of sets.

[ntersection of the scts is another binary opera-
tion on sets. To each pair of sets A and B, we
assign a set called ‘Intersection of the sets A and B,
(denoted by A N BJ, according to the requirement
that"

A N B={x/xcA and xeB}

i¢c A n B Consists of all the elements that are of com-
mon to the sets A and B. The shaded portion in the
following Venn diagram represents A N B in each
case.

b2
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5.5 (b) 5.2 (¢)

-2 (@)
Fig 8.
In fiig 2.2 (a) absence of common elements in
A and B explains why there is no shaded portion to
represent A N B. The sets A and B in this case do
not interscet......A N Bis a null set. We call such

sets A and B as disjoint sets. Note that the sets
in2.2 (b) and 2.2 (c) are not disjoint sets.

Bt 05 Lebas=l Lol 8 doms |

these are both infinite sets. They have no common
elements between them.

Obviously A n B={x/xcA and xeB}=d(empty set)
A and B are disjoint sets.
Ex. 2, A={ x/x is a perfect square }
B={ x/x is an even number }
A N B=[ x/x is a perfect square and x is an even

number ] Observe that A N B is not empty
. some perpect squares like 4. 10etc. ¢A UB

~ Note the following consequences of the defini-
tion of the set A N B
1) Theset A n Bisequaltotheset Bn A

d) A Aisalways=A itself



3) AnBisasubsctofA,ieA N B CA
A.ry B is a subset.of B,ie A N B € B
4) df A C Bthen A N B=A it self

5) If A and B are disjoint,;, A /N B=¢, 4 isa:
subset of every set and ."- of Aand B~

Exercise: " 1) Fer any sets ‘A, B and € Find using

Venn diagrams the set (A B) 1 C and-the set
A (BUC) |

2y Lt A= [l 2, 3,4]
B=={2. 4.%6,6 ]
C=[3.4,5.6]
Find (a) AnNB, by AQC (€ BnAC
Ad) B B.
The difference of sets A and B :

The difference A—B cf the set A and B7is a set
such that
R=A—B=[ x/xeA but xeB] we could
also say
(read A minus B) A—B=| xeA and xB ]

In the Venn diagrams that follow A—B is given
by the shaded are. a

r—_A_' 8 U " 3 U I = Y
1100 1B
23 23(b 53(0)
| Fig Y.
Ex. 1 Aie= 1810, Dol 6 Bi=l 580"
A—B—=[9. 16 ]



Exi2 A= {x/x=2x, . neN}={2, 4,6, 8. }
B=7%]x=00 neElN (=1 8,6, 9, 12 40
A—B=[2,4,8,10,14......]1=[ x/x=2n but

Xx#£3n, neN]
For any set A the difference set U—A is the
difference of the universal set and A is called the

complement of the set A in U ie complement of
A=U—A.

We write Al=U—A

The shaded postion of the diagram (Fig. 1) re-
presents A’ the complement of A

Fig 11,

A'+[ x/xeU and xe A ]

Example: Let U=l1,2,3, 4... ..]
A=[2,4, 6, Bcorrer.nn. ]
ChER: A=l 3 95 Teseswms ] =U—A

Remark ) Forany set A

A U A'=U the universal set
2) U the complement of the universal set=¢

3) ¢! the complement of the empty setis the

universal set U,
® L



4) The set A and its complement A' are always
disjoint in ANA'=¢

We can use Venn diagrams to understand some
simple relationships among the operations of union,
intersection, difference of sets and complements.

1) 'A—B, An B and B—A are mutually dis-
joint.

the corresponding diagram are

-

U

5
\WC

‘ANB
Fig 12
from these diagrams we have

A—B, A n B and B—A are mutually disjoint
sets.

2) A—B=A N B' Letusdraw Venn diagrams

U E

/g i A
==

= —

N

Y

pRE 53 M ES

A—=B (@ ANB (b)
Fig 13.

A



«i: Shaded area in the diagram (a).is A—B Hori-
zontally shaded area in the diagram (b) s the set B!
The double hatched (shaded) area in the figure (b) is
the set A N B' From figs (a) and (b). we have

A—B=ANB

//B\TY‘— U=

7/
o Fig (¢)
X 74

b P
\/_'

Fig 14.
3) IfA CB thenB S

horizontally shaded area in diagram (¢) is the set B!

Fig (d)




Yertically shaded postion of flg (d) represents the
the set A'.

From the two figures it is clear that B* is contained
in A'ie the region of B* is included in the region of A’

‘Exercises :  Verify by the drawing the Venn diagrams
the following set theoretic relations.

)  (AnB)U(A—B)=A
2) (A—B)UB=AUB
3) (A—B)UB=¢

4 A—B=A—(A n B)

Use of Venn diagrams and knowledge of sets in

solving some problems :

Venn diagrams illustrate the relationships that
exist among given sets. Many verbal statements can
be conveniently translated into statements about sets
and represented in Venn diagrams,

Ex : This statement,

“All men are intelligent’ can be rewritten using
language of sets as

1 ‘The set of all men is a subset of the set of all intelli
gent beings’ we can now use Venn diagrams to re-
present this idea as in fig 2.4 (a)



All men ’
|

Intelligent beings

There are some problems which can be solved

using the language of sets and Venn diagrams. In
these problems, we restate the problem as a statement

about sets, and study these sets using Venn diagrams.
Example :

Problem : Ina group of 40 students who drink
tea or cofTee or both, 20 drink tea of whom 16 drink
tea but not coflee. How many drink coffee but not

tea ?

We recognize the different sets of students as
A= set of students who drink coflee

B= set of students who drink tea.
(B has 6 clements)-
then A U B the set of all student drink coffee or
tea or both.

From the data A U B has 40 elements in it.
B—A is the set of students who drink tea but not
- coffee.

It is given that B—A has 16 elements. We have

to find number of elements in A—B. In fig (a) (AUB)
Is horizontally hatched area)



. (A UB)—B is the set of all those who are
strictly coffee drinkers they are 40—26=14 in num-
ber. (A U B)—B is the double hatched area of fig (b’
The set (A U B)—B i1s the same as the set A—B ; the
horizontally hatcbed area in fig c.

A—B. the set of all who drink coffee but
not tea contains 14 elements.

From the diagrams (A U B)—B-=A—B

—= s | ‘
| =8 . fARES B |
- . % —
ES=AuUB fH=(AuR)—-B E=A-B
Fig 16-

In the same problem if we wantto {ind how
many students drink both tea and coffee ie. we want
the number of elements in the set A U B What is the
answer ?

Exercises : Solve problems given in the exercise 3.4
chapter 3, of the Text book of Maths. VIII standard

X X X

Use of Venn diagrams & sets in testing the vaiidity of
arguments in Logic :

What is an argument? An argument is an
assertive statement- An argument, therefore, is true

s



or false but not both. Argument occurs in a reason-
ing process. Every argument contains two parts, First
part is called premises. Permises is made up of a
number of statements. Second part of argument is
called conclusion. Conclusion is a single statement.

. An argument is of the form
[ S
S,
Premises ! S,
L 5

Conclusion .-. S.

Which means that the statements S;, Sze-eeoee S ol
the premiscs lead to the conclusion S. If the conclu-

sion S is arrived at logically from the - premiscs, then
the argument is said to be valid. If the conclusion
does not logically follow from the premises, we say

the argument is invalid.
Consider the example of an argument :
S, : Some animals are clever

S. : Man 1s an animal

.. S Man is clevér

Here the statements S, and S, are both true but
the conclusion § does not logically follow from the
premises (S, and S.). Therefore the argument is
invalid.



Let-us.use Venn diagrams to test this argument.

Let A: The set of all animals

B : The set of all clever animals we know

that A and B are related by the statement S, of the
argument.

By S, ,B is a proper subsect of A. By S, itis
clear that the set of all men is a subset of the set of
all animals. Refer to the diagram.

All animals

all clever

; Men
animals

U — —_————e - . SU " 3

The conclusion of the argument is valid ouly
when the “set of all men" inreresects the “set of all
clever animals.” But the diagram shows that the set
of Men is disjoint with “the set of all clever animals”
.. the argument is tested by Venn diagrams and it is

feund to be invalid.

Ex.2: Consider the argument

S, ' Yo student
Premises|{ Ss : John is an artist
S; All artists are lazy

Conclusion . John is not a student

When we display in a diagram the relationships



that occure a1mong th= s2ts available in this argument
we get the following Venn diagram.

lazy people |
h7y peepie Students

l artist ‘ ,

——— ———— . . — St 3.

From the diagram it is clear that ‘no artistis a
student’. .-, the conclusion of the argument is justi-
fied. .. Argument’is valid

Exercises : Test the validity of the argument ;

-

1. S, : All lawyers are wealthy
S, . Poets are temperamental
S, : Raghava is a lawyer.

S.: No temperamental person is wealthy

. Raghavan is not a poet.

2 S,: Allstudents are lazy
S, : No body who is wealthy is a student

. Lazy people are not wealthy.

3. S;: No college professor is wealthy
S5 : Some poets are wealthy

Some pocets are colloge professors



A comparison of set operations with number ope-
rations : |

We recall the usefulness of Venn diagrams in
visualising set relationships.

It will be instructive to verify the following pro-
perties of the binary operations ‘Union’ and ‘Insterse-

ction’ of sets by Venn diagrams. In the tollowing,
‘addition’ of numbers is compared with ‘Union’ of
sets. ‘Multiplication” and ‘Intersection’ are compared

as operations.

Like number operations, ‘Union’ and ‘Intersec—
tion’ are both commutative and associative opera-

vions, since

1. AnB=BUA e, & [ B=Bia"A

2, (AU Bl C=Rur 2 A BImcC=AR
(BUC) (BUC

For universal set U and the null set 4 we have.
3. Augd=9UA=A 3' UnA=AnU=A

Compare the roles of ¢ and U here with those of
corresponding numbers O and 1. w.r.t. ‘addition” and

multiplication respectively. Recall;
a+o0=0+a=ay numbers 4, axl=1xa, yaecR
4) AUA:==A vy Scts A, 4') AnA=A Asets A

We have no anologous property in number ope-



rations for, a-a=a need not be tureexcept when a=o

a X a=a also is not generally true

“This additional property in set operations is
called ‘idempotence’.

S) ¢ N A=A $=¢ for all sets

. This property of the set ¢ i1s comparable with
that of the number O w.r.t. multiplication in our

number-system.

axo=o0Xa for numbers a.

6) The operations of union apd intersections
distribute over each other, since

AUBQOC) =(AUB) n (AnC) and (1)
AnBnOC =MAnBbLl’no (2)

Whereas we have single distributive law for
numbers. We know multiplication alone distributes
over addition. The distributive law of number system
compares with the distributive law (2) of sets ie.

!

a(b4-c) = ab+ac y numbers a.b.c

; The reason for attempting to compare set opera-
tions with number operations is that all our new opera-
tions and new Mathematical systems find their inspira-
lion or motivation from the propertics of number

operations. Sets form a ‘mathematical system’ and
hence we can study sets as a ‘Mathematical system
in its own right.



"Relations and Functions

ﬁ”mB(\{gry ong is famﬂnr with ‘the idea of relations
A5 e}mgl;'x?,gf conmctxon bemeen (wo or morc things:
Kelation is a concept which permeates evcryday life.
We commonly hear of such relations as ‘the husband
ﬁjmfﬁlcnd of ‘is to the left of?, ‘is taller than’, ‘is the
g‘agp%ﬁgeias_, Js,,pe_tween A ‘quick scrutiny of ele-
mqg&aﬁyzj,\datl‘l‘cmalics makes it evident to us that after
all Mathematics is a study of a veriety of spatial and

quantitative relationships. Flementary ‘Geomelry
studies such relations as ‘is parallel to’, ‘is collinear
with is ‘congruent to’, ‘is similar to’. Where as
‘Arxthmetlc is dominated by the relations like ‘is equal
te’ ‘is'4 factor of’ " 1s greater than’ ‘is a product of’.

Mathemanclans study the concept of ‘relation’
andits properties in an abstract way.

In this section let us study ‘relation” and the
Eﬁli\“ﬁ#} .congept .. of ‘function’ as Mathematical
concepts.

Ordered pairs, Product sets, Graphs.

In the study of.operations on sets, we were inte-
rested in construction of new sets and their proper-
ties. A more elaborate and useful way of construc-
ting a new set from a given pair of sets is by the
‘ordered pairs’ of elements.

The concepts of ‘ordered pair’ and ‘ordered
triple’ are not new to us. Recall that points in a plane

)



are represented by ordered pairs of numbers: The
ordered pair (S, 4) and the ordered pair (4, 3) repre-
sent two different points in the plane. ldea, of
‘ordered pairs’ is basic to Analytical Geometry~
‘Ordered pairs’ play vital role in the coustruction ef
Mathematical systems.

Intuitively, an orderd pair consists of two elements
a and b where a is calied first component and b is
called the second component. We denote this ordered
pair as (a, 0).

Orderd pairs (a, b) and (b, a) are different.

Example : The rational number %-is represented by

the ordered pair (2, 3).

(3, 2) represents the rational number —%-
The ordered pairs (a, b)=(c, ) if
a=c and b=d

We know that ordered pairs can be plotted
graphically.



Ex. 1 Sketch the graph of all ordered pairs
(x, y) x, ye Z (Integers) & satisfying the property
0<x<S5and ys=d.

L

6,

d

I |
Eiee (i3 Penes' b o o

© ¢ 0 0

°°¢-—°°°°

< 0 0 <«

<

&€& O 0 4+ 0 0 & o
@_oo-»-oooo

.‘

Fig 18
This graph shows all the orderd pairs (x, y) of
integers subject to the condition that 0 <x <5 and y < 4

The graph is made up of infinitely many discrete
points.



Produci >ets ;

Bx %

(Lartesiain rroaucts).
Let A=, 2, 3, 41
B=18, 0}
The cartesian product Ax B of these two sets
1s the set of ordered pairs

A xB= {(1,8), (2, 6), (3, ®,
4, 6).}

We read AxB as ‘A cross B’

(3, 0), (1, 6), (2,8), (4, 8)

Ex, 2l Tbc product set A % B of the sets
8)33"9\'” 1 4]’ B——{3 2 } )
AxB==[(], 3), (1, 2), 4, 3), (4, 2)]

AXB is graphlcall) shown as thes et of 4 (dots) discrete

points.

LY
ot

T+ o * -

2+'o L

1_..
bty =X
{2 3 4

Fig 20

Let U=[1, 2, 3] |
uniDraw the graph of UxU. UxU is a discrete
set of'9-(dots) points in the carteisan plane.,

;'Ei;. 3

AY

) ]
‘ 1

Fet o o5 o

2.-- ° 0 o

: ‘51 + 0o o o
10 = Setlea g Ll &
" Fig 21
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We define the cartesian product of any two sets
A and B:

A X B=[(a, b)/ac A ahd beB).

In general AxB#BxBxA
for

BxA={(b,albeB and acs A},

Every‘ ordered pair of numbers (x. y) belongs to
the set R xR, where Ris the set of reals. To any

ordered pair (x, y) of oumbers, there corresponds
a point in the cartesian plane. Therefore cartesian

plane is nothing but the set- of all ordered pairs of
RSl

_Any set of ordered pairs of numbers or cartesian
product of any two sets is always a subset of R xR,

Exercise :

1. IfA=1[6, 8], B=[5, 3] C= [3, 4].

Find (a) Ax(BuC). (b) Ax(BnCQ),
16y (Ax B} IV (AXE)

2. Graph S= [{x, p){2x—3y=6]. 3, y&e Z;
3. If the universal set

U= {(5,5), (4. 1), (1;2). (8, 3, (0, 0)}
Using (i as given

a) Find [(x, y)/x> Y]
by Find [(x, v)/(x+y)=7]



c) Find [(x, y)/x is even)
d)} Find [(x, y)/k=4y]

Relatior as a set of Ordered Pairs :

Ex. 1: Counsider the sets of names of men and
their respective native places.

A= [Rama, Rahim, Govinda, Srihari]
B= [ Mysore, Gulbarga, Hassan, Melkote ]

A and B are connected by the relation ‘s a native
of * this can be illustrated in a diagram.

A -
AMA o e MYSORE
RARIM S GULBURGA
GOVYINDA e HASSAN
SRINARY > MELKOTE
Fig 22

- We can express the relation between the elements
of A and B as a sct R of ordered pairs.

‘R,i—_—:‘ (Rama, Myéore), (Rahim, Gulbarga)
(Govinda, Hassan), (Srihari, Melkote)

1his sst of ordered pairs R completely expresse,
the relation in question.

Eg2.2: Consider A=}, 2, 3]
B=[2, 4, 6]



Let the relation be * ls the double of”. The
related elements In these two sets are thls relation

1&2,2&4, 3&6 is given® by - theP§ét of” ordered
pairs

R,=[(1, 2), (2, 4), (3,6)] .

B, 3k Write the set of all ordered, pairs,ofisgloments)
=[3, %.12]
_[4 1052 12]

Using the condition ‘is greater than’, 1Obgi__§)usup
R,=[ (3, 2), 3. 4), (,2), (12, 4.112,i10), (12, 211 "}

R the set of owdered pairs descrlbes the ge]atlon m
-each example- gwan above. e % }ya z}m

< A relation from a set a-to-asset-B; fof brdered
pairs>.

Refer to.the examples 1, 2, 3 in abovc I(eLatlon
R from a set A to set B in each of tie above e&amples
eonsists of the ordered pairs of onl/y relatéd™ elements.
In each case if we compute-A:x B then we realize that
R has only some elements of A x B.

In Ex. 1 AXDB has 16 elementsin it.
=[ (R, M), (R. G), (g,. H),.(S. M)] .is on ly «
subsetie. R, CAXB,

In Ex. 2 A><B~[(l 2, (1, 4, (1, 6) (2. D (29
| (2, 6)(3; 1) (3 4) (3, 6) >

Where as
R si= {0hy 205 '@, 4023560
R, CTAXB

Ly |



4 rar 01 A 198 MG AL w181 @
In Ex_3 A XB caonsists of 12 ordered pairs,

'Ax'ig';_[ﬁ,'d) (3, 10) (3,2) (3,12),,49,.4) (9,10
9,2) (9, 12) (12, 4) (12,10) (12 2) 12, 12) ]
Mbﬁlq aaIeedtk ) o1ty to 1880 & 21 QOIiIn S s

where as the relation R3=[ (3, 2) (9, 4) (9,:20.(12, 4)]

siep ow! eaplova: %) mbiginzhlo%l&.%iig). HA 7

£ 2 ST ToRdaaieiedd %lﬁmxs;:b & 5 &
“Example : Graph the relation R =7(xe%yJ¥)R{ yRex:«!

Lhe Vertical line .consists. of iall point whoye - x
coordinate=2 and y,goordinate yarjes:dver-the set R

-
| i\’
. o .

h  Cye ey
4 Jrjr'* N
b

SR

) 4 i i

W ow

This -vertical line &5 &hd® gf'aph of the relation
R={ i(x, =2 :
[ (x, y)/x ']f‘2 i

Yo Notegthdt relationtR israrsubisettof 'R w7 ed!
we have the generalization.
&) gy relatiohi ihvdvles two sets, say A"and B.
lenca itss ¢alled bimary sekationysr -



) Relation is from set A to set B,
3) . Relation is a set of ordered pairs of related
" ¢lements,

4) Relation is a subset of the Cartesian product
AXB

3) All binary relations (it involues two seia
A & B) determine subsets of R X R

Graphs of relations :

1) LetA=[2,3,4] B=[3,4.56]
Sketch the graph of the relation from A to B given
' by R=[ (x, y)/ x dividcs y]

Wo knew R S Ax B and R=[ (2, 4) (2, ©) (3, 3)
(3, 6) (4, 4 }

TP
Fig 23.

The five (dotsl points cunstitute the graph of

the relation R.
The set of all points indicated by () along with

the doten constitute the points in the set A x B,
P R



Let R Dbe the relation in the set of real numbers de~-
fingd by y <=x+1. Graph of the relation R gives
the set of all points in the shaded areas.

LY ° ‘/

. ,(‘(
A
AT X
AIEBIER
/~1 2
*4TH |
Fig 24.

The line Y=ux+1 is shown by dotted line to show
that it does not belong to the graph. The graph of
the relation R. ie.

The shaded ~rea consists of the point below the
line Y=x+1

Domain Range and Inverse relation :

Let R be a relation from the set A to set B. R
is a binary relation (Why ?.  Recall that R is a set of
ordered pairs and that Rc A x B.

The inverse relotion R™! is also a set of ordered
pairs,
R =0 asb)cRy,
The inverse relation R™' Consists of those ordered
pairs obtained by reversing the clements of (compo-
nents of ) ordered pairs of R.

44



-ah atoiExt  If A=]l, 2, 3] B=la, b]
andiR=[(l..a) (2, b) (3, a)l is a relation from [to ]
then R™'= [(a,l), (b,2). (a,3)] is the inverse relation
of R. .

Exercise :
| 1. Write the cartesian ‘product of [1, 2, 3]and
[3, 4, 5]. Display it graphically. .

- 2. Let R=][x,y)/xeR, yeR, x*+y*=16]. Sketch

this relation in a Graph.
3. Let'R be.a relation in the.set of N drfined by

2x+4y=1]5. Describe this set in the set builder form-.
Find R™' sketch the relrtion graphically.

Let R be a relation from A to B. The domain of
“the relation R is defined as the set of all first elements
(first components) of the ordered pairs that belong
to/R.

We know that R<A xB
D =Domain of R=[a/(a, b)e R]

..tThe range E of the relation R is the set of all
second components (second elemcnts) of the ordered
pairs that belong to R. |
Range R=E=[b/(a, b)€ R].

Example: Let relation -
- R=[(3,1), (4,5) (6,7,) (10,11,) (8.13)]
The domain D of R has all the first compouents
of the ordered pairs in R
e D=3, 4, 6 U0 8 ]

', Range E=i 10y s Uiy 19 7]

The.dnverse telatiom R™"=[ (1, 3) (3; 4) {7, 6) (171, 10)
(13;:8) ]

L 3



Assignment :

Sketch the following product setin a diagram
by-shading the appropriate once.

s N L o IO R
3} [2.3) X [=3,4]

Suppose A B C have 3, 4 and 5 elements respectively,
how many elements are there in

1y AxBxC i) BXAXC (iii) BXCxA'?
4y Let A=B C which, if any of the follow=
gl Tare: 2
Iy AXA=(BxB) n (CxC)
2) AXA=(BXC) n (CxB)
§) Verify whether the relation
SHW) 3 ExV)=X(W 1 V) helds by
taking S=[a, b] W=[1,2,3,4,5] V=[3,5,7, 9]
6) If S;=I[(x,y) / x<R, yeR, y» —x+1]
and S.=[(x,y) | xeR, y<R, x*4+y'<25]
Graph the relations S, and S, the set S,  S,.
7) If the Universal set U=[l, 2,3, 4, 5] list the
order pairs of the following relations in U x U,
Ri=| [(%; 3} [H>€ )7 15 emen: | |
Ro=[ (%, ¥)/x—) =6
Ry=| (x,y)/x > 2and y=3]

A. g’/
J



8) Find the domain, range and the inverse relat-
ion for R; R, R; in problem?.

Functions :

‘The word function was first introduced by Des-
cartes in 1637. He used this word to mean the
.positive integral power x" of a variable x- Leibpitz
associated this term with curves. Bernoulli (1667-
1748) regarded a function as made up of a varible
and constants. Euler (1707-1783) regarded a function
as an equation involving variables and constants. The
Bulerian concept of a function was used until Fourier
studied this concept in connection with Trigonometric
series.

Function concept is refined by the use of set
theory. Function is a special kind of relation bet-

ween two sets of elements.

Consider the two sets
Exi 2 A=]1,2,3,4,5,6]

47



B=[2,4,6,8,10.12,1,3,5,7,9, 11}

Let us define a relation R for A to B the relation

R=[ (1,2 (1, 6) (2,8 (4,8) (5,10) (7,9 ]
Sce fig 25

In this set R The are twe ordered pairs [1,24
and [1, 6] in which the first componeat is thes ame
sember 1

Ex. 2¢ Let R=[(1,3) (2,3) (3,8 (4,6 (5, 6)
(6. &)}

~ In this relation R, no first component of any
ordersd “pair repeats more than onee, eventheagh
there are three ordered pairs

(4, 6), (5,6) (6 6) with same sscond
companent 6.
Refer; to fig 86




B 3 ,.Conslder the (plap%ng{:
R=[(, 1), @, 9) 2,3), (3;3), (4,3),74,9), (5.7)
goilglny o3 8 o) A ol 2l uounh' 9.7t 9D r(j'g)]
In this example ofiR?) (3 .%) (3. €y 8,00 (% 7i]-- 9%

Domain of R=(1,2,4,5] 441 32
e 2

i£,1] =isq bRaDge off R=[1i9, 3, 7,,{4]'

ﬁé’fe’flfmm@fanéﬁ? 418fHe Hcm m ifst Cof-"
ponent) is related to 3 and 9 ie. ~we- haVe (8, f‘(4.9)

o Bysimlarly, WeRate o 0] =4 130 o ad
o @ 9).¢2 3)in R
7 and (5, D). 54)mR

o :0”5}1;1 eleq:gents;} 2 éof llrhc: fiomﬂ-}ﬂ BLE raRedred
TR, This 1s clear by dlagrérmhﬁﬁgg Jd-

Amon"“!he t}ncc examples given noyv E:é | and
Ex. 3 have’ Srdcied pairs whose first c’érnponeni"repeats
Where as in Ex: 2 no two order pairs have the same
number for their first comb&zent.

-9



Observe that the sets R in each of these example.
forms a relatlon. But not all these relations are quali-
fied to be called functions.

Definition : Function F is a set of ordered pairs.
The set of all jiust components of the ordered pairs
forms the domain D of F. The set of all second
compments is called the range E of F or every ae D
there exists b= E such that '

(g, b)e F

Each element of D appears exactly once as the

first element in the ordered pairs of F. t his condition
rewritten becomes;

if (a bi<Faud if (a ¢)<F then b=c,

Let us appiy this definition to the examples given
in the beginning of this section Ex. 1 and Ex. 3 faj
to satisfy the condition of the above definition. Hence
they are not funcrions.  Ex. 2 satisfies all the condi-
tions of the definition .. this sct represents a function,
‘Exercise :

Which of the relations below are {unctions ?

a. Ri=] (4,3} (4,15), (6.3). (8,9) ]

R,=] (4.9). (6,11). (8,3) ]

Ra=[ (4:1). 4,2y (430 1,

b- Find those relations bzlow wich are not functions.




a 5
b / Q

G
11
d._

D E

Fig 29

Recall the differeuce betwe:n a function and 4
relation. '

If R=[(x,y) & NXN; y=2x]
is a relation. Isita function? Yesit is a functiop
because no two ordered piirs in R have the same firsy
component. Every ordered pair in R is of the type;
(n, 2n) where ne N. If R=[(x,y) e NXN: x>y
[s this relation a function ?

[t cannot be bzscause R has ordered pairs like

(S5 d s 55 205655 B (3 ) 1. Thas canmet happen
in a function.

Fuaaction as ruie, Correspondence-Notations

The function of f given by

[={@EP) e NXN? y=x+7} ecandlso be deno-
ted by

f: N>N defined by f(x) =x+5

[f we just write f: x—x+5 we know how the
function is defined but we donot know how the
domain is chosen.

\n
\



Recall that the function [/ associates {assizitsy with
each element x of its domain exactiy one clement i of
its range. f:x-~yor f:x—>f(x) tellsusthat /Con-
sists of all ordered pairs (x, f(x). ) f(x) is calicd the
image of x under f

Assipnment ;. 1) Given S=[3,4, 5] T= [ 3 2]

ay I8 A= {3, x), @, ») (5,2 @ relation
S
by Is 4 afunction from Sto 7?
, 2) List the elements of the relation R which is
the inverse relation of
A=[(0, —4), (1.4), (2,2), (3, 4,4, 4
a) Is A afunction? b) Is R afunction?

3) Graph the function { : x—y defined by y=x?
with its domain the set [x: —2< xX<2 x= R]

4) Given that the domain of the function / de-
fined by f @®l=a7/% isthe set of reals;0=x=2, find
S/ and graph it.



Mathematlical Induction

By B.C. Bagti

1 'S

“induction.

.SYLLABUS : Introduction, Principle of Mathematical induction proving different tyupes of
problems of equality, inequality and divisibility by the method of principle of mathematical

POINTS TO REMEMBER

1. Introduction : The word ‘Induction’ means
the method of inferring a general statement from the
validity of particular cases. We must be cautious here
thatin mathematics this kind of inference is notallowed,
even when a huge list of particular cases have been
verified. Mathematical induction is a principle by
which bne can conclude a statement for all positive
integers, after providing certain related propositions.

Let us see an cxamplc to explain the need for our
caution.

We know that the numbcrs 13,,23; 43,5313 elc.
are prime numbers. And the numbers 33, 63, 93 etc.
are composite. From these particular cases we
formuiate a general statement. A number of the form
10n + 3 is prime. If n is not divisible by 3. Is this a
true statement ?

Even if there are hundreds of particular cases where
this is known to be true, we can not conclude that this
general statement is true.  ..r | - TR

If fact this statement is not trua in gcneml when the
number 143 is of the form 10n +3 with n = 14, but it
is not a prime.

We say that 143 is a counter example to the
statement.

Even when we do not have a counter example, we
can not conclude that a genceral statement is true simply
because it has been faund to be true in all its particular
cases that have been verified. We can at the best say
that it is a reasonable conjecture. ,

2. Preparation for Induction :
consider the statements of the form

(i) nisdivisible by 3.

(i) The number 102 + 3 is pnme.

(iii) 2">n.

A notation :

All these are statements concerning the natural
numbersn =1, 2, 3, .... We use the notations P(n) or
P,(n) or P,(n) etc. to denote such statements. When we
give values forn = 1, 2, ... We obtain particular
statements. If in the statement P(n), we substitute n = 3,
the particular statement so obtained, is denoted by P(3).

3. Peano’s Axioms : Let N be the set of natural
numbers. Then the properties satisfied by N, known as
the Peano’s axioms are :

Axiom 1. 1€ N, ie., | is anatural number.

Axiom 2. For each n € N ; there exists a unique
natural number n* € N called the successor of n.

Axiom 3. 1 2n* ¥V ne N,ie.,!isnotthe successor
of any natural number. ,

Axiomd. Ym.ne N.m*=n= m =n, ie., each
natural number, if it is a successor, it is the successor
of a unique natural number.

Axiom S. Principle of finite induction (P.F.L). If
S © N be such that

(/) 1€ Sand
(i) me S = m*e S, thenS=N.
Note : Axiom | assures us that N is not a null set,
e.. N # ¢. Axiom S is commonly known as the
induction axiom or principle of mathematicai
induction,

4. Mathematical Induction : This principle of

“mathematical induction.

The principle of mathematical induction states :

Let P(n) be a statement involving the natural
number n.

(a) If P(1) is true and

(b) If P(k + 1) is true whenever P(k) is true.

Then, we conclude that P(n) is true for ¥V n € N,



5. Working Rule : In order to prove that a
statement P(n) is true for all natural numbers, we should
verify

Step 1. P(1) is true.

Step 2. Vcnfy Lhal P(k + 1) is true, whenever P(k)
istrue,

The method of induction is a powerful tool for
proving theorems in mathematics, first we prove the
result for n = 1. After that assuming the result to be
true for n = K, we prove it to be true forr = K + 1.

It should be kept in mind that both parts are
absolutely necessary for the proof.

DEFINITION AND IMPORTANT RESULT ON
CHAPTER 2

1. Mathematical Induction. The principle of
mathematical induction states :

Let P(n) be a statement involving the natural
numbern. -

(a) If P(1)is true and
(b) If P(k + 1) is true whenever P(k) is true,
then, we conclude that P(n) is true for V n € N.

2. Working Rule. In order to prove that a
statement P(n) is true for all natural numbers, we
should verify

Step 1. P(1)is true.

Step II. Verify that P(k + 1) is true, whenever
P(k) is true.

The method of induction is a powerful tool [or
proving theorems in mathematics.

TEXT BOOK EXERCISE 2.1
TYPE—I
(SOLVED EXAMPLES)

Example 1. If P(n) is the statement
"n(n + 1) (n + 2) is divisible by 12"
Provc that P(3) and P(4) are true but P(5) is not
true. (T.B.Q. 1]
Sol.  P(n)isn(n+ 1) (n+2)isdivisible by 12.
P(3)is 3(3 + 1) (3 + 2) is divisible by 12.

ie., 60 is divisible by 12

Itis true.

P(4)is 4(4 + 1) (4 + 2) is divisible by 12
ie., 120 is divisible by 12

It is true.

P(5)is 5(4 + 1) (5 + 2) is divisible by 12
ie., 210 is divisible by 12
It is not true.

PRACTICE EXERCISE 2.1 (i)

1. If P(n) is the statement
“n(n + 1) (n + 2) is a multiple of 6" is it true ?
[A.L.C.B.S.E. 1978 ; D.B. 1984]
2. If P(n) is the statement
"n(n + 1) (2n + 1) is divisible by 6" is it true ?
[C.B.S.E. 1980)
3. If P(n) is the statement "n” + 2 is amultple of 5",
then show that P(1) is not true.
4, Prove that n(n + 1) (n + 5) is divisible by 6 for
allne N.
5. If P(n) is the statement "n(n + 1) is even” then
what is P(4) 7

TEXT BOOK EXERCISE 2.1
TYPE—II
(SOLVED EXAMPLES)

Example 1. If P(n) is the statement "n* > 100",
Prove that whenever P(r) is true, P(r + 1) is also

true. (T.B.Q. 2]
Sol. P(n) : n*> 100
P(n) : 7#>100
Now P(r+1): (r+1*>100
We know that
7> 100 [From P(r))

Adding both sides 2r + |
P42r+1 > 100+2r+1
(r+ 1) > (1004 2r+ 1) ..(f)
Also 1004 2r+ 1> 100 as 2r + 1 is positive ...(i1)
. (r+ 1) > 100 |From (i) and (if)]
Hence P(r + 1) is true.
t¥ Example 2. If P(n) is the statement "'2" 2 3n"
and if P(r) is true, prove that P(r + 1) is true.

IT.B.0. 3)
Sol. P(n);2" 2 3n
- P(r) is true. [Given]
28 21 8F
P(r+1);2*' 2 3(r+1)
Since 2" 2 3r [From P()]
Multiplying both sides by 2, we get
2% 56 (1)
r>1
ir>3
= (3r+3r) > (3+3r)
= 6r > (3r+3)
= 6r > 3(r+1) ..(11)



From () and (i) 2'*' > 3(r+ 1)

Hence P(r + 1) is true.

Example 3. If P(n) is the statement "2 - lisan
integral multiple of 7", prove that P(1), P(2) and P(3)
are true. (T.B.Q. 4]

Sol. P(n) ;2 - 1 is an integral multiple of 7.

P(1);2°*' -1 = 7,is an integral multiple of 7.
o (Itis true)
P(2);2**- 1 = 63, is an integral multiple of 7.
[t is true]
P(3);2°** =1 = 511, is an integral multiple of 7.
‘ (Itis true.)

PRACTICE EXERCISE 2.1 (ii)

1. Use the principle of mathematical induction to
prove the following statements for all n € N.
() 3* =1 is divisible by 8.
(if) 10*~'+ 1 is divisible by 11 for n € N,
© (i) 3"> 2 forallne N
(iv) 2°>n.
(v) 7" +(2* "% 3""'is divisible by 25,n € N
2. Prove by method of induction the following
statements for all n € N.

(i). For each natural number n, 6" *1+77*! is
divisible by 43.
(i) Prove that n* > 2n ¥ n 2 3, by using the
principle of mathematical induction.
(iif) Prove by mecthod of induction that 7" - 1 is
divisible by 48, where nis a positive integer.
3. Use the principle of mathematical induction to
prove cach of the following statcments :
(1) 10"+ 3.4"*? 4+ 5 divisible by 9.
(i) 5 - 1 is divisible by 24 for every natural
numbecr n.
(iii) n*< 10", where n is positive integer.
4. Use the principle of mathematical induction to
prove cach of the following statements :
() 2°<3" ., ne N.
() (1+x)">1+nxforn22and x> -1.
(1if) Let P(n) be the statement "3 > n". Is P(1)
true ? Whatis P(n + 1)?

TEXT BOOK EXERCISE 2.1
TYPE—III
(SOLVED EXAMPLES)

Example 1. If P(n) is the statement "2 - lisan
integral muitiple of 7", and if P(r) is true, prove that
P(r + 1) is true. [T.B.Q. 5]

Sol. P(n): 2> - 1 is an integral multiple of 7

\n

-+ P(r)1s uue. |Givenl

"2" - 1 is an integral multiple of 7".
P(r+ 1):2**" - 1isan intcgral multiple of 7.

= Pred
2" .2 -1
82" - 1
82 -8+7
= 82 -1+ 7.

- 2" = 1 is an integral multiple of 7, so 82" -1)
is an integral multiple of 7. Also 7 is a multiple of 7.
Since sum of the two number which are integral
multiple of 7 is also an integral multiple of 7.

Consider  2Y*V -1

So 2% *" — 1 is an integral multiple of 7.

Hence P(r + 1) is true.

Example 2. If P(n) is the statement that sum of
the first n natural numbers is divisible by (n + 1),
prove that if P(n) is true, then P(r + 2) is true.

{T.B.Q. 6]

Sol. P(n):1+2+3+4+..+nisdivisible by

(n+1).
nin+1)
2

P(r) is true.

1 +24+3+ ... +risdivisible by (r+ 1)

r{r +1)
2

is divisible by (n + 1)

is divisible by (r + 1).

Now P(r+2): 1 +2+3+..+(r+2)isdivisible
by (r+ 3)

Consider 1 +24+3 . +r+(r+ 1) +(r+2)
= (1 +2+3+ . +n+(2r+3)

rir+1)
=3 +(2r +3)

-

&

[Using P(r)]

rrar+4r+6
—_—

(r+2)(r+3)
2
which is divisible by (r + 3)
Hence P(r + 2) is true.

PRACTICE EXERCISE 2.1 (ii)

1. Usc the principle of mathemaucal induction to
prove that the following statements forall ne N.
nin+1)

|4+243+ ... 4+n= 3

()



: R , o onm+ ) 2n+ 1)
TO T T L, sty ey il Sl B
(1) n 8
N
(iif) |‘+2‘+3‘+...+n‘=[”‘”2+ ’].

2. Show that if the statement
Pn):2+4+6+ .. +2n=nin+1)+2

1s true for n = K, then it is true for n = K + | can
we conciude that P(n) is true for every natural
number n ?

3. Use the pninciple of mathematical induction to
prove that the following statcments forallne N,
(i) Provethat: 12+ 3%+ 587+ +(2n-1)

_n@2n-1)(2n+1) )

3 €N
(if) Provethat: 1 +4+ 7+ .. +(3n-=-2)
in=-1)

iy . ; =——-——”( ”_’ ). neN

(i) 1+3+5+..+C2n=1=n"YneN
4. Use the pnncipie of mathematical induction to
prove that the following statements foraline N.
(Da+@+dy+(a+2d)y+..+a+n=-1)d

[2a +(n = 1) d]

NS

nin +1)(n +2)
(i) 12+ 23+ d () ==

-

iy 24204 M4 T =200 =04
(iv) 2+ 6410+ . +@n-2)=2r

TEXT BOOK EXERCISE 2.1
TYPE—IV
(SOLVED EXAMPLES)

Example 1. Givenanexamplecofastatement P(n)
such that it is true for all n. [T.B.0. 7}

Sol. Consider
nin+1)

Pny:1+24+3+ .. +n=

nin +1)

t.c.. sum of first 1 natural number s
e

F4

PCI)SHEHES, =
1+ 1)
R.HS. = 3 =1 = P(l)1struc
P(2)iLHS) = 1+2=213
PR 22+1) ‘
R.HS. = S =3 =2 P2 isuuc
P(3):LHS. = 1+2+43=6

i+ 1)

=6 = P(3)istruc

R.H.S.

i
P4y LHS. = 1+42+3+4=10
44 + 1)
RHS. = — =10

Similarly for any value of n € N, P(n) is true

& Example 2. Given an example of a statement
P(n) such that P(3) is truc, but P(4) is not truc.
: (T.0.Q &)
Sol. Considzr P(n) : "3n® + nis divisible by 2"
P(3):3x3+3 = 3%9+3
27 + 3 = 30is divisible by 3

. Itis true.
Again P(4):3x (4 + 4 = 48 +4 = 52 is divisible
by 3. Itis not truc.

PRACTICE EXERCISE 2.1 (iv)

L. Verifv thatif (2.1 + 1+ (22+ 1)+ .. (2n+ D
=n+2n+1ll.neN

1struc for n=m then it is alsotrue forn =m <+ 1
can we conclude that it is true for every ne N7
Apply the principal of mathematical induction to

prove thatforallne N

: . s onn+1)2n~1)

gt st

o

z

0
3. 1 Py s the statement "ni(n + 1) is even' then
what1s P(7) ?
4. 1f P(n) is the statement “n' + nis divisible by 3
(1} Is the statcment P(5) 1s true ?
(1) Is the statecment P(6) is true ? [Imp.]
5. If P(n) is the statement that the sum of first n
natural numbers s divisible by (n + 1), prove that
i Per)as true, then P(r + 2) 1s true. )
6. Il P(n) be the statement “C(n, r) < n, for all
F<r<n™is P(3)is truc.

TEXT BOOK EXERCISE 2.2
TYPE—1
(SOLVED EXAMPLES)

Example 1. Prove that the following by the
principle of induction : the sum of the first n natural

R nn+1)

(T.B.Q. 1]
Sol. Let the given statement is P
1o s Pmy:1+2+3+ ..

|
+n =§n(n +1)

when LiHESs =1

ni=l



R.H.S. 3-12-(l+1)=%><2=l

L.HS. =R H.S. = P(l)is true.
Now assume that P(k) is true
' k(k +1)
2

P51 + 2434 . Fki'=

P(k+1):1+2+3+...+k+(k+1)=%(k+l)(k +2)

We wish to prove P(k + 1) is true whenever P(k) is
true. Let us examine its L.H.S.
LHS. =1+2+3+...+k+(k+1)

+(k + 1), since P(k) is true

k(k +1)
2

g 1 1
= - k- = =R.H.S.
_(k+l)[2k+lJ 2(k+l)(k+2) R

Thus P(k + 1) is true whenever P(k) is true.

By the principle of mathematical induction, P(n) is
true forn € N.
& Example 2. Prove the following by the principle
of mathematical induction

1 +4+7+...+(3n-2)="(3"2_”
(T.B.Q. 3]

Sol. Let the given statement be P(n)

n(3n -1)

Now P(n):1+44+7+..+(3n-2)= 3

whenn =1, L.HS. =1

BN 2L
R.H.S. = 5 -lxz-l
L.HS. =R.H.S. = P(l)istrue.
Now assume that P(k) is true

' P(lr):l'+4+7+...+(3k—2)=k(3k2_l) L300
Now we shall show that P(k + 1) is true
1+4+T+...+Ck=2)+[3(k+1)-2)
‘ ) R O
|23
{ s 3% a3k = 24 [Blkd =]
. k(Gk=1) .
=———2—+[3(lz+l)—21 {From (i)

_kGk-D) Gk +1)
) 1

3k’-—k+6k+2_3k’+5k +2
2 - 2

O3k +3k+2k+2 3k (k+1)+2(k+1)
& 2 - 2

_Bk+2)(k+1)
N 2

_(k+ )3k +1)=1)
- 2
Clearly, P(k + 1) is true.
Hence P(n) is true for all positive integers.

Example 3. Prove that the following by principle
of induction4 +8+12+..+4n=2n(n +1).

[T.B.Q. 5]
Sol. LetP(n):4+48+ 12+ ...+4n=2n(n+1)

Forn=1 L.HS. = 4,
RHS. = 2x1(1+1)=2x2=4
L.HS. = RHS. = P(1)is true.

Let P(k) be true, then

Pk): 4 +8+12+...+48k=2kk +1)

Now Ptk+1):4+8+ 12+ ... +4k+4(k+1)
=2k+1)(k+2)

LHS. of P(k+1)=4+8+12+...+dk+4k+1)
= 2ktk+1)+4k+1)

[Using P(k)]
= 20k + 1)x(k+2)=R.HS.
P(k + 1) is true. ;
Hence by principle of mathematics inductior P(n)
istrue Vne N.

PRACTICE EXERCISE 2.2 ()

1. Let P(n) be the statement “n’ + n is even®.

Then (a) P(1) is the statement "2 is even”. Itis
true.

(b) If P(r) is true for some r, then to prove that
P(r+ 1) is true.

2. Using the principle of mathematical induction
prove that each of the following statements for
cvery natural number n.

() 1+43+5+7+...+42n=-1)=n’

|
(i) l+2+3+...+n=§ n(n+1)

(i) 228 2% Wi=12(22 =1 1)
(iv) 1.3+35+57+..+2n-1D(2n+1)

_n(@n’+6n-1) mp]

2

[N.M.O.C. 1993 (Set B)] [A.LS.S.E. 1985]



(v) 36+69+9.12+...43n(3n +3)
=3n(n+1)(n+2)
(i) x+4x+7x+Tx+...+(3n-2)x

=-:-zl—n (Bn-1x

[A.LS.S.E. 1980}

i) RQI+1D+Q22+D+Q3+1)...+(2n+1)
=(n+1)y -1
3. Using the principle of mathematical induction

prove that for every natural number n
23t P20 8 T A0e Sy T

18
=56 =1). lmp)

TEXT BOOK EXERCISE 2.2
TYPE—II
(SOLVED EXAMPLES)

= Example 1. Prove the following by the principle
of induction : n(n + 1) (n + 2) is divisible by 6, where
n is a natural number, (T.B.Q. 2)
(D.S.S.E. 1984, 1980] [A.1.S.S.E. 1978)
Sol. Let the given statement be P(n)
P(n) : n(n + 1) (2n + 1) is divisible by 6
Step 1. P(1): 1(1 +1)(2x1+1)=1%x2x3=6
which is divisible by 6.
P(1) is true.
Step 2. Let P(k) be true.
P(k) : k(k + 1) (2k + 1) is divisible by 6
Ptk+1): (k+1)(k+1+1)(2k+2+1)
k+1)(k+2)(2k+1+2)
k+ 1D k+2)(2&k+D)+2(k+ 1) (k+2)
k+ 1) (2k+ 1D k+2Gk+1)(2k+1)
+k+1)(k+2)2
k(tk+ 1) (2k+ 1)+ 2[(k+ 1) (2k+ 1)
+(k+1)(k+2)]
k(k+ 1D)2k+ 1)+ 2(k+1)
(2k+ 1 +k+2)
k(k+ 1) 2k + 1)+ 2[(k + 1) (3k + 3))
kk+1)Rk+1)+6k+1)(k+1)
k(k + 1) (2k + 1) + 6k + 1)
From (i), k(k + 1) (2k + 1) is divisible by 6 and 6(k
+ 1)?is divisible by 6 because 6 is one of its factor.
Hence P(n) is divisible by 6 for all natural number n.
Example 2. Prove the following by the principle
of mathematical induction
I£ 3, where n is a natural number, is divided by
8, the remainder is always 1.
Using principle of mathematicalinduction prove
that 3" — 1 divisible by 8 for every natural number n.
' [Annual Exam. 1994)

[T.B.Q. 4]

Sol. Let the given statement be P(n)
P(n): 3 = M(8) +1

or P(n):3" -1 = M(8)
Step 1. Whenn =1, then
ER.S. = 3 =38 =]
=9-1=8=M(8)

= P(1)is true.
Step 2. Let P(k) be true
P(k):3* - 1 = Multiple of 8 ()
Now it is to be proved that P(k + 1) is truc.
P(k+1) :, 3**V—1=M(8)
RS i =g
ce LB
(9)3* -1
9(3*)-9+8
93* - 1)+8
M(8) + 8
M(8) + M(8) = M(B)
Hence, P(k + 1) is true. "
Combining (/) and (if) by P.M.1. P(n) is true forevery
natural number n.
Prove the following by the
mathematical induction.
5 Example 3. Thesum S, =n’ + 3n* + 5n + 3 is
divisible by 3 for any positive integern. [T.B.Q. 8]
Sol. Let the given statement be P(n)
P(n):S,=n"+3n"+5n+3=M(3)
Step 1. Whenn=1, then
nt+3nf+5n+3=(1)+3(1)’+5(1)+3

{Using (i)
. (10

NN

principle of

=12=M(3)
P(1) is true.
Step 2. Let P(k) be true.
Ies, P(k) : K + 3K + 5k + 3=M(3) ()

Now it is to be prove that P(k + 1) is true.

Plk+1) : (k+ 1) +3k+1)+5k+1)+3
h+ 1) [k+1)7+5)+3[(k+1)7+1)
k+ D[ +2k+1+5)

+3(+2k+1+1)
k+ 1)K +2k+6)+3[(k+ 1) +1)
(K +3k+8k+6)+3[(k+ 1) +1)
(K +32+5k+3)+3k+3)
+3[k+ 1)+ 11
M(3)+3k+ D+3[(k+ 1) +1]
[Using (1)
M(3) + M(3) + M(3) = M(3)
= P(k + 1) is true. )
Combining (i) and (if) by principic of mathematical
induction, we get P(n) is true for all positive integers.



PRACTICE EXERCISE 2.2 (ir)

Prove the following by principle of mathematical
induction :

1. Prove that forn e N 10" +3.4"* 2 + 5is 5 is
divisible by 9.

2. Prove the following by principle of mathematical
induction.
Prove that 3*"*3 - 8n ~ 9 is divisible by 64 for
cvery natural number n.

3. Use the principle of mathematical induction to
prove that n(n + 1) (n + 2) is a multiple of 6 for
all natural number n.

4. Use the principle of mathematical induction to
prove that 3" + 1 is divisible by 8 for all n € N.

[N.M.O.C. 1994 (Set B)] {imp.]

5. Use principle of mathematical induction prove
that 10 ~' + 1 is divisible by 11 for all n € N.

6. Use principle of mathematical induction,
(i) Prove that 8" - 3" is divisible by 5 for all

ne N.

(i1) Prove that4” - 3n ~ | is multiple of 9 for all
ne N,

(iif) Prove that9" - 8n - [ is a multiple of 64 for
allne N.

(iv) Prove thatn’ + (n+ 1)’ + (n + 2)" is divisible
by 9 for every natural number.

(v) Prove that n(n + 1) (n + 5) is divisible by 6
forallne N.

TEXT-BOOK EXERCISE 2.2
TYPE—I1I
(SOLVED EXAMPLES)

¥ Example 1. If x and y are any two distinct
integers, thenx” - y* s anintegral multiple of (x - y).
' ' (T.B.Q. 6]
Sol. Let the given statement be P(n)
ie., P(n): x"-y = M(x-y),x-y=0
Step 1. When n = |
X~y =x-y=Mx-y)
= P(1)is truc.
Step 2. Assume that P(k) is true
ie., Let L=y = Mx-y), x~y=0 _..(i)"
We shall show that P(k + 1) is true
ie., oyttt = M(x-y)
Now x'*!'—x'y+xty—y**!
Xx=y)+y -y
M(x~y) + yM(x-y)
{Using ()]

M(x-y)

= Ptk + 1) is true
By principle of mathematical induction.
P(n)is true forallne N.

PRACTICE EXERCISE 2.2 (iii)

1. By the principle of mathematical induction prove

that
a+(a+d)+(@a+2d)y+...+[a+(n-1)d]

n
= [2¢ +(n = 1)d)

2. Using principle or mathematical induction prove
that

-.-|_a“‘rn}

=9 o

a+ar+ar +...+ar

3. Using principle of mathematical induction prove
that X" - a” is divisible by (x — a), Vne N.

[Imp.]

4. Prove by the principle of induction that x** - y**

isdivisible by (x - y), where nisapositive integer.

TEXT-BOOK EXERCISE 2.2
TYPE—IV
(SOLVED EXAMPLES)

t¥ Example 1. Prove the following by the principle
of induction

b 1 1 b 1

I"+2°+3° + ... +n =En(n+ N2n+1)
(T.B.Q. 8]

nn+N(2n+1
6

for every positive integer n.
Sol. LetP(n): 12+ 27+ 3+ +n’=

When n=1
LHS. = (=1

RILS.

N —

A+ D2+

|
=-x2x3=
6x X3i=H]

L. HS. R.H.S. = P(1)is true.
Assume that P(k) is true

; .
flet, < 1EF23 3R +k-=5uk + 1) k(2K + 1) ...(0)

Now Pk+1):17+22+ 3%+ _+ &K+ (k+1)
1
:g(k-’-l)(k +2)(2k +3)



LHS. =12+28+3%4 k3¢ k +1)}

=%k(k+ 1)k + 1)+ (k+1)
[Using (i)

=%(k+l)[k(2k+l)+6(k+l)]
-é(k+l)(2k’+7k +6)

== (k+1)[2k*+ 4k + 3k + 6

[e N

é k+1)[2k (k+2)+3(k+2)

=é(k+l)(k +2)(3k +3)

=R.H.S. of Pk + 1)

= P(k+ 1)1s true.
. By principle of mathematical induction, P(n) is
true forn e N.
¥ Example 2. Prove the following by the principle
of induction
1 1 1 1 n
13738757 T @i+ ) @+l
(T.B.Q. 9]
Sol. Let P(n) denote the given statement
| 1 n

P(n):%+-l—+

TR T T e e
For =AIK = JE2HLS -l——i
n=it, 1. .—LJ-B
I 1
RES. =i
LHS. =RHS. = P(1)istrue

Let P(k) is true then

1 1 1 1 k
—t—t—+

L3735 a0 Gl @ 2kl
1 1 1 1 3
Now Pk +1): ——3 3—— 3—?+...4m
]' (k+l)

L.HS. of P(k+ 1)
1 1

=—+

1.

e e
k=12 +1)

!
vl A

LW

B innedl® s o
_ (2k + 1) (2k +3)

.k . ]
T2k +1) (2k+1)(2k+3)

[Using P(k))

_ k(2k+D)+1 2K +3k+1 )
Tk +1)(2k+3) (2k+1) (2 +3)

k+1
2k +3

_(2Zk+ ) (k+))
T2k +1) (2K +3)
= Pk + 1)is true.
Hence, by principle of mathematical induction, P(n)
1s true for all natural number n.

=R.H.S.

PRACTICE EXERCISE 2.2 (iv)

1. Usc the principle of mathematical induction to
prove the following statement for all n € N.

nn+1)(n+2)

(() 1.2+423+34+ ... +n(n+1)=

| 1 1 1 n
(1) == b -+ =
120 23 34 nin+1) (n+1)
(iif) 1+1+1+ +l—l L
i 2*tats . 2_'- >
(iv) ]1+37457+.__+(2n_|)7=2m_-]:w.

(v) 1.3435457+..+2n-1)(2n+1)
_n(4n2+6n— l).
o 3

2. Using principle of mathematical induction prove
cach of the following statements

(f) 14243+ +k <18(2k+l)’VkeN

i 1P % (129 3 )
n(n+1)Y2(n+2)
- 12
i e Lo
1.4 4 7 (3m-2)3m+1)
m
=3m+]'

(iv) 1.3.54357+.+2n-1)(2n+1)(2n+3)
=n(n+2)(2n’+4n-1)



TEXT-BOOK EXERCISE 2.2
TYPE—V
(SOLVED EXAMPLES)

Example 1. If a set has n elements, prove that it
has 2" subsets. |T.8.0.10]

Sol. Let P(n): 1 4+2+4+3+4+ .. =7
Forn=1 LHS =2'=2,
RHS. =2'=2
£ & L.H.S. = RH.S. = P(1)istrue.

Let P(k) be truc, then
‘ Phy: 2"+2' +22+ ...+ 2' =2
NowP(k+1):2"+2' +2+ .. +2'*' = 2'2 which
is true also.

Hence by the principle of mathematical induction
P(rn) is true for all values of n.

PRACTICE EXERCISE 2.2 (v)

I. Prove by "using principle of mathematical
induction

;
1+774 777 +.4777.7= - (10" = 9n - 10)

n digits
2. Prove by using principle of mathematical
induction
1.47+258+369+ . ..nn+3)(n+6)

%(n +1(n+6)(n+7).

MISCELLANEOQOUS EXERCISE
(SOLVED EXAMPLES)

Example 1. Prove by induction that the sum of
the first n odd natural numbers is n’. [T.B.Q. 1}

Sol. Let P(n): 1 +3+5...+(2n-1)=n
when n=1, LHS. = |

RHS. = =1 = P(1)is true.
Let P(k) be true
1+3+5..+(2k=-1)=k’

We have to show that P(k + 1) is true.

P+ 1):1+3+5+..+(2k=-12k+D=(k+1)

LHS = 1+3+5+...+QK-1)+(2k+1)
=k +2k+ 1 [Using P(k)]
= (k+l)2= R.H.S.

= P(k + 1) is true.
Hence P(n) is true for all natural numbers n.

¢35 Example 2. If we take any three consecutive
natural numbers, prove that the sum of their cubes
is always divisible by 9. [T.B.Q. 2]

Sol. Let three consecutive natural numbers be
n(n+1)(n+2).

Let Py :n' +(n+ D'+ +2)' is always divisible
by 9
Forn=1, P(l)isastatement:
Pag+D'+(1+2)' = 1484+27=30,
which 1s divisible by Y
= P(1)istrue.
ie.. k'+(k+ D'+ k+2) isalways divisible by Y
We have to show that P(k + 1) 1s true
ie., Plk+ D) :tk+ 1) +(k+2)' +(k+ 3
is always divisiblc by 9
Consider (k+ D' +(k+2)' + (h + 3
= k+ D'+ k+2) +k'+27 + 9% + 2Tk
=k"+k+ 1)+ (k+2) + 27+ 9k + 27k
Now k' +(k+ 1)+ (k + 2)" is divisible by 9 becausce
P(k) is truc. Also 27 + 9k* + 27k is clearly divisiblc by
9 because every lerm contains 9.
P(k + 1) is truc.
Hence P(n) is true for all natural numbers,

t3° Example 3. Prove by induction the incquality
(1 +x)" 21 + nx wherever x Is positive and n is a
positive integer.

x>-1(x20) IT.B.Q 3
Sol. Lct P(n) be the statement
(J+x)>l+nx, x>-1, v=z0

Wec have to prove the truth of Ptr) for n 2 2, so we
start induction from n = 2.

P(2)istrucif (1 +x)'> 1 + 2x

If 1 +x+x>(1+20)

If x* > 0, which is true because x is a real non-rscro
number

Lct P(k) be truc
(I+0'> 1 +kx (1)
M+0" ' >0 s kol +0)
I+ ">+ v keekdd
U+ "' >T+k+In ¢
- L+ !> +thk+ D
. Ptk + 1istrue

From (1)

U

>

. By principle of mathematical induction
P (n)istrue forn 22

Hence (1 +0)"> (1 +nx), n22

Example 4. If P(n) is the statement n’ - n + 41
is prime, prove that P(1), P(2) and P(3) are true.
Prove also that P(41) is not true. How does this not
contradict the principle of induction? [T.5.Q. 4]

Sol. Let P(n): n* = n + 41 is prime number

Then P(1): 12— 1 +41 =41 is a prime nuinber. Tt
is true.

= P(1)is true.

—Q



P(2):2'-2+41=43.isa prime number, it

is true.
P(3):3% -3+ 41 =47, isaprimc number. it
is true.
P(41) : (41) - 41 + 41 = (41)". is a prime
number. '

But 41 X'41 = 1681, which is not true so P(41) is

false statement.

This’ does not contradict the principle of
mathematical induction P(41) has not been pmvcd to
be true.
= Exnmple 5. Prove by induction that (2n + 7) <
(n + 3)* for all natural numbers n. Using this, prove
by induction that (n + 3)* < 2" for all natural
numbers n. [T.B.Q. 5]

Sol. (i) Let P(n) be the statement “2n + 7 S (n+ 3)™"

Then P(1) is the statement

"2x14+7s(1+3V or9<16”
which is truc. .Suppose P (k) is truc, then
il we SET S (ke 3N
Pk + 1) is the statement "2 (k + 1) + 7S (k + 3™
Now 2(k+1)+7 = (2k+7)+2

S (k+3)Y+2 [ Ph)is true]
= K+ 6k+ 11

= (B +8k+16)-2k-5

= (k+4Y - (2k+5)

< (k+ 4y

since (2k+5)>01orallke N
= P(k+ |)1s true.
. By the principle of mathematical induction, P(n)
ts truc for alkn e N.
(if) Let P(n) be the statement "(n + 5 g 2
Then P(1) is the statement “(1 + 3)° < 2 =
or 16 S 16 which s true.
Supposc P(r) is truc, then (k + 3)* < 2'*'
P (k + 1) is the statement "(k + 4)° < 2***
Now (k+4) = [(k+ )+ 1)
(k+3)7 +2k+3)+ 1
e @2
2" 4k + 3
[ 2k +7S(k+3) Vne N|
< 2"%+ 2" [ Pth)s truc)
com 2.2 =2 = Pk + 1)istrue
By PMI P(n)is true forall ne N
* Example 6. Prove thatforne N
10" + 3.4"* + 5 is divisible by 9. [T.B.Q 6]
Sol. We shall prove the result by using principle of
mathematical induction. Let P(n) be the statement
"10" + 3.4 + § s divisible by 9"

ne

AN IA N

P St a2 18
= 2()7 =9 x 23
10"+ 34"+ S s divisible by 9
11y s true
|t Ptk) be true
10+ 3, 4“‘ + Sas divisibie by 9
el (O L R B G 9N S0

whenn=1,10"+3. 4~

when n=k+1, = 1{r+3,.4™+5
= 10"'+3.4""'+5
= m(m>+3.4"‘+5
= 10OM-34""-5)+34""'+5 [hy )]
= 90M - 304'. 16 -50+3 4. 64+5
= 90M = 4' (480 - 192) - 45
= 9(10OM - 32.4' - 5)
=@ mulliplc of 9
w105+ 345" 4 S s divisibic by Y

oo Pk + 1) as true whenever P(A) 18 so

-~ By PML Ponistrue forne N

o [0/ et Y (o
numbers
¢% Example 7. Prove that 107 '+ [ is divisible by
Il1forallne N. INMO.C 1994 (Set B |[T.H.Q 7]

*+ Sis divisible by Y tor all naural

Sol. Let a = 10714

For n=1a=10"+1=10+1=11
[

As = 1 STelastnoe

1
Let T(hY be true
A

1.C TR . A

10° + 1

Letus constderaforn=k + |

Thus gl (RS
S e |
= 0= 00F 4
= 1000107 "+ 1)=99

11
Now —_ [by (1)

107"+ 1

and therelore g
HOXEO™™ "+ 1)

11

Al =
50 99
H

100107 '+ 1) =99

—forn=m+ |
o



“T(m + 1) holds
Hence by principle of mathematical induction,
1

! l()_b':_;—l VY neN
Example 8 Prove that
—1-+l+—1—+ + ko ® ne N
.'1'2 23 34 a(n+1) n+l
(T.B.Q. 8] [Vlmp]

(A 1.8.5.E. 1983 ; Pb Board, 1987 ;
H.P. Board, 1988)
Sol We shall prove the result by using P.M.I. Let
P(n) be the statement

2
: | 1
u P(1)is true, if —— = ——,

.-' P(lj Is true

Let P(k) be true
Lli___ l""’ i '
127 23% 5 ey ka1 0
Now Pk + 1) is lmc if
A b lar ey - _k+1
12 Y2383 et "D+ T+D kei+]
P i L S I
\1.2 B et D)
. | _k+1
(k+D(k+2) k+2
" k 2 1 _k+l [by i
kel TR TiE) keg oyl
| 1 k+1
If =
(k+l){k+(k+2)} ¥
i | [k’+2k+l} o faskl
@0l B3T | e
1 l(k+l)’} k+1
If — ichi
w0l +2) T which is true
P(k + 1) is true whenever P(k) is so
By PMIL. P(n)is true forne N
g S Sl I n
g2 258 1 Tl e =0
Example 9. Prove that
P+2'+3+ +n’—’ﬂ'—+—”x
.se o 4
for every +ve integer n. M. Imp.) (T.B.Q.9)

Sol. Let

in +1)
P(n)=|’+2’+3’+...+n’=md—)— (i)
Putting n =1, wehave
PO S
i ————. Fi =i
Thus P(1) holds
[ct P(k) be true
2, 12
ke Peed s =) )
We shall prove that P(k + 1) is also true
Adding (k + 1)' to both sides of (ii), we have
|‘+2‘+3‘+...+k‘+(k+I)‘=k—ik—4+ﬁ+(k+1)’
k+1) k+ 1) (k +2)
or P(k+l)=————( 7 )[k’+4(k+1)]=—_——( )4( )

which is the same expression as obtained by putting
n=k+ lis(i). Thus P(k + 1) is true. Thus by principle
of mathematical induction P(n) is true for every natural
number.

MISC. PRACTICE EXERCISE ON CHAPTER 2

1. Use the principle of mathematical induction to
prove the following statecments for all n € N.

|
r+4t+7.t+...+(3n—2),r=;n(3n -Dx

!\J

If P(n) 1s the statement the arithmetic mean of
the numbers n and (n + 2) is the same as therr
geometric mcan, prove that P(1) is not true.
Prove also that if P(n) is true, then P(n + 1) is
also true. How does this not contradict the
principle of induction ?
3. Using PM.L, prove that 2" > n, forallne N
4. Using PM.1, prove that"3n> 2", forallne N".
5. Use the principle of matheniatical induction to
prove the following statements for alln € N.
12+423+34+ . +nn+1)
_nn+1)(n +2)
3

6. Using P.M.L, prove that
n(2n -1)(2n + 1)
3

7. Use the principle of mathematical induction to

P43 35 % .. 2@ =1)=

prove the following statements for ail n € N.



ADDITIONAL SOLVED EXAMPLES
SECTION—A
{2 marks questions]

Example 1. If P(n) is the statement "n' + n is
divisible by 3''. Is the statement P(3) true ? Is the
statement P(4) true ?

Sol. P(n): n' + n is divisible by 3.

P(3): 3’ + 3 =27 + 3 = 30, which is divisiole by 3.

Hence the given statcment s truc.

Again P(4):4‘ +4=64+4=08.
which is not divisible by 3.

Hence the given statement is not true.

Example 2. Let P (n) be the statement C(n.r) <
nlforallSr<n'. Is P(3) true 7

Sol. P(n) "C(n,r) s [n”

P(3s 3. r}s13" ¥ "S53
C@3.1),=3s|3

C(3.2) =253

€(3.3) 1<]3

ClByrrs | AN 1 Ersa

Hence P(3) is truc.

Example 3. (a) If P(n) is the statement "ntn + 1)
is even'', then what is P(4) ?

Sol. Let P(n) be the statement "n(n + 1) is even”.
Then P(4) : 4(4 + 1) = 20, which is even.

. P(4)1s even.

(b) Let P(n) be the statement 3" > n", What is
Pn+1)7

Sol. P(n):3">n

P(n + 1) is the statement "3 > n+ |".

Example 4. If P(n) is the statement 9" - § - |
is a multiple of 8", then (i) evaluate P(1), P(3) and
P(6), (i) Is P(2) true ? (iii) Is P(3) false ?

Sol. We have .

_ P(n):"9" - 8" - lisamultiple of 8".

() P(1):"9"' - 8' - [ =0is a multiple of 8.
“P(3):"9> - 8’ - 1 = 216 is a multiple of 8"
P(6):"9" - 8" - 1 = 269296 is a multiple of §"
(i) Whenn=2,9-8-1=9"-8-1=16=82.
- P(2):"9? - 82 = 1 is a muliple of 8" is truc.
(iii) P(3):"9’ -8~ 1=216=8.271s multiple of §".
~. P(3) is not false.

Example 5. If P(n) is the statement

integral multiple of 7", then prove that P(5) is true.

Sol. When n 5
2 -] = 2" - =32767 = 7.4681

Now

1™ .
"2" -~ 1lisan

- un

The statement P(5) : - 1 1s an intcgral

multiple of 7" is true.
ADDITIONAL PRACTICE EXERCISE 2 (a)

1. 1 Pen)is the statemen? “nin + 1) (2n + 118 an
imtegral multiple of 67 Prove that P(2), P(5) and
P(7) are truc.
I{ P(n) is the statemen? “12n + 3 is a multiple of
5", then prove that P(3) is falsec whereas P(6) is
truc.
3. 1 P(n)is the statement "7 + 2 isamultiple of 5",
then show that P(4) is rno: true.
4. 1f P(n) is the statement
?
Pe2' 434, +r.'=(n(n+”\“
S
then verify that P(3), P'7) are both true
Let P(n) be the statement given in problem 4
above, whatis P(n+ 17

[ 9]

™Tm

ADDITIONAL SOLVED EXAMPLES
SECTION—DB

|4 marks questions)

Example 1. If P(n) is the statement that the sum
of first n natural numbers is divisiblebyn + 1, prove
that if P(r) is true, then P(r < 2) is true.

Sol. P(m): 1 +2+ 3+ . - nisdivisiblebyn+ 1

niin+1), s
= {§ divisible by n + |

rs

p—}

P(r) s true
142434 +risdinvisibleby r+ L

r(r+1

) is divisible by r + 1.

-

Now, Pir+2):1+2+7
by r+ 3

Consider 1 +2+ 34 . =r+(r+D)+(r+2

=(1+243= . +n)+(2r+13)

~ .+ (r+ 2)isdivisible

r(r--1)
— ( - (2r+ 1
=

{using P ()]

) )
rr+r+d4r<f6 r'+5r+6

2 o 2
4 i % JNI, w5

5

which i divisible by r + 3
Henoe Prr o+ 20 s true



Example 2. Write down the binomial expansion
of (1 +x)"' whenx =8. Deduce that 9"*' =81 - 9 is
divisible by 64, whenever n is a positive integer.

Sol. (I+x)™'=(1+8)""

= §3+*1E. 470G, g1 G,
SRR da P

or 9*'=1+8(n+1)+"*'C, 64+"*'C,. 8
o o™= o 18"

= 9'=1+81+8+""'Cy 64+"°'C,. 8

LT S
= 9'-81-9=""'C, 64+"°'C,. 8’
Han IR iRy

LR

R.H.S. has 64 as a factor of every term, so R.H.S.
is divisible by 64,

Hence L.H.S. ie., 9' — 81 - 9 is also divisible
by 64. :

Example 3. For every natural numbers n, prove
by mathematical induction 4" + 15n - 1 is divisible
by 9. [Roorkee Entrance. ]994]

Sol. LetP(n)=4"+ 15n ~ 1,

Wehave P(1)=4+15-1=18=9.2
i.e., P(1)isdivisible by 9.

Now assume that for some positive integer m, P(m)
is divisible by 9. |,

i.e., 47 + 15m — | = 9k, where k is some integer ...(i)

Then Pim+ 1) = 4™ + 15(m+ 1) -1

=447+ 15m+ 14
=4, (9% -15Sm+ 1]+ 15m+ 14, by (1)
= 36k - 45m + 18

9(4k - S5m + 2) =9 some integer.
Thus P(m + 1) is divisible by 9 if P(m) is divisible
by 9. But as already shown, P(1) is divisible by 9.
Hence by principle of mathematical induction P(n)
is divisible by 9 for ail positive integers n.
Exampie 4. Prove by the principle of mathema-
tical induction that ;
@ 2+4+6+8+..+2n=n(n+1),V neN.
[NM.O.C. 1996, (Set A)]
® 1+3+5+7+..+2n-1D=n",YneN.
[N.M.O.C. 1996, (Set B))
Sol. (a)iLetP(n):2+4+6+89 ... +2n=n(n+1)
Put n=1,P(1): * fi e '
RHS. = Ix(l+1)=1x2=2=RHS.
L P(1) isuwue. '
Let us suppose that P(r) is true i.e.,
2+4+6+8+...+2r=r(r+1)

We shall prove that P(r + 1) is also truc. f.e.,
(2+4+464+8+..+2nN+Q2r+2)=(r+1)(r+2)
Now, L.H.S. 2+4+6+8+ . +2rN+(2r+2)
rir+ D+ @2r+2)
rir+ N+20r+
(r+ 1) (r+2)=R.H.S.
P(r + 1) is also true.
Hence, by the principle of mathematical induction
the given statement is true for all natural numbers n.
Proved.
(b) Let P(n):1+3+45+7+..4@2n-1)=n
Putn=1,P(1): RHS.=(1))=1=LHS.
. P(1)is true.
Let us suppose that P(r) is true, Le.,
14345+ 7+...+Q2r=1)="
We shall prove that P(r + 1) is also true, i.e.
1434547+, 4@Qr=D+Qr+D)=(r+1)
Now,
LHS. = {1+3+45+47+.4Q2r-1))+@2r+1)
= PA+2r+1=(r+ 1)) =RHS.
s P(r+ 1)inalso true.
Hence, by the principle of mathematical induction
the given statement is true for all natural numbers n.
Proved.

ADDITIONAL PRACTICE EXERCISE 2 (b)

1. Prove 3" - 1 is divisible by 8 forall n € N.
2. Prove that 10" + | is divisible by 11 for

all ne N
3. Prove that 8" - 3" is divisible by S foralln e N.
4. Prove that 4" - 3" - 1 is a multiple of 9 for all

ne N.

5. Prove that 9" — 8n — | is a multiple of 64 for all
ne N,

6. Prove thatn(n + 1) (27 + 1) is divisible by 6 for
allne N.

7. Prove thatn’ + (n+ 1)’ + (n + 2)’ is divisible by
9 for every natural number.

8. Prove that n(n + 1) (n + 5) is divisible by 6 for
allne N.

9. Show that if the statement P(n),

2+4+6+..... +2n=n(n+1)+2

istruc for n=k, thenitistrucforn=k+ 1. Can
we conclude that P(n) is true for every natural
number.

10. If P(n) be the statement, "A.M. between n and
n + 2isequalto G.M. betweennandn+ 2", prove
that P(n) is not true for all natural numbers.
[Hint : P(1)is not true.]



11. Using principle of mathematical induction prove
*“the following for alin e N.
M @R.1+DH+R2.2+D)+(2.3+1)
+.42n+ ) =(n+ 1) =1
(i) 2420+2'+ .. +2°=2(2"-1)

3
(iii) 3+3’+3’+...+3"=5 (3-1)

o 5
(iv) 5+ 15+45+...+5.3"':5(1'— 1)

v) l.u+2.l_3+3.|_}+...+n!_£=|n +1-1
12. Using principle of mathematical induction prove
that n(n® + 20) is divisible by 48 for every even
natural number n. . (M. Imp.]

13. Use the P.M.L. to prove each of the following
statements. [V. Imp.]

1
) l+2+3+...+n<§(2n+l):

n(3n-1)
2

(i) 4+ 8+ 12+ ...+4n=2n(n+1)
[Hint:Pk)+4(k+ DH=2k(k+1)+4(k+1)
=2k(+DKk+2)=P(k+ 1))
(iv) 25+ 58 +8.11 +...tonterms
=n(3n+6n+1)
(v) 1.L.342.4+3.5+..+n(n+2)
_n(n+l)(2n +7)
6 ]

14. Using the principle of mathematical induction
prove that following statements : ({mp.]
(i) n* = n-41is prime
(if) Any natural number equals it successor i.e.,
P(n)in=n+1.
(iif) 11" + 127" is divisible by 133.
; . . [Roorkee 1982]
(iv) 5™* - 24n - 25 is divisible by 576.
), 14222432 +.4+n.2"=(n-1)2"" 42
(vi) 1+2.2+3.2'+..n2'=14+(n-1)2"
(vii) 27'>2n> 1.

(i) 1+4+12+...+(B3n-2)=

YV neN

. ADDITIONAL SOLVED EXAMPLES
SECTION—C

{6 marks questions)

Y

Example 1. Prove by the
mathematical induction that

() 7™ + 21" 3" is always divisible by 25,
VneN, [N.M.0.C. 1996 (Set A)]

principle  of

| 2

(b) 12" 4 25"~ 'is always divisible hy 13, Y n € N.
(N.M.O.C. 1996, (Set B))
Sol. (@) Let P(n) - 7"+ 2%~ 37!
Putn=1, P(1): 77 +2"%3""'=494+2°. 3
=49 + | = 50 which is divisiblc by 25.
= P(1) s truc.
Let us assume that P(k) is true. t.e.,
7% 4 2% 3 'is divisible by 25.
74 2% 3= 25r forsome re N ...(i)
p(‘ 4 l) = 77“0') + 2‘(&‘ I)-,\. 3“6])-|
i N e € o
49.7* 4+ 2422 3!
(50— 1) 7"+ (25-1). 2% 3!
518 MR & ol il ite B S il M L |
2502, P B2 3 -7 e 3
p AN Sl T e Al Ll P [by (i)
Divisible by 25 — divisible by 25
Divisible by 25
o Plk + 1) 1s also true.
Hence, by the principle of mathematical induction
the given statement in true for all positive number n.
Proved.

Now,

W on

(b) Let P(n): 127+ 25!
Putn=1, P(1):12+25'""'=12 +25§°
=12 + 1 = 13 which 1s divisible by 13.

= P(1) is true.
Let us assume that P'(k) is true i.e.,

12" + 25' ' is divisible by 13.
o 12+25 7 '=13r, forsomere N (D
Now, P(k + 1) 12! 4 25¢<"-!

2%, [2425' 125
C2=—"H12" £ee— 125"
CIaN 26, 25P )y =1(12' = 25
13012 +2.25' ") - (12! +25'7")
13(12' + 2.25' ") = 13
Divisible by 13 - divisible by 13
Divisible by 13

= P(k + 1) is also true.

Hence, by the principle of mathematical induction
the given statementistruc foralln e N. Proved.

Example 2. Prove by the principle of
mathematical induction that :

[by (1]

2
6+66+666+...+666...6=E(10"”—9n—10)

n digits :
[N.AM.O.C. 1995 (Set BY]



Sol. Let Pn) 1 6 + 66 + 6606 + .. + (6666 ... 6)

n digns
)

‘_ 1o b
= (10" =9y = 1)

Basic step :
To prove: P(1)intruc

Proof: Forn=1,
2
RHS: = E(m’-w )
2
= 2_7(81)=6=T.
.. Pthyin true.

Induction step :
Given Ptk) 1s truc. Or

2
6+66+666...+ 666..6 = |10 -9k~10]

k-1 digits
To prove: Pk + 1)i1struc re.,
6+66+666..+ 666..6
k+1 digus

2 ;
=;[l()“--9(k+ 1y - 10]

Proof. L.H.S. =6+ 66 + 666 ... + 666 .. .6
A+l digats

5 : ;

. LA Iy

_.27“0 9k - 10)+6 11111 ...1)
k+ | digns

—3110“' 9%k 101+(—’|10"' 1]
3 9
—1110"'-0;--m)+3|910“'-91
T 27 o

(10" «9.10 " =9k =9 - 10]

IS

| 1w

(10'°' =9k + H =10} =R.H.S.

L]
~J

. Ptk + Distruc.
Hence P(n) s true.
Example 3. Prove the following by mathematical
, induction : i .
1+5+9+..+dn-3)=n(2n-1).
! -+ |Annual Exam. ]995)
Sol. Let P(n) be the statement -
Plny:.1 +5+9+..+(4n~-3)=n(2n - 1) when
np=ihs # :

P(hy:1=1(2~1)=1, which s truc.
. P1yas true.
1.ct us assume that it is true for n =k,
el vS5+94+ L+ (dk-D=k(2k- 1)
Now, we shall prove thatitistrue forn=4 + |,
e, 1 +5+49+ L+ (dk=-3)+(dk+ 1)
= (k+ D [2k+1)-1)
LHS. = [1+5+9+...+(4k-13))
+(4k+ 1)

k(2k - 1Y+ 4k + |
U -k + 4k + ]

2k + 3k + 1
(k+ D [2k+1)=1]
k+ D(2k+2-1)
(k+ 1) (2k+ 1)
262 + 3k + |

I.LHS. = RHS.

o Pk + 1) is also true.

Hence. by mathematical induction, the given
statement is true for all natural numbers. Proved.

R.H.S.

¥ Exampled. Prove the following by the principle
of mathematical induction : (3" = 1) is an integral
muitiple of 8. [Annual Exam. 1994}

Sol. Let P(n) he the statement that (3" - 1) is an
integral multple of 8.

Whenn= 1, then 3* = 1 =9 - | = 8 is an integral
mulitiple of 8, which is truc.

o P(1)is true.

Now, suppose P(k)is truc.i.e.. (3" = 1)isan intepral
muitipic of 8.

Then. to prove that P(k + 1) is also truc.

JZlen_ 1 = 32!» 32 o]

39—
. 9-1-8+8
= (3"-1).9+8
= (an intcgral multiple of 8) + 8

[ (3 = 1)san integral muitiple of 8]
= an integral multipic of 8

. Ptk + 115 also true. Hence. by the principle of
mathematical induction. Pty 1s true for all natural
numbers n. Proved.
Example 5. Prove the following by the principle

of mathematical induction :

1 1 1 1 m

—_— - — — +

mim+1) i m+ 1
{Annuai Exam. 1993)
Sol. Let P(m) be the statement
| | m

+. . =
m(im+1) m+|




Ll et ot
I(r+n 1.2 2
R e
I+1 2
L.HS. =R.H.S.

. P(1)is truc.
Lct us supposc that the statement s true for m = 4.
| l | 1 k

ie. —t—t— b ——— = —
12723 24 K(k+1) k+l

Wec shall prove that the statement s true for
n= k + l

I |
17 €y B Yoea Tiarg o
12 4

I3

[ 3%]

n | | . L+
btk+1) (h4D(k+2) (k+D+1)
I |

o
L.H.S. =[T."2_+ﬁ+ﬁ+"'+k (h+ 1),

|
T

o " I L h(h+2)4
Tkl th+Nk+2) (k+D)k+2)

L R e
kAR K+ A+ k42

R e i
SR R R YR Y
LHS.=RHS

~ Ptk + 1)s also truc,
Hence. by the principle of mathematieal induction.
the given statement s truc for all positive integers m.
S Proved.
Example 6. Using P.M.L, prove that

12
320430274320 43072 = 6 - ),
4 % , =
Sol. P(n):3.27+ 32"+« 32+, + z'.z""=¥((."- 1
]
. 12
Py 3.2’ =?m- 1

g 12
i.e., Ixd = - x§
S

or i 12 =12. which is true.

Suppose Pir1 s truc.
e aE T i T

P(r + 1) ic the statcment

1624 e apesdy
=T(6 -+ L Por)astrug)
12 S
= .[(\_|+,_ RIS ) :‘l
\ I /

-

ol 6" =
= 5( - |].
P(r + 1)is truc.

Henee by the principle ol mathematical iduction,
Pty as truce tor all natural numbers n.

¢+ Example 7. Prove by principle of mathematical
induction that
147+ 258+ 369+ .. +ntn+in+6)

n
=4(n+ Dn+6)ymn+7)

Sol. Let Pemy denote the given statemenl
Py 14 7+25R+369 4+  +un+ Din s+

:t—;(n+|)(n+(\)(ll+7) z{L)

Step L. Forn =1
ILHS. = 1.4.7= 2%
|

RHS =i(l+l)(l+m(l+7)
2t T §
= =2R
0
LHILSE = ReHIS
e, Py true

Step I1. Let us supposc that Piky s true
SPYy 1A T425843694+ .+ kth+ Mk +6)

|
=er+l)u+(\)(k+7) i)

We shall show that Ptk + 1)1 true
ILHS of Pk + D
= 137 ¢25K+ V0694 +hthk+ Vigh«a
sths Yk + Ok o Ty



vk ¢y ek + D (k+4)(k+T)

i

: k + 1)
' [Using P(k)]

E(A+6)+k +4]

h+k+T

I

th £ IR TN s g Bl

R+D) 27+ 10k +16)
o

‘%(A+|)(A + Tk +2)(k +8)

;(“m& Sk + Tk +8)

= RH.S. of Ptk + 1)

e, Ptk + 1) s truc.
Hence by principle of mathematical induction P(n)

is truc forall ne N.
& Example 8. Using the principle of induction,
prove that

W wt In

, 5+3+i§ Y nelN
is a natural number.
% n' n' In
Sol. " Lt P(n)-—5+_‘ +-]—5-
Putting n = 1, we get
' LD i ¥
{ =-—4— 4 —
P{1 5 3 5
|y 7/
=z ok S
T R 1
145+7 IS l
A A A

which 18 a natural number.
= P(1)is truc.
Putting n = 2, we gt

| gt BY gl aly g i)
2) =--- - = = =
”P(d-) 5 + 3 + | s +1+ 15
V6 + 40+ 14 150
U s ew — - =
15 |8

~hich s a natural number . Pt2) s true
[.ct us now assume that P(k) s a natural number.

k+0' K+D' Tk +1)
—— - - — 4 -

The ) b
Then Pk + 1) 3 = =

__[Ic‘+5k'+ LOk" + 10k* + Sk + 1]
g 5

Tk +1)

{k‘+3k’+3k+l]
e | i

3

& 2 B I Tk 7
=‘_%+k‘+2k‘+2k’+k+%+l-;-+k'+k+3+E+|—5

T . 1l "l 7
[%—+%+¥5—]+(k‘+2k +3k’+2k)+(§+§+ﬁJ

or Ptk + 1) =Pok) + (k* + 2k + 3k + 2k) + P(1)
Now P(1) is a natural number, P(k) is a natural
number and k' + 2k' + k* + 2k is a natural number.

(-.- The sum, product of natural numbers is a natural
numbcr)

= Pk+1) = Pk)y+P(1) + k' + 22 + 3K + 2k
ts a natural number,

.. The truth of P(k) = the truth of P(k + 1).

kYo'
= — + —+-— isa natural number for all values of
SRR N
ne N. Ans.
Example 9. By the method of mathematical

induction, prove that 3**? + 5**' {5 a multipie of 14,
for all positive integral values of n, including zero.

Sol:. Ligk “P(p)-= 3 5l

Letn=0,then P(0)=3"+5'=9+5= 14, which is
multiple of 14.

Thus. two resultis true for n = ().

Letn=1.thenP(1)=3"+5'=729 + 125 =854 =
61 x 14 which is a multiple of 14, Thus the result is
true forn = 1.

Let us assume that the result 1s true for n = k, 1e.,
P(k) is a multiple of 14, Now we can show that
Pk + 1) - Ptk)is also amultipie of 14, then the principle
of induction is applicable and the result is proved.

Now Pk + 1) - P(k)

= (3111 s el +5m‘no|} - (3«“24_521”}
= xll-l‘3!+5utl.52_3“01_5,‘lu|
”1_ B 1u~1+(52_ l)snol
(70 + 1M 34 14 (14 + 10y 5
01 B0 e N 1 G el [ PR O [
= 14(5 3uo|+5u.|)+ |”(]ucz+5.‘lol)
which 1s a muluple of 14 as 14 appears in the first
expressionand the second expression hasheen assumed
to be a multiple of 14. Hence the result s true for all
positive tegral values of n "
Example 10. Using P.M.1., prove that
"n(n + 1) (2n + D) is divisible by 6.".
Sol. Let Pimy:nn + D) (2n + D is divisible by 6.

1]

b



Let P(1)=1(1+1)(21+1)=123.=6
which 1s divisible by 6. -
. P(n)istrue forn=1.
Let us assume that P(n) is true for n = k.
. Pk) : k(k+ 1) (2k + 1) 1s divisible by 6. i)
Now we shall show that P(k + 1) istruc, ie.. (k+ 1)
Yk + 2) (2k + 3)1s divisible by 6.
Now (k+ 1) (k+2)(2k+ 3)
= (k+1)(k+2)[(2k+ 1)+ 2]
(k+ 1) (k+2)(2k+ 1)+ 2k+ 1) (k+2)
(k+2)[(k+ 1) k+ D)+ 2(k+ D (k+2)
k(k+ l)(2k+ D+ 2(k+ D)2k + 1)
+2k+ 1) (k+2)
P(k)+2(k+ D2k+1+k+2)
[Using P(k)]

= P(k)+ 2(k + I)3(k+ 1)
= P(k)+ 6(k+ 1)
6(k = 1) is divisible by 6.
- P(k)+ 6k + 1) being the sum of two divisible
by 6 1s also divisible by 6.
P(k + 1) is truc.
. By the principle of mathematical induction, P(n)
is true for all positive integral values of n.
. Example 11. Use the prmclple of mathematical
induction to prove that 3*** - 81 - 9 s dlvislble by
64 for every natural number n.

Sol. .P(n) be the statement "3**?—-8n -9 is
divisible by 64".
Whenn=1, 3"*1—8n -9
=3"7_81-9
= 81 -8 -9=064=amultiple of 64.
. P(1)is true.
Let P(k) be true.
38k -9is divisible by 64. (D)

When'n =k + 1), Fed= gy~ 9
32“0“02: 8(k+ l)_g
3+ 37 _Bk-8-k
(64M + 8k +9).9 -8k - 17 [by (1]
576M + 72k + 81 - 8k - 17
64OOM +k + )
a multiple of 64

. P(k + 1) is true whenever P(k) is so.

. By P.M.L, 3 *?— 8n -9 15 divisible hy 64 for
allne N. )

Example 12. For all positive integers n, prove
that

gl
AT -m sanmleger

(L1.T. 1990)

< 1
n 2n n

n
Sol. Let P(n)=7+?+7_?]-q
Forn=1.
L2 i 15+21+70-1
P(I)—7+§+;-T&—__]F_
105
= -'6% =1, which 1s an intcper
~ P(1)s true

Now suppose P(k) is an intcger where ke N

ie.., Let Pk)y = mmel
We have
— (L+l)’*(A+I)‘ 2040 h+ )
W= 5 3 105
J O Y S| !
e B ey
7 5 3 s 7

ot Sl S o SV o S o R o e o R o |
+£ 'cht+Ch'+'Chi+'Ch +°CY

-[CL +CL+CJ—Im

11
=m+- (mull:plc0f7)+ + = (mulllplcofﬁ)

)

i 2 &
s U} R e
+ 25y tmultiple of ) + 17108

|
=m 4+ (a +vc 1nteger) + :,, + (a positive integer)

g | ( 2] |
- + v - - -
3 (a +vcintegern) + L 3 05

=(m + 1)+ (a +vc intcger) ' :

= Anintcger.
Hence Ptk) an integer = P(k + 1) 18 an integer

. By mathematical induction POmyis ananteger lor
allne N

Example 13. Using mathematical induction,
prove that
% "C,=nin+1).2"% for n>1L
b=zn
Spls el Ria) €S, = B & Cr=hing U 2%

(¥



P(1):S, =‘:‘:|kz.'C,=l o e

or Ot e)=28" o 1=1
P(1)is true.
Let the statement be true when n = m.

Then (P(m):S, = Z k*."c,=m(m+1)2""
= a

b=

-l

Consider P(m +1):S_,,,= L k'."*'C,

t=0
me|
=.2 B C.47C..)
k=i
l .C,'.'"C'_l noIC’]
me] me|
=L k'."C,+ L k*."C,_,
L=0 ] k=0

m maei
B I R B
t=0 =0
{-.- First summation becomes mcaningless for

k=m + 1 and second for k = 0}

S i O S L

ke ke

[Changing k into k + 1]
8 b e LTC

t=0

Sk B PCad T ke PE A E G,
r=0 t=0 k=0
Se+S.#2, (m2m Y+ 27
25, +2m2" "t 42
2m(m+ 1) 2"+ 2m2" " 4 27
27 m(m+ 1) +2m+2)
2" (m'+3m+2)
=2 m+DN(m+2) =S
The statement holds forn = m + 1.
Hence by the principle of mathematical induction,
the result holds forn 2 1.

I Example 14. Prove by principle of mathematical
“induction that

Ww o ion u

-~ |

;l.3+3.5+5.7+...+(2.n—l)(?.n+l)=g-(4n’+6n—l)

Sol. P(n)=13+35+57+..+(2n-12n+1)

n .
=5(4n'+6n—l).

Forn:i.
LiHS, =713 =18

1
5(4+6—l)=3

and REH:S. 1=
Thus L.HS. = RHS.=3
Forn=2,
LHS =13+35=18
1
and R.HS. = Z(4.2’+6(2— D)=18

= P(2)is true.
o, The relation holds forn =1, 2.

Step 1. Assume that the refation to be true for some
positive integral value of n, say n =k, i.e.,

k
P(k)=1.3+3‘5+...+(2k—I)(2k+l)=§(4k’+6k—l)

()
Add to each side the (k + 1)th term, viz., (2k + 1)
(2k + 3), we have

Ptk +1)=13+35+..+2k-DRk+1+(2k+1)(2%k +3)

(4k* + 6k = 1)+ (2k + 1) (2k +3)

| &~

!
=§{4k‘+6k’—k +3(4k" + 8k +3)}

!
5(4/<‘+ 18k% + 23k +9)

(k + 1) (4k? + 14k +9)

L) —

=%(k + D {3k + 1) +6(k +1)-1)

which is of the same form as (1) with (k + 1) in place
of k. Therefore, the relation is true forn =k + 1. Ifit
is true for n = k.

Thus we sce that if the given relation is true forn =
kthenttistrue forn=k_, and therefore, by the principle
of induction P(n)is truc ¥ ne N.

t¥ Example 15. Prove by the principle of mathe-
matical induction
1 1 1 n
- — -+ - .
1+2 1+2+3 1+2+3+...+n n+l
(N.M.O.C. 1994 (Set A)]

Sol. Let the given statement be denoted by P(n)
Now P(1) is true because whenn = |

1

ILH.S. = |
and RHS. = 212=1
EYEESY, =3 REHES:



Let use assume that the result 1s true for n = k Le.,
P(k) 1s true

1 I | 24

R R Yo T Ll T S ¥ W S |
!

1+2+ 34+

Adding (k + 1) the term, i.e., YTV

1o both sides. we get
| 1 I

| +——+ A —_—
1+2 14243+ ... +4
]

+
1+2+3+. . +(k+1)

Sk o |

Thk+1l 14243+ 4k 1)

+
1+2+3

2k 2
= +
k+1 (k+1)(k+2)

[ l+2+...+(£+l)=g—ﬂ—)(———“2)]

)

=B 'uk+m+1]
T+ DL k42
2k + 1)} 2k + 1)

= - =P +
k+DMK<+2) *h+2) R b

Thus the given resultistrue forn =4 + |, whenever
iis true for n = k. Hence by the principle of tnduction
i is true forall n € N.

= Example 16. Prove by Mathematical induction
that

1 1 1 1
—t—t—=+ +—=1~-—

2. 2" ? 2"

) | | | |
Sol. Let Piny=-+—+—4 +—
250 Pl

Putting n = |, we get

| |
Pl)=z=l=-==1-==
(n 3 5 3
= P(1)1s true.
Let P(k) be true
[ | |
bea  prRtptetEelog
We shall show‘lhal Ptk + 1)is also true
| ] |
Now- 1.- P(k+l)=§+2—‘+?+ ; ey
1 | l
P(k)+2“l-|—:; ===

= Pk + 1)1s truc

. Using principle of mathematical induction, we
can say P(nmhastrue foralln=N

) (A | |
i.e., —t=t—=F, ===
2 27 2‘ o 2n 2n
Example 17. If x is not an integral multiple of 21t
use mathematical induction to prove that

COSXY + €0oS 2Y + ... + COS NX = COS

2 2
[LI.T. 1994]

n+1 | nx I
xsm—coseci-

Sol. Let P(n) denote the statement
COSX + COS 2x + ... + COS v

o n+1 ) o e )
—cosk 5 x)sm cosec
Forn=1,

2 2
The LH.S. of ()

- = ) s 1 %
=cos x =cos v sin| > |cosec| 3

provided cosec (x/2) exists f.e., 1/2 is not an integral
multiple of nt

Vel Y X X
= X | Sin —— coscC =
cos 5 x) in > cosc 3
X x
= COS X SIN = COSCC =

2 2

=The RH.S. of (D) for n=1
Thus P(n) 1s true forn = |
Now assume as our induction hypothesis that P(n)
18 truc for some positive integer mi.e.. (1) is true for
n=n.
Then forn=m+ 1, then LH.S. of (1)
= (COS X 4 €COS 2x + ... + COS nx)
+cos(m+ 1)x [-.- P(m)is true}

1 m+ 1 .omx o X
= cosec 5| cos x sm—2—+2cos(m+l)x sin —

2

| X [{ . +x ) x]
= - cosec = | {s e (<
2\:mcc 5| n .m_r 3 sin

< <

+fe 22 -sn e 5

-~



l
2
o - _Am+ D)x sin(m+ 1)
= icoscti - 2 cos : ‘ 3

[m+1)+1 * m+1)x 1
. v sin 7 Losec 3

The RHS. of (D form=m+ 1.

Thus Ptn# 1) is true tf Pom) s true and as already
shown P(1)is true. Henee by mathematieal induction
P(n) is true tor all positive integers n. ' '

Example 18. Prove thatn’ > 21, ¥V n 23, by
using the principle of mathematical induction.

Sol. Let' P(n):n'> 2i

Putting n =3, we have

“HHS ==y
and R.HS. = 23=6
Thus the statement PU3yas true
Letn =4, then
LSt = 22 =i
and ‘RHS. = 24=4
Thus the statement Pty s true as 4° > 8
"Let us assume the statement be true tor i = m. te.
m- > m, T
Now we shall shn_w that Pta + 1)1s also true.
Adding 2 + | 1o both sides of (1), we have
M dm el > 2w 2w |
or e+ 1Y > 2om w1+ 2m - .

But. 2m - 115 a posiive quantuty for m 2 3.
o+ 1 > 2m o+ 1)
= The result s true tor m + 1 when it holds good
torm=m
. By the principle ot mathematcal induction, Pon
18 true tor all positve integral values ot n.n 23

¥  Example 19. Prove by

mathematical induction
12 #3225 can2V=ln =0EVe 2

Sol. Lt

the principle of

i TN e
=i 125 22

Py = 1.2 +2.2 «+

The result s true tor n = | because

LHS. = 1:2=:2
and CRHS =1l =IV"'+2=04+2
‘LHS = RHS = Ptl)istrue.

Let the resuit be true torn = m
Plk) = 12422+, + kY

=il= 0 2 5

ro

Adding (k + 1)2* "' on both sides, we have
1.2+220+ .+ k2 +(k+ 1) 20!
(k= 12" 4 2 (ks )20+

=) o ag ]

= k2" A2

This shows that the results is true lorn=k + |, 1.e.,

P(k + 1) is true if P(k) is true. Hence by the principle
of mathematcal induction, P(n) is true for all positive
integral values of n.
t3 Example 20. Usc the principle of mathematical
induction to prove that

1
n

P+ 43+ +n’>§,

Sol. Let P(n) be the statement

ne N.

1

n
|3+21+32+...+n:>?

1
Pl is true, of |‘>—3-

|
or if 1> 3 which is true.

. Prlyis true.
l_et P(k) be true.

; : ; : k
l.ct l'*—l‘#-"*..+/<’=p+‘—(p>()) =)

Now Pik + 1)s true, of

k=1

|:+2:+}:+,‘,+(k + lf)——}—

k+ 1
3

>0

It (e e+ +k)+h + 1) =

I Ty
I nuTuun-J

>0

[ S [Ny R J S Y |

1 P« 3 >0
[Using (1)]
(M +2)
P« > (), which 1s true because P and
W2
7 and both postuive.

. Ptk + 1)i1s truc whenever P(k) is so.

By PMI Pemistrue forall ne N Ans.

2



ADDITIONAL PRACTICE EXERCISE 2 (c)

1. Prove by using pnnciple of mathematical
induction

7
T+77+7174...+777...17 E(IO’"—%—lO)

- ndigits
“2: Liet, _=_I,_ru2= lLhuy,y=u,, +u,forns1use
mathematical induction to show that
5 ‘;l‘[(' +5 ) _[1 —\'ﬂ"
sl WM
forallnzhl. I )

3, ‘Bidve ‘ihal ‘x(x"'=na" Y+a"(n-1) is
divisible by (x — a)’ for all positive integers a
greater than 1.

4. Using pnnciple of mathematical induction prove
that

5 ; s l o X“ ¢!
l+x+x’+x 4. +x" = e .x€N

Using the prnnciple of mathematical induction,
prove that :

1 1 1 | n
e e O g 4 = .
14 49 710 Bn=2)3n<+1) 3n+l
6. 2.1432+42°% . +(n+ N2tz 2
| | | i
 JR BT L UR R, ST Cy N S
£ 07 i 1 IR = ) (dn = 1)(dn +3)
ol n
T 3(4n + 3)
IN.M.O.C. 1994 (Set B)}
12
8. 3.22+32.2’+3‘.2'+...+3".2""=?(6"—l).

nin +1)(n+2)

-

12+23+34+ .. +n(n+1)=

Using mathematical induction. prove that
TENC E TG G R RE TGS R Ey
where m, n, k are positive integers, and 'C_ = 0
forp<g.

Prove by induction that 2n + 7 < (n + 3)* for all
natural numbers n. Using this, prove by induction
that (n + 3)° < 2°** for all natural numbers n.
Prove each of the following by the principle of
mathematical induction.

108

]
12. 1+44+7+..03n=-2)= 5 n(3n-1).

| n

1o
T @) ey

3 39

1
— ..
57

\Q

14.L+L+—I—+. +—1_—
14 47 710 77 (Bn+2)(3n+1)
n
=(3—n:lh)'
15. 134235+57+..+(2n-1D@2n+ 1)
_n(dn’+6n -1
- 2
16. 147+258+43.69+...+nn+3)(n+6).
=§(n+l)(n+6)(n+7)_
17. 135+4246+357+..+nn+2)(n+4)

=%(n+l)(n +4)(n +5),

Prove by using the pnnciple of mathematical

induction
= nel
18, 13%ZF 49 F ... $ndf =W.

195 24 274 20, § 20 =902 1)

1
142+3+ . 4n<s (2n+ 1),
o

. Prove by the principle of mathematical induction
that 5" - | ¥ n e N is divisible by 24.
INM.O.C 1993 (Set A); 1992 (Set A))
Prove by the principle of mathematicat induction
that 474 150 = 1is divisible by 9 for all n e N,
INMO.C 1992 (Set B))
If P(n) 15 the statement @ the anthimcuc mean of
the numbcers n and n + 2 1s the same as their
geometric mean, prove that P(1)is nottruc. Prove
also that if P(n) is true, then P(n + 1) is also true.
If n> 1, prove that

n ‘<'{
\

By the principle of mathematical induction prove
that for each not natural number n,
L2903 § B8 % Beeiin + 1)

n+1
D

[ 9]
“n

B
For cach natural number n, 6"*% + 77" is

divisible by 43.
Prove by principle of mathematical induction
S,=n'+3n" 45043
is divisible by 3 for any positive integer a.
Prove by the principle of induction that x** - v
divisible by x - v, where n is 2 positive integer.
. Show that if the statement
Pn):2+4+46+ ... +2n=nin+1)+2
istnue for n = & thenitistrue forn = k + | can we
conclude that P(a) is true for every natural number 2 ?
. Prove by mathematical induchion that
2">3" forall ne N

26.

27.

28. s

Yo



LIMITS CONTINUITY AND DIFFERENT JATION

ME..2 .S BASTT



1. LIMITS

1= _Entzodiuctiion 3

We live in a world of change - our values, ideals, hores

and institutions are undergoing constant change. It is interesting

to note that certain changes are happening too rapidly, while

other changes are not occurring fast enough. This illust-ates

that, although the topic of change is important, often the con-

cept of rate of change is more relevant. For example, in the

study of population growth, it is not sufficient to know that

the population changed by doubling. We need to know the rate at

which this doubling took place. It 1s significant that at one

time the doubling of the world population took a thousand Years,

but now the doubling takes only few decades time. The mathematical

tool for measuring rates of change 1s the concept of limits.
The concept of limit is needed to pass from the average rate of
change to the more useful concept of an instantaneous rate of
change. Indeed it is this concept of the limit, that resulted

in the invention of Calculus. It may be surprising to discover

that Newton did not have a complete understanding of the limit.
Many years later Cauchy put the concept of limit on a sound

mathematical basis. In this section, the approach to the concept

of limit is initially intuitive and later the mathematically

elegant Cauchy epsilon-delta approach 1s given.



There are many topics in schoecl mathematics through which
limits can be illustrated. For instance consider the problem of
finding circumference of a circle. The circumference of a circle
can be taken as the limit of perimeter of inscribed regular polygon
as the number of sides tend to infinity. Teachers can also use the
action of a bouncing ball. If Ekngn = §1,2,000 1s a sequence
of heights of the bouncing ball, then O is the limit of such a

seguence.

152, Limit of a Function i

Consider the function f(x) = ;_5‘ for' & #.25

f(x) is not defined at 2 because the direct substitution 2 for x
results in 0/0 which is an indeterminate form. Let us calculate

the values of f(x) for some values x that are very close to but

unequal to 2.

From the table it appears that if x is very close to 2, then

2
fla) = E§E% is very near 4. We represent this statement in mathe-

matical snorthand as,

- 2

= = !

limit of f(x) = ~—— as X X #ln) = s
approaches 2 is 4 or 1.98 3.98
Liz f(x) = 4 1.99 3.99
x—> 2 2:+10] A0

2.02 4.02
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Fig.1

,_.
S}
N

Now we can define f(2) as 4. Here we have used the linit pro-
cess to define f(2) though originally f(2) was not defined. It

is possible to obtain Lim f(x) without finding table of values.

- I=32
. _oxT—4 {x=2) (x=2) ‘ )
Siinece fix) = o (x=32) If x & 2

(x+2) 1if x # 2.

Lim f(x) = Lim (x+2) = 2+2 = 4
x—2 X—>2

Since 1limit of (x+2) as x tends to 2 can be obtained by

substituting x=2 in x+2.

2
Exercise: Find (1) im 5—:%§:é
x—3 X
2
(11) Lim X =
x—3

Now we provide intuitive definition of limit of a function.
Definiticn: If f is a real function defined on a set of real
numbers and a in the domain, of f, then we say that limit of
HE B % a is a real number 1 if f(x) is very close to 1,
whenever x 1is very close to a.

We write this as Lim f(x) =1
X —>a

If such a 1 does not exist then we say that Lim f(x) does not
X—sa

ex1



exist. For instance Lim Yx does not exist.
X==g

Next we shall introduce the idea cf left hand limit and right
hand limit of a function at a point. Let f(x) be a function
gefined as follows.

f(x) Y2 i 2 A8 1P,

x+4 1f x 2}2

We shall examine whether Lim f(x) exists.
X— 2

First suppose x—» 2 from the right side of 2 (or x—=>2 and x > 2)

and symbolically it is written as x—>2+.

Then Liz f(x) = Lim x=4 = 2+4 6

X —2+ X—=2
This limit is called as right hand limit of f(x) =2t 2.
Next suprose x— 2 frcm the left side of 2 (or x—2 and x £ 2)

and symbgclically it 1s written as x—2-.

(%3]

Ehen Bimp &(x) =i 2 2 @2 =222 & @ =
X—Z- Xx—2

Lom £lx) 1e Ealled las l&ft ‘hand  limit of i) BE 2

Y—=2-

Thus Liz () # Lim £(x): In this case we say thet Lim f£(z)
X— 2+ X—2= X—a

does not exist. Because Lim f(x) exists if and only i
X—==g

Lim t(x) = Lim f(x) when Lim £(x) = Lim £(x), one of these values

X —ra+ x—>a-— X—=a3+ X—8-—
- ’ 2 2
is taken as Lim f(x). Earlier we got Lim x"2 _,  In this
) 2
case we notice that Lim x4 Lim X —4

x—2+ X3 - x2- x=2
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The definition of limit given earlier is intuitive and suffers
from shortcomings. In the first instance, it lacks mathematical
rigour and further it is hardly useful in the development of
theory of limits. We can examine more clcsely the idea of limit
so as to arrive at Cauchy's mathematical cefinition.

Let us begin with Lim (2x+1) = 7. This means that when x
is very close to 3, 2x+?—1§ very close to 7. Since "clocse to"
is not mathematically defined so far, we have trouble in under-
standing what we mean by these words. Therefore, our first
attempt to explain Lim (2x+1) = 7 is unsatisfactory. In ocur

x—3

second attempt to explain Lim
x—>3

(2x+1) = 7, we mean that the value

of 2x+! can be made as near 7 as we wish to have it by making x

near enough to 3. This leads us to the 'Cauchy definition' for

limit of a function.

Definition: Lim f(x) = L iff for every & 7 0 however small
X—¢a
there exists §5 0 such that [f(x)-L|< & whenever x is such that

0 <\]x-a|<.é
Exercise: Use the above Cauchy definition of limit and show that

Lim (2xl) = 7
xX—-3

Solution: Let § 7 O be any given number. Then we have to find

§ such that |(2x+1)-7[<:& whenever 0 <:|x-3‘<.5 .
2|x=3] iff 0 < |x-3|< &4

Now |(2x+1)-7]
Hence choose § = £/2, so that |(2x+1)-TP< &
for 0 £ |x=3]| L8§= E/2.

Lim (2x+1) = 7
X —3



zxercise: Use the Cauchy definition of Limit and show that

L [yose =04] = =3
x—27 —

Solution: Let £ 7 0 be any given number.
Then |(Y2x—4) - (=3)] < € 4ff |y2x-1] <9

| (y25-2) - (-3)| < & 4f£f y2 [x-2| <8

| (Y2x—=) = (=3)] < €& 4ff 04 |x-2] < 2¢

Choose § = 2§, so that |(¥2x-4) - (-3)[<:£;
whenever 0 « |x-2|<4?

Hence Lim ] Y2x—%] = =3
X=2 =

Now we shall illustrate the use of this definition of limit in
proving some of the important properties of limits.
Theorem: Lim ¢ = ¢ (¢ is any constant)
X—a
(1.e. limit of a constant is constant itsel®).
Proof: Let ¢ 7 0 be given.
Then |c—c| = 0 V x such that 0« |x-aj<é where §>D
can be any number. Because |c-cl = 0 is always true for any x and
so in particular for x such that 0 £ |x-al< d
Lim ¢ =¢

x—;a

Theorem: If Lim f(x) =L and Lim g(x) = M
X—a x_7 a

then Lim f(x) + g(x) = Lim f(x) + Lim g(x) = L+M
x—a X—a x— a

(i.e. limit of a sum is sum of limits).
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Proof: Let £ O be given. Tmen €72 5 @

Since Lim f(x) = L and Lim g(x) = M. By definition of limit there
X— a X— a

extst &,7C and & »yo such that

|£(x) - L| & £/2 for 0 < |x-a|<§ and

lg(x) - M| <« /2 for 0 2 |x-a| < §,
Let § be the smaller of 61) gl then
| £(x)-L] < ©/2 and |g(x)-M|< E/2 for 0 £ |x-a|<§
Now [f(x)+g(x) = (L+M)] = |£(x)-L) + (g(x)-M)]
[ £0x)-L] + | g(x)-=M|
< &/2 + €/2 Vv x such that O0<|x-a]<§

Lim (%) # g(%) = LM = Lim f(x) + Lin glx)
x—a Xx—a x—a

On the same lines as acove some more results on the limits may be

proved. These results are given at the end as exercises.

Next we shall explailn limits at infinity ana infl nite limitse.

Let of Ui = Yix

Let us examine behaviour of f(x) as x approaches zero from right
slde. The closer x is to zero, the larger f(x) is. In other
words, as x—0+, f(x) goes on increasing without bound. In this

case, we write Lim ¥Yx = +00 (Read = as "plus infinity").
x—0Q

Similarly as x— 0-, f(x) goes on decreasing without bound and

we write [im f(x) = Lim Yx = =0
x— Q= X—=0~=

(Read '-oo! minus infinity).



Here, o2 is a symbol showing the phencmenon of gIowing larger
and larger without bound. Similarly -0 is a symbol showing the
phenomenon of decreasing without bound. Thus ¢ 2and —two are not

nunbers.

Next let us consider Lim yx. As x gTrows larger and larger the

X — 00

values of ¥Xx are close +o zero. :herefcre, we write Lim YyYx = O.
X —> &
Also as X — - Yx—= 0 and so we write Lim ¥x =0

X 1%
However, we shall not attempt formal aefinitions of the above

type of limits.

Exercises

Use the Cauchy definition of limit to prove the following results.

1. If Lim f(x) = L and Lim g(x) = M then, show that
X —a X—> a

1)  Lim £(x) - g(x) = L-M

X —a
13) Ldm F0%) - © glx) = Lal
X—=3a
1119 Lim £(x)/g(x) = L/M providec M # O.
X — a

2. 1f Lim f(X) = L and K a constant, then show that
X—~a

X -1a

3. Domination Principle

Let Lim f(x) = Lim g(x) =L
X—a X—=a
Suppose f(x) £ h(x) < g(x) V¥ x.

Prove that Lim h(x) = L
X —a



4. Use Lim¥n = O to prove that i) Lim ynZ = 0

n—o n—, oo

$5 ) Lt yn2+n+1 =0

n—"0e 2
£ leten his e M
XT=2X=3

| B

Find i) Lim h(x) ii) Lim h(x) iii) Lim h(x)
X—0 x—1 X = =1

iv) Lim h(x)
X—
i ; 2 N=1
6. Consider the infinite geometric series a+ar+ar<+..+ar +ee

Bels, o= SRt e mar e Al e 8 = Lt 5.

n—so

1f |z} ¢ 1, then prove that S = a/i-r

7. Consider the circle of radius r. Use the formula for the area

A=T r2 and show that the circumference C of the circle is

given by the formula C = 2Wr.

8. Evaluate the following :

i) Lim f11+x)3 - Ly_x)3

S

N 0._ X + x°
1i) Lim Ja+x = ja-x
X— 0 X
£85) bim ’ 1
X3 l i
9. Prove that Lim e®-1 Lo
X— 0 X -

10. Show that Lim  a~—1

x—0 X = logea
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2. CCNTINUITY AND DISCONTINUITY OF FUNCTICNS

2.1+ Closely related to the limit concept is the concept of con-

-
-

| Bl

nuity. We becgin with the assumption that yocu have scme idea of
continuity. OQOuzpurpose is to lead you from an intuitively concezt
tc an appropriate mathematical definition through a discussion that
crrimarily follows the histcrical development of continuity in
mathematics,

Consicer first the functions f(x) = x, and

g(x) = e ~foT X # 0. We observe that the graph of f(x) can be
drawn with an uninterruptec stroke of the pencil, whereas the

craph of g(x) has a gap at O.

N

Y

(av

*

/\
N
P

O

©.=D

N

4
tuitively we feel that the graph of f(x) is continuous while the

- -

graph of g(x) is not continuous as there is a gap in the graph at 0.

t g(0) is not defined. Even if we define g(0) = 0 still the

¢rzph of g(x) is not continuous. The reason is that Lim g(x)
x— 0
Goes not exist. Hence one requirement for continuity of a function

say h(x) at a point 'b' is that Lim h(x) must exist.
x— 6



|\

Now consicder another function definea as follows :
(%) = % B x'# 9O
# [2 BF x5 =110
Here Lim f(x) = 0. Even though Lim f(x) exists the graph of f(x)
x— 0 x—0
i{s not continuous at O. The reason is that Lim f(x) #2 = £(0).
Xx—0
If we alter the definition of f at 0 and define f(3) = 0, then
f(x) becomes continuous at O. From these illustrations we conclude

that a funczion £(x) is continuous at a point c if

1) Lim f(x) exists, ii) f(c) is defined and
x=>€

1ii) Lim £(x) = f(c)
Xx—C

Now we are in a position to give the mathematical definiticn of

continuity of function at a point.

Definition : Let f(x) be a function defined in an interval
ccntaining the point X, . Then f is said to te continuous at X,
Lff 1) f(x,) exists, 11} Lim f{x) exists 1iii) Lim f(x) = £(x,).
X-— X X —>X
1 1
If any one of these three criteria 1s not met, then f is said to
be discontinucus 3t x,. Earlier we gave Cauchy definition for
limit of a function. Now we shall use this to give another defini-

tion of (usually called epsilon celta definition) of contiruity.

Definiticn : Let f(x) be a function definec¢ in an intervzl contain-
ing 'a'. If f(x) exists then f is said to be continuous at a iff
given ¢- 0 3 §70 such that

[£(x) - £(a)[<E ¥ X with 0 < |x-a|<§
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2.2 Contifivity of 3 function on i=n intervel

Let £ : I— R (R being set of all rezl numbers) be a func=icn
defined on an interval I. Then £ is saic <c be continuous on I iff
f is continuous at every point of I. Thus f is not continuous on I

. -~ =1 .
iFF Jx &€ I such that £ 45 not continuous &t x.

for instance ccnsider the identity function f(x) = x defined cn any
interval I, then f is continuous orn I. Because if a is any point
of I, then f(a) = a and soc f(a) exists. Also

Linm f(x) = Lim x = a.
X —a X— a

Lim f(x) = a = f(a)
X —~a

£ is continuous at a. But a is an arbitrary point of I. Hence

f is continuous at every point of I and so f is continuous on I.

Now we shall prove an important result on limits which is guite
useful in deciding whether or not & ziven function is continuous

at a point.

Let fix) be a function defined in an cpen interval containing
a point 'a', Then when x —> a, x mey approach 'a' through left side
of a (or through those vaslues of x fcr which x—sa) or x may approach
a through right side of a. If x epgroaches a from left side we

write x— a - similarly x—-a - meane that x approaches a from rignt

side.



Thecrem : Lim f(x) = L (L is a real number)
x—a
if and only if Lim f(x) =L = Lim f£(x)
X—2d+ X—>3=

Przof: First suppose Lim f(x) =1L
X—> a

Let £ 0 be given. Then = § > 0 such that

|£(x) - L| €& whenever 0 < |x_a|¢5

If a < x <2+§, then 0<|x-a|<§ and so
Jf(x) = L]<E& . Hence Lim f(x) =1
X — a+

Sémtlarily; Lim £(x) =L
X—> d=—

Conversely suppose Lim f(x) = Lim f(x) = L
X—2a+ X— d=-

Let £ 7 0. There exists E ZO. such that if a2l x £ @+l

then |£6x) — | &£¢: Alse = & 0. such that if a -g._.__<xL a

-“—

then |[f(x) - L|< €

Let g=mi:13-o(].<§«._§ o Thei e x=al 8

either a ¢ x < a+ S‘l or a-§ <« X <« a so that |f(x)-L|<%

Lim Flaxi) = &
X —a

2.2 Discontinuous functions

Definition : A function y = £(x) is said to be disccntinuous at
x = @ 1£f £({x) &s nobt contl nuoirs it &
The discontinuity of f(x) at x = a can occur in any one of the

following ways.



1e Lir f(x) does not exist.
RS-

2. Lim f(x) exists but is not equal to f(a).
X— a

3. Lin f(x) is infinite.

Illustization 1 ¢ Let f(x) be 2 function defined on ,2| as follows:

.

fibx) =x Wax & [9,1) As x approaches 1 fzom the left

a

side (i.e. Xx— 1 =) we have

Lim f(x) = Lim x = 1
X —1 X—1

As x approaches 1 from zight side,

we have, Lim f(x) = Lim x+41 = 2
x—1+ X— 1

Thus Lim f(x) 2 L $R(E5)
X—1- X =1+

in this case Lim £(x) does not exist becaw e if

x—31

it exists then Lim f(x) = Lim. f(x) = Lim f(x)
X—>1= X—>1+ x—1

Such a discontinuity is called as ordinary discontinuity or

discontinuity of first kind of f(x) at x = 1.
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Illustration 2
Let £(x) x = x ¢x€0,2] and x #1

=21fx=1-

Then Lim f(x) = Lim f£(x) = Lim f(x) =1
x—=1+ x 1- x—21

But f(1) = 2.

Hence Lim f(x) # £(1)
x =1

fence f is disconti nuous at x = 1.
3ut this discontinuity of f at x = 1 can be removec By altering the
value of f(1).

Instead of defining £(1) = 2 if we define £(1) = 1, then f becomes
continuous at x = 1.

Hence this type of discontinuity of f is called as removatle

discontinuity.

Illustzation 3

I

vty

neither Lim f(x) nor Lim f(x) exist then
X—8a+ X—" Q=

f{x) is said to have a discontinuity of second kincd at x = a.
For instance define a function f on [b,j] by,
f(x) = +1 if x is rational

= ~{ if x is irzational.

Then both Lim f(x) and Lim f(x) do not exist.
Xy 2% X—y 2=

Hence t has seccnd kind diseontinuity at % = ¥2s
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1f one of the twe limits Lim f(x), Lia ¢t(x) exists
X —a+ Ml

while the other does not exist then the poinmt x = a ic czlled &
point of =ixec ciscontinuity for f.

For instance define & function f(x) on :1,2) as follows 3

£ (%) =5 Fok 0 Ak 1
3 LA
fix) = 0 3f x %s satisngl . B éftl’zj
=4 22 g Es i::ational)
Then Lim f(x) = 1 but Lir £(x) does not exist.
x—1 Xx—i-

Hence f has =ixed ciscontinuity at x = 1.

Il ustration, S Lf either 6F The: lTmTts Law FH(x). Lim £
Xe—3g=- X G-

35 dnf inite then £{x) ils s=2igd te have an infinite discoptincity
at x =a.

\

. . d /
Consider fiix) =¥x V¥xé€ \0,1]

Them bim  §13) = By o Thesefore, £ has dn SWEinite &itcontimuity
x—0+

P
e Lok £Lx) = —221+x = = x # 1.

Is & centinuous at x =417

3
th
o]
[y
(7]

Explain the type of ciscontinuity f has at x = 1

discontinuous at x = 1.
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Let f(x) = X
x =1

Then find out the values of x at which f(x) is continuous.

=] -
Let f(x) = Lx—‘(l- o %08 F (0) = 4.

Examine the continuity of f(x) at x = 0.

Find the points of discontinuity of the function

fix) =

(Xw;) (x=2)
If f(x) is continuous at 'c', then show that thece exists
Sy 0, such that f is bounded on (c- 5 i iSRS i
Give an example of a function defined on a clgsed interval
such that the function is discontinuous at every point of
that interval.
If f(x) is a continuous function on [_a,l;l then show that
f is bounded on [a,bj .
If f(x) is continuous on ﬁ_—a,q_l and f(a)> 0, £(b)< 0 then
show that f(x) = O for some x & (a,b).
Let f(x) = 2x+1 when x( 1

= 3 when x = 1.

= x+2 when x 1.
Show that f(x) is continuous at x = 1.

Let f(x) = x when O Z X 1

3 when x = 1

2x+1 when x > 1

I
—
.

Examine the continuity of f(x) at x
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3. DERIVATIVES

3.1 Introducticn :

Newton anc Leibnitz had been able to scive independently the
two basic problexzs viz. finding the <angent line tc & curve at any
given point and finding the area under a curve. lhe tools that
Newton and Leibnitz indepencently invented to solve these two basic
problems are now callecd the ‘'dezivative' and the ‘'‘integral'.
Moreover, one cf the great bonanzas of history is that the
derivative and integral which were invented to solve two particular
problems, have acplications to @ great number of different problems

in diverse academic filelds.

The power of calculus is derived fronm tﬁo sources. First,
the derivative anc the integral can be used to solve a multitude
of problems in many different acaaemic disciplines. The second
source of power 1s found in the felevancy of the calculus to the
croblems facing mankind. among the present day, applications of
the calcuius are the building cf abstract models for the study of
the ecology of populations, management practices, econcmics and

medicine.

2.2 G(Gradient of a curve :

The gradient of a curve at any point is defined as the
gradient (or slope) of the tangent to the curve at this point.
AN approximate value for the gradienf of a curve at a point can
be found by plotting the curve, crawing the tangent by eye and
measurzing its slope. This method has to be used for a curve when
tnhe coordinates of a finite number of points are known, but its

ecuation is not known. When the eguation of a curve is known, an
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accurate methced for determining gradients is necessary so that

we can further our analysis of curves and functions.

Consider first the prcblem of finding the gradient of a
curve at a given point A. If B is another point on the cuzve
(not tco far from A), then the slope of the chord AB gives us an
approximate vzlue for the slope of the tangent at A. The closer
3 is to A, the better is the approximaticn. 1In other worzZs, as
8 —> A, slope of chord AB—> slore of the tangent at A. Lat us

now consider an example where we can use this cefinition *o find

the gracient of a curve at a particular point of the curve.

For this pwrpose, we 1Intrcduce the following symbolisa. A
variable quantity, prefixed by §, means a small increase in that
quantity,

Sﬁ_is a small increase in x,

Su is a small increase in y,

~

here § 1s only a prefix and it cannot be treated as a factor.

Now consicer the curve y = y (2x-1) and the problem of
finding gracdient at the point gn the curve where x = 1.
If x=1, y=1, let A be the point (1,1). Let B be a point on the
curve very close to A. Then x cgordinate of 8 is 1 + g.x
(where Sx is very small or clgse to zero).
(1+ 8 Ez (1+ 3 x) =4

(1‘*51) (26x+1)

y coordinate of B



Slope of AB = increase in y/increase in x.

L1-‘»S-X)L2.rx+ﬂ-1
(1 +8x) - 1

]

N
2 ( rn\)‘- =+ 3{)(

2
= 20 = 3

-

As E aoproaches A, 2x — O

Hence gradient of the curve at A = Lim | slope of AB |
53— A
f
- -
= Lim L20x+3
Ax =0 o
a
= 3
Now we found that the gradient of the curve y = x (2x<1 ) is
3 at the point on the curve whers x = 1. Ve will now derive &

function for the gradient at any ccint on the curve. Then we

can finc the gracient at a pariticular point by substitut ion into
this gerived functicn. Insteac of taking a fixed pcint on <he
curve, we snhall take a as any point (x,y) on the curve. Let &

- & o 3 /
be another point on the curve whose x cocrcdinate is x + » x.

! . ; < = ¢ i =
Then B is the point (x + Ox, |Lx qu] \Ex + 2{;( - 1]
7
The slope of chord AB = (x « Ox) (2x + 2 J’x_1) - x (2x=1)
X

Then the gradient at any point 4 on the curve =

Lim 4x-1 + 2§ x

. =T
= 4% - 1.



So the funciicn 4x-1 gives the gracient at any point cn the

curve y = x (2x-1).

We can now find the gracient of the curve at a particular point

on y = x(2x=1) by substituting the x coordinate of that point ints

the function 4x-1. Thus the gradient of the curve at x = 1 is 4.1 -1=2

which we obzained earlier.

The function 4x-1 is called the grzdient function of
y = x (2x-1) ancd the process of deriving is called differentiation
with respect to x. Since 4x-1 was derivec from the func+<ion
x(2x-1), it isczlled the derivative or derived function of b <l 7, Ay
a

I
Symbolically we write, d/dx | x (2x-1)! = 4x«1 where d/dx stancs

—

—_

—

for "derivative w.r.t. x of". ¥We also write dy/dx = 4x-1. Some-
times, we call dy/dx as "differential coefficient of y w.r.t. xn.
The above methoc of finding cerivatives is called as ~Einding

deérivatives from first pripciples".

3.3 Ecguaticns of Tangents and Momals

Now that we know how to find the gradient of a curve at a
given point on the curve, we can find the ecuation of the tangent

or normal to the curve at that point.

Illustraticn 1

Find the eguation of the tangent to the curve

x2—3x+2 & the point where it cuts the y—&xis

~<
]

x2-3x+2 cuts the y—axis where x = 0 and y = 2.

<
1]

The slope of the tangent at (0,2) = the value of dy/dx when x = 0,



= c/cx Lx 2_3x- ;

— —_—

= |2x-3)
0 = x=0

~
= =D

)

L_

Thus

+he tangent is a line with slope -3 and passing through [Jeen

So its eguation is y-2 = -3 (x-0).

Hence the desired equation is y = =3x+2.

rFind

the equation of the normel to the curve Yy = X + 3x-2 at

the pcint where the curve cuts the y-axis.

AS shown in the illustration 1, the slope of the tangent

10 the curve at (0;2) is -3.

Hence the slope cf ncmmal to the curve at (10,2) ds $3,

Hence +he equaticn of normal to the curve at (C,2) is given by
y-2 = ¥Y3x or 3y = x + 6.

Exercises :

)
v)

Differentiate the following functions w.r.t. X from first

principles.

3

2 LT I gt =

y = x2 LAY = 3x2, 135) ¥ =¥x

x2 - 2x + 1

P
Find the equstion of the tangent to the curve y = x2+bx-2
at the point where this curve cuts the line x = 4,

Find the eguations of the normals to the curve y = x2-5x+6
at the points where the curve cuts the x-axis.

Find the coordinates of the pcint on y = x2 at which the
gradient is 2. Hence find the equation gf the tangent to

2 = '
y = X~ whose slcpe is 2.
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Find the vzlue of
y = 2x7=3.

Find the eguation
1520

Find the ecuziicn
is 1.

Find the equation

2%

K for wnich v = 2x + K is a nommal to

ci the normal to vy

X =3x+Z whose slope
~
<

cf the tangent to y = 2x“=Cx whose slope

cf the tangent to v=(x-3) (2x+1) wnhich

is parallel to the x-axis.
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Mean Vealue Theorem

Der-ivetive as Rate Measurer

Ciffecentizls anc npproximations
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AFCLICATICHMS CF MEAN VALUE THECRE:

The Mean Value Theorem for derivative is of grzzat imcortance
in Calculus beczuse, many useful properties of functions can be
decuced fzom it. A& special case of this result known as Rolle's
thecrem was first zrcoved by Michael Rolle, a French Mathematician
in 16%1. A fcrmal statement of the Mean Value Thecrem is given
here for convenizance,.

(Ref: Th. 4.10 ¢f <the lexthbook)

Statement : Let £ ze a real function, continuous on the closed

interval [a,b| ars differentiable in the open interval (a,b),
ik

then, .there is z toint C & (a,b) such that

i

f(b) --f(a) =f‘l(C) (1)

D=da

C 1s called a mezn value.

Y 1

Q &
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InTuitively (1) can be interpretec thus - 1f we assume £(%) to

be the cistance tzavelled by 2 movingpar:iicle at time t. Then

the leftnand side of (1) represents the mean or average speed in
the time intermval a,b anc the derivative f1(t) on Rhs represents

the instantanecus speed at time t. (1) assec:is that at some instant

[14]
ot

C cuzing the motion of the periicle, the averace speed is eaqual to

the instantaneous speed.

Geometrically, (1) implies that the slope cf the tangent at
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