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With the request of Navodaya Vidyalaya Samithi, three week Refresher
Course was conducted for PGTs in Mathematics of NVS by Regional Institute of
Education Mysore from 28-04-2008 to 16-05-2008. Totally 28 participants from
all over the country attended this program.

This program was conducted to address their needs in content as well as
pedagogical aspects. As the achievement of higher secondary students particularly
in Mathematics was not satisfactory, it was felt that there is a need to enrich the
competence of teachers in teaching Mathematics. Also in view of new text books,
there is a need to address the changes, selection of new topics, presentation and
evaluation based on the recommendations of National Curriculum Frame-Work
2005.

Based on the interactions with participants and Resource persons, this
material was developed. We expect that the teachers can study on their own
whenever they find difficulty in teaching.

The academic coordinator is indeed grateful to Prof. G.T. Bhandage,
Principal, Regional Institute of Education, Mysore for their encouragement and
help in all respect. He is also thankful to the Head, DEE and the staff, RIE,
Mysore, for their guidance and encouragement. He is thankful to Navodaya

Vidyalaya Samithi for sending their teachers to this program. He is thankful to all



internal and external resource persons for their efforts and cooperation. Thanks to
our library staff, ICT staff and all supporting staff, for their support throughout
this program. He is very much thankful to Mr. B.K. Venkatesh, Kowshik DTP
Centre, Mysore, for his neat and timely completion of the materials required.

Last, but not the least, he is thankful to all the participants who have come
from all parts of country to attend this programme and congratulate them for
taking keen interest in participating in this programme for the benefit of our

teacher and student committee.

Mathematics teaching can and should be an intellectually
stimulating and ever challenge. It should also be an endless source

of satisfaction.
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PART -1




RELATIONS

Let A be a set. A relation R on A is a subset of the Cartesian
product A x A.

A relation R on A is called,
1) reflexive if(a,a)isinR forevery ain A.
2) symmetricif (a,b)isin R implies(b,a)isinR forall a,bin
A.
3) transitive if (a,b)isinRand(b,c)isinRimplies(a,c)isin
R for all a,b,c in A.

A relation R is said to be an equivalence relation if R is reflexive,
symmetric and transitive.

Examples :

1) The relation R in the set {1,2,3 given by, R
={(1,1),(2,2),(3,3),(1,2)} is reflexive only.

2) On the set L of all straight lines in a plane the ‘ Perpendicular’
relation is symmetric only.

3) On the set Q of all rational numbers , the ‘less then’ relation is
transitive only.

4) On the set A = {1,2,3 } the relation R given by, R =
{(1,1),(2,2),(3,3),(1,2), (2,1)} is reflexive and symmetric but not
transitive.

5) On the set Q of all rational numbers the ‘less then or equal’ relation
is reflexive and transitive but not symmetric.

6) On the set A = {1,2,3} the empty relation is symmetric and
transitive but not reflexive.

7) On the set A = {1,2,3} the relation R given by R =
{(1,1),(2,2),(3,3)} is an equivalence relation.

8) On the set of all integers the relation R given by R={(a,b) /(a—b) is
divisible by 3} is an equivalence relation.



9) On the set of all human beings in a town at a particular time, the
relation R given by R ={ (a,b )/ a is a father of b } is neither
reflexive nor symmetric nor transitive.

Problems :

1) Here is a ‘proof’ that, “ every relation R that is both symmetric
and transitive is also reflexive”; “ Since R is symmetric (a,b) is in
R implies (b,a) is in R. Since R is transitive (a,b) is in R and (b,a) is
in R implies (a,a) is in R as desired”. Find the flow in this
statement.

2) Let A be a nonempty set and let R be a relation on A. Suppose the
following properties hold,
a) ForeveryxinA, (x,x)is in R.
b) For every x,y,z,in A, (X,y) is in R and (y,z) is in R implies
(z,x)isin R (itis called circular property)
Then show that R is an equivalence relation.

3) Let A be a nonempty set and let R be a relation on A. Suppose the
following properties hold;
a) Foreveryxin A, (x,x)isinR.
b) For every x,y,zin a, (x,y) is in R and (x,z) is in R implies
(y,z) is in R (it is called triangular property)

Then show that R is an equivalence relation.



BINARY OPERATION

A binary operation * on a set A is a function * : Ax A ->A . Thatis *
is an operation which operates between any two elements of a such that
the resultant unique element should belongs to A. That for a ,b, in A , a*b
isin A.

The following chart gives a brief idea about the basic operations + , — , x

- and + on each number sets:

N W Z Q Q R R* C

+ YES |YES |YES |YES | NO |YES |YES |YES

- NO NO YES |[YES | NO |YES |[NO YES

X YES |YES |YES |YES | NO |YES |(YES |YES

NO NO NO NO NO |NO YES |[NO

A binaly operation * Is said to be commutative if for all a,b,in A
a*b = b*a.

A binary operation * is said to be associative if for all a,b,c in A
a*(b*c) = (a*b)*c

EXAMPLES:
1) On the set Q of all rational numbers,
a) a*b = (a—b)’ is commutative but not associative.

2 2 . . .
b) a*b=a"+ b” commutative but not associative.
2. . . . .
c) a*b =ab" is neither associative nor commutative.




Functions

Introduction

Functions play a very important role in Calculus. Without functions, Calculus
cannot exist. The fundamental processes of calculus called differentiation and
integration are the processes applied on functions. To understand these processes and
to be able to carry them out, you have to be thorough with the concept of functions.

Here we discuss some of the basic notions concerning functions.

Definition of a function/domain and range of a function
Let D be a subset of the set of real numbers. By a function f on D, we mean a

rule which assigns to each number x in D a unique real number denoted by f(x).

The set D is called the domain of the function f. The set of all real numbers

f(x) as x varies over D is called the range of the function f.

Rangef= { f(x) e R | xe D}

The real number f(x) is called the image of x under f.

Examples 1 : Suppose to each real number x, we assign its square x°, we get the

function f, where f(x) = x? for every real number x.

Since we have assigned to every real number x, its square viz., x%, the domain

of fis the whole of R.

But the assigned value is always a square of a real number and hence is non

negative. Hence the elements in the range of f are non-negative real numbers. Also

given any non negative real number y has a real square root \/; and the real number

J; is assigned by f its square y. Here every non-negative real number is in the range

of f. Thus the range of f is precisely the set of all non negative real numbers.

In short,
Domain f= (-, ), Range of f = [0, »)



Example 2 : Now consider the function which assigns to a real number x, the positive
square root of the real number x + 4

ie.  gx)=x+4

But in order that the square root of x + 4 exists, x + 4 must be non negative. For this
x > -4. Hence g(x) is defined only for x > -4. Hence the domain of this function g is

[-4, ).

As we are taking the positive square root of x + 4, g(x) is non negative. Hence
the clements in the range of g are non negative real numbers. Further given any non

negative real number say y, it is assigned to the rcal number y? — 4 since

g - 4=y - 4+4 =y =y

Hence every non negative real number is in the range of g. Hence range g is the set of

all non negative real numbers. In short,
Domain g =[-4,®) Rangeg=[0, )

In the above ecxample, we can restrict the domain of g to any subset of [-4, c0)

also. For example, let us define

g(x) = Jx+4 Vxe [0,5]

Then the domain is clearly given as [0, 5]. However, to find the range of g, observe

that g(0) = 2, and g(5) =3. For 0 <x<35, 0+4<x+4<5+4 and hence
4 < Jx+4 < 9.
2 < Jx+4 <3

Here Range g = [2, 3].

Many a times, as in example 2 above, the domain of the function is not explicitly
given. We have to find it out.
For example, let us take the functions

1

2-x

+5.

f) =%, g(x) = Vx, h(x)= y

Here clearly f(x) is defined for all rcal numbers x.



Hence domain of f is the whole set of real numbers. Also every real number
has a real cube root and hence every real number is the cube of a real number.

Hence range of f is also the whole of R.
For g(x) = Jx, Jx isreal only when x 2 0. Hence domain of g is the set of

non negative real numbers i.e. [0, ). Similarly, the range is also [0, «).

However, in case of h, for h(x) to be real /2 — x should be a non-zero real

number. For this to happen 2 - x> 0 i.e.,, x <2. Hence the domain of h is (=0,

2). Sine for x <2, 1/2 — x ranges over all positive real numbers, ——also

2 -x

+ 5 ranges over all real

ranges over all positive real numbers. Hence

V2 - x

numbers greater than 5. Hence Range h = (5, ).

Algebraic Operations on functions :

Functions which have the same domain D can be added, subtracted,
multiplied, divided (with a restricted domain) and multiplied by a constant real
number as follows :

(frg) (x)=1(x) +g(x) VxeD

(f-g)(x)=f(x)-gx)VxeD

(f.g_)(x)=f(x).g(x)‘v’xe D

(i) (x) = I v« ¢ D for which g(x) = 0.

g g(x)

(kf) (x) =kf(x) V x € D where k is a constant real number.

Note: If f(x) =x+2 and g(x)=x-2

then the domains of both f and g are R. However for i, since g(x) = 0 when
g

X=2, A (x) is not defined when x =2, Here the domain of b is R — {2} ie.
g g

(=0, 2) U (2, ).



Polynomial and Rational functions :

Starting with the function f;(x) = x which assigns to every real number x, the
real number x itself called the identity function, we can get

fi(x)  fo(x)=x e x=x V xe®R

fix)=fax) e f(x) =x*ex=%x’, Vxe R

i) =fHx e fx)=x*e x=xVxe R
Proceeding this way, for every positive integer n,

f,(x)=x", V x € R is a function.
Also, go(X) = a,, V X € R where a, is a constant is a function called constant
function. '

gu(x) = akxk , ¥V x e R where a; is a constant for 1 <k < n is a function.
Hence

" is a function V x € 9. This function is

2+ aix + a2 + apX
called polynomial function.
Iff(x)=a,+ax+....+ax"
g(x)=bo+ b x+..... + bpx™ with b,,.....by not all zero.
f(x)
g(x)

Then h(x) = , V x € R isa function called a rational function.

Trigonometric Functions

To every rcal number x, if we assign the real number sin(x®) , the
trigonometric ratio for gencral angles sine of x radians, we get the function f(x) =
sinx, V xe R. This function is called sinc function. Here the domain is the
set of real numbers R and since the trigonometric ratio sin x takes precisely all

values between —1 and 1, its range is [-1, 1].

C e . . sin x
Similar is the case for the function g(x) = cos x. Since tan x =

, the
cosXx

domain of definition of tan x is
N - {thesetofzerosofcosx} =N -{nn+7n/2 | ne Z}.
As x varies from - /2 to 0, sin x varies from --1 to 0 whereas cos x varies from 0

to 1. Hence tan x varics from - to 0. Further as x varies from 0 to /2, sin x



varies from 0 to 1 whereas cos x varies from 1 to 0. Hence tan x varies from 0 to

. Thus the range of tan x is (-0, ).

Also cosec x = and hence its domain of definition is

sin x

R - { thesetof zerosof sinx } =R - {nn|ne Z}

and its Range is (-0 0) U (0 ).

its domain of definition is the same as that of tan x. It is

Since sec x =
coSs X

clear that sec x is never 0. Further as x varies from -% to «, cos x varies from -1 to

1. Hence sec x = varies from -oo to « except 0, the

Cos x

cos x } .
and hence its domain of

Range sec x = (-0, 0) U (0, ). Also cot x = —
: : sin x

definition is the same as that of cosec x and its Range is (-0, ).

You might have already come across the number e which is the sum of the

. 1 1 1 ) C I
series 1 +— + —+ — + ... In fact e is an irrational number and it lies between

20 3
2 and 3. Now for any real number x, we consider the real number e*. The
function f(x) = e is called the exponential function. The domain of the
exponential function is the set of real numbers of R. Ifx=10, e*=¢e"=1, Ifx>
0, €*> 1 and as x increases, e* also goes on increasing. We can see that e” takes

all values between | and oo (as x varies from 0 to «). Further when x <0, we can

put x = -y where y > 0. Hence e*=¢” (&) = Ly Since y > 0, ¢ takes all
e

values between 1 and «. Hence —L— takes all values between 1 and 0, except 0.
e

' Thus the range of e is (0, ).

Problem solving :

1. Find the domain and range of the following functions.

i) fx)=x*-1



Since x° is a real number for all real number X, so is x* - 1. Hence f(x) is
defined for alf real numbers x. Here Domain f= R.

For all real numbers x, x> = 0. Further as x varies from 0 to oo, x* also
increases by taking all values from 0 to oo. Here x> — 1 takes all values
between —1 and «. Here Range f=[-1, ).

i) flx)=3x-2

3x is a real number for all real numbers x. Here 3x-2-is a real number for all
numbers x. Hence domain of fis R.

As x increases from -oo to o, 3x also increases taking all valucs between -0
and « and hence 3x-2 takes all values between -co and o.

Hence-Range f(x)=R.

(i) g = Vx -3

Jx is areal number only for non negative real numbers x, so is Jx - 3.

Hence domain of g(x) is the set of non negative real numbers i.e. [0, ).

As X increases from 0 to o, Jx takes all values between 0 and . Hence

Jx -3 takes all values between —3 and co Here Range g = [-3, »).

(iv) fx)=lI-x -1

JI=x isreal for all values of x for which 1 —x > 0i.e. 1 >x. Hence

JI=x s real for all real numbers x < 1. Hence f(x) = Jl-x -1 isreal
for all x < 1. Therefore, Domain f= [-e0, 1]. As x decreases from | to -0, | —x
takes all values between 0 and o, and hence m also takes all values
between 0 and @ Hence vI-x - 1 takes all values between —1 and o
Range f=[-1, ).

1-x* x<0

x O<x<l

x? x21

(v)  fx)= -

Clearly domain of f is the whole set of real numbers R. As x varies from -0
to 0, x* varies from o to 0 and hence —x? varies from 0 to -o. Hence 1-x*
varies from 1 to -oo. As x varies from 0 to 1, f(x) = x varies from 0 to 1.

Further as x varies from 1 to «, x* varies from 1 to co. Hence Range f= R



Exercises for Self Evaluation
Find the domain and range of

i) f(x)=f;

i)  gx)=x -1-1

'l+x 0 <x<lI

vi) gx)= 4 x 1<x<2
l——x+1 x22
2

Limits
1.1 Introduction

We live in a world of change - our values, ideals, hopes and intuitions are
undergoing constant change. It is interesting to note that certain changes are
happening too rapidly, while other changes are not occurring fast enough. This
illustrates that, although the topic of change is important, often the concept of rate of
change is more relevant. For example, in the study of population growth, it is not
sufficient to know that the population is changing by doubling. We need to know the
rate at which this doubling is taking place. It is significant that at one time the
doubling of the world population took a thousand years, but now the doubling takes
only a few decades time. The mathematical tool for measuring rates of change is the
concept of limits. The concept of limit is needed to pass from the average rate of
change to the more useful concept of an instantaneous rate of change. Indeed it is this
concept of the limit, that resulted in the invention of Calculus. It may be surprising to
discover that Newton did not have a complete understanding of the limit. Many years

later Cauchy put the concept of limit on a sound mathematical basis. In this section,

10



the approach to the concept of limit is initially intuitive and later the mathematically

elegant Cauchy’s epsilon-delta approach is given.

There are many topics in school mathematics through which limits can be
illustrated. For instance, consider the problem of finding circumference of a circle.
The circumference of a circle can be taken as the limit of perimeter of inscribed
regular polygon as the number of sides goes on increasing and tends to infinity.
Teachers can also use the action of a bouncing ball. If { hy }, n = 1,2,3,..... is the

sequence of heights of a bouncing ball, then 0 is the limit of such a sequence.

1. Concept and Explanations :
1.2 Limit of a Function :

x?-4

x_

for x = 2.

Consider the function f(x) =

f(x) is not defined at x = 2 because the direct substitution 2 for x results in 0/0
which is an indeterminate. Let us calculate the values of f(x) for some values

x that are very close to but not equal to 2.

2
. e -4 .
From the table it appears that if x is very close to 2, then f(x) = a 5 is
x-
very near to 4.
x'-4
X f(x)= ——
(x) 3 ‘
1.98 3.98
1.99 3.99
2.0 4.01
2.02 4.02

We represent this statement mathematically as,

x? -
Limit of f(x) = -

as x approaches 2 is 4 or Lim2 f(x)=4.

Using the same argument as above you can casily sce that

2 —-—
i) lim XX *6
x —»3 x_3

11



2 —
i) lim 2 =
x 23 x+3

Now we provide intuitive definition of limit of a function. -

Definition: Let f be a real valued function defined on a subset D of real
numbers and let a € D. We say that limit of f(x) as X — a is a real number / if
f(x) is very close to /, whenever x is very close to a.

We write thisas  lim  f(x)=1/.

If such a / does not exist then we say that lim f(x) does not exist. For
X = a

. . 1 )
instance lim — does not exist.

x>0 x

X f(x) = L
X

1 10
.01 100
.001 1000
.0001 10000
.00001 100000

We see that as x comes nearer and nearer to 0, f(x) does not come very close

to any real number /.
Next we shall introduce the idea of left hand limit and right hand limit of a

function at a point. Let f(x) be a function defined as follows :

1 ,

Zx421if x<2
ﬂn=fzx+ 5
|‘x+4 if x2

We shall examine whether lim2 f(x) exists.

First suppose x — 2 from the right side of 2 (or x — 2 and x > 2).
Symbolically it is written as x — 2+.

Then lin; f(x) = lirr; (x+4)=2+4=6

This limit is called as right hand limit of f(x) at 2.
Next suppose x — 2 from the left side of 2 (or x - 2 and x <2).

Symbolically it is written as x — 2-.

12



. e 1 _ _
Then lerr;_ f(x) = xll_{'r%_ (E x +2J 1+2=3.
lim f(x) iscalled as left hand limit of f(x) at 2.
Thus lirr% f(x) Iimz_ f(x).

Here as x comes very close to 2 from right, f(x) is very close to 4 whereas as

x comes very close to 2 from left, f(x) is very close to 3. So lim f(x) does

notexist. lim f(x) existsifand only if lirr; f(x) = Iin;_ f(x).

2
. . x“ -4
Earlier we got lim =4,
X =2 xX—-
2 2
. . ) x° -4 ) x° -4
In this case, notice that lim = |im =4,
x - 2+ xX—- x ~2- x— 2

The definition of limit given above is intuitive and suffers from shortcomings.
In the first instance, it lacks mathematical rigour and further it is hardly useful

in the development of theory of limits. What is meant by very close ?

1.999999....99 to 100 digits is very close to 2 . If a quantity is very close to
1.999999 (100 places can we say that it is very close to 2? So if the limit is
1.9999999 can we say that limit is also 2 ? We can examine more closely the

idea of limit so as to arrive at Cauchy’s mathematical definition.

Let us begin with lim3 (2x +1) =7. This means that when x is very close to

3, 2x + 1 is very close to 7. Since “close to” is not mathematically defined so
far, we have trouble in understanding what we mean by these words.

Therefore, our first attempt to explain lim (2x +1) =7 is unsatisfactory. In

our second attempt to explain lim3 (2x +1) =7 we mean that the value of

2x + | can be made as near to 7 as we wish to have it by making x near

enough to 3. This leads us to the ‘Cauchy’s definition’ for limit of a function.

Definition : lim f(x) =L if for every ¢ > 0 however small, there exists 6

> 0 such that | f(x)~L | <& whenever x issuch that0) <|x—a| <.

13



Examples : Use the above Cauchy definition of limit and show that
Xli_rps 2x +1) =7

Solution : Let € > 0 be any given number. Then we have to find 3 such that

| 2x+1)—7|<e whenever 0<|x~-3]|<8.

Now |(2x+1)-7|=2|x-3|<e ifandonlyif 0<|x-3|<g/2

Hence choose = ¢/2, sothat|(2x+1)-7| <e,.

for0<|x-3|<é=¢2

lim (2x +1) =7

Example 2 : Use the Cauchy definition of limit and show that lim2 B x - 4] =-3.

Solution : Let € > 0 be any given number.

Then
/lx—4J—(—3) <5iﬂ)lx—1<5
\ 2 2
(L) =) <eif i x-9 <o
\2 / 2

Choose & = 2¢, so that | (1/2x—-4)—(-3) |<€ whenever0 <|x-2|<3.
Hence, lim [l x - 4] =.3.
2212

Now we shall illustrate the use of this definition of limit in proving some of the

important properties of limits.

Properties of limits and their proofs.

Property 1 : lim ¢ =c (c is any constant).

(i.e. limit of a constant function is constant itself.)

Proof: Let € > 0 be given.
Because | ¢ —c | = 0 is always true for any x and in particular for x such that

0<|x-a| <8 whenever > 0. In particular we can take 8 = 1. Hence we have

14



0<|x-a|<l=> |c-c]|<g

lim =c¢

xX—=>c

Property 2: If lim f(x) =L and lim g(x)=M
Then, lim [f(x) + g(x)] = lim f(x)+ lim g(x)=L+M

(i.e. limit of a sum is sum of its limits).

Proof : Let€ > 0 be given. Thene/2 > 0.
Since lim f(x)=Land lim g(x)=M,

X a

by definition of limit, there exist §; > 0 and 8, > 0 such that
| f(x)-L|<e?2 forO<|x-—a|< § and

lgx)-M|< €2 for0 < |x-a|<§

Let & be the smaller of 3;, 8. Then
[f(x)-L|<e2and|g(x)-M|<e/2 for0<|x-a|<d
Now| f(x) + g(x) - (L+M)| =[(f(x)-L) +(gx)-M)|

Sfx)-L|+|g(x)-M)|<eR2+el2=¢
suchthat0 <|x-a| <3

lim {f{(x)+g(x)}=L+M= li_m flx) + lim g(x).

On the same lines as above, some more properties on the limits may be proved.

Property 3 :

lim [ f(x)-g(x)]=/-m, where lim f(x)=/, lim g(x)=m.

Lete> 0 be given. Let g = % . Theng >0.
Since lim f(x) =/, there exists 8; > 0 such that

X —+d

[ f(x)-7|<g V xsuchthat 0< |x-a|<3§,

15



and since lim g(x) =m, there exists &, >0 such that

lgx)-m|<€& VXxsuchthat0<|x-a|<$§;
Let 8 =min { 61, 62 }. Then

| f(x) — g(x) -~ (I =m) [ =] [f(x) -] + [-g(x) + m] |
< [f(x)-1]+]-g(x)+m]|

= [f)-1]+|8(x)-m]|

<g +g =2¢ =¢, V xsuchthat0 <{x-a|<3.

lim (f(x) - g(x)] =/-m.

Property 4 : xll_ﬂ f(x) .g(x)=1.m.

Since lim g(x) =m, given e =1> 0, there exists &; > 0 such that

lgx)-m| <1 V 0<[x-a|<§

m-l<g¥)<m+1Vx 0<[x-a| <&.

|gx)| <max.{|m- 1|, |m+1|}=k>0V 0<[x-a|<$

Let € > 0 be given.

£ £

=2, g=————. Theng, >0ande;>0.
Let g, s 2 2(“|+1) €n g, nd €;

Then g, >(0andg;>0.

Since lim f(x)=!and li_rp g(x) = m, there exists 6, > 0 and 63 > 0

such that
| fx)-I]|<& VO<|x-a]|<§
lg(x)_m|<82 VO0<|x-a|<9d;

Let § = min { 81, 82, 63 } . Then

| f(x) . g(x)—m|

= |fix). g(x) - 18(x) +1g(x)—Im]|

< [ fix). g(x)-18g() |+ g(x)—Im]|

= |gx)|. | fx) =11+ 1] |g(x)-m]
<k.|f)-II*+1] - 1gx)-m| ¥V x, 0<[x-a]<?d

16



<k g +|l].e2=k. — £ vx 0<|x-a| <8

| L
2 2

< L.

<= +—=¢,V, 0 <|x-a|<39, since

N[ m

£
2 | 1] +1

li_r,na fix).gx) =7.m

Property S :

lim M = i
X —>a g(x) m

where m = 0.

Sincem#0, eitherm>0orm<0.

Case (i) : Let m > 0. Therefore, there exists k such that m >k > 0.

Since lim g (x) =m, given k > 0 there exists §; > 0 such that

| gx)-m|<k forallx, 0<|x-a]| <§,
ie. m-k<gix)<m+kforall0<|x-a]| <§,
Since m —k > 0, it follows that g(x) >0 forall 0 <|x—a| <90i.

lg(x)| >|m-k|=k forall0<|x-a| <8 wherek,>0.

Case (ii) : Let m <0. Then there exits k <0 such thatm <k <0. .. -k>0.

Since lim g(x) = m, given -k > 0 there exists 8, > 0 such that

| g(x)-m| <-k forall0<|x-a| < &,.
m+k<g(x)<m-k forall0<|x-a| <da.
Since m - k <0, therefore, g(x) <0V 0<|x-a| <82
Therefore, | g(x)|>|m—-k|=k; forall0<|x-a| < 8, wherek;>0.
Thus in both the cases, there exist k3 > 0 and some 83 > 0 such that
|g(x)| >ks forall0<|x—-a| <&

Eky,fm]|

—Z 3 Theng >0ande, > 0.
2(11 +1)

Let e > 0.be given. Let g, = igi and g; =

Since lim f(x=/and lim g(x)=m.

There exists &; > 0 and &5 > 0 such that

| fix)-1] <g forall0< |x-a| <&

17



| g(x)—m|<e;forall0<|x-a| <8

Let 8 = min {83, 84, 8s }. Then 8> 0.

Now,
S@ 1| _| [y m-gx) |
gkx) m g(x).m
. Lfm-gx)] ,
| g(x) m |
_ | f(x).m —Im +Im-g(x) |
"~ 1g@]Iml
< | f(x).m—Im| +| Im—g(x) ]|
| g(x)|.|m
=m0 - gx)-m| .. _ -
€@ dm 18 m *Im-g0l =gt -x|
< =1 1 lg(x) - m]
k, ky.|m|
& o, 11 -
<k3 +|m|.k3 .6 VO0|x~-a|<ad.
_ek, Il _ekim]
2k, |m|.ky 2(1]+ 1)
<§+§ =g VX, 0<!x—a!<8,sinccl—JrI£II—<l.
limM=L. klh_r'n f(x)

x-a g(x) m
Property 6 : li_r31 k f(x)=k!
Note that if k = 0, then the proof is clear. Let us assume k = 0.

Lete> 0 be given. Lete; = i. Then since lim f(x) =/, there exists & > 0 such that

| f(x)-1] <g VX, 0<|x-a|<3d

Now,
|k.f(x)-kl| =|k| .| f(x)-!]
=|k|.e, VX, 0<|x-2a|<3

18



=Ik|.|—:—| =g Vx, 0<|x-a|<3d

lim k f(x) =k lim f(x).

Property 7 :
Letf(x) <h(x) <g(x) Vx. If lim f(x)=/ = lim g(x), then lim Ah(x) =1/.

We have, 0 < h(x) - f(x) < g(x) - f(x)

Let €> 0 be given. Let g, =

W | M

. Then g, > 0. Since lim f(x) =/and lim g(x) =1,

= a

there exists 8; > 0 and &; > 0 such that

-| fix)-1| <& Vx, <|[x-a] <y

| gx)-1| <g Vx, 0<|x-a|<d;
Let5=min { 8,8, }. Thend>0 and

| fx)-1|<e , lgx)-1] <g Vx, 0<|x-a]|<d.

[h(x)=7] =1h (x) - f(x) + f(x) - /|

S |[h(x)-f(x)| + | f(x)-1]

< g - + [ fx)-1] | h(x) -f(x)] < g(x) - f(x) |
< | g -I+1-fx)| + [f(x)-1]

S g =1 +[{-fx)| + | f(x)-1]

<g t+tg +tg =3 —-=¢ V 0<|x—-a|<d.

W | M

o hm o h(x) =1

I —=a

Next we shall explain limits at infinity and infinite limits.
Let f(x)=1/x

Let us examine the behaviour of f(x) as x approaches zero from right side. The closer

X is to zero, the larger f(x) is. In other words, as x — 0+, f(x) goes on increasing

. . . . 1 < I ‘.t M M $4)
without bound. In this case, we write lim —= +co read ‘w0’ as “plus infinity”).
x = 0+ x

Similarly, as x — 0-, f(x) goes on decreasing without bound and we write
lim f(x) = lim LA -0

X = 0- 1—=0- x

(Read ‘-0’ as “minus infinity”).
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Here, « is a symbol showing the phenomenon of growing larger and larger without

bound. Similarly, -« is a symbol showing the phenomenon of decreasing without

bound. Thus o and -« are not numbers.

Next let us consider lim l As x grows larger and larger, the values of 1/x are

x> @ x

oo |
closer to zero. Therefore, we write lim — =0.

l—bdx

1 T
Also as X = -0, — — 0 and so we write lim — =0.
x X—Dﬂx

However, we shall not attempt formal definitions of the above type of limits.

Illustrative examples on properties of limits

Let us assume the following property of © and -co.

at o=+

© +a =ow

-0 *+a = -0
(<o) [w ifa>0
.0 =(-a) (=0) = ¢
a (-a) |.—oo ifa<0
ﬁ =O
e
Fora¢0,—a— l"°° if a<0
2 2
- 2
L Letfx)= 222, grg= T2
2__ -
lim ) = lim = —2% = lim (72
0 x—=+0 X x-0 X

=lim x-2 (. forx=0

x>0

:‘E(x—-zl =x-2)
. .

=2

2
x' +2x _ lim x(x+2)

}T}lg(x) - xll_l;l'}) x>0 X

= lin}) (x+2) (. forx=0, x(x+2) =x+2).
x> X
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Now,

2 2 2
i f(x) + g(x) = X 2x N x° +2x _ 2x
X

X X

2
lim () +g(x)) = lim 2
x— 0 x>0 X
2

= lim 25 (v forx 20, 2 —2x).
X

=0 ]
=2x0=0

Also, limo f(x) + linz) g(x)=-2+2=0.
lin}) f(x) + linz) g(x) = lin})((x) + g(x)).

is verified.

. x?-2x  x* +2x —4x
1) f(x) - g(x) = . - =

lim f(x) — g(x) = lim ——4—2
x—0 x>0 X

But lirr}] f(x) - lmz) gix)=-2-(2)=-4.

limo( f(x)-g(x))= lin}) f(x) - Iim0 g(x) is verified.

x? -2x  x? +2x
(i)  f(x) g(x) = :

X
Y .
xl
. . oxt-4xt
lim (f(x) g(x)) = lim ———
x>0 t—0 x°
2 2
) ; -4
= fim 229
] x
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2 _ 2 2
- lim =4 (o forx20, 2—C =9 2 4
x>0 1 x*
—0—4=-4.

But(lim f(x)) (lim g(x))=(-2) x (2) =-4.

li_’m0 (f(x). g(x)) = Iimo f(x). lim° g(x) is verified.

xt - 2x -
W) Sx) _ . 2 _x(x* -2x) =Jc2 (x -2)
g(x) /2 +2x x(x? +2x)  x*(x+2)

X

. lim 191=um-fliiﬂ'
=0 g(x) =0 xz(x +2)

— 2 — —
= lim = (- fore0, 272 X2
x20 x +2 x(x+2) x+2

x-2
x+2

But +1

x-2+x+2 _ 2|x|

x+2 |-|x+2|
Ifix-0] <1,|x|<1 Soel<x <]
el +2<x+2<1+2+1<x+2<3
sox+2]>1for0<|x-0]<1
=2 _pl = |2 =22 copxjvx 0<x-0)<1
x+2 x+2| |x+2f
_|x=2+x+2
x+2

Hence givene>0,

letd=min { 1,€/2}
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. -2
Then 0<|x—-0|<8 implies | 2—= - (-1)| <2.% =¢
x+2 2
Ctim 222 -
£0 x 42 ~
lim f(x)
But‘?"—:-E:-l
hmog(x) 2

lim f(x) '
f(x) x>0 : 1
JAX) _ xo0 is verified.

im -
20 g(x)  lim g(x)
Note: We cannot substitute x = 0 in ** because that will mean that we are assuming

the quotient property of the limits.

2. Letf(x)=3x*+1, h(x) =4x*+1, gx)=5x>+1.
Then f(x) <h(x) < g(x) V x.
And lim f(x)= lim G2+ 1)=3x0+1=1.

lim g(x)= lim G+ 1)=5x0+1 =1
and lim0 h(x)=4x0+1=1.
+ lim h(x) = lim ()= lim g(x).

"Problem Solving :

. Find lim (V2 x-6x+1)= lim J2x- lim 6x+ lim 1.

x>l

= \/5 } limI X—6 limI I+ lim 1

x =1

=2 x1 -6x1+1=42 -5.

2. Find lim 222
r2xt —4
.ox=2 . x -2
lim = = lim ———
o2 x4 102 (x-2)(x+2)
= lim : (' forx#2, x =2 = 1
f22 x 42 0 ) (x+2)  x+2
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0
g

2
. . X" +x+l
Find lim —
T2 x° +2x

Since lim (x2+2x)=4+4=8%0

. 2
lim x% +x +1 _ xlx_r’nz (x" +x+1) _4+2+1 7
2 x? 42x lim (x* +2x) 4+4 8
lim [x-i]= lim x- lim & =0-00= o,
x =0 x.} x =0 =0 x
[ 2x 8 | 2x +8
lim | — +
o4 I x+4 x+4)] o4 x+4
= lim 2(x +4)
ro-d x 44
= lim 2 - 2{x+4) =2 forall x # -4).
x —+—4 x+4
=2
2 _ N
lim 3: 22t+l - lim (t l)3
=0 =30 +3r -1 o1 (2 -1)
-Nn? 1
= lim —— o forten, Y200 2 1y
-1 ¢~ -1 t-1

= o0, which is not defined. Hence the limit does not exist.

t (tz +1)/t
(=50 y l 1—0 (tz—l)/t
t
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2x

=1
e x(Ja+x +\/a—x)
= lim 2
x>0 Ja+x + Ja-x
2x 2
i 0, =
( e x(Ja+x +Ja-x) \/a+x +Ja—x
2 1

Ja+da Va

Exercises for Self Evaluation

Evaluate the following limits.

. o x2-3x+4
L lim S22
a4 x" -2x-8
- 2
2. lim—— 2
=1 (x2 =1) (3x +4)
3
3. lim 2
x>l 4-4x
1\
4. li G -x-6)
-2 x+2
2-—.
5. 1 t 32t+1
=l t _1
6. il
t=-1 ]+t ]
7 lim 39 -4
8 50 0 :
h
8 lim =1 = 1.
ne0 n

26

)



2. CONTINUINTY AND DISCONTINUITY OF FUNCTIONS

2.1.  Closely dependent on the limit concept is the concept of continuity. We begin
with the assumption that you have some idea of continuity. Our purpose is to lead
you from an intuitively concept to an appropriate mathematical definition through a
discussion that primarily follows the historical development of continuity in

mathematics.

Consider first the functions f(x)=x, and

g(x) =mfor x#0. We observe that the graph of f(x) can be drawn without lifting
X

the pencil from the paper, whereas the graph of g(x) cannot be drawn that way. Pencil
to be lifted from the paper at x=0 and as such there is an interruption of gap in the

drawing. Y
A

0,D

(0,-1)
FIG 1f(x)=x FIG-2 g(x)=m ,Xx=0
X

YI

Intuitively we feel that the graph of f(x) is continuous while the graph of g(x) is not
continuous as there is a gap in the graph at x = 0. In fact g(0) is not defined. Even if

we define g(0) =0 still the graph of g(x) is not continuous. The reason is that where as

lir(r)l g(x) =-1, but lir(r)l g(x) =1 and hence lin(l) g(x) does not exist. Hence one
x>0- x>0+ =
requirement for continuity of a function say h(x) at a point ‘a’ is that lim h(x) must

X—=a

exist.
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Now consider another function defined as follows:
F(x)=| xifx=0
2ifx =0

Here x@ry_ f(x)= I—I’Igl_ x=0 lirgl f(x)= lir{)l x=0 .. lirrtl) f{x) =0

Hence ll_lg f(x) exists. Now even though lin% f(x) exists the graph of f(x) is not

continuous at 0. Try to draw the graph of f(x) with;)ut lifting the pencil from the
paper , you cannot. The reason is that lim f(x)=0#2=f(0). Only if we alter the
definition of f at 0 and define f(0)=0, then f(x) becomes continuous at 0. From these
illustrations we conclude that a function f(x) is continuous at a point ¢ if

i) li_l’T‘l’ f(x) exists, ii) f(c) is defined and
iii) lirr(x) f(x)=f(0)

Now we are in a position to give the mathematical definition of continuity of function

at a point.

Continuity of function at a point:
Definition:  Let f(x) be a function defined in an interval containing the point x,.

Then f is said to be continuous at x; if I) f(x;) exists, 2) lim f(x) exists
3) lim f(x)=f(x,)
If any one of these three criteria is not met, then f is said to be discontinuous at X.

Earlier we gave Cauchy definition for limit of a function. Now we shall use this to

give another definition of (usually called epsilon delta definition) of continuity.

Condition for continuity of the function:

Definition |

Let f(x) be a function defined in an interval containing ‘a’. Then f is said to be
continuous at a if given €>0 36 >0 such that

* If (x)—f(a) |<e V x with [x-a<§ .

Note here that in the condition (*) we have not used the expression with 0<|x-a|<¢ as

in the case of definition of limits. This is obvious since when x=a, f(x)=f(a)
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| f(x)-f(a) | =[f(a) - f(a) | = 10| =0< e

2.2 Continuity of a function

Definition: Let f2 A =R (R being set of all real numbers) be a function defined on a
subset A of real numbers. Then f is said to be continuous on A if f is continuous at

every point of A. Thus f'is not continuous on A, if there exists x, € A4 such that f is

not continuous of Xg.

Fr instance consider the identity function f(x)=x defined on any subset of real
numbers , then f is continuous on A . Because if a is any point of A then f(a)=a and
so f(a) exists. Also

lim f(x) = lim x=a

s lim f(x) = a=f(a)

Now, f is continuous at a. But a is an arbitrary point of A. Hence f is continuous at
every point of A and so fis continuous on A.
Now we shall prove an important results on limits which is quite useful in deciding

whether or not a given function is continuous at a point.

Properties of continuous functions:

By the properties of limits it immediately follows that If f(x) and g(x) are defined on

a domain D and if they are continuous at a€ D , then

1. f(x) +g(x) is continuous at ae D
2. f(x) - g(x) iscontinuousat ae D
3. K.f(x) iscontinuous atae D

where k is a constant
4, f(x) . g(x) is continuous atae D

f(x)
g(x)

5. is continuous at ae D provided g(a)# 0.
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2.3 Discontinuous functions

Definition: A function y=f(x) is said to be discontinuous at x=a if f(x) is not
continuous at a.

The discontinuity of f(x) at x=a can occur in any one of the following ways.

1. lim f(x) does not exist.
xX—=a

2. lim f(x) exists but is not equal to f(a).

xX=a

Now we shall illustrate these possibilities by means of some examples.
Illustration 1: Let f(x) be a function defined on [0,2] as follows:

" x, Vx e[0,1]
f(x) = ; x+l, Vx € [12]

As x approaches 1 from the left side
(i.e.x— 1) we have

lim f(x) = il_r’r} x=1

-1

As x approaches 1 from right side, (ie x— 1+) we have,

lim f(x)= IimI x+1=2

x>+

Thus lim # lim (x)

x=1- x>+

lim f(x) does not exist
=1

Such a discontinuity of f(x) at x = 1 is called as ordinary discontinuity or

discontinuity of first kind.

f(x) at x=1.
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Illustration 2

-

Let f(x) x= J x Vv?e[0,2)and x# 1
~2 if x =1.

Then lim f(x) = linll_ f(x) = lin} f(x) =1

x=>1+

But f(1) =2.
Hence limI fix) # f(1)

Hence f'is discontinuous at x=a.
But this discontinuity of f at x=1 can be removed by altering the value of f(1).

Instead of defining f(1)=2, if we define f(1)=1, then f becomes continuous at x=I.

Hence this type of discontinuity of f is called as removable discontinuity at x=1

[Hustration 3

Define a function fon [0,1] by,
F(x) ={ +1 if x is rational

-1 if x is irrational.

Then neither lirp f(x) nor lirp -f(x) exist.

x—=—+ X
2

Ifneither lim f(x)nor lim f(x) exist then

f(x) is said to have a discontinuity of second kind at x=a.

Hence f has second kind discontinuity at x =

L
2
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ITustration 4

For instance define a function f(x) on [0,2] as follows:

f(x) ==[x if0< x<1

Y1  ifxis irrational and x € [1,2]

0 ifxisrational and x € [1, 2]

-

Then liml_ f(x)=1 but lin} f(x) does not exist.

If one of the two limits  lim  f(x), lim f{x) exists while the other does

X = a+

not exist then the point x=a is called a point of mixed discontinuity for f(x).

Hence f has mixed discontinuity at x =1 in the above.

X =a.
Illustration 5
(x Vx<0
0 ifx=0
Consider  f(x) = 1 v
[— if x>0
x

“Then lim f(x)=. Ifeither of the limits lim f(x), lin:_ f(x)

is infinite then f(x) is said to have an infinite discontinuity at x=a. Therefore , f has

an infinite discontinuity at x=0.

Problem solving:

”

“ 3,2

I Letfy=| 2202 +¥+3 4y
x-1

*

0 if x=1
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Is, f continuous at x=1? If not what type of discontinuity is there at x=1?

2x* —6x* +x¥ +3

x -1 x—-1

2x* =2x° —4x* +4x* = 3x* +3x-3x +3

= lim
x =1 x_l

= lim 2 (x=1)-4x*(x=1)=3x(x-1) -3(x-1)
x = . x_l

- lim (x=1)(2x’ —4x* -3x-3)
x x-1

lim 2x’ —4x* =3x-3 (v x =1))

x =]
=2-4-3.3
=8

liml f(x) exists and it is equal to -8.

But limI f(x) = f(1), because f(I) =0

. f(x) is not continuous at x=1

Discontinuity is removable discontinuity at x=1

2. Letf(x)= —

Find the values of x at which f(x) is continuous.

f(x) is not defined at x=%1. Then f(x) is discontinuous at x=! and x=-1.

At x=a, az £l
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X a

lim fx)= lim = f(a)

x —a x>a x2_1 az_.l

. f(x) is continuous at all real values a with a# *1.

3. Letf(x)= [mforx¢0
X

< 1 for x=0

-

Is f(x) continuous at x=0?

lim fx) = lim x=(=x)
x —» 0~ x = 0- b
= lim Z= lim 2 =2
x—>0- x £ =0
. . X-X
X llznof f(X) - ;4 l'l-’nlo+ x
= lim LI lim 0=0
x 50+ y x = 0+
. . 0
lm% f(x) # lln(l) f(x) : ( Jorx#0,—= 0)
x - 0+ x - 0~ X

. Function is discontinuous at x=0 Discontinuity is of first kind.

4. Find the points of discontinuity of the function.

F(x) = ( x#2,4

X
J (x-2)x-4)
' 1 If x=2 or4

-~

. x . x
lim ————=- lim ————— =
ro 2 (x=-2)(x—-4) r= 2= (x=2)(x—4)

lim —r e lim - = .
x4+ (x-2)(x~-4) x> 4 (x-2)(x-4)
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- f(x) has infinite discontinuity at x=2 and x=4.

s. Examine the continuity of f(x) at x=1 where

(x-1)°

flx) = ,xz0
| x—1]
] 0 if x=0
Nowthat|x-1 = [x-1 isx>l
1) isx<l
_ 2 _ 2
im £ = fim S = gim ED o i e
-1~ x = 1= Ix_ll x = I~ _(x._[) x = 1=
(vx-1=0)
12 _N2
im fx) = fim S = im ST o yim xeny=0
x - 1+ x - I+ lx..ll -+ (X—l) x - 1+
(v x-1+0)

x = i+

Lolim f(x) = liml_ f(x)
lim f(x) =0 = f(0)

x - I+

. f(x) is continuous at x=1.

6. Examine the continuity of f(x)=|x*-1| at x=1
Note that
Ix3-1= x%-1 ifx>1

1-x? if x<1

lim f(x) = liml_ (1-xH=0

x = 1=

= 1+

lim f(x) = lim x2-1=0

lim f{(x) = liml_ f(x)

x o i+
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xli_rpl f(x) =0 = (1)

~. f(x) is continuous at x=1.

-1 _
7. Examine the continuity of f(x)=[x 1lat x=1
Note that [x-1| = rx-l isx21
ll-x is x<I
. . x-1
lim f(x) = lim —==1(x-120)
x = - x = - -X
. x-1
lim fix) = lim —=1 ¢ x-1#0)
x - I+ 1+ x—1]

liml fix) # ]iml_ f(x)

The function is not continuous at x=1.
The discontinuity is of first kind.

~

8. Discuss the continuity of f (x) = | ad _33| ifx#3
x—
d !
1 if x=3
Note that
[x-3] = %-3 ifx>3
1-x ifx<3
L
. Lim f) = Lim Y= Lim -
X - 3- x »3- 3J_x x - 3- (3 x
Lim f(x) = Lim Jx-3 = 40
x = 3+ X = 3+ x-— o3+ Jx=3
. Ling fix) = Ling f(x)

- f(x) if not continuous at x=3 and discontinuity is infinite discontinuity of first kind.
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9. If f (x) is continuous at x=c, then show that their exist & >0 such that fis
bounded on (c-§ ¢+ )

Solution:

Since f(x) is continuous at x=c, given £ =1> 0,

36 >0 suchthat
[f(x)-fo<1 for all [x-¢|<§

| f(x)- flc)| <1
ie, flc)-1 <f(x) <f(c)+l forallx € (c-& c+0)

. f(x)isboundedon(c-& c+96)
10.  Letf(x) = | 2x+1 V x<I
3 if x=1
x+2 v x>1

Examine the continuity of f(x) at x=1

liml flx) = liml_ 2x+1 =3
liml flx) = liml x+2 =3

o lim f(x) = lim’_f(x)

- 1=

2 liml f(x) exists and limI f)=3=f(1)

. f(x) is continuous at x=1
Exercises for self Evaluation
Determine whether or not the given function is continuous at the indicated point.

If not continuous name the type of discontinuity.

() fx)=x>-5x+1 atx =2

() gx) =J(x-D'+35 atx=l
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(iii)

(iv)

V)

(vi)

(vii

(viii)

fix)

fx)

f(x)

= X*+4 x<2 atx=2

x> X222
= J’ xX+4 |, x<2
5 x=2
I x> x>2
~ 2 _
X ll,x -1
x+
b,
-2 x=-1
= 1 xz-1
<4 x+l
| 0 x=-1
= ( -x? x<0
‘t-\/; x20
= "1 X< -2
1
—Xx -2<x<4
<2
fx- x24

38
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Differentiation

Two main motivating factors for the invention of Calculus were the problems
of (i) finding the tangent line to a curve at any given point and (ii) finding the area
under a given curve. The tools developed in attempting to find a solution to these
two problems led to the invention of derivatives and integrals by Newton and
Leibniz independently almost at the same time. Though invented for finding
solution to the above problems, both differentiation and integration have found
applications to an enormous number of different types of problems in diverse
academic fields. In the present day context, calculus has found applications in
building abstract models for the study of the ecology of populations, management

practices, economics and various other fields.

Gradient of a curve :

The gradient of a curve, which is a measure of its slope, changes continually

as the point varies along the curve.

The gradient of a curve at any point is defined as the slope of the tangent to
the curve at that point.

As drawing of tangent to a curve at a point is not always an easy task (nor
will it be accurate) so is finding its slope and hence the gradient of the curve at the
given point. Hence a method has to be found to find the gradient of the curve at a

given point. Once the gradient is found, tangent can be drawn.

So, consider first the problem of finding the gradient of a curve at a given
~ point A. If B is another point on the curve (not too far from A), then the slope of the
chord AB gives us an approximate value for the slope of the tangent at A. The

closer B is to A, the better is the approximation. In other words, as B — A, slope of

chord AB — slope of the tangent at A.
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Let us now consider an example where we can use this definition to find the gradient

of a curve at a particular point of the curve.

For this purpose, we introduce the following symbols. A variable quantity,
prefixed by 8, means a small increase in that quantity,

Ox is a small increase in x,

dy is a small increase in y

Here 3 is only a prefix and it cannot be treated as a factor.

Now consider the curve y = x (2x — 1) and the problem of finding gradient at
the point (1,1) on the curve. Let A be the point (1,1). Let B be a point on the curve
very close to A. Then x coordinate of B is | + 8x, where 8x is very small,

y coordinate of B=(1+8x) [2 (1 +8x)~ 1] |
=(1+8x)(2dx+1)
A

%(x%x, y+3y)

dy
A(x,y)
dx

Fig2
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Slope of AB =tan 6 = BM _ by _ change in y
AM  6x  change in x

_ (1 +6x) (25 x+1)-1
(1+6x)-1

2(8 x)* +385 x
o x

=26x +3
As B approaches A, 6x — 0.

Hence gradient of the curve at A= lim [ slope of AB ]
B A i
= lim [28x+3]
§x-0

=3
Now we found that the gradient of the curve y = x (2x — 1) is 3 at the point (1,1) on
the curve. We will now derive a function for the gradient at any point on the curve.
Then we can find the gradient at a particular point by substitution into this derived
function. Instead of taking a fixed point on the curve, we shall take A as any point
(x,y) on the curve. Let B be another point on the curve whose x coordinate is
X+ 8 x.
Then B is the point (x +6x, [x +6x] e [2x +286x -1 ]

The slope of chord AB = (x+6 x) 2x+26x-1)-x(2x-1) _
X

2x? +4x8 x +2(0 x)? —dx —x-2x"+ x

ox
_ 4xbx -6 x+2(-6x)
dx
= [4x-1+25%]

Then the gradient at any point A on the curve = BlimA { slope of AB}
lim 4x-1+238x
Sx-»0

=4x -1

So the function 4x — 1 gives the gradicnt at any point on the curve y = x(2x — 1).
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We can now find the gradient of the curve at a particular point on y = x(2x — 1) by
substituting the x coordinate of that point into the function 4x — 1. Thus the

gradient of the curve at x =1 is 4.1 ~ 1 =3 which we obtained earlier.

The function 4x — 1 is called the gradient function of y = x (2x — 1) and the
process of deriving is called differentiation with respect to x. Since 4x — 1 was

derived from the function x(2x - 1) it is called the derivative of x(2x — 1).

Symbolically, we write, %[ X (2x-1)] =4x -1 where de- stands for “derivative

w.rt. x of’. We also write i 4x — 1. Sometimes, we call % as “differential

coefficient of y w.r.t. x”. The above method of finding derivatives is called as

“finding derivatives from first principles”.

In general, for any curve y = f(x),

Gradient of y = f(x) at a point (x,y)

lim slope of AB
B4

lim M (since as B - A, x + 6x — x, hence 8x — 0 and
x>0

conversely).

= |lim 6_y
x>0 (SX

Thus limiting value of 5;-1 is called the derivative of y w.r.t. x'and is
x

denoted by Q or f'(x).
dx

Examples :
l. Let y=x2. Hence f(x)=x2.
d _ o S+ x) - f(3)
dx 5x=0 ox
. (x+8x) -x  x'+2x.8x+6x -x?
= lim = lim
S5x—-0 dx §x—=0 Jox
= alimo (2x + 6x) (-8x=0)
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1
Lety= —
y 2
b S (x6x) - f)
dx éx-0 o x
_r 1
_ (x+6x)° X . x¥—(x +3x)’
5x >0 o x bx20 x? (x+5x)2.5x
22 _ 2 — =
= lim ¥ Jc2 2x.5ic (8 x) = lim _2x (5-’5)_ (6 x%0)
x50 x* (x+6x)} 6 x 6x>0 x* (x + 8x)*
_—2x -2
Xt T

Lety=x>-2x+1

g')_) = lim f(x+5x) ""f(X)
dx Sx—0 ax

(x+6x) =2(x+6x)+1-x"+2x-1

sx -0 51-

m x* +3x? . 0x +3x(0x) +(0x)' = 2x— 20x + 1-x* +2x —1
dx -0 5x

lim 3x2+3x8x-2 +(8x)* (" &x #0)

Sx—0
=3x*-2
Lety = sin 2x

dy _ lim sin (2(x+J x)) — sin 2x
dce sy -o0 S x

sin (2x+26 x) - sin2x

x>0 o x

1}

2 cos (2x+4d x) sin d x

dx—0 o x

_—

2 cos 2x o lim
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Equations of Tangents and Normals :

Now that we know how to find the gradient of a curve at a given point on the
curve, we can find the equation of the tangent or normal to the curve at that point.
Illustration 1 :

Find the equation of the tangent to the curve
y =x%—3x + 2 at the point where it cuts the y-axis
y =x? - 3x + 2 cuts the y-axis wherex =0 and y = 2.

dy

The slope of the tangent at (0,2) = the value & whenx = 0.

d [, ]
=| — {x" - 3x+2 =[2x-3 =-3
[ dt [ ]- o [ ]x =0
Thus the tangent is a line with slope -3 and passing through (0,2). So its equation is

y-2=-3 (x=0).

Hence the desired equation is y = -3x + 2.

Illustration 2 :
Find the equation of the normal to the curve y = x> + 3x — 2 at the point where the

curve cuts the y-axis.
As shown in the illustration 1, the slope of the tangent to the curve at (0,2) is -3.

Hence the slope of normal to the curve at (0.2) is 1/3. Hence the equation of normal

to the curve at (0,2) is givenby y-2 = éx or3y=x+6.

Properties of Differentiable Functions :

By the properties of limits it follows that :
If f(x) and g(x) are defined in a domain D and if f(x) and g(x) are
differentiable ata e D, then

1. f(x) + g(x) is differentiable at a € D.

f(x) - g(x) is differentiable ata e D.

k . f(x) is differentiable at a € D where k is a constant.

B weon

f(x). g(x) is differentiable at a € D.



f(x)

is differentiable ata € D provided g(a) # 0.
g(x)

Problem Solving :

1. Find the derivatives by first principle :
i) y= x + 3 cos x

iy LN ()

dx §x-0 o x

- lim (x+ 8x)* +3cos(x+6x) — x> —3cosx

§x-0 o x

x? +2x 8 x+(6x)? +3(cos(x +Jx) — cos x) — x”

"= lim -
x>0 ax
2x 85 x +(6x)* +3 Zsin-ax.sin(x+E
. 2 \ 2
= |im = -
x>0 5x
/ 5x\
Sin = 6x
= lim 2x+&x-3 2 sin (x+—]
5x0 (_5_x 2
2
= 2x-3sinx (" lim sin ¢ =1)
60 @

i) y=+x

dy . \/x+5x—\/; . X+ x—x
= = lim . e
x

dx Sx—o0

: o x 1
= ]lm —_————————————— '8){#0
ss0 [xi5x +4x (5x( )
.
24x
i) y =sin Jx
dy _sin \x +8x —sin Jx
—=- = lim
dx x50 S x
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= lim sin ,/x+(5x —sin Jx 1/Jc+¢5'x—«f1-c-
5x-0 \/x—+5;-—\/; ' dx

S e o .
) | 6x ’
_ sin x+————-\/;
([x+6 x +x | '\\f 2 Jl, x+6x-x _ 1
2 /' 2x,/x+5x—\/; 1/x+5x+\/; ox
2

B

= |lim 2cos
§x—0

iv) y=e‘5
Vx+dx _ x
Y _ lim € d
Fx=0 ox
[ 75 -5
0= lim % |& !
x>0 ox
- lim e&-e\lx-nh-ﬁ_] ) ’x+é’x _J;
sxs0 | fx+8x -x Sx
= PACEEEIR G BN S 1
= 4 — X X

lim = X
Sx-0 Jx+5x—Jx Jx+0x +Jx Ox

Jr+ox -Vx _ '
% lim & ! 0x L (isx20

R
§x0 Jx+c5x - Jx Jx+5x +Vx Ox

e

e’ -1

1 ;
Ll —= (0 =1
2/x ( 0lﬁ 2]

46



2. Find the equation of tangent to the curve y = x* + 5x — 2 at the point where
this curve cuts the line x = 4.

To know the equation of the tangent to the curve, we should know the slope
of the tangent and the point through which it passes. It is given that the tangent is at
the point where x = 4 cuts the given curve. But whenx =4,y =16 + 20 - 2 = 34.

Hence the line x = 4 cuts the given curve at (4, 34). Also, slope of the tangent at
(4, 34) to the given curve = % l .39 = (2x+5) ‘ (@.30)

=8+5=13
.. the equation of the tangent linc to the given curve at (4, 34) is
Ly-34=13 (x-4)
ie. y-34=13x-52
or y-13x+18=0

3. Find the equation of the normal to the curve y = x* — 5x + 6 at the points
where this curve cuts the x-axis.
As in the previous problem to know the equation of any line, it is sufficient if we
know its slope and a point through which it passes. X-axis cuts the given curve
y=x*-5x+3 attwo points viz.,
When y = 0 (on the x-axis, y = 0), X’ —5x+6=0
SLo(x=2) x=3)=0 SLXx=2or3
. The two points are (2, 0), (3, 0).

Since the tangent is perpendicular to the normal at a given point to a curve

Slope of the normal = {Tl at that point.
Ly

dx

Now for the given curve g}i =2x-5
: X

(d_y) =4-5=-]
dx (2.0)

[“’_yJ —6-5=1
dx J 3, o)

.. The equation of normals at the two points are
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y-0= - il . (x-2) iey=x-2 ie.x-y-2=0.

and y-0=- % (x-3)iey=— (x-3) ie.x+y-3=0

4, Find the coordinates of the point on y = x> at which the gradient is 2. Hence
find the equation of the tangent to y = x* whose slope is 2.
We know that the gradient of a curve at a point is the slope of the tangent to it at that

dy

point which in turn is o at that point P.

Given gradient is 2.

2]

o2x=2 Sx=1
Since the equation ofthe curve isy=x>,y=1.
Here the point is (1,1).
". The equation to the tangent is
y-1=2(x-1)
iey-2x+1=0

5. Find the value of x for which y =2x +k is a normal to y = 2x* - 3.

We know that the slope of the normal to a curve y = f(x) is —

R &|~

Here slope of the normal is 2.

=2 P
dx
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(_1 _95)
"8 32)

. The equation of normal is

. The point is

4
.'.y=2x+-(l —gw: 2x + k, where k = Ll
\4  32) 32
k=28
.32

Find the cquation of the tangent to y = (x - 5) (2x + 1) which is parallel to x-
axis.
If the tangent is parallel to x-axis, its slope must be zero. Hence we have to

find the point on the curve where gradient is zero.

i.e.—dZ=0
dx
Buty=(x-5)(2x+1)
=2x*-9x -5
& =4x-9
dx
& =0 = 4x-9=0 .‘.x=2
4
y = 2.§~l~9x2-5
16 4
& 8, -8l
8 4 8
_ - 121
8

. [9 —121]
The pointisy | =, —— |.
P yk4 8

. Equation of the tangent is

121 (9
+ — =0xj x — =
YT 4]
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121

+ = =0
Y 8
or8y+121=0
Differentiate cos (x + 2) by first principle.
y=cos(x+2)
ay _ lim % (x+2+ 6 x) —cos(x+2)
de 6100 ox
[ \ ’
2.sin| - %l . sin rx+2 +%£J
= lim 2)
§x-0 ox
sin — N
= - lim sin[x +2+§_x
§x—=0 5 X 4
2

- sin (x+2) ( lim 5";9 = 1)|.

Differentiate ¢™ " by first principle.

+
y =emx n
dv em(x+6x)+n _emﬂ'l
. —=— = lim
dx 5x 0 o x
em+n eme _emx+n
= lim
Sx—>0 o x
méx 1
em™*n —1
5x—=0 ox
méx i
+ . =
=™ lim . m
Sx—= 0 m6x
méx 1
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Continuity and Differentiability of Hyperbolic Functions
By definition

x -x x -x
e —e e +e
and cosh x =

Sinhx =

Since e* and e™ are continuous and differentiable at all x e R, by the properties of

continuity and differentiability, it follows that e — ¢™ and €* + e™ are continuous and

differentiable at all a € R and hence —;—(e" —-e™) and %(ex +¢™) and hence sinh x

and cosh x are continuous and differentiable atall a € R.

Again by the properties of continuity and differentiability it follows that

sinh x

]
Tanh x = , cosechx = — , sechx= ——
coshx sinh x coshx
cosh x . . .
cothx = — : are also continuous and derivable at all points a € R except for the
sinh x

points whcre they are not defined.

Differentiability and Continuity

If a function y = f(X) is differentiable (i.e. its derivative exists at a point) a €

D, then it is also continuous at a.

For, since f(x) is differentiable at x = a

. a+d x) -
,,-I"Ta ﬂ—(-é—)x—ﬂ‘i exists. It is denoted by f'(a).

. S x) - )
Jim, | LRI )] o

Now, Jle . [ f(a+ &x) - f(a) )

= lim L(i*_‘),i;f(a). 5 x
Sx-o0 L 6x
. _f(a+5 x)—f(a)_
=1 J\ETI2) = Ja) . .
Ao | T oy A, &
=f(a).0=0

JI‘JTO f(a + dx) = f(a)
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Jim, 109~ @

" f(x) is continuous at x = a.

However, the converse is not true.

i.e. A continuous function need not be differentiable.

i.e. There exists functions which are continuous but not differentiable.

Usual example given in the textbooks for this is the modulus functions | x |.

We can also give the following examples.

. Letf(x)= { e if %<0
e ifx20

Then the graph of f(x) looks like

(OR))]

I

0+4dx _ 0
Then lim Z0Q*60-SO _ o & —e
dx—0- 5x dx—0- 5x
Jx_
- gim & 1oy
§x—=0 5x
-Jx_ 0
and lim ZO¥OD O oy, £ e
Sx 0+ o x 5x—0+ S5 x
-Jx__
= Ilim ¢ l
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= o] % ! = -]
1
.. The f(x) has no derivative at x = 0. But f(x) is continuous at x = 0, since
hm f(x) = hm e*=¢%=

lim f(x)= lim ef=¢’=1
Sx o0~ x> 0-

lim f(x)=1=f(0)

x x<I
2. Lety=+< ,
{x x> 1
ﬁ
S 3
Jx) - f()

2oy cxc1#0)

(«)l— x-1 -’1— x-1

Imf(x)_f(l)zhm xz_l

x =l x-1 x - 1+ x -1
p GED (=)
T x-1

lim x+1 (. x-120)

x - l+

S(x) -/

x -1+ x-1

does not exist.

The given function does not have a derivative at x = 1. However, f(x) is

continuous atx =1 as lim f(x) = I|m x=1and

X - l-

lim f(x)= lim x*=1.

x =1+ x = 1+
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Then,

S@ - f@lD) o sinx-]

lim

- x—-x/2 5. x-m/2
2 2
. sin x —sin 7#/2
= |lim
i Bz x-x/2
2
( -
2cosl’r—/2+x) sin[x ”/2]
- 2 )
= lim
. x-7rn/2
2
Snx—:r/?.
= lim cos|Z/2)** 2 _ =0x1=0
sk L2 [x-zr/ZJ
2
&
But tim L@ =Sx/2) _ z
x> Ri2+ x-x/2 saxi2+ b4
x—.—.—
2
. 2x —-7x
= |lim
X=>rx/2+
T |x-—
-3
\
2(X—£ -
2 2
= llm \ = = cx -
xrxi2+ T n
ﬂ(x-——
P4
@ - 15 e - f[-z—]
lim £ # lim 4
x+x/2- T x>x/2+ /(3
x - — x—-—
2 2

- f(x) is not differentiable at x = -725

. . /3
However, f(x) is continuous at x = ) as



lim fx)= lim sinx=sin§=l

x=nl/2 - x> x/2-

‘ . 2x 2
and  lim fx)= lim —===xZ =1
x=>n/2+ x—=rl2+ g V.4 2
Exercises for Self Evaluation
L Show that the following functions are continuous but not differentiable at the
given ponts.
(.3
; i
Lofoy=q", *°
x° x21
2. fx)= sinx x<lI
2x x21
3 f(x)_lr'+l x<l
|x+1  x=1
1L Differentiate by first principles
1. a) 4x% - 3x b) l c) X +3
X
d) sin (x + 3) e)e*!
2. Find the equation of the tangent to y = 2x? - 3x whose slope is 1.

Find the equation of the normal to the curve y = x* - 3x + 2 whose slope is 2.

I
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Applications of Derivatives

L

Increasing and Decreasing functions

To study the nature of a curve, it is often useful to know on what intervals a given
function is increasing and on what intervals a given function is decreasing. If the
function is differentiable, we can answer such questions easily by looking at the
sign of the derivative since the derivative at a point is a slope of the tangent at that
point to the given curve. Intuitively, if a function is increasing throughout an

interval the shape of the curve will be approximately as follows:

A A

Then at any point in the interval the tangent will make an acute angle with the +ve
x-axis. Hence its slope is positive. Hence the derivative at that point is +ve
Conversely, if derivative is positive,t hen the slope of the tangent is +ve and hence
tangent should make an acute angle with +ve x-axis. Therefore, function is
increasing. Similarly, if a function is decreasing in an interval, the shape of the

curve will be seen approximately as follows :
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Then at any point in the interval, the tangent will make an obtuse angle ¢ with +ve
x-axis. Hence its slope is negative. Hence the derivative at that point is negative
and conversely.

Thus intuitively we see that a function is increasing in an interval if and only if its
derivative is positive. A function is decreasing in an interval if and only if its

derivative is negative. Now we will try to prove it analytically. First we define.

Definition: A function f is said to be

0)

i1)

increasing on the interval I iff for every two numbers x,, Xz in [
X1 < x; implies f(x;) < f(xy).

Decreasing on the interval I iff for every two numbers x;, X in I
X; < Xz implies f(x;) > f(x2).

Now we will state what we had observed earlier intuitively.

Theorem : Let f be differentiable on the open interval [.

1) If £(x) > 0 for all x in I, then f'is increasing on I.
if) If f(x) <0 for all x in I, then f is decreasing on I.
i)  Iff(x)=0 forall x in I, then fis constant on I.
The proof needs Mean Value Theorem which is out of scope of the PUC syllabus.
Examples :

1.

f(x)=\/1 -x?, -1<x<1.
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1
2 -x
Then f(x) = X-2x =
J1-x* J1-x?

Then, f(x) > 0if-1 <x<0.
f(x)<0if0<x<1

Therefore, the function is increasing in (-1 0) and decreasing in (0 1).

L fx)=—, x=0.

¥ |-

Then f'(x) =- —13 <0 forall x # 0. Hence the function is decreasing for all x = 0.
x

Y

A

Graph of y=1/x

which can easily be seen from the graph of f(x) = l
x

3. g(x)=4x’ - 15x* - 20x> + 110x? - 120x + 40
Then g(x) is differentiable and
g'(x) = 20x" - 60x> — 60x* + 220x — 120
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=20(x +2) (x - 1)} (x - 3)
Theng'(x)=0atx=-2,x=1,x=3.
Now in (-0, -2), x+2 <0, (x - l)i >0, x-3<0and so g'(x)>0. Hence g(x) is increasing
in (-c0, -2).
In(2 1), x*2>0,(x-1)*>0,(x-3)<0 and so g'(x) <0.
Hence g(x) is decreasing on (-2, 1).
Againin (1,3),x +2>0, (x-1)*>0,,x-3 < 0 and so
g'(x) <0. Hence g(x) is decreasing on (1,3).
However in (3, )
x+2>0,(x-1)*>0,x-3>0and so
g'(x) > 0. Hence g(x) is increasing on (3,c0). Then g(x) is increasing in (-o0, -2) and

(3, «) and it is decreasing in (-2, 1) and (1,3).

Problem Solving

Find the intervals in which f is increasing and those in which it is decreasing.
1. f(x)=x3—3x+2
Here £(x) = 3x* - 3= 3(x* - 1)
Hence if x*> 1, f'(x)> 0
x*<1,f(x)<0
Butx’> 1 ifeitherx <-1 or x> 1.
Hence x* > 1 in the intervals (-, -1) and (1 ).
Alsox*<1if -1<x<1. '

Hence x® < 1 in the interval (-1, .

Therefore,

f(x) is increasing in (-, -1) and (1, ) and f(x) is decreasing in (-1, 1).

2. flx)=x+ L
x
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Then f(x)=1- lz-
X

If x> 1 then —12— <1 and hence f'(x)=1 - i2>()_
x x

Butifx><1, —17 >1and hence f(x)=1- i‘ <0.
x x

Therefore in (-, -1) and (1, ), f(x) is increasing and in (-1, 1), f(x) is decreasing.
3. flx)=x+D*

Then, f(x)=4(x+1)’

Ifx>-1,x+1>0, Hence f’(x) > 0 if x> -1.

Ifx<-1,x+1<0. Hence f(x) <0 if x <-1.

Hence in -1), f(x) is decreasing and in (-1, ), f(x) is increasing.

1

4. f(x)= Py

Then, f(x)=

f(x)= 1

Here f(x) <0if x> 2.
f(x)>0ifx <2.

Hence f(x) is increasing in (-0, 2) and f(x) is decreasing in (2, «)

5. f(x) =| xX*=5|
[x* =5 if x*>5
henfI= s e et es
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x if x2>5 ie xe(—o0, —w/g)U(\/g,w)
—2x if x* <5 ie x € (-5, 5)

Hence f'(x) =

Hence f(x) > 0if x € (5, ) or (-5, 0).

£(x) <0if X € (-0, -+/5) or (0, V5).

Hence f(x) is increasing in (- \/5, 0) and («/5 ).
f(x) is decreasing in (-0, - \/g) and (0, V5 ).

ad. . Thenf'(x) = o) =e=l) 2 = >0 for all values of x except

x +1 (x+D)F  (x +1)?

6. f(x)=

atx =-1. Hence the function is increasing for all values of x in

(-0, -1) U (-1 ).

(x+D)(x-2) in (-, =1)
(x+D)(2-x) in (-1, 2)
(x+1)(x=2) in (2, )

7. fx)=|x+1]|x=2]| . Thenf(x)=-

(2x-1in (-, -1)
L P)= {-2x+1in (-1, 2)
| 25-1in (2, )

( 1
Function is decreasing in (-, -1), increasing in ] -1, ——\, decreasing in

\ 2)
) : -
— , 2| and increasing in (2, ).
4
Exercises for Self Evaluation:
Find intervals in which f(x) is increasing and decreasing.
L= 2 fo=+ 8 3.6(x) =[x +2||x~3]
x° - x°
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Maxima and Minima

Problem of finding out how large or how small a certain quantity may become
very important in many a situations in Economics, Engineering and Physics. If the
problem admits a mathematical formulation, it is often reducible to the problem of
finding the extreme values of some function. First let us observe the following graph of
some function.

Note that at x = a i.e. at the point A on the curve, though we do not have the
maximum value of the function, if we consider a small neighbourhood around the point A
f(x) has a maximum value in this neighbourhood. Similar is the case at C. Also at the
point B, though the value of the function is not the minimum, if we consider a small
neighbourhood around B, the function has a minimum in this neighbourhood. So is the
" case at D. So though we do not have the maximum or the minimum values of the
function y = f(x) at these point A, B, C, D, in their small neighbourhoods they are
maximum or a minimum values of f(x). Hence we call them as local maximum (or
relative maximum) and local minimum (or relative minimum) for the function f(x). We

define now local maximum and local minimum more mathematically.

7. Definition :
A function f is said to have a local (or relative) maximum at ¢ if there exists a >

0 such that f(c) 2 f(x) forallx € (c- 6 c +d).
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A function f is said to have a local (or relative) minimum at c if there exists a § >
0 such that f(c) < f(x), forallx € (c-& ¢ +39).
Now we prove a necessary condition for a local maximum or local minimum.
Theorem :  If f has a local maximum or a minimum at c, then either

f(c)=0or f (c) does not exist. é‘ ¢ /é@
Proof: If f'(c) > 0 then we know that f(x) will be increasing at c.
Then, f(x;) < f(c) '
for all x| <c¢, x; sufficiently close to c and f(c) < f(x;) for all x; > c, sufficiently close to
c.
Hence f(x) cannot have either a local maximum or local minimum at x =c.
Similar is the case when f'(c) < 0 as f(x) will then be decreasing at x = c.

f(c) >0, f(c)<0.

If f(x) has a local maximum or local minimum at x = ¢, then f'(c) is either zero or f'(c)

does not exist. Ro
<o 7411

Since at points ¢ where f(x) has a local maximum or local minimum f(c) = 0,

Critical Points :
the points where f'(x) = 0 are called the critical points of the function y = f(x).

Note that if f(x) has a local maximum or minimum at ¢, then f(c) = 0. However
converse need not be true i.e. whenever f’(c) = 0, there is no guarantee that f(x) has a
local maximum or local minimum.

For example, let f(x) = x> Y
F'

y=x’
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Then f'(x) = 3x*
s f(0)=0
(0,0) is a critical point.
However, f(x) does not have a local maximum or local minimum at (0,0) whereas
f(x) =x> <0=1£(0) forall x <0.
f(x) = x> > 0 = f(0) for all x > 0.
Thus, if ¢ is a critical point then it is not necessary that f(x) either local maximum or local

minimum.

Examples on Relative Maximum and Relative Minimum
. Letf(x) =3-%*
Then f'(x) = -2x exists everywhere. Since f'(x) =0 only at x =0, (0,3) is the only critical

point. a

y=3-x*

Forallx <0, x*>0andhence3-x><3
fx)<f(0)vVx<0
also forall x > 0, x>> 0 and hence 3 - x>< 3, f(x) <f(0) Vx>0.

Here f(x) has a local maximum at (0,3).

2. Letf(x)=|x+1]|+2
Then f(x)= |x+1]| +2
[ x+142=x+3 for x> -1

Then, f(x)= .
en, f{x) - (x+D)+2=-x+1for x<-1
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X
4
, [ 1for x> -1
e f=
Le () ]_—lfor x<-1
f'(x)is never zero in (-c0 -1) U (-1 «).
At-1,
- - 3-2
lim S - /CED lim 2277 = im x+1=l (v x+1=20)
= -l+ x_(_l) x = -+ x+1 ro-lv oy 4]
and lim L0 =SED o mx =2 2D G ke 20)
1= x=(=1) A== x+] A== x ]

f'(x) does not exist at x = -1.
Also f(-1)=2
Forall x <-1,-x>1 and hence f(x) =-x + 1 > 2 ={(-1)
and for all x >-1, and hence f(x) =x+3>-1 +3 =2 =f(-1)

f(x) has a local minimum at x = -1.

3. Let f(x) = ——1—
x-1

Then f(x) = —1———, which is never zero.
(x = 1)°

Hence for no value of x can there be a local maximum or local minimum.
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3:

2 x<l
Thenf'(x) = 1
2

x>1

But (1) does not exist (Prove! ).

Hence 1 is a critical point.
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But f(x) does not have a local maximum on local minimum at 1 as f(x) is increasing on

both sides of 1.

Tests for Local Maxima Local Minima

Test1: The first derivative test

Suppose c is a critical point for f(x) (i.e. fx(c) = 0) and let f(x be continuous at c.
If there exists 8 > 0 such that f(x)> 0 forall x in(c -6, c) and f'(x) <0 forall x in (c, ¢
+ 8), then f(x has a local maximum at c. If there exists & > 0, such that f'(x) <0 for all x

in(c-d)and f(x) >0 forall x in(c, c+d), then f(x) has a local minimum at c.

Example :
. Letf(x)=|x*-1|
,’xl-l if x<-1
Then f(x)= {1 - x? if —-l<x <l
xX=-1if x21
A
’
-1 1
2x if x< -1
f(x)=1¢-2x if -1<x<l S fx)=0=>x=0.
2x if x> 1
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and f'(x) does not exist at—1 and 1.
The critical points are —1, 0 and 1.
" Also f'(x) is negative for x <-1,
f'(x) is positive for -1 <x <0,
f(x) is negative 0 <x <1,
f'(x) is positive for 1 <x <o,
f(x) has a local minimum at x = -1,
f(x) has a local maximum at x =0,
f(x) has a local minimum at x = 1.
2. Let f(x) = (x-2) (x-1)*
Then f'(x) = 4(x - 2) (x - 1)* + (x - 1)*
=x-1’[x-1+4(x-2)]
=(x-17°[5x-9]

f(x)=0 = x=lorx=

L | O

Also for x < l,(x—])3<0, 5x-9<90
LX) =(x-1P(5x-9)>0

For1<x<%, (x-1P%>0, 5x-9<0
Fx)=(x-1) (5x-9)<0
Forx>%, (x-1)>0,5x-9>0
f(x)=(x-1) (5x-9)>0.

Hence f(x) has a local maximum at x = 1 and local minimum at x =

w | O

Test 2: The second derivative test

Let f(x) be a function such that f(c) exists and

suppose f'(c) =0, then if f'(c) > 0, f has a local minimum at c;
if f'(c)<0, f has a local minimum at c.

Examples :1. Let f(x) = x> —x.
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Then f'(x) = 3xi= ’1
5

fx)=0=> x== R

343

- — and Y are the critical points.

3
Also f''(x) = 6x
f"(-?) <0 f"(?P 0

. J ..
f(x) has a local maximum at - — and a local minimum at ER

b -

Problem Solving
Find the critical points and the local extreme values of the following functions.
1.  fx)=x+3x-2

f(x)= 3x*+3 V x. Then f(x) is never zero. Therefore, no critical points.

2. fx)=x (x+1)(x+2) . fx)=x&+3x+2) =x>+3x*+2x.
f(x) =3x>+ 6x + 2.
-6 + J36 - 24
6

23

=_1i —_—

6
\/g .

fx)=0= x=

=1z

3
£ and -1 - $
J . J

the critical points are -1 +

NG

Also, £'(x) = 6x+6, '(-1+ %) =6+24/3 +6 >0

\/3_

Local minimum at -1 + T

J3

Pl - ) =62 J3 +6<0.
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5

. Local maximum at -1 - —3—

3. f)=x+ L
X

=1~ —
X

P(x)=0 = x==1.

1, -1 are critical points.

Further,
2
f"(X)Z’—J"
x
(-1 =-2<0 .. Local max at -1.
f'(l1= % =2>0 .. Local min at 1.
1
4, f(x)=
(%) Y
[ 1
-2 i 2
Then {(x) = x 21.fx>
1 ifx<2
2-x
()
- ] 2
f'(x) = x=2) ¥ x>

1 VY ifx<2
+
LZ—x

and "’ does not exist at x =2 and f'(x) is never zero.
So only critical point is at 2.
Also, f(x) >0 for x <2.

f(x) <0forx>2.

S Local max atx = 2.
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Exercises for Self Evaluation

Find critical points and extreme values of the following functions.

L x(1-%) A i 3. | X - 16]
l-x
I
4, L L. 6.|x=3|+|2x+1]
1+ x| x+l x-2
7 2-3x
2+x
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Integral Calculus

If a function {f is differentiable in an interval I, then the natural question arises
that, given its derivative f' at each point of I, can we determine the function? Such
functions are called antiderivatives, further the formula that gives all these
antiderivatives, is called the ‘indefinite integral’ of the function. The process of

finding antiderivatives is called ‘integration’.

The development of integral calculus arises out of the efforts of solving the

problems of the following types :

a) The problem of finding a function whenever its derivative is given.

b) The problem of finding the area bounded by the graph of a function under

certain conditions.

These two problems lead to the two forms of the integrals i.e. indefinite and definite
integrals, which together constitute the ‘integral calculus’.
In this unit, we illustrate some techniques of solvihg the indefinite integral problems.
Techniques of Indefinite Integration
A, Change of variable (or substitution) method :

Illustration

I—IW

Solution : Putt= \/gx thendt= x/—S_dx Le. dx= d

5

1.

So we have
2dt 2 dt 2 .
=—sin"t+C
IJ—(,/ j.l—t Vs

I% sin™ (V5x) + ¢

Note : Here the standard form used is

I\/f_x’ =sin'x+¢

x’ sin (tan™ x*)
1+ x

2. 1= dx
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4
Solution : Put tan™ (x*) =t thendt = ;- dx
1+ x
dt x> dx
4 1+

[= Isint%=% Isindt =%(—cost)+c

x4+ e

- cos (tan”

Integrals of Trigonometric Functions

IHustration : Most of the integrals containing trigonometric functions are reducible
to those containing sines and cosines only. So we reduce generally the trigonometric
functions in terms of sine and cosine. Some times expressing sines and cosines in

terms of tangent and cotangent also prove uselul. Illustrative cxamples are given

below:
1

I= J'_—

1+ tan x
1 1 €os X 2cos x
Ilere = - = — = -

1+ tan x ] 4+ SInX  cosx +sinx 2(cosx +sin x)
cos x

( cos x +sin x) + ( cos x +sin x)

2 (cos x +sin x)

cos x — sin x
+

1
22 (cos x + sinx)

Put t = cos x + sin x, then dt = (cos x - sin x) dx

So the integral
dx ldt x 1
o] —— ==+—loglt|+c
2 201 2 2
=£+1Log|Cosx+sinx|+C
2 2

i= stin" ( cos x)dx

Putcos x =t sinxdx=dt
dt di dt

sinx J1 - cos? x ) J1- 12

dx =
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So, 1= Isin"’ t J—‘f—t?
1
1-1t¢

Putsin! t=u, dt =du

2

42
L I= Iudu=—+c
2

s o1 N2
_(sin" 1) + e
Z

_ (sin” ¢ cos x) )’
2

3. j cos® xdx = J (MT dx

+c

2

j (1 + 3cos 2x + 3cos? 2x +cos’ 2x ) dx

(l+3cost+M

oo |— oo|=—

+(1—sin? 2x) (cos 2x) dy

oo | —

2 3.2

=

[ 3sin2x 3 ( sin4x) sin 2x  sin? Zx]
Lx + + +c

+ +=
4

2 2
Integration of Rational Algebraic Functions

Il

o0 | —
N w»

) 3 . 1 .54
x +2 sin 2x + = sin4x — — sin 2xJ+c
8 6

Illustration :

x +4
1. I=
'[ x} +_3Jc2 - 10x

Resolving the integral into partial functions we have

x+4 _ x+4 _ =2 3 1

— e— + —
¥ +3x*-10x  x(x-2)(x+5) 5x 7(x-2) 35(x+5)

So, using proper substitution we get
I=——2Lo |x|+2Lo |x—2|——I-Lo | x +5|+ ¢
s OBty RoE 35 %

2 1= [ . Cos x '
4 (1-sin x) (2 —sinx)

Put sinx =t cos x dy = dt
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¢ dt 2-sin'x
I= | Premrerret Log
(1-02-10

1-sin x
Integration by Parts

When we have product of functions to be integrate, this technique is useful.
Rule: [fgdx=f(x) [g(x)adr ([ g dxf (x))dx
IMlustrations :

xcos™! x

- - [ 2 -1
R e - [
= (=41 =x*)cos™ x —x +c
2. j(sin'l x)? dx = (sin” x)? (x) - J‘ - 2sin”' 2x e
I-x

[- x(sin™ x}’s—Z[ —J1-x?sin™ x+x +c]

x (sin”' x)? +2/1-x* sin”'x - 2x +c¢

75



118 Dcfinite Integral
A definite integral is denoted by [ f(x)dx, where a is called the lower limit

of the integral and b is called the upper limit of the integral. The definite integral is
introduced either as the limit of a sum or if it has an antiderivative I in the interval
[a,b], then its value is the difference between the values of F at the end points i.e.

F(b) - F(a).

We shall illustrate these two cases separately by considering some examples.

A. Definite integral as the limit of a sum
Note : The definition of the definite integral can be used with profit to evaluate easily
the limits of the sums of certain series, when the number of terms in the series tend to

infinity. The method lies in identifying a definite integral equal to series. In fact,

[ fG)ax=Lim by f(a+nk) wherenh=b-a

n—» o n

or Lim (b —

Jfoer'“’ ]} If(x)dx

Ifa=0,and b= 1, we have

Lim = Zf(\| [f(x)dx

—D\On

Illustrations :

I d A
1. Show that Lim L +.. l =l log (1+ m)
"erelntm  n+2m n+mm,) m
Solution: Look at
Lim ! + L +.. + ! =Liml - !
nselntm  n+2m n+nm) n>=p /T 1+min

1
_ 1
—Il+m

0

Put 1 +mx=t,thendx= — at

m’
Whenx =0,t=1and whenx=1,t=1+m.

=l1+J‘m dt
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= Lioge J'n
m

1 [ Log (1 + m)— Log1]
m

l[Log(l+m)—0]
m

I=iLog(l+m)
m

Lim

n—»awo

Let us consider

Lim

n—» o

By taking log we get,

Log Lim x"'" = Lim Log x"'"

n— o n —» o

1
Lim — Log x

n-— o n

L N
—z Log(1+—)
n T nj|

-

= Lim

n— o

[ Log (1+x) dx
0

By applying integration by parts, we have
I=(1+x)Log(l+x) (1+x) ],
=(2Log2-2)-(Logl-1)
=Llog4-2+1
I=Logd4-1

Log Lim x"" =Log 4-1

n—->mom

. - 4
Lim x''" = ¢ (tet-n _ 7

n — o e

Vs 3
Lim 1+l1 (I+EJ (
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Similarly, try this:

’ 1 £ 2/ n? 22 4/nt p o 5 4
Lim 1+ — 1+—| ... 1+ — = —
n—sw L n2 J ( n2] t n’Z e

Exercise ;

1. Show that

Lim_\/n+1\/n+2+ ..... +\[2_n =i,j§_3.
no>® n_\/; 3

Illustrates by using properties of definite integrals :
The following examples will illustrate the use of the properties of the definite

integrals in solving problems.

/

x/2
1. Show that J' Logsinxdx = £Log [lw
: 2 2

Solution: Let us consider ;

x12

j Log sin xdx U ¢ )
] .

a

By using the property ]f(x)dx: _[ f (a—x)dx
0

0

We have,

x/2

I= I Logsin(m/2- x) dx
0

xl2 ;
1= j Log cos xdx e @
0
By adding (1) and (2) on both sides, we get
x/2

2] = I (Logsinx + Log cos x ) dx
0

x/2

= I (Log (sin x . cos x) dx
0

=2 sin 2x"
= I Log( J dx
3 2
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X

12

x!2

= [ Logsin2xdv~ [ Log2ar
0 0

Note that

x/2

x/2

I Logsin2x dx = j Log sinx dx, we have
0 0

x/l2

2A=1-Log2 | dr
0

I=(-Log2) (x ['°

0

r
= —(-Log 2
2( g 2)
I=£Log(l\r
2 \2)
1 .
5 ILog(l;kx) dx
. 1 +x
: 1 +x*
Put x = tan 0.
dx =sec’0d0

Ifx=0,then6=0 andifx=1tan 8 =

I

]

0

x4

N

Log (1+tan0) sec’ 6 d @

1 +tan’ @

x4

= I Log (1+tan 0)d@
0

By using the property If(x) dx = I f(a-x) dx, we have
0 0

x /4

1= [ Log
1]

x4
f Log
a

x/4

-

I Log
0

AN

1+

1+

1o 0]}

e
tan  —tan¢

1+ tan z .tan@
4

tan@ +1-tan @

1+tan @

N

/

/

d o

do
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x/4 2 \
= Lo 'de
j g(1+tan0,

0

x14 x/4

- ILog2d9- jLo,g (1+1an0)d o
0 1]

x4

1= jLog 2d 0 -1
0

x4
2l= [ Log2d6=Log2 [0}"
0

n
I=—.Log?2
8 g
]
F 1+x?
Exercises :

xdx

I Log (l+x)dx=£Log2
8

1. Showthat | —

J a*cos’x +b% sin’ x

) "I‘ sin*? 0d6 =«
"] sin** @ +cos¥ O 4
" del+ftanx 12
B. As area function

4
Z Log2
Pl

Having known the different techniques of indefinite integration, we are in a

better position to use the fundamental theorem of integral calculus in solving problem

on area by integration.

Here we will illustrate the techniques of finding the area of a region by

integration.
1. Find the area of the region bounded by the two parabolas y = x* and
dy=4-x%. N
D ) V
i
WD
BT I — P 8
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The given curves arc
y=x . (1)
y=4- x* (2)
which are as given in the figurc.

Now for the points of interscction of (1) and (2),

xX=4-x
ie. 2x*=4
i.e. Xx=z \/5

and the corresponding values of y arc 2 and 2 respectively. So the points arc
intersection of (1) and (2) are (- v/2,2) and (2, 2). As is clear from the figure, for
a given x in the region, the value of y ranges from x> which is the lower limit, to 4 —
x* which is the upper limit. So the length of the vertical strip in the figure is
(upper limit of y ) = (lower limit of y) = (4 - x%) — x* = 4 - 2x°.
Therefore, the area of the region is

V2

A= I 4 —2x* dx
-2

V2
=2 J- (4 - 2x?) dx as the region is symmetric about y-axis.
o

2 17 1 s 2 )
=2[4x——x3} =2|4\/2~--(f:z)3 -0
! 31 i 3 .

=2 '_4«/5 —%(Ji) !

- 8 = 16 =
=8J2-2V2=22
3 3

2. Show that the area in the first quadrant, enclosed by the x-axis, the linc x = y\/§
and the circle x> +y* =4 is n/3

Solution : The equation of the circle is x> +y* = 4 = 2* M
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e =
R

So the center is 0(0,0) and radius = 2. The point of intersection of (1) with x-axis

curve (2,0) and (-2, 0). So the point A as shown in the figure is in the first quadrant
and so is (2,0).

Now the given linex =y V3. Thatis y= = 2)
V3
(1) and (2) gives
B +x0=12,ie 4 =12 ie.x=%3

As P is in the first quadrant, P is (+/3, 1) and Q is (+/3, 0). Here P is the point of
intersection of 1 and 2 in the first quadrant and PQ 1L x-axis. So 0Q =3,PQ=1. Let

Area of AOQP = A and shaded area = A,. Therefore, the required area
A=A+ A

B3
Al=areaofAOQP=’/z.OQ.PQ='/zs/§.l=?sq.units. U )

2

A= J[ydx where x* + y* =4
3

Nowx2+y2=4:> y2=4—x2 D> y= \/4—x2 in the first quadrant.
So,

A= j[ J2-x* ax
[ g 5]
3 (3]

5 s[4

e | Nt
2sin” (1) 5

[0+2sin1]-

From (3) and (4) we get,
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i ox B

A=A+A;= —— +— - ——=_ 5q. units.
A= o =T s

3. Find the arca of the region enclosed between two circles x* + y2 =1 and (x - 1)+

y? =1 and the x-axis.

Solution :
Xty =1 (m
x-1)}+y* =1 )

From the forms of the equations (1) and (2) it is clear that their centers are 0(0,0) and
C(1,0) and their radius = 1. Solving (1) and (2), their points of intersections are found

V3) (1
)

in the first quadrant and s
AN

4

tobe A in the second quadrant.

s T ST

N | —

\ /
So the rcquired arca is
A = Arca of OACB
=2 (arca of OAB)

1/2

=4 I J1 = (x = 1)? dxas for circle (2) y = 1 - (x -1)*
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Exercise :

1. Using integration show that the area of A ABC where points A, B, C are
A(-1, 1), B(0,5 ) and C(3,2) respectively is equal to —1—2—5- sq. mts.

2. Find the area bounded by the curve y* = 4 ax and the lines y = 2a and x =
0.
3. Find the area enclosed between the curve y = cos x and the x-axis between

x=0and x=m.
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Applications of Definite Integral
I. The Theorem of Bliss

The Theorem of Bliss assures that the definite integral is the sum of a
sequence of sums, even through the sums, even though the sums involved are
obtained in a rather free fashion. In short, we are permitted as unexpected flexibility

in forming our sums.

Statement : Let ( {I;, s1), (I2, $2),....(In, sn) } and { (11, 1)), (I3, ©2),.....(In, to) be

scquences defined on [c,d] and let f and g be continous on [c,d].

d

lel(l(f(S]) g(tl) ' I I + f(Sz) g(tz)l Izl t+.....+ f(sn) g(ln) I I R]: I f 4

(s

IL Length of a Curve

Let fand f" are continuous on [c,d]. Then the length of the graph of f between (¢, f(c))
and (d, f(d)) is given by

d
L=[Ji+(/'y
Ex : Calculate the length of the circumference of a semicircle with radius r.

Solution: L= [ —r,___—dx=7rr.
3 Jrr-x

Note : Let f and f" are continuous on [c,d]. Then t, a real number such that t € (c,d)

such that the length of the graph of { between (c, f(c)) and (d, f(d)) is

L=@d-c) 1+ (f (H)

III.  Area of a Surface of Revolution
Let f be continuous on [c,d] and f(t) > 0 for t € [c¢,d]. Then the arca of the

surface obtained by rotating the graph of fin [c,d] about the x-axis is given by
d
A= jzsz1+(f')24r _

provided the definite integral exists.
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2
Ex: Determine the area of the surface formed by rotating the graph of % in [0,1]

about x-axis.

T S
Solution : A =2x J%\/l-#x’ dx

0

(V2 2 (%

]log 1+2 )] ~1.32
IV.  Volume of solid of Revolution

Let f is continuous on [c,d] and f{t) 2 0 for t € [c,d ]. Then the volume of the
solid obtained by rotating (about x-axis), the region bounded by the graph of f,

ordinate s at ¢ and d and x-axis is given by
dl
V= J. xftadx

Ex : Compute volume of the solid of revolution obtained by rotating about x-axis, the

region bounded by the graph of x?, ordinate s at 1 and 2 and x-axis.

2
Solution : V= In’x‘ dx=3lT”
]

V. Average value of a function
The average value of f over [a,b] is

|
G-a Jfax

Ex : Compute the average value of sin x over [0, =]

x

Solution: A,= ! sin x dx = 2
0

1
n 4

V1.  Centre for Gravity : Centroid
Let f be continuous on [c,d] and f(t) 2 0 for t € [c,d]. Then the centroid of the
region bounded by the graph of f ordinates at ¢ and d and x-axis is (X, y) where

86



[ xf0x) de L rwas
X=“———and y = —

/@@

[ reo

Example : Determine the centroid of the region bounded by the graph of x%, ordinates

at 2 and 4 and x-axis.

4 4
Ix‘dx -I-J.x“dx
. - 3 45 _ 23 186
Solution : X = =—, y=—2 a2 OV
14 ! 35
Ixzdx szdx
2 2
= _ 45 186
X, =| —, —
(x.7) (14 35)
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Differential Equations

Sub Units covered

L. Introduction
2. Definition, Order and Degree of a Differential Equation
3. Formation of Differential Equations
4. Solution of a Differential Equation
5. Solving Differential Equations
6. Applications of Differential Equations
Introduction

We come across differential equations in the context of numerous problems

studied in different branches of knowledge — science, engineering and economics.

Some of these are

a)
b)
c)
d
€)

B

g)
h)

the motion of a projectile, rocket, satellite or planet

the current in an electric circuit

the conduction of heat in a rod or a slab

the flow of a fluid

the rate of decomposition of radioactive substance or the rate of growth of
a population

the theory of marginal utility in economics

the reaction of chemicals

the curves having certain geometrical properties.

The mathematical formulation of the above problems (particularly rate problems)

gives rise to differential equations. In each of the situations cited above, the objects

involved obey certain laws. These laws involve various rates of change of one or

more quantities with respect to other quantities.

Such rates can be expressed as

derivatives and the laws themselves can be mathematically expressed as equations

containing derivatives i.e. differential equations. A differential equation which

describes any of the above problem is a mathematical formulation of the problem

itself. Therefore, solving the differential equation amounts to solving the problem

itself.
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Some of the greatest mathematicians of the past three centuries who have
contributed to the theory and methods of differential equations are Fermat,
Newton, the Bernoullis, Euler, Lagrange, Laplace, Gauss, Abel, Hamilton,

Liouville, Chebyshev, Hermite, Riemann and Poincare.

Here in this write up, we aim at familiarize the reader the basic terminology

and method of solving the most clementary problem in differential equations of
the type g‘z = f(x,y) by separating the variables and most clementary

applications of difterential equations.

2. Order and Degree of a Differential Equation

Definition : A relation between a function y of a variable x, the variable x and the
successive derivatives of y with respect to x upto order n is called an ordinary
differential equation of order n. But hereafter in this write up, we will call an

ordinary differential equation simply as a differential equation. Symbolically, a

[ dy d d"y’
differential equation is written as f X, ¥, dy d_—f, ..... Y| =

Or f(X, ¥, Y1, Y21uure-. yo) =0 or f(x,y.y,y", ...y™)=0

The following are examples of differential equations of orders indicated

against each of them.

Differential Equations Order
(""”2 1
-y°+x=0 2
d v
/ t“-}: +sinx = x’ 4
sinxy" -a’y' = x? 3
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Definition: The degree of a differential equation is the degree of the derivative of
the highest order in the differential equation, after the equation is written in a form

free from radicals and fractions.

¢ 43 N4

Example 1: The equation x

3
P +y (%} —sin x =0 is an equation of

' 3
order 3 and degree 4, because of the degree of g—f, the derivative of the highest
dx;

order is 4.

21372

>

N W)
Example 2 : e l 1+(dx, |

As this equation contains an expression with exponent 3/2, so by squaring both sides,

we get,

-2
ax’ & _|
ie. ()’ = { 1+y*)

ie (y3)P=1+3y2 + 3y} + yf

Here the degree of the order of the highest order derivative i.e. y3 is 2.

So the equation is of order 3 and degree 2.

Example 3: Find the order and degree of the equation

y= px +y{2p’> +a’ wherep= %

Solution : y=px + 2p* + a*
ie. y-px= y2p’+a’

ie. (y- px)" = 2p2 +a’

i.e., y? —2px + p’x* =2p* + a?

ie, (x2—2)p2—2xp.+yz—a2 =0

ie., (x*-2) (%) - 2{%] +(y'-ah)=0

So the equation is order 1 and degree 2.
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Exercises for Self Evaluation

Find the order and the degree of each of the following equations.

I: x(%] + Z =y’
(%)

4. y, +yl +1=0

(P2+p— l)”3=cosxwherep= %

wn

Answers : 1. 1,2, 2.3,4, 3.2, 15, 4. 2,1 5. 1,3

3. Formation of Diffcrential Equations

Suppose an equation, which represcnts a family of curves contains n arbitrary
constants. Differentiatc the given equation n times successively. Now we have, along
with the given equation, n more equations. We can eliminate n arbitrary constants for
those n+1 equations. The equation so obtained is the differential cquation of order n
representing the family of given curves. Illustrations are given below.
Ex.1. Find the differential equation of the family of all straight lines of a given
slope.
Solution: Let the given slope be m. Then any line of the family is represented by the
equation y = mx + ¢ where c is arbitrary constant. (Note that m is not an arbitrary
constant as m is the given slope).

So,y=mx+c (1
Differentiating (1) w.r.t. x, we get,

y'=m 2)

which is the required differential cquation representing all straight line with slope m.

91



Example 2: Find the differential equation of the family of all circles passing
through the origin.
Solution : Any circle passing through the origin (0,0) is given by
X*+y +2gx +2fy =0 6))
Here g and f are arbitrary constants.
Differentiating (1) twice w.r.t. X, we get the following two equations.
2x +2yy' +2g+2fy'=0 ' 2)
2 +2yy" +2y? +2fy" =0 (3)
Eliminating g and f from (1), (2) and (3), we get

x? +y? 2x 2y
2x+2yy' 2 2y'l=0
242y"2y 0 2"

x?+y*  2x 2y

Le. x+y 1 y'[=0
I+W”+y'2 0 yn

ie (F+ YY)y - 2x (xy" +yy Y-y -yyYY” - y) - 2y(L+yy" +y?)

i€, Xy -y y"+2xy' + 2xy” =2y -2yy?=0

ie. C+yD)y" -2xy - 2xy” +2yy? +2y =0

which is the required differential equation.

Note : Here in the equation for the family contain two arBitrary constants g and f. So

the resulting differential equation is of second degree.

Example 3 : Find the differential equation for the family of curves
y=Acosx+Bsinx.

Solution : Here A and B are arbitrary constants.

Now, y=A cos x + B sin x 1
Differentiating (1) twice w.r.t. X, we get

y'=-Asinx+B cos x (2)
y'=-Acosx-Bsinx (3)

Now (3) can be written as
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y" = -(A cos x + B sinx) 4)
So from (1) and (4) we get

y'=-y
i.e. y'" +y =0 which is the required differential equation.
Note : It is customary to set the above exercise in a class test as follows :

Eliminate A and B from the equation y = A cos X + b sin x.

The phrase “formation of a differential equation” has another meaning as well.
This meaning is different from the one given above. Here a differential equation is
formed to give a mathematical description of a situation in physics, biology,
economics dr any other discipline. Examples are given below. These examples are

similar to those given in the ‘Introduction of this write up’.

Example 4 : The population of a country increascs at the rate proportional to the
population. Form the differential equation to represent this situation.

Solution : Let x be the population in t years. Then %} = kx (k > 0) is the required

differential equation.

Example 5 : A savings account pays 5% interest per year. Besides, the income from
another investment is credited to the account continuously at the rate of Rs.800/- per
year. Form the differential equation to describe this situation.

Solution : Let x = x(t) denote the amount in rupees in the account after t years. Then,

& 800
d 100

which is the required differential equation.

Example 6 : Radium disappears at a ratc proportional to the amount present.
Express this model as a differential cquation.

Solution : Let x be the amount of radium at time t. Then the required differential
equation is

6—1{ = -kx (k>0)
dt
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Exercises for Self Evaluation

1. Form the differential equation for the family of all circles with centers on
the y-axis.
2. Form the differential equations for the family of all hyperbolas with the

coordinate as asymptotes.

3. Form the differential equation by eliminating A and B from the equation
(x-A) +(y-B)’=1
4. A spherical rain drop evaporates at a rate proportional to its surface area.

Form a differential equation corresponding to this situation.

Answers :
Ly & +y' =1-yy" +y%)=0
2. y+xy'=0
3. (yIJ + yr)z + (yI2 + 1)2 = yuZ
PR A
dt
4. Solution of a Differential Equation

Definition : A function y = f(x) is called a solution of a given differential equation

which when substituted in the differential equation reduces the equation into an

identity.

A solution which contains a number of arbitrary constants equal to the order of
the given differential equation is called a general solution or a complete integral of
the differential equation. Solutions obtained from the general solution by giving
particular values to the constants are known as particular solutions or particular
integrals.

Example 1 :  Verify if the function y = Ae™ + Be™ is a general solution of the
differential equation y” = 4y. '
Solution : Consider the function y = Ae** + Be™* )

Where A and B are constants.

Differentiating (1) successively twice w.r.t. x, we get

y' =2Ae* - 2Be* )
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y" =4Ae™ +4Be™
=4(Ae™ + Be™) (3)

Substituting the values of y and y” form (1) and (3) in the given differential equation
y" = 4y, we find that the given differential equation becomes an identity for
L.H.S. of the given equation
y" = 4(Ae™ + Be™) by (3)
=4y by (1)
Also (1) contains A and B as two arbitrary constants and the order of the differential
equation is two. So the solution (1) is a general solution.

Example 2 Verify if y = sin x is a solution of the differential equation y* - y?i=1

Solution : y =sin x : )
= y' =cos X 2)
Substituting from (1) and (2) in y* - y'2 =] 3)

We find that (3) does not reduce to an identity.
For L.H.S. of (3) = sin® x — cos? x
= - C0S 2X

# RILS.of (3)

as —cos 2x # | for all real values of x.
Hence (1) is not a solution of (3).
Example 3 : Verify if y = sin x is a general solution of y? +y? = 1.
Solution : Now y = sin x (N
So, y'=cos X )
(1) and (2) imply y* + y? =sin’ x + cos’ x = |
So the given differential equation reduces to an identity.
But the function (1) does not contain any arbitrary constant, whereas the given
differential equation is of order (1). So (1) is a particular solution, not a general one.
Note: In some problems one is asked to “verify that” ..... In such cases that what is to
be verified is supposed to hold. So in this sensc the phrasc “verify that” mecan “prove

that”. But in the phrase “prove that” has a larger connotation than that of “verify
that”.
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Initial Value Problem and its Solution

We have seen earlier that y” + y = 0 has the general solution
y = A cos X + B sin x. Suppose that y(0) = 4, y'(0) =5. Then we have A =4, B=S5.
So y =4 cos x + 5 sin x is a particular solution. This particular solution satisfies the

conditions y(0) =4, y'(0) = 5.

Definition : A given differential equation with additional condition(s) as in

the above paragraph is known as

Initial Value Problem
Thus y” +y = 0 with y(0) = 4, y’(0) =5 is an initial value problem.
This initial value problem is written as
y'+y=0 - the differential equation
y(0)=4,y'(0)=S5 - the initial conditions.
The condition(s) in the initial value problem is called the initial conditions of the
problem

y =4 cos x + 5 sin X is the solution of the initial value problem :

y" +y=0 with y(0) =4, y'(0) =5.

Geometrical Meaning of an LV.P,

A differential equation represents a family of curves which is given by the
general solution of the differential equation. As is clear from the above example, an
L.V.P. corresponds to a particular solution of the differential equation. So the solution
of an LV.P. represents a subset of the family of curves represented by the differential

equation without any condition whatsoever attached.

Exercises for Self Evaluation :
Verify if the following functions are solutions of the corresponding differential

equations written against them (Prob 1 to 4) :

1. y? =dax, y=xy'+ar%}

2. y = a; cos 2x + a; sin 2x, y"+4}y=0

3. y=ax’+bx’, y" =6a
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4, y=e (A +Bx), y'-6y +8y=0

(5), (6), (7), (8) — Verify if the solution (if any) given in (1), (2), (3), (4) are

general or particular.

Verify if the function given is a solution of the corresponding [.V.P. (Problems 9 and
10).

9. X2+ y =25 yy +x=0,y(3)=4

10. y=e™y+y=0, y(0)=2

Assuming the given general solution, find the particular solution satisfying the initial

condition (Problems 11 and 12).
11. xy’=2y,y=ax2,y(l)=l
12.  yy=¢&* y'=eP+c,y(0)=1

Answers :

1. Yes, 2. Yes 3. Yes 4. No 5. General
6. General 7. Particular 8. Not applicable

9. Yes 10. No 1y=x* 12.v7=e? + 1

5. Solving Differential Equations

Here we will consider diffcrential equations of the form
P(x).dx +Q(y).dy =0 (D
or reducible to the form (1) by some manipulation or by suitable substitution. The

solution of (1) is found by integrating both sides of (1). The solution is
[P(x).dc+ [O0) . dy =c )

where c¢ is an arbitrary constant.

As (1) is a differential equation of first degrec, (2) is the general solution of (1).

Example | : Solve d—l}; +2x =e™.

d

97



dy

Solution: —= + 2x =e**
dx

- 4 +2x—€” = 0 o dy+(2x—¢e™)dx=0

o |+ f(2x-e/d) =C

Ix
, €
< y + (x - =C
N\ 3 /
e3x
= y= 3 x* + ¢ which is the required solution.
d :
Example 2: Solve 2 = sin’x .cos? x + xe*
dx
Solution :
dy .
= =sin’x. cos’ x + xe*
dx

& dy=(sin’ x.cos’ x + xe* ) dx

= jdy = J(sinsx .cos® x +xe*) dx

o y= fsin3 x.cosix.dx + Ixe" . dx 6}
Now,
Isin’.r.coszx.dx = - J'(l—-tz)tz -.dt where t = cos x.
=-J.(tz-t*)dt=—(—!3i+£5i\+a%—?3+cl :clos;’x_co:’x ¢ ()
and fxe" dx = xe' - fe‘ .dx=xe" —e" +c, 3)

So from (1), substituting the values of integrals from (2) and (3) in (1), we get

1
y == cos® x — = cos® x +xe” —e* +(c, +¢,)
3

!
5

._1 ] 1 3 x x
Lo Y= —C0S"XxX——COS" x +txe” —e +c¢
5 3

as ¢ + ¢ can be treated as single arbitrary constant c.
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dy
Solve : (x+y)?. === k2.
olve: (x+y)

Solution: Putz=x+y

Thenle+ﬁbi :Q=£]£ - 1.
dx dx dx dx

So the given differential equation reduces to

Ve \
zzlﬁfllzkz
\ax =)

PN .Zz._di =K2 + 22
z? dz
———— =dx
k? + z?
2_2 ) 4 kZ
Ly -3 'T.CizzjdXQJ.l*—T 3 1.dz=j(i‘c
k® + z°¢ L k*+2z° )
= z—kz.itan" % =x+c

< (x +y) -k tan” (i;—}i}; =x+c¢

which is the required general solution.

Example 4 : Solve A x-y+3

de  2(x-y)+7

Solution : Putx -y =z. Then dy _dz .y 2

== e ===

dx  dx dx de’

, the given differential equation

: I d
After making these substitutions for x -- y and £
az

becomes
. gz _ z+3
dc 2z +7
dz z+3 dz 3z+4
— =1~ & — =
dx 2z +7 dx 2z + 7

o (22+7] dz =dvx
3z+ 4

\ /
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W |
(FS ]
N
+
S

@—I-J2+ 13 ldz=fdx.
3 3z+4,

o % [2z + (13/3)]log(3z+4)]=x+C

<:>§ (x-—y)+%log(3 x-y)+4)=x+C

Example 5: Solve (x +y)dx - (x—y)dy=0.
Solution: The given differential equation can be written as

xX+y

£
dxk x-y
P _

1 +y/x
d l-y/x

+z=

A
B le

Putz=y/x. thenzx=y = x

So (1) can be written as

dz l+z
X— +2z=
dx

= jfl -2 &= ix
d+20 1427 x

= tan"z—‘/zlog(l+zz)=logx+c

4 2
1.,.!7] =logx+C

\ /

o tan'll-llog
x 2
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C 2 23

2= tan'lz—ll ad +yJ=logx+C

x 2 X’
P tan"—ii—%[log(x2+y2)-logx2]=logx+c
=t tan"%—% log(x2+y2)%.logx2=logx+C
o an' L log it )7 - % -2 logx=1logx+C

o tan” £ - logx® + y* = 2logx+C
X

which is the required solution.

Exercises for Self Evaluation

Solve the following differential equations.
1. (1+yH)dx + (1 +x%)dv=0.
24 x(y2+1)dx+y(xz+l)dy=0

dy x* +x+]

Wl

de  yl+y+l
) ay
4. XX = +y=1
dx Y
s @, rw-h
dx x(x-=1)

6. ydx+(1+x2)tan"xdy=0
7. eV . dx+e . dy=0

8. i‘! +l=e™
dx
9. il} = V?‘y ~-X

o, LL,rryrl_g
dx x° +x+1

1. sin’! {%J =X+y

12 x.cos’y.dx-y.cos’x.dy=0

13. (x> +y")dy=xydx
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14, (1+3e¥)dx +3e™” (1 -1] .dy=0.
y

Answers :
1. tan”! x + tan™ y= C.
2. K+ (F+1)=C.

3. %(xs—y3)+%(x2—y2)+(x—y)=c .

4 y=1+Ce®

5 xy=C(x-1)(y-1)
6. ytan' x=C
7

er + eZy = C
8. e = k e+ Ce™
- 2

9. Jy—x +log(Jy—x—1)=%x+C

10. 2xy+x+y+Cx+y+1)=1
11. tan(x+y)-sec(x+y)=C

12. xtanx-logsecx=ytany-logsecy+c

13. y=Ce*'®)
14. x+3ye?”=C

6. Applications of Differential Equations

As we have seen earlier that differential equations oceur in subjects other than
mathematics e.g. physics, chemistry, biology and economics. We form differential
equations to describe problems of these subjects. Solving these differential equations
give the solution to the problems and issues therein. Here we will discuss some most
elementary solutions (problems/issues of these subjects) as illustrations.
Example 1 : The temperature T of a cooling object drops at a rate proportional to the
difference T — S, where S is the constant temperature of the surrounding medium.
Find an expression for the temperature as a function T(t) of the time variable t,
provided T(0) = 150.
Solution : Clearly, we have the differential equation describing the situation of the

problem as
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%]; = —k (T- S) where k > 0 is a constant, @)
t

We know from the problem that S is constant.

So
i o= b
T8
= jiz [(~kydt = log (T - $) = —kt +¢ )
e
Now, given that T(0) = 150
So, (2) = log (150-S)= 0+C=C 3)

~. (2)and (3) imply log (T - S) = -kt + log (150 - C)
= log(T-S) -log(150-C)=-kt

= log I-5 =—kt
150 -8
T_S —ki
=5 =e
150 - §

= T=(150-S)e™+S

which is the required function.
Example 2 : The population of a country incrcases at a rate proportional to its
population. If the population doubles in 30 years, in how many years will it treble?

Solution : Let x be the population in t years.

a
Thc’:nﬁ =kx.(k>0) = éz=kdt
dt x
= logx=kt+logc = logx—logc=kt
= ]og£=kt
c
= e o x=ce® (1)
c

Let x(0) = X,. Then from (1), %, =c¢
S0 x = Xoe" (2)
Now by hypothesis of the problem, x(30) = 2x, (3)

(as the population doubles in 30 years).
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Now (2) and (3) imply x,e** =2x, = &% =2 4)
Let after T year x, becomes 3x, (i.e. treble)

i.e. x(T) = 3x,
ie, Xe'=3x, from(2) = €“=3 (5)
T log,3
4)and(5) = 30k=log.2\ = — = —— =T =30 (loge3 /log.2) years.
30 log,2
kT =log. 3

Example 3: After how many years will a sum of money, invested for interest at 5%
continuously compounded double itself ?

Solution : Let x be the amount of money after t years.

Thenwehave‘—ix— = —x = é =ﬂ.
dt 100 X 20

rdx edt !
= — = |== I =— +logC

. J20 = 08eX 20 + 108
- log%=L0 = x=Ce® ()
Letx(0)=xo = %,=C )
(NDand 2) = x=xX,¢e"? - (3)

Let the amount double itself after T years.
Then x(T) =2x, = 2%, =Xo el

= 2=™

= -2% = log,2 = T=20 log. 2 years.

Hence the amount doubles itself after 20 log.2 years.

Example 4 : A particle with initial velocity u, moves in a straight line with uniform
acceleration f. Express the velocity v and the distance s after time t as functions of

time variable t.
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. .. . ds . d’s
Solution : From the definitions, velocity v = ~ and acceleration = Fv = e
t {4 t

By hypothesis we have

%:f ‘_'>dv=1gr.dt
> fav=f.a
= v(t)=ft+c _ )

By hypothesis v(0) = u
So from (1),u=v(0)=£f0+c
= c=u (2)

(l)and (2) = v(t)=fi+u 3)

ds
= = firu o [as =J'(fz+u).dz

St

= S(t)=§ +ut +c' @

But by hypothesis s(0) =0

So4)= 0=5(0)=0+0=c' = ¢'=0 (5)
. St

(4) and (5) imply s(t) = ETE ©

Hence (6) and (3) give the required expression for s and t respectively.

Exercises for Self Evaluation

1. A hot body cools at a rate proportional to the difference in temperature
between it and its surroundings. The body is heated to 110° C and placed in
air at 10°C. After 1 hour its temperature is 60° C. How much additional time
is required for it to cool to 30° C ?

2. A population grows at a rate of 5% per year. How long does it take for the
population to double ?

3. A spherical rain drop evaporates at a rate proportional to its surface area. Ifits

radius originally is 4/3 mm and 1 hour later has been reduced to 3mm, find an

expression for the radius of the rain drop at any time ?
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4, After how many years will Rs.100/- invested at the rate of 5% interest

continuously compounded, amount to Rs.1000/- ?

Answers :
log, 5
~ 1 hours. 2. 20 log.2 years
log, 2
3. r=4-t 4. log. 10 years.
20
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MATHEMATICAL INDUCTION
Introduction

Principle of Mathematical Induction is a method of proof for propositions
which are statements for a general natural number n. Many a theorems which are
otherwise complicated to be proved can be easily proved by Principle of

Mathematical Induction.

Any proposition involving the positive integer ‘n’ if true for a large number of

positive integers, cannot be assumed to be true for all positive integers.

For eg. “10n + 3 (where n is a positive integer) is a prime number” for positive

integers ‘n’ which are not divisible by three.

This statement is true for many values of n. But it fails, for example, n =14

(not divisible by 3). Then 10n+3 = 143 is not a prime number.

Notation

Any proposition or statement in n is denoted by P(n).

Eg. 1. The statement “n(n+1) is an even integer” is denoted by P(n).
If n=1. then n(1+1) = 2 an even integer is denoted by P(1).

Similarly, the statement for n =2 is denoted by P(2) etc.

2. Consider the statement P(n)

i.e. P(n): “n’ +n is not divisible by 3”.
P(1): 12 + 1 =2 not divisible by 3.
. P(1) is true.
P(2) : 2* +2 = 10 not divisible by 3.
- P(2) is true.
But P(3) : 3° + 3 = 30 divisible by 3.

. P(3) is not true.

. The method of Mathematical Induction does not suit such ‘statements’ which are

not true for all positive integers n.
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The Principle of Mathematical Induction

First Step :

In this method, let P(n) be a statement to be proved to be True for all n > a, a being
certain positive integer. Verify that P(a) is true.

HStep: '

The proposition is assumed for a positive integer say n = k.

i.e. P(k) is assumed. '

1] Step :

To prove that P(k + 1) is true whenever P(k) is true i.e. for the next integer n—-k + 1.

1V Step : Conclusion
Hence, by the Principle of M.1, P(n) holds for all n > a.

Note: While working problems, we have to follow the above four steps.

Examples :
1. P(n) is the statement that 3" >n foralln € N.
P(n):3">n
IStep :
n=1 P(1):3>1 true.
1l Step :
P(n) is assumed for n = k i.e. P(k) is assumed.
Pk) @ 3¥>k ' | (M
I Step :
To prove that P(k + 1) is true
i.e. to prove that 3! >k + 1
Multiplying (1) both sides by 3, we get
>3k [=k+k+k)]
>k+k+1)
>k+1
= 3¥!'>k +1 which is P(k + 1).
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1V Step :

By principle of Mathematical Induction P(n) is true for all positive integers n.

2. Prove that 7 divides 2°" 1 for all positive integers’
Let P(n) be the statement 7 divides 2*" - 1.
I Step :
P(1) : 7 divides 2° — 1
= 7 divides 8 - 1.
= 7 divides 7 which is true.
1l Step :
P(k) is assumed i.e. for n =k, i.e. 7 divides 2% - 1 is assumed.

= 2° _ 1 =7m where m e N (natural numbers).

11 Step :
To prove P(k + 1)

i.e. to prove that 7 divides 2°®*V - 1.

i.e. to prove that 2°®*" — I is a multiple of 7.
Consider
23K+ _
= 2% 27—
= 82%-8+7
= 8*-1+7
= 8.7m+7

= 7(8m +1) which is a multiple of 7.

IV Step :

. By principle of Mathematical Induction, P(n) is true for alln € N.

3. Prove that
l+4+7+..... +(3n=2)= ﬁ’;'—')
Let P(n) denote the given proposition

A PM):l+4+7+ ... +(Bn-2)= "(3’;_1) :
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13 -1
P(1):1 ( 3 )
_12
2
=1
P(1) : 1=1 which is true i.e. P(1) is true.
II Step :
Let P(k) be true

ie.PK):1+4+7+...+(3k-2)=

@ is assumed.

I Step :
To prove that P(k + 1) is true i.e. to prove that

[+4+7+ ..+ Gk=2)+@k+1)= ED [3£k+1)—1] _ +1)2(3k+2)_

To prove this, we have to add (3k + 1) to both sides of P(k) . .. We get,

1+4+7+...+(3k-2)+(k+l)= %ﬂ +(3k+1)

_ 3k —k + 6k +2

2
_ 3k +5k +2
2
= 1 +4+7+..+Ck+])= UCL(;IHZ} which is the required result
i.e. P(k + 1).

1V Step :

By principle of Mathematical Induction, P(n) is true for all positive integers

€on?

n'.
Note: In the given problem, the terms are in A.P. with common difference 3.

Therefore, any term is got by adding 3 to its previous.
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4. Prove by induction :
2422420+ 42" =22
Let P(n) denote 2 + 22 + 2% + .. +2"2"" -2
1Step :
P(1):2 =9t _9
=>2=4-2

= 2 =2 which is true i.e. P(1) is true.

Il Step : Let P(k) be assumed.

ie. P(k):2+22+ 23+ +2%= 2" — 2 is assumed.

I Step : To prove P(k +1)i.e. forn=k+1.
ie. to provethat2+22 +23+ 2 =k+1+1=2-2=2"2_>
Adding 25! 10 both sides of P(k) we get [Note that 2¥*! is the next term after 2k]
2+22 2%+ 42K+ 20 = (28 - 2) + 2K
= 2[+k+] _ 2
=2%-2
= 2+22+2%+ .+ 254 2M =20

is the required result i.e. P( k +1) is true.

IV Step : Conclusion

. By principle of Mathematical Induction, P(n) is true for all positive integral

values of n.

nn+l)(n+2)

5. Prove that 1.2 + 2.3 +3.4 +.....upto n terms = 3

Consider: 1.2 +2.3 +3.4+ .....upto nterms.

In this, each term contains 2 factors. Observing the first factor in cach term, we see

that they are consecutive integers. Therefore in the n" term, the first factor will be n.

Second factor in each term is one greater than the first factor. Therefore, in the n™

term, the 2™ factor will be (n + 1). Hence the n™ term will be n(n+1).
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Therefore, the problem is to prove that

nn+l) (n+2)

1.2+23+34+..+n(nt+l)= 3

Let this proposition be denoted by P(n).

IStep :

1(+1)(1+2)

P(1):12= :

=>2= 2;3 = 2= 2 which is true i.e. P(1) is true.

II Step : P(k) is assumed i.e. n = k.

ie.P(k):12+23+34+....+k (kt1)= M;_(fﬁ is assumed.
I Step :

To prove that P(k + 1).

i.e. to prove that

12423434+ ..+ (kt1) (k+2)= & (k;Z)(k 3

To prove this result, add (k +1) (k+2) to both sides of P(k).

k (k+1)(k+2)
3

ie. 12+23+34+ . +k(kt1)+(k+1) (k+2) = +(k +1) (k +2).

=(k+l)(k+2)[—k3+—3]

(k+1) (k+2)(k+3)

ie. 1.2 +23+3.4+ ..+ (k+]) (k+2) = :

i.e. P(k + 1) is true.

1V Step :
By Principle of Mathematical Induction, P(n) is true for all positive integers ‘n’.
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6. Prove that

11 1 n
—t ==t — + ..+ = .
13 35 5.7 Qn-12n+1) 2n+1

Let the given proposition be denoted by P(n).

IStep :

13 @2xD+1 3

= - = —;— is true, i.e. P(1) is true.

1
3

1I Step :
Let P(k) be assumed.

i.e.P(k):i+—+L+ 1

1 o = is assumed.
1.3 35 5.7 Rk-DRk+1) 2k+1

Il Step : To prove P(k+1)
i.e. to prove that

1 1 1 k+1 k+1
—_—t — +—— + ...+ = = .
1.3 35 5.7 Rek+D2k+3) 2k+D)+1 2k +3

To prove this, add : to both sides of P(k) . We get
2k + DN(2k+ 3)

+L+L+....+ ! + 1 __k + 1
1.3 35 57 2k -DRk+1)  (Rk+1)(2k+3) 2k+1  (2k +1) (2k+3)

k(2k +3) +1
(2k +1)(2k +3)

2k +3k +1
k+1)(2k +3)

Qk+1) (k+1) _ k+1
Qk +1) 2k +3) 2k +3

1 1 k+1

ie. — + —

+ ot = -
1.3 35 57 QRk+DRk+3) 2k+3
i.e. P(k + 1) is proved.
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1V Step :

By Principle of Mathematical Induction, P(n) is true for all natural numbers ‘n’.

Exercises :

1. Prove by induction
i) 10" + 3.4™% + 5 is divisible by 9.
ii)  n(n+l) (n+2) is divisible by 3.

iii) 3> "
2. Prove the following by mathematical induction.
i) 1+2434+ 4p=ntntD
i) 12e2taate e MOHDCRED
7 _

i) 1P+2°43%+. . +n’=

iv) 1.3+24+35+.. . +n(n+2) = n(n+1) (2nﬁ¢)‘

6
2
v) 12+32+52+....upto‘n’ terms = fﬁr;_l)
: 1 1 1 1 n
vi) — +t—+ —+ .+ =—,
12 23 34 n(n+1) n+l
3. 123+23.6+349+....upto nterms

_n(nl) (n+2) Bn+1)
2 :

Hint : The n™ term is n(n +1) . 3n.
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LOGARITHMS
Introduction

Logarithms were very useful for the purposes of calculations when we had not
heard of calculator or computer.
We know that addition and subtraction are much easier when compared to
multiplication and division.
Logarithms convert multiplication and division to aadition and subtraction.
Consider the equation a* = b where a and b are real numbers.
We know that a* is defined whenever ‘a’ is positive, in which case a* is also
positive.
However, when a = 1, the equation a* = b is meaningless unless b = 1.
When a =1, b =1, the equation a* = b becomes the identity (i.e. 1 = 1).
The solution of a* = b exists when a > 0 and b > 0. Then the unique
solution of a* = b is called the logarithm of ‘b’ to the base ‘a’ and is
written as X = log, b.
a*=b < x=log,b.
a* = b is called the Index form.
X = log,b is called the logarithmic form.
We must be able to write immediately from Index form to logarithmic form
and vice versa.
Examples :
. 2'=16logl6=4
2. 3¥=27olog27 =3
42=16 < logs16 =2
4. logs25 =2 ¢ 57 =25

(V3 )

5. log s32=10(V2)°=3222°=32

6. a"=1<log,l =0 (Herea>0anda=1)

7. a'l=aco log,a=1

8. logsb=b< a®=b.

=0 = log, 0=~-o -

o]
o+ ]
8
[
B
il
1}
(o)
U
Q
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In all the above examples, we observe that the base remains as base both in index
and logarithmic forms. For example, in (1), 2 is called the base in both the forms.

Similarly in other examples,
We shall observe some more examples.

10' =10 & logy 10=1
102 =100 < log;p 100 =2
10° = 1000 < log;o 1000 = 3, etc.

Similarly,
=1 o log,, {—l—j =-1
10 10
107 = # < log,, LT&TJ =-2 ie. log, (—l%) =-2
103=L < log {L\ =-3ie. log {—1—\ =-3
10° . L103J '°L1000 J

In these examples, we observe logarithm of numbers greater than one is

positive and logarithm of numbers lying between 0 and 1 is negative.

By knowing these facts, we will be able to draw the graph of the function

y = log, X.

Laws of Logarithms

Rulel: log, mn = log, m + log, n

Here the product mn is converted to sum

Eg. Log, 2a=logz 2 +logz n

Loga (5§ x3)=1log, 5 +log,3

Similarly, log. a* + log. b® + log, ¢ = log, (a® b ¢)

Note log, (m +n) # log. m + log, n.
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Rule2: log, [ﬁj = logam—logan
n

(5) _
Eg. log,, | =| =logio5 —logio3
\3/

#
Similarly, logio a — logio b = logyo | %)

\
Combining Rule (1) and (2), we get

mn
log, (—] =log, m + log, n - log, p - log, g.
Pq

4
Eg. log, 2_all] = log. 2 + logy a + log. b — log.3 — logs x — log. y.
\ 3xy
() ¥
Note : log m # log|ﬂ .
logn \n)

Rule 3 : |log, (m™) =n log, m

Eg. 1Hogta)=51oge=
2. log, (@®) =5 loga a

=5
3. logyo \/i = logyo 22 =, logio2

Note: (log, m)" # n log, m.

I
Rule 4 : (Change of Base) log,|m = gg”—’?—.
log, a
log, 5
Eg. Logs 5 = fln
log, 3
— log,m |

Note : log, m = = .
log, a log, a

o logam = .
log,, a
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|
Eg. 1i)logw5= .
& ) logio log; 10
ii) log; 10=
1 logr log,o 7
Examples :
1. Find the values of i
) log ;532 ii) logo. '°
Putting it in the index form Let x = logo ] W
(V2 y'=32 = (0.1*=10
X
1
=2 =2’ = {10 =10
X -1y
= 5= 5 = ((107)'=10
=>x=10 = 10*=10'
>x=1=x=-1
i) log 625
log S

When the base is not mentioned, we may take any common base say ‘a’. It may be

* mentioned or not.

log 625 log, (5') _4log, 5 _
log 5 log, log, §

Note: log, 5% is of the form log, m" = n log, m.

iv) logsﬁ 5832
Letx =log, 5832

By definition

(3+/2 y*=5832 [Index form]
Squaring both sides
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(9 x 2)* = (5832)
18x — (93 ) 23)2

=(9 x 2)°
= 18" =18°
=>x=6
2. Find the value of x if
i) logio (x=9)=2 ii) logxl6=—§-
Putting it in the index form Writing it in the index form,
X-9=10° 26=x*"
= x=9+200 = 4 =x"")
= x=109 =4=x"

=x"P=4

=x=4=x=1024

i) logs[logs (Jx+35 ++/x)=0
Lety=logs (Jfx +5 +/x)

Problem becomes

logry=0
Writing it in the index form,
y=7
= y=1

= logs (fx +5 +\/;)=l
Let Jx+5 ++/x =z

s logsz=1

Writing, in the index form,
z=5

= 1/x +5 + \/; =35

= \/x +5 =5-Jx

Squaring both sides,

(Jx+5)=(5- Jx)?
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=  x+5=25+x-10 vx.
= 10 4x =20

= Jx =2
Squaring both sides

=>x=4

iv) log«9=2
Writing in the index form
9 =x’

= x =3, x#-3 (cannot be negative).

3, Prove that

i) log i+logz+log-z-=0
y z x
Each term on LHS is of the form log 2 which is logm - log n.
n

~ LHS=log X +log £ +log Z
y z x

= (log x — log y) + (log y — log z) + (log z - log x)

=0=RHS
16 25 32

i) 2log L2 41log 2 -log 22 =¢
) 815 T8, TRy

Consider each term separately.
log % = log 16 — log 15 (using Rule 2).

= log(2*) - [ log (5 x 3)] [Writing each term as powers of lowest integer or product of

lowest integers possible).

log :—g =4log2-[log$5 +log3] [Using Rule 3 and 1 respectively]

.‘.2log:—g-=810g2—210g5—2log3 0))

Consider the 2™ term namely
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25
log = =log25-log24
0og 24 g g

= log(5%) - log (8 x 3)

=2log5-[log8 +log 3]
=2 log 5 - [log 2° + log 3]
=2log5-[3log2+log3]

log— = 2log5-3log2-1log3 : (2)

Consider the 3™ term

i.e. log ;—3 = log 32 — log 27 [using log n log m - log n]
n

= log(2’) — log; 3
]og¥=510g2-3]og3 3)
37
16 25 32
LHS =21 ~—+lo — -log —
o8 15 8 24 s 27

Using 1, 2 and 3, we get
LHS=(8log2-2log5-2log3)+(2log5~3log2-log3)-(5log2-3log3)
=0 =RHS

6 81 196
2lo —+—lo — +log — =log 12.
i) 8777087 T8 7 T8

LHS =2[log 6 —log 7] + % [log 81 — log 16] + [log 196 — log 27]
=2 [log (2x3) - log 7] + %[log34 — loga4] + [log 14? - log 33] -

=2(log2 +log3-log7] + %[410g3—4[og2]+[2 log 14 -3 log 3]

=2log2+2log3-2log7+2log3-2log2+2logl4-3log3
=log3-2log7+2logl4

log3-2log7+2[log (2 x7)]
=log3-2log7+2[log2+log7]
=log3-2log7+2log2+2log7
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=2log2 +log3
=log,2 + log 3 = log [2%'x 3] =log (4 x3) =log 12 = RHS

4. i) Show that log, 4, logs 7, log, 5 =2
LHS =log; 4 x logs 7 x logz 5
Using the Rule 4 i.e. changing the base, we get

_ log, 4 y log, 7 y log, 5

LHS
log,7 log,$5 log, 2
- log, 4 . [After cancellation]
log, 2
_ log, 22
log, 2
- 2log,2 [Using Rule 3]
log, 2
=2
ii) If x=log; 27, y = logs 7 and z = log;5, prove that xyz=13
y = logs 7
x=logy 27 > y= bg—"7
: log, S
- 10827 e a)  z=log 5
log, 7
3
_ log,3 g log, 5
log, 7 _ log,3.
o x=21%3 Ry
log, 7
LHS =xyz

_3log,3 log,7 . log, S
log, 7 log, 5 log, 3

On cancelling
=3 =RHS

iii) Show that logs; 4 x logs5 x logs 7 x logz 8 x logs9 =2
LHS = logs 4 x logs5 x logs6 x logs7 x log,8 x logs9

122



Using Rule 4, we get,

LHS = log, 4 y log, 5 y log, 6 y log, 7 y log, 8 N log, 9
log,3 log,4 log,5 log,6 log,7 log,8

_ log,9

[After canceling]
log,3

_ log, 3%)
log, 3

_ 2log,3
log, 3

=2=RHS

Note : The common base ‘a’ need not be mentioned.

[Using Rule 3]

iv) Show that log, 2 x log, y = log, X x logay
LHS = log,x x logpy

log, x log, v . .
= 08X 6 [using Rule 4 and choosing ‘b’ as the common base

log, a log, b

because on RHS, we have log,, x].

_ log,x ~log,y
log, a ]

log, y

= logb X X
log, a

= logy X x loga y [Using Rule 4)
=RHS

5. Prove that

) 1 + ! =1 ifn=ab
log,n - log,n

LHS= L + !
log,n log,n

= log, a + log, b [Note using Under Rule 4]
= logns(ab) [Rule 1]
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iii)

= logap ab , because n = ab [using log, a = 1]
=1=RHS

logay x = — 280 ¥
1+log, a

LHS = loga, x
_ log, x

log,ab

_ log, x
log, a + log, b
_ log, x
log, a +1

log, x

= _—=— =RHS
1+ log,a

log; [logz { logs (logs27° } 1 =0
LHS = log; [log { logs (log:27°} ]

= log, [log: { logs (log:3’) }]
= log; [logz {logz (91og33)} ] [Rule 3]

= log, [log: { logs(9) }] [logaa=1]

= log, [log, { logs3’ } ]

=log; [log { 2 log; 3} ] [Rule 3]
=log; [logs {2} ] [+ log33=1]
= log; (logz 2)

=logy 1[ vlog22=1]

=0 [~ logs 1=0]
=RHS

If x = log. ab, y = log, bc, z = logy, ca
Prove that

S SN I
l+x I+y 1+2z

We shall calculate each term separately.
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7.

R ST v

Consider

1 1 _ 1
l+x 1+log.ab log.c+log, a+log. b

[+ loge c = | and using Rule 1]

| B 1
log, (cab) log,_(abc)

= l0gabe €

Similarly, L loganc @ and LI logabe b
l+y l+z

LHs= L+ 1 4!

I +x l+y 1l +2z

= logabc € + 10Zabc @ + 10gane b
= |0gabc (cab)

= logabc (abc)
=1=RHS

Ifa”® + b +¢'? =0, show that

log Lfte =% (loga+logb+logc)
Leta®?=A. b =B.c®=C
The data becomes A+B+C=0
A’+B?+C*=3ABC
- (a”’)’ + (bll3)3 + (cm)a =333 !B I3

a+b+c

= (ab 113
3 (abc)

Taking logarithm on both sides,

log {L’fﬁj = log (abc)'?

log (abc) [Rule 3]

[loga+logb+logc] [Corollary of Rule 1]

(loga+logb +logc)
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8. If a% + b = 7ab, show that log aT+b = % (log a + log b)
Data is aZ + b = 7ab

Adding 2ab to both sides to make LHS a perfect square

a’ + b’ +2ab = 7ab + 2ab

=  (a+b)*=9ab

2
2
= (a-;—bj =ab

Taking logarithm on both sides,

/ 2
log La ; b] = log ab

a+b

= 2log[ ) =loga+logb [Rule3and 1]

a+b

2
= log [ ) = % (log a + log b) is the required result.

Note: Starting with data, we get the required result. Also note that

log (a+b)#loga+logb

9, If a% + b% = ¢, show that : 41 =2
logc+b a logc—b a

1 1

LHS = +
log.,,a log._,a

=log, (c +b) +log, (¢ - b) [Using note under Rule 4]

=log, [(c+b)(c=b)]  [Rulel]
= log, (¢ - b)

= log, a° [Using data a? + b® = ¢?]
=2log,a [Rule 3]
=2=RHS
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10.

11,

U4 Uy

1 NLyy,
P

If f(x) = log ll bl , prove that 2f(x) = f 2 " J

- I +x°
By data f(x) = log L+x
1 ~-x
. 2x .
Replacing x by — on both sides, we get
1+ x*
i 2x
” 1+ -
2x 1+ x
F —| = log
I+ x [— 2x :
l+x°
- l +x2' +2x [Cancelling 1 + X, after taking LCM to Nr and Dr)
1 +x" - 2x | :
= log (I+x)"
(1-x)°
1+ x]
=log
J-x
fl 2| =210g 112 [Rule 3]
l + x° l-x
= 2 f(x) [By data]
4 N
2x . .
2f(x) =f | ———| is the required result.

/

If a®~. b =2a"" . b*™, show that x log 2. log a.
a

By data a>* . b>* = a>** . b**

Taking logarithm on both sides, we get

log [ 2™ b™] = log [2*™. b*]

log a** + log b*™ = log a*** + log b** [Rule 1]

(3-x) loga+5xlogb=(5+x) loga+3xlogb [Rule 3]
Jloga—-xloga+Sxlogb=5loga+xloga+3xlogb
2x logb=2xloga+2loga
xlogb—-xloga=loga

. X[logb-loga]=loga
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= X [log 2] =log a is the required result.
a

12. Solve for x :

i) (logio x )* - loglo x—6=0

Let logio x = a. .. the equation becomes,
a’-a-6=0

= (@a-3)(@+2)=0

= a=3ora=-2

) logiox=3 orlogiox=-2

= x=10° orx=107

= x=1000orx = %6
x=0.01

ii) logo(x +5) +logo (x-2)=3

= logaf (x+5)(x—-2)]=3 [Rule 1]
= (x+5)(x-2)=2° [Writing in the index form]
X +3x-10=8

=
= xX+32-18=0
= x+6)(x-3)=0
= x=-6 or3

x # -6 because (x +5) and (x-2) can not be negativé. s x =3 is the required
solution.

Note : Logarithm of a negative number is not defined.

i) logy x +logs x* +logs X’ =6

=  logax+2logsx+3loggx=6 [Rule 3]
log x log x log x

= —— + 2 +3 = Rule 4
log 2 log 4 log 8 [Rule 4]

logx+2 logx+310gx

=6
log 2 log 2 log 2
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I
v

uu ¥

log x N log x N log x
log 2 log2 log?2

=6

3 log x -6
log 2
log x _
log 2
logx=2log?2
log x = log 2° (Rule 3)
logx=log4
x =4 is the required solution.
slogx _ 3 logx -1 glogx*l _ glogx=1 ‘the base is 10.

Let 5'8% =4, 38X =1,
Given problem can be written first as
p

Slogx _ 3|ng ) 3-| = 3Iog X . 3 _Slogx . 5-1

- BB

[Indices]

= 2 =log x [Since base is the same on both sides]
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=  logox=2 [givenbaseis 10]
x = 10? [Index form]

x =100 is the required solution

Exercises

1.

Find the values of
i) logs 64 ii) logo 100 iii)

Find the value of x if

D log 16=2 iy 108, 64 _
' 5 log, 8

Prove that

. 2 1 1
1 — log8-—1log —-3log2=0
) 3 g8-- log o g

s 81 3 2 3
log —-2log = + 3log — +log = =0
ii) og 2 og2 og3 og4

Prove that
i) logp x x logab=1
log; 64 _
log, 8
iii) logs 2 + logg 2- logi62 = %

iv) Log1p1600 =2 +4 log)p 2

log, 2 _3
log,, 16 log, 256 16

P P =
logs24  log,, 24 log, 24

Show that

Ifx=1+log,bc, y=1+logyca, z=1+ log.ab
Show that xyz = xy + yz + zx.
If loga m = p and log, m = q, prove that

p—q _logh-loga
p+q logb+loga

for every permissible base.
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Solve for x :
i) 9*-5x3*+4=0
i) logy 3 +logs 9+ logs 729=9

iii) logs x+logy x=6
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PERMUTATIONS AND COMBINATIONS

In our daily life, we come across some couating problems. For example, consider the
number of circles in the following figure.

oJejelclolele
O OO O0OO0
O OOO00O00
OO0 QOO OO

By counting one by one, we can say the total number of circles in the above figure is 28.

We observe that there are four rows and in each row there are soven circles. So, by multiplying
the number of rows by number of circles in each row, we get the total number of circles as 28.
Therefore, we can find the total mumber of objects without actually counting. Here we discuss

some of such techniques for determining the total oumber of objects without direct emmneration.

Fundamental Principle of Counting : If some procedure can be performed in m

different ways and another procedure can be performed in n ways, then the number of ways the two

procedures can be performed in the order is m n ways.

Example 1  Suppose a car mumber plate contains two distinct letters. How many different car

number plates can be printed with letters ?

Solation : The first letter can be printed in 26 different ways, the second letter in 25 different ways

(since the letter printed first cannot be chosen for the sccond letter). Hence by using above

findamental principle of counting, the different number plates is equal to 26 x 25 i.e. 650.

Example 2: Suppose a car number plate contains two distinct letters followed by three digits

with the first digit not zero. How many different car oumber plates can be printed ?

Solution:  The first letter can be printed in 26 different ways, the second letter in 25 different

ways, the first digit in 9 ways and each of the other two digits in 10 ways. Hence,
26.25.9.10.10 = 585000

different plates can be printed.
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From the example 2, we observe that the fundamental principle of counting can be extended
to any number of procedures as follows :

If some procedure can be performed in n, different ways, and if, following the procedure,
a second procedure can be performed in n, different ways, and if, following this second procedure,
a third procedure can be performed in n, different ways, and so forth; then the number of ways the
procedures can be performed in order indicated is the product n,. n;, n,

The product 1.2.3....n of the positive integers from 1 to n is denoted by the symbol /n or
n! (read “no factorial” ).

Soin=123..n
and therefore{2 = 1.2=2\3=123=6andsoon.
It is also convenient to definelQ = 1.
Example 3: In bow many ways can 3 books denoted by A, B and C, be arranged in order on a
shelf ?

Sofution 1 : One way to solve this problem is to list the possible arrangements and count them as
shown in the following tree diagram.
Book in first place B Book in second place Book in third place  Possible

arrangement
A = B c ABC
/ o—— ¢ B ACB
ORIGIN O B A c BAC
\ C X BCA
Co—14 B CAB
B A CBA

The mnitial pomt, or origin, is denoted by O. If we follow all possible branches from O to the right
hand edge of the tree, we get the six possible arrangements listed in the column on the extreme
right Note that the tree diagram takes order into account. Thus ABC and ACB count as different
arrangements of the 3 books because they are in differemt orders. A change in order yields a
different arrangement.
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Solution 2: A more convenient solution to the example 3 is as follows :
The problem requires us to fill 3 places, which can be represented as

In the first space, we can put A or B or C. Hence the first space can be filled in three ways :

3

For each of the 3 ways of filling the first space, we have 2 ways of filling the second space,
because either of the 2 remaining books can be used :

3 (2

Thus we can fill the first 2 spaces in 3x2 or 6 ways. For cach of the 6 ways of filling the first 2
spaces, we have one way of filling the third place, because only one book remains. Therefore, we
can fill the 3 spaces in 6x1 or 6 ways. We can indicate the mumber of ways of filling each of the
3 spaces thus

Now we can obtain the total number of arrangements by multiplication.

3x2x1 = 6
In the above example, cach arrangement is different from the other and we call each
arrangement as a permutation of these three books.
An arrangement of a set of n objects in a given order is called a permutation of the objects.
An arrangement of any r < n of these objects in a given order is called an r-permutation or a
permutation of the n objects taken r at a time.

The number of permutations of n objects taken r at a time will be denoted by P or P(n,r).

Example 4 : Find the number of "three letter words® with distinct letters that can be formed from
the five letters S, T, U, D, Y.
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Solution : Let the general three letier word be represented by three boxes.
) ]

J —
Now the first letter can be chosen in 5 different ways; following this, the second letter can be

chosen in 4 different ways, and following this, the last letter can be chosen in 3 different ways.
Write cach number in the appropriate box as follows :

EARRARED

Thus by fundamental principle of counting, these are 5.4.3 = 60 possible three letter words without
repetitions from the five lctters or there are 60 permutations of 5 objects taken 3 at a time. That
is °P, = 60.

Now consider the case of permutations of any r (s n) objects of n objects i.e. r-
permutation.

The first object in an r-permutation of n objects can be chosen in n different ways ;
following this, the second object in the permutation can be chosen in o-1 ways; and following this,
the third object in the permutation can be chosen in n-2 ways. Continuing in this manner, we have
that the rth (last) object in the r-permutation can be chosen in o~ (r-1) = n - r + | ways. Thus,

P,=a(n 1) (m —2) . (n —r +1) =

From the above formula we can see that

po= L o

* \n-o0
A :\"L"‘:\‘i“z,l
PoEE X

That is, there are| n permutations of n objects taken all at a time.
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Permutations with Repetitions : Frequently we want 1o know the number of
permutations of objects in which some objects are alike as in the following example.
Example 5: In how many ways can the letters of the word asscss be arranged, all at a time ?
Solution : Let the unknown total number of permutations of the letters of the word assess be x.
Now consider any one of these permutations; for example,

ssssae .
In this arrangement, if we replace the four s’ sby s, s, s, s, the original arrangement gives rise
tol 4 arrangements by permitting the four s’s with subscripts (now different ) without disturbing
the other letters. In the same way, each of the original x permutations gives rise to {4 permutations.
Thus the total number of permutations is x4, Since the 6 letters

Si S, S, U, 2, €
are now all different, x4 is the number of permutations of 6 different letters, taken all together.
Therefore, xl4=|6 orx=16/14_

We can at once generalize this reasoning to show that the number of permutations of a set
of n objects, taken all together, where r of the objects are alike and the rest are different, is
la /e

Repeated applications of this principle yield the following result.

Given a set of n objects having n, objects alike of one kind, and n, objects alike of another
kind, and n, objects alike of a third kind, and so on fro k kinds of objects; then the number of
permutations of n objects, taken all together, is

wheren= n,+ n; +..+ n,

Example 6 : How many distinct permutations can be formed from all the letters of the word
mathematics ?
Solution : There are 11 letters of which 2 are m, 2 arc a, 2 are t and hence by using the above

. . 11
result, the ber of utations = ~——— = 498960.
t, the required number of permutations NTED

136



Clrcular Permutations : So far we were considering the arrangements of objects in
aline. Suppose we consider arrangements of objects i the form of a circle, instead of a line. In
such a case, the permutations are called circular permutations whereas in the earlier case we call
them as linear permutations.

Suppose n objects are arranged in a circular way as shown in the following figure.
Each circular permutation of this kind corresponds to n linear permutations depending on where
(out of the n posrtions) we start. Since there are exactly /n linear permutations, there are exactly

\
& —\n -1 circular permutations. Hence we state the following result. S

n )

The number of circular permutations of n differnt objects is {n-1. L
S
Example 7: In how many ways can 10 students be arranged in a circle ?
Solution : The 10 students can be arranged ina circle in {10-1 = 9_ways (by using the above
result).

Example 8: Three boys and three girls are to be seated around a circular table. Among them,
the boy X does not want any girl neighbour the girl Y does not want any boy neighbour. How many
such arrangements are possible ?

Solution : Since boy X does not want any girl neighbour, all the boys should sit side by side and
boy X should be in the middle. Similarly all the girls also should sit side by side and the girl Y
should be in the middle. Therefore, this is possible one way. But the remaining two boys can
interchange thetr positions without disturbing the middle (boy X) boy. Similarty the two remaining
girls can also interchange thetr seats. Hence the total number of possible arrangements with the
specified restrictions is

2x 2 =4 ways.

Combinations

Consider the following example :
Example : In how many ways can a reader select 3 books , without regard to their order, from a
set of 4 different books denoted by A, B, Cand D ?
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Wehaveseenthaxthenmnberofpexmmaﬁonsoﬂdiﬁ'mhtbooks,takcnSaxatime,is

‘P,=4x3x2=24
In these permutations, or arrangements, the order of the books counts. An entirely different
problem arises if we wish 1o make a selection of 3 books from A, B, C and D without taking order
into account. There are only 4 possible selections.

ABC, ABD, ACD, BCD
For example, we do not list ACB because the selection ACB ‘isthc same sclection as ABC, since
order does not count. Each selection in the above list is called a combination of 4 books taken 3
at a time. The total number of such combinations is denoted by “C, or (;) each of which
is read “number of combinations of 4 things taken 3 at a time”.

A combination of n objects taken r at a time is any subsct of r objects.
The number of combinations of n objects taken r at a time will be denoted by *C, or C(n,r) or

n
"
Now let us find the number of combinations of a set of n different objects, taken r at a time.

Each combination of r objects can be arranged in| 1 ways, an? t*hcrcfore‘,‘ gives rise to[1
permutotions Which
permutations. Hence,\ r permutation of each of the *C, combinations yield *C, x|z ks the total
A
number of permutations, since each permutation of r objects arises from some combination of r

objects. Therefore, .

» —ap = _\n
c ='p =

'XLL r \n i 4

or, *C = o
AT AT N -
Thus, the number of combinations of a set of n different objects, taken r at a time is

2o =t

" \r\n—r

Example 9: In how many ways can 6 sportsmen be selected from a group of 10 ?

Solution : The required pumberis 10¢, = W& =10 _,,,
. ¢ \sltos \sla
Identities :

RN

\» —r
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In + 1 - n ] | m

N 4 r— 1, r

ix)  The total number of combinations of (p + q) things taken any number at a time when p
things are alike of one kind and q things are alike of a second kindis(p+1))q+1)- 1.

Exercises

1. How many pcrmuﬁtions are there of the letters in the word a) GREAT b) GREET.

2. How many numbers greater than 1000, but not greater than 4000 can be formed with the
digits 0,1,2,3,4 repetition of digits being allowed ?

i Find the total number of 9 digit numbers which have all different digits

4, Eight chairs are numbered 1 to 8. Two women and three men wish to occupy one chair
cach First the women choose the chairs from amongst the chairs marked 1 to 4; and the men select
the chairs from amongst the remaining. Find the number of possible arrangements.

5. There are six students A, B, C, D, E, F. In how many ways can a committee of four be
formed so as to always include C but exclude D ?

6. Show that the number of diagonals of a polygon of n sides is "—(Lz;g—)—

7. Find the number of ways in which 5 identical balls can be distributed among 10 identical
boxes, if not more than one ball can go into a box.
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8. Five balls of different colours are to be placed in three boxes of different sizes. Each box
can hold all five balils. In how many different ways can we place the balls so that no box remains
empty ?

9. Six teachers and 6 students have to sit around a circular table in such a way that there is
a teacher in between any two boys. In how many ways this can be done ?

10. If*c, +*c,,, =""c, findx.

11.  The letters of the word ‘'TOSS' are penmuted in all possible ways and the word thus
formed are arranged as in a dictiopary. What is the rank of the word 'TOSS' ?

12. A man has four sons and six schools within his reach. Find the number of ways he can send
his sons to school if no two of his sons are to read in the same school.

13.  The polygon has 35 diagonals. Find the number of its sides.

14.  There are 12 points in a plane out of which 7 are in a straight line. Find the number of
triangles which can be formed with vertices of these points.

15.  If 3narticles can be divided into three equal groups in 280 ways, then what is the value
ofn?

16.  The number of straight lines that can be formed from 10 points in a plane of which 4 lie on
a line is

17.  The sides AB, BC and CA of a triangle ABC have 3, 4 and § interior points respectively.
Find the number of triangles that can be connected using three interior points as vertices.

18.  How many numbers are there between 100 and 1000 such that 7 is in the unit place ?
At least one of their digits is 7 ? Exactly one of their digits as 7 ?

Answers

120, 60

375

3265920

4P,.4P,=288

0 0 N A WD
-

L d
-0
e
S+

—
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12. 6P,

13. 10
14. 185
15. 3
16. 40

17. 12C,-3C,-4C,-5C,=205
18. 90,252,225
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Problems in Permutations and Combinations

Problem 1. Write down all the permutations of xyz.

XyZ, XZy, YXZ, YZX, ZXY, ZyX.

Problem 2. How many permutations are there of the letters pqrs?

41=1020304=24

Problem 3. a) How many different arrangements are there of the letters of the
word numbers? (Ans. 7! = 5,040)

b) How many of those arrangements have b as the first letter?
Set b as the first letter, and permute the remaining 6. Therefore, there are 6!
such arrangements.

¢) How many have b as the last letter -- or in any specified position?
The same. 6!.

d) How many will have n, u, and m together?

Begin by permuting the 5 things -- num, b, e, r, s. They will have 5!
permutations. But in each one of them, there are 3! rearrangements of num.
Consequently, the total number of arrangements in which n, u, and m are
together, is 3!¢ 5! =6 120 = 720.

Problem 4. a) How many different arrangements (permutations) are there of the
digits 012347

5!=120
b) How many 5-digit numbers can you make of those digits, in which the first

digit is not 0?
Since 0 cannot be first, remove it. Then there will be 4 ways to choose the first

digit. Now replace 0. It will now be one of 4 remaining digits. Therefore,
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there will be 4 ways to fill the second spot. 3 ways to fill the third, and so on.
The total number of S-digit numbers. then. is 4¢ 4! = 4« 24 = 96.

¢) How many 5-digit odd numbers can you make?
Again, 0 cannot be first, so remove it. Since the number must be odd. it must
end in either 1 or 3. Place 1. then. in the last position. _ 1. Therefore,
for the first position, we may choose either 2. 3. or 4. so that there are 3 ways
to choose the first digit. Now replace 0. Hence. there will be 3 ways to
choose the second position, 2 ways to choose the third. and 1 way to choose
the fourth. Therefore. the total number of odd numbers that end in 1. is
3¢ 3¢ 2+ 1 = 18. The same analysis holds if we place 3 in the last position. so
that the total number of odd numbers is 2+ 18 = 36.

Problem 5.
a) If the five letters a. b, c. d. e are put into a hat. in how many different ways
could you draw one out? 5
b) When one of them has been drawn, in how many ways could you draw a
second? 4
¢) Therefore, in how many ways could you draw two letters? 54 =20
This number is denoted by 5P2.
d) What is the meaning of the symbol 5P3?

The number of permutations of 5 different things taken 3 at a time.

e) Evaluate SP3. 5¢4+3 =60
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Problem 6. Evaluate

1.

a) 6P3 =120 b) 10P2 =90 c) 7P5 =2520
Problem 6. Express with factorials.

a) nPk n!

(n-k)!

b) 12P7 121 5!

c) 8pP2 8! 6!

d) mPO m! m!

Exercises 1:

7 people take part in a panel discussion. Each person is to shake hands with all
of the other participants at the beginning of the discussion. How many
handshakes take place? List them all. (Ans. 28).

8 points are arranged in a circle and each point is joined to each other point by
a line. How many lines are needed? (Ans. 28).

Linda lives in a neighborhood where the streets either go North and South or
East and West, forming rectangular blocks. All the streets go all the way
through the neighborhood. Linda lives 3 blocks South and 4 blocks West of
her school. She enjoys a little diversity in her life, and so she tries to take a
different route to school each day. How many different routes can she take
which involve moving only North or East?

A basketball team has 11 players on its roster. Only 5 players can be on the
court at one time. How many different groups of 5 players can the team put on

the floor? (C(11,,5) )
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10.

11.

14.

In problem 2, assume that there is no point inside the circle where three of the
line meet. How many points of intersection are there inside the circle?

The triangular numbers are obtained by adding up consecutive whole numbers
starting with one. List the first 10 triangular numbers.

A college has 10 basketball players. A S-member team and a captain will be
selected out of these 10 players. How many different selections can be made?
(Ans.6x C(10.6) )

Badri has 9 pairs of dark Blue socks and 9 pairs of Black socks. He keeps
them all in a same bag. If he picks out three socks at random what is the
probability he will get a matching pair? ( Ans. 1)

How many words of 4 consonants and 3 vowels can be made from 12
consonants and 4 vowels. if all the letters are different?

(Ans.C(12. 4) x C4.3). )

If the letters of the word CHASM are rearranged to form S letter words such
that none of the word repeat and the results arranged in ascending order as in a
dictionary what is the rank of the word CHASM? (Ans. 32)

How many four letter distinct initials can be formed using the alphabets of

English language such that the last of the four words is always a consonant?

. When four fair dice are rolled simultaneously. in how many outcomes will at

least one of the dice show 3?7 (Ans. 546 )

. In how many ways can the letters of the word EDUCATION be rearranged so

that the relative position of the vowels and consonants remain the same as in

the word EDUCATION? (Ans. 2880 )

How many ways can 10 letters be posted in 5 post boxes, if each of the post

boxes can take more than 10 letters? (Ans. 5')
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15.

16.

17.

18.

19.

20.

21.

22.

23.

How many numbers are there between 100 and 1000 such that at least one of

their digits is 6? (Ans. 217)

A team of 8 students goes on an excursion, in two cars, of which one can seat

5 and the other only 4. In how many ways can they travel? (Ans, C(12,4) )

There are 12 yes or no questions. How many ways can these be answered?
(Ans. 2'%)
How many words can be formed by re-arranging the letters of the word

ASCENT such that A and T occupy the first and last position respectively?

(Ans. 24)

Four dice are rolled simultaneously. What is the number of possible outcomes

in which at least one of the die shows 6?7 (Ans. 546 )

How many alphabets need to be there in a language if one were to make 1

million distinct 3 digit initials using the alphabets of the language? (Ans. 13)

In how many ways can the letters of the word MANAGEMENT be rearranged

so that the two As do not appear together? (9! / 2)

There are 5 Rock songs, 6 carnatic songs and 3 Hindi pop songs. How many

different albums can be formed using the above repertoire if the albums should

contain at least 1 Rock song and 1 Carnatic song? (Ans. %(312 -1 )

What is the value of 1x1! + 2x2! + 3x3! + ............ +nxn!, where n! means n

factorial or n(n-1)(n-2)...1 ?
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24.

25.

26.

27.

28.

29.

31.

32.

33.

How many number of times will the digit '7' be written when listing the
integers from 1 to 1000? (Ans. 251)

What do the fractions in the numerator and denominator mean? Where does
the formula come from?

A bin of computer disks contains a supply of disks from four different

manufacturers. In how many ways can you choose 6 disks from the bin?

(Ans. 6%)

How many images would be possible on a hypothetical TV screen.

Find a formula for the number of combinations of the letters in a name,
however many times one letter appears in that name.

A club has 8 male and 8 female members and is choosing a committee of 6
members, 3 male and 3 female. How many different committees can be

chosen? (Ans. C(8.3) x C(8.3) )

. A multiple-choice test has 30 questions, cach with five choices. How many

answer keys are possible? (Ans. 5x (30)! )

If a polygon has 42 sides. how many diagonals does it have?

(Ans. C(42.2)-42 )

How many possible combinations can a person make with the letters a-z and
1-9 starting from | digit and ending up with up to 8 digits? Ans. 1)

There are seven dice. Each die has six faces. How many different

combinations are there of these seven dice? ( Ans. 6')

. How many phone numbers are there given the following restrictions on certain

digits of the number? i) the number should contain 7 digits ii) Last digit should

be 0. (Ans. 9x 10%)
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35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

How many squares are there in an 8 x 8 square? How many rectangles are
there?

What's the probability that a man can draw the numbers 2 and 7 from a hat
containing the numbers 1-8?

Why are Pascal's triangle and the binomial coefficients the same?

There's a connection between Pascal's Triangle and the Tower of Hanoi game
but [ can't remember what it is!

Is there a formula I can use to quickly get the number of possible
arrangements of five, six or seven different letters?

The letters 'CFOSU' are arranged in dictionary order. What is the rank of the
word 'FOCUS' in this order?

[s there a systematic way to come up with a schedule for a round robin
tournament for up to 32 teams, where each team plays every other team once?
What is the equation for the number of squares in a rectangle (like the
chessboard puzzle)?

How many ways are there to list the numbers one through ten so that no
number appears in its own position (i.e. 1 is not first in the list, 2 is not
second...)?

I have been looking for a recursive algorithm to find all possible derangements
of a set n. Find.

Is there a number that has only three prime divisors (3, 5, and 7) and that has a
total of 18 divisors?

How can I reduce the number of arrangements of the word ARRANGEMENT

by using the probability of an occurrence?
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47.

48.

49.

50.

51.

52.

54.

55.

56.

57.

58.

How many arrangements of six 0's, five 1's, and four 2's are there in which
i) the first O precedes the first 1? ii) the first 0 precedes the first 1, precedes the
first 27

In how many ways can the letters in UNUSUAL be arranged? For those
arrangements, how many have all 3 U's together?

In how many ways can the letters in MISSISSIPPI be arranged? Suppose the
2 P's must be separated?... and other such problems.

Six marbles are placed in one of three different boxes. What is the probability
that each box contains two marbles?

Lucy has four vases--blue. yellow. red. and purple. How many ways can she
arrange her vases in a row on a shelf?

You have 2t + | balls to put into 3 boxes. but the sum of the balls in 2 of the

boxes should be more then the balls in the other box...

. How many possible batting orders are there for a team of nine players?

How many different arrangements of 3 red and 3 blue beads on a bracelet are
there?

I am trying to figure out how many different groups 50 people can be
partitioned into.

[ am looking for the formula for the number of different groups we can split a
group of n different items into - order does not matter.

In a row of 20 seats, in how many ways can 3 blocks of consecutive seats with
5 seats in each block be selected? .

Janny wants to buy threc doughnuts. and there are five varieties to choose
from. She wants each doughnut to be a different variety. How many

combinations are there?
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59. a) A door can be opened only with a security code that consists of five

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

buttons: 1,2, 3,4, 5. A code consists of pressing any one button, or any
two, or any three, or any four, or all five.

How many possible codes are there? (You are to press all the buttons at once,
so the order doesn't matter.)

b) If, to open the door you must press three codes, then how many possible
ways are there to open the door?

Assume that the same code may be repeated.

How many ways can you arrange 7 different books, so that a specific book is
on the third place? \

In how many ways can you take 3 marbles out of a box with 15 different
marbles?

In a firm are 20 workmen and 10 employees. In how many ways can you have
a committee with 3 workmen and 2 employees?

In how many ways can you take 5 cards, with at least 2 aces, out of a game of
52 cards?

In how many ways can you split a group of 13 persons in 3 persons and
10 persons?

How many diagonals are there in a convex n-polygon?

How many numbers consisting of 3 figures, can you make with the figures
0,1,2,3,4?

How many subset are there in a set of 10 elements?

Calculate the term with x? in the expansion of x>+ 1/2x)"°

In how many ways can you arrange m identical stones into k piles so that each

pile has at least 1 stone in it.
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70.

71.

72.

By removing one stone from each pile, this is the number of ways you can
arrange m-k identical stones into k (possibly empty) piles. ..

Now. view the k piles as a numbered set .

Write on each stone the number of a chosen pile and order the stones
accordingly.

The numbered stones constitute a combination with repetition of k elements
(the numbers) choose m-k (the stones). This can be done in

(m-=1)!

i. C'(k.m-k) =C(m-1.m-k) = (m—k)! (k=1)!

How many strictly positive integer solutions ( X. y , z) are there,
such that x +y +z =100

This is the same problem as 71.

In how many ways can vou arrange 100 identical stones into 3 piles so that

each pile has at least 1 stone in it.

From previous problem the answer is C(99.97) = 4851 ways

20

. How many terms are contained in (a+ b +¢)™ .

All terms can be written as A.a” .b% ¢’

withp+q+r=20.

The number of terms is the number of solutions of the equation

b) p + q+r =20 with p, q. r as positive integer unknowns.

Now regard (p.q.r) as three ordered elements.

Point 20 times one of these elements. and order these elements in the same
order as the given elements.  This corresponds with one solutionofp+q+r
= 20 and it is a combination with repctition of 3 elements choose 20.

The number of terms is the number of such combinations

= C'(3.20) = C(22.20) = C(22.2) = 231

151



74. The term A.a'® b’ ¢ is contained in (a+b+ c)20 . Calculate A.

10 b3 7

b) he number of terms a ¢’ is the number of permutations with

repetition of the elements

¢) a,a,a,a,3,a,3,3,a,a,b,b,b,c,c,c,c.c.c,c

This number is

(20)!
10)!13! 7!
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Exercises 2:

Find the number of permutations of length 6 of 9, 5 of which are alike and the

rest all different. (Ans. 1044)

2n ‘n
Show that ( ) =2
2 2

T/

+ n” without simplification.

Set A has 3 elements and set B has 6 elements. What can be the minimum
number of elements in the set AU B? (Ans. 6)

Let A be a set of n distinct elements. Find the total number of distinct
functions from A to A. Also find how many of these functions are onto.

(Ans. n!)

In how many ways can a collection of 3n distinct objects be divided into n

(3n)!

n

)

triplets, each having 3 objects? (Ans. '
n!

Find the total number of ways in which six "+ and four *-* signs can be
arranged in a line so that no two *-* signs can occur together. (Ans. 35)

Find how many palindromes of length n can be formed from an alphabet of k
letters. (Ans. k" ifn=2m ; k"' if n=2m+1)

Prove that the number of ways to put r identical objects into n distinct boxes is

/

r+n-1\ o _ r-1
J. What if we further require that no box be empty. (Ans. )

\ ' \r—n/

A person has 3 sons. He owns 101 shares of a company. He wants to give

these to his sons so that no son should have more shares than the combined

103) (52"
BE
2) 2,

total of the other two. In how many ways can he do so? ( Ans. (
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10.

11.

12.

13.

14.

15.

Find the number of ways to seat m men and n women in a circle so that no two

N

women are seated together. (Ans. (m - l)!L’:J )

Find how many different circular bracelets can be formed using 6n blue and

3 red beads, where n is a positive integer. (Ans. 3n® +3n+1)

A city has m parallel roads going east —west and n parallel roads going
north-south. How many rectangles can be formed with their sides along these
roads? If the distance between every consecutive pair of parallel roads is the
same, how many shortest possible paths are there to go from one corner of the

CONS N
m /n

ZN2

A S

m+n-=2"
. l )

city to its diagonally opposite corner? ( Ans.

m-1
Suppose there are 20 players of different heights. These are to be divided into

two teams, A and B, of 10 players each so that for every i = 1,2, ....., 10. the

i-1 th tallest player in A will be taller than the i-th tallest player in B. In how

4 N

many ways can this be done? (Ans. —

11 )

10

AN 7/
Prove that for every positive integer n, the number of monotonically
increasing functions from the set {1,2, ....., n} to itself with the property that

/zn\

\n/

f(x) 2 x forall x =1, 2, ....,n equals the Catalan number L

n+l

How many diagonals does a convex n-gon have? If no three of them are
concurrent except possibly at a vertex, find the number of segments into which

these diagonals are decomposed by one another.

(Ans ln(n—3)' Z(n]+ln(n—3) )
2 T 4) 2

16.In a college Of 300 students, every student reads S news papers and every

newspaper is read by 60 students. Find the number of news papers. (Ans. 25 )
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17. In how many ways can the four walls of a room be painted with three colours
so that no two adjacent walls have the same colour? ( Ans. 18 )
18. The number of permutations of n different things. taken not more than r at a

time, when each thing may occur any number of times

., hn =1
n'=—-
n-1

19. Show that P(n . r) =n P(n-1. r-1) without using the formula. Hence deduce
the value of P(n.r).
20. Show that the number of permutations of n different things taken r at a time in
which s particular things always occur is P(n-s , r-s) P(r . s).
21. Show that from first principles P(n.r) = P(n-1,r) +r P(n-1,r-1).
(Hint: i) Consider those that contain a particular things and ii) Those that do
not contain the particular things. Sum these cases to get total.)
22. Findnand rif P(n . r) =7920.

23. Show that the number of permutations of n things taken all at a time when p of

'
them are all alike and the rest all different is i‘
p!

24. Prove that the number of circular permutations of n different things taken all at
a time around a circle is (n-1)!.

25. How many different arrangements can be made out of the letters in the
expression a’h’c*.

26. Nine articles are to be placed in nine boxes one in each box. Five of them are
too big for three of the boxes. Find the number of possible arrangements.
(Ans. 17280).

27. Find the sum of all the numbers formed by taking all the digits from {2,3,4.5}.

(Ans. 93324).
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28.

29.

30.

31.

32.

33.

34.

3s.

36.

37.

38.

Find the number of ways in which 6 boys and 4 girls are to sit for a dinner at a
round table so that no two girls are to sit together. (Ans. 5! P(6, 4).

Show that the product of r consecutive positive integers is divisible by r!.
Show that C(n, r) = d C(n-1,r-1).
r

Prove that C(n, r) = C(n, n-r).

Prove that C(n , r) = C(n-1 , r) + C(n-1 , r-1). This is known as Pascal’s
formula.

If C(n,r)=C(n, s) then prove that eitherr=sorr+s=n.

Show that C(n, r) is greatest if
. n .
i) r= 3 when n is even and

i) r= nT—l ornT+1 when n is odd.

Show that the number of circular permutations of n things taken r at a time is

P(n,r)
m—

Show that the number of ways in which (m + n) things can be divided into two

(m+n)!

different groups of m and n things respectively is -
m! n!

Show that the total number of combinations of (p + q) things taken any
number at a time when p things are alike of one kind and q things are alike of
asecondkindis(p+1)(q+1)-1.

m persons enter a theatre hall and are to sit in n seats placed in a row. In how
many ways can they be seated, so that no two persons are seated in adjacent

seats?
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40.

41.

42.

43.

44,

(Sol. The n seats can be separated as m occupied seats and n-m vacant seats.
Between any two of these n-m seats are created n —m + | spaces and in these
spaces, the m persons can be seated in P(n — m +1 ., m) ways. For this to

e . n+l
possible it is necessary thatm < n-m +1 ie. m< 5 )-

. If the letters of the word MOTHER is permuted among themselves and the

words so formed are arranged as in a dictionary. What is the rank of the word
MOTHER? (Ans. 309).
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