Manual of Evaluation Items in Physics for Pre-University Course of Karnataka State

> R Narayanan
> \&
> N.R. Nagaraja Rao
> Academic Coordinators

REGIONAL INSTITUTE OF EDUCATION

[National Council of Educational Research \& Training, New Delhi] Mysore 570006

March 2009

CONTENTS

Page
No.
Foreword i
Preface iii
Acknowledgement v
Resource Team vi
List of Participants vii
Concept of Evaluation 1
First PUC
Unit 1 : Introduction 22
Unit 2 : Dynamics 35
Unit 3 : Statics 82
Unit 4 : Fluid Mechanics 90
Unit 5 : Heat and Thermodynamics 105
Unit 6 : Oscillations - Waves and Sound 127
Unit 7 : Earth's Atmosphere and Astrophysics 146
Practicals 154
Second PUC
Unit 1 : Geometrical Optics 157
Unit 2 : Physical Optics 177
Unit 3 : Electrostatics 199
Unit 4 : Current Electricity 219
Unit 5 : Atomic Physics 255
Practicals 291

FOREWORD

Evaluation is an integral part of teaching learning process. If we wish to discover the truth about education system, we must look into its assessment procedure. The nature of assessment tends to influence students' approaches to learning. Assessment should promote search for meaning, understanding and self-directed learning. Any reform in education should also be accompanied by reform in question paper setting. Since 1990s educational reforms are seeking answers to two fundamental questions: (i) How well are students learning? (ii) How effectively are teachers teaching?

As the classroom paradigm shifts from teacher-centric to learnercentric, student assessments are undergoing changes. Students should be probed for understanding, reasoning and critical thinking rather than for rote memorization.

Creativity in the thought process of the students requires deeper understanding of the subject. Does the pattern of questions set in our schools really test the talent of the child? We have seen rising trend of the students scoring high marks in school examinations but ending up with poor performance in competitive examinations. Therefore, it is necessary to develop a wide range of well-designed assessment and evaluation techniques to help the teachers to closely follow students progress and facilitate future acquisition of knowledge. In this context, the question banks are of great help in storing large database of suitable questions framed for the subject area, instructional level, instructional objectives measured and various other question characteristics.

A question bank can store as many questions as possible so that generation of randomized tests is done without any difficulty. Question bank
also helps in providing a platform in discussing critically students' misconceptions or preconceptions or alternate conceptions which might interfere with the students' learning process. While preparing questions, it is, therefore, necessary to keep in mind these aspects.

This manual of questions in Physics for PUC level of Karnataka State prepared by the team of experts at RIE, Mysore coordinated by Dr.R.Narayanan and Sri N.R.Nagaraja Rao is an outcome of a 5 day workshop held at this Institute. It is desired that question bank manual should be able to set new trends in the process of evaluation and motivate the teachers to have a rethinking on their classroom practices. The painstaking efforts of the team in bringing out the manual containing quality questions is highly appreciated.

Prof.G.T. Bhandage

Principal

PREFACE

The manual is an outcome of an inservice programme for developing a question bank in Physics for the pre-university class of Karnataka State. The programme was taken up 6y the Regional Institute of Education, Mysore at the request of the PU Goard, Karnataka. A one-day planning meeting was held at the Institute on 19.9.2008. The meeting was attended by the resource persons of the Institute and representatives from the pre-university board, Bangalore. The meeting concluded with a plan for the 5-day developmental workshop involving preuniversity Physics teachers. The modalities for the 5-day workshop such as the scope of the workshop, nature and type of evaluation items to 6e prepared, topics for lecture sessions, details of the evaluation item sheets etc. were discussed and finalized. As most of the participants did not possess a degree in education, it was decided to provide adequate inputs about various aspects of evaluation, preparing a 6lue print of question paper, analyzing question papers of PV examination, etc.
\mathcal{A} five-day developmental workshop was organized from $24^{\text {th }}$ to $28^{\text {th }}$ November 2008 (Annexure). Twenty pre-university Physics lecturers representing different districts of Karnataka attended the workshop. After a brief discussion on various aspects of evaluation, the teachers were divided into groups of 3-4 members. Each group prepared questions on specific chapters of I and II year PUC physics book that were allotted to them. Categories of questions prepared during the workshop broadly conform to the pattern followed in the second year pre-university Pfysics question paper. The categories are : multiple choice questions, very short answer questions, short answer questions and long answer questions. \mathcal{A} clearfy defined objective, specific action ver6 and the difficulty level have Geen indicated for each item. Marking scheme and answers/value points are provided for each item. Although, the II PUC question paper does not have multiple choice items, they have been included as they would help students to familiarize with this pattern of
questioning followed in the Common Entrance Test (CET) conducted by the Govermment of Karnataka.

The items written by the teachers have been thoroughfy edited and presented in this manual. The chapter numbers and titles conform to the PV curriculum document in 6iology. Marking scheme and answers/value points are provided along with the questions of that chapter. Although each chapter has a large number of questions, they are by no means exhaustive and ample scope is available for constructing many more evaluation items under each category..

We hope the manual meets the requirements of the PU Board and would be of help to teachers and students. Suggestions for improvement are welcome.
R.Narayanan \& N.R.Nagaraja Rao

Coordinators

Acknowledgement

We wish to express our sincere gratitude to the Director, NCERT for approving the programme and for providing complete financial assistance to the programme. We thank the Commissioner, P.U. Board, Bangalore for deputing the teachers for the programme. Our special thanks to Sri S.V. Mohan Kumar, Asst. Director (Academic), P.U. Board, Bangalore for the clear vision he had about the outcomes of the programme. We also thank all the resource persons, both internal and external for their valuable academic inputs during the programme. The sincerity and dedication of all the members who attended the programme made it possible to bring out the present manual.

We wish to thank the Principal, Regional Institute of Education, Mysore for his encouragement. We also thank the Dept. of Extension Education for their constant support through the different phases of this programme. The manual in its present form is a result of several months of hard work put in by Smt Chandrakala, Smt S.Imavathi and Shri V. Prabhakaran of the Computer Processing Unit. We are highly thankful to them for their cooperation.

RESOURCE TEAM

R.Narayanan \& N.R.Nagaraja Rao
 Academic Coordinators

Resource Persons

1. Dr. S.S.Raghavan

Retired Professor
No.17, RCE Layout
Bogadi II Stage, Mysore
2. Dr.B.V.Sadasiva Murthy

Retired Professor
No.29A, $5^{\text {th }}$ Main
Aravinda Nagara
Mysore 570023
3. Shri S.V. Mohan Kumar

Assistant Director
Dept. of P.U. Education
Bangalore
4. Sri Ranganathaiah

Principal
D.V.S. Pre-University College

Shimoga
5. Dr.T.N. Chandrakanth

Principal
Vijayabharathi P.U. College
Cox Town, Bangalore

List of Participants

1. Shri Ananda P.

Lecturer in Physics
Govt. P.U. College, Puttur
2. Shri K.B.Veerabhadrappa

Lecturer In Physics
S C S V M P U College
Sandur, Bellary District
3. Shri Sridhara S.B.

Lecturer in Physics
Nalanda National P U College
J C Nagar, Bangalore
4. Shri N D Machenahalli

Lecturer in Physics
S J J M Govt. P.U. College
Bydagi Haveri District
5. Shri Lingaraj A. Bellad

Lecturer in Physics
Govt. P.U. College for Girls
Jamakhandi, Bagalkote
6. Shri S Prabhakara

Lecturer in Physics
STSRP U College
Nayakana Hutty, Challakere Taluk
Chitradurga Dist.
7. Shri B S Koujalagi

Lecturer in Physics
Govt. Science P.U. College
Kalgatagi, Dharwad District
8. Shri S U Chandraragi

Lecturer in Physics
R.V. Comp. P.U. College

Raibag, Belgaum District
9. Shri Anjaneya A.R.

Lecturer in Physics
Govt. P.U.College
Lexmeshwar, Shirahatti Taluk Gadag District
10. Shri G Narasimh a Murthy
Lecturer in Physics
Mycom - Co-Comp. P.U. College
Ammasandra, Tumkur
11. Smt K N Gayathri
Lecturer in Physics
S M S D Govt. P.U. College
Koppa, Chikmagalore Dist
12. Shri B S Keshava Kumar
Lecturer in Physics
M Krishna P U College
B M Road, Hassan
13. Shri B R Neelakanta
Lecturer in Physics
Marimallappa's P U College, Mysore
14. Smt M S Gayathri
Lecturer in Physics
Govt P U College
Kadugodi, Bangalore
15. Shri S Martin
Lecturer in Physics
Govt. P U College
National P U College
Magadi, Ramnagar Dist.
16. Shri G H Prabhukumar
Lecturer in Physics
Govt. P U College, Karwar
17. Shri N Ananda
Lecturer in Physics
Govt. P U College, Gudibande
18. Shri Sampathkumar S Yedrami
Lecturer in Physics
S K V M S P U College, Bijapur
19. Shri D G Biradar
Lecturer in Physics
Shivaji P U College
Bhalki, Bidar Dist
20. Shri Jamadar M D Rafi
Lecturer in Physics
National P U College, Gulbarga

Concept of Evaluation

Evaluation is universally accepted as an integral part of the teaching and learning process. Through evaluation a teacher can judge the growth and development of students, the changes taking place in their behaviour, the progress they are making and also the effectiveness of teaching in the class. In fact, evaluation plays a pivotal role in determining what the learners have learnt and what the teachers have taught. It is, therefore, acknowledged as a powerful means of improving the quality of education in schools. This makes evaluation an essential and integral component of a curriculum.

Meaning of Evaluation

The word 'evaluation' is often confused with testing and measurement. Often teachers who give a test to the students, think that they are evaluating the achievement of students. One must realize that testing is only a technique to collect evidences regarding pupil behaviour. Measurement in the educational context is limited to quantitative description of the pupil behaviour. But the term evaluation is more comprehensive and includes besides testing and measurement, quantitative and qualitative description of the pupil behaviour and also includes value judgement regarding the worth or desirability of the behaviour measured or assessed. Gronlund (1981) has summarized evaluation as :

```
Evaluation = Quantitative description of pupils (measurement) +
    Value judgement
Evaluation \(=\) Qualitative description of pupils (non-measurement)
    + value judgement
```

Thus, conceptually evaluation is not based on measurement alone as it goes beyond the simple quantitative score. For example, if a child gets 60 marks in a Biology test, it alone does not tell us whether his achievement is satisfactory or not. It is only when we compare this mark (60 percent) with the marks obtained by other
children in the class or with certain criteria laid down in advance, or with the child's own marks in previous tests that we are able to judge or evaluate whether his achievement is satisfactory or not. Thus, a students' achievement may be viewed at three different levels :

1. Self-referenced - how the students is progressing with reference to himself/herself.
2. Criterion-referenced- how the student is progressing with reference to the criteria set by the teacher
3. Norm-referenced - how the student is progressing with reference to his/her peer group.

Evaluation has been variously defined.

One of the accepted definitions is given by Tyler (1950) who defines evaluation as "a systematic process of determining the extent to which educational objectives are achieved by pupils". However, this definition excludes the casual, informal or uncontrolled observation of pupils. The definition also implies that without predetermined objectives, it is not possible to judge the progress, growth and development of students. Evaluation also enables the teacher to make judgement and helps in decision making.

In this systematic process of collecting evidences about students' progress and achievement in both cognitive and non-cognitive areas of learning the following three components are important:

- information gathering
- information processing
- judgement forming and decision making

We not only want to know whether a student has developed a certain ability stated in the educational objectives or not but we also need to know about the
progress during the course of teaching and learning. Thus, evaluation need not always be at the end of a course but a continuous process.

Evaluation in Teaching and Learning

Evaluation is an integral part of any teaching and learning programme. Whenever a question is asked in a class and answered by a student, the answer is judged by the teacher, evaluation takes place. Thus, both teaching and evaluation go hand in hand with each other. In fact, it is not possible to have teaching and learning without evaluation.

Both teaching and evaluation are based on the instructional objectives which provide direction to them. Instructional objectives are those desirable behaviours which are to be developed in students through the learning experiences. These are reflected in the form of syllabus, instructional material and information given by the teacher. Instructions are given for achieving the objectives and evaluation is done to see whether the instructional objectives have been achieved and also to what extent they have been achieved. The interrelationship of objectives, instructional process and evaluation can be expressed more clearly through the following diagram :

The above diagram illustrates that the three components - instructional objectives, learning experiences and evaluation constitute an integrated network in which each component depends on the other. Thus, through evaluation, the teacher
not only assesses as to how far the students have achieved the objectives but also examines the effectiveness of the teaching strategy such as methodologies, means and materials used for achieving those objectives.

Defining the objectives in clear terms, organizing appropriate learning procedures, continuous and comprehensive appraisal of pupil achievement through suitable techniques and tools and using the information thus gained for modifying and improving all aspects of education constitute the process of evaluation.

Purposes of Evaluation

A number of important purposes are served by evaluation, which ultimately contribute to the improvement of the instructional methods, textbooks, the curriculum and advancements of our educational goals. Evaluation helps us to set tasks and goals which are bigger than what we aspired for earlier thus giving leadership in education. Certification, selection and classification of pupils, guidance and diagnosis of strengths and weaknesses are some of the important purposes of evaluation.

Evaluation is helpful to the teacher and the taught. The teacher comes to know the extent of success of his teaching and the effectiveness of his methodology. The pupil also knows where he is and how far his efforts have been successful. This enables him to renew his efforts or revise his study habits to facilitate better achievement.

Characteristics of Evaluation

Evaluation is one of the most important aspects of education. It can be defined as the process of collecting evidences of pupil growth in desirable directions. In order that it is meaningful and effective, it should satisfy some criteria. These could be enunciated as follows :

1. Evaluation is objective-based: The desirable directions in which education directs pupil growth are indeed the objectives of instruction. And evaluation is aimed at knowing the degrees of success that the entire teaching-learning process has been able to achieve in realizing these instructional objectives.
2. Evaluation is continuous : Evaluation does not operate in strokes, but it is a continuous process. It thus yields a constant flow of feedback both for the student and the teacher for further improving their performance.
3. Evaluation is comprehensive - Unlike other commonly used terms in the field of measurement, evaluation is by far the most comprehensive process in terms of its coverage. It covers all the aspects of pupil growth, scholastic as well as nonscholastic. This essentially involves the use of a great variety of tools and techniques several of which have to be specifically developed for the situation.
4. Evaluation is dynamic - With its coverage extending to all the aspects of pupil growth and also since it has to be continuous process, evaluation situations keep on changing. Each new situation presents a challenge to the teacher who has to be innovative for meeting it by developing new strategies, techniques and tools.
5. Evaluation can be a learning experience - Good evaluation situation can prove to be an excellent learning experience. In trying to find solutions to evaluation situations, the students may take recourse to several resources which may not otherwise do. Many of these could provide valuable learning to them.
6. Evaluation results have a wider usage - Examinations are almost sole means of evaluation today. Examination results are used only for purposes of grading, classification and certification. Results of evaluation can, however admit wider purposes like diagnosis, guidance and academic prediction as well besides those to which examination results are being currently used.

To conclude, it may be said that evaluation is a much wider concept than both measurement and examination, for both of which it is often erroneously used as a synonym. The above characteristics indeed distinguish it from not only these two but several other terms mistakenly deemed to be equivalent or interchangeable.

3. Instructional Objectives in Testing What are Instructional Objectives?

Education is a process of bringing about change in the individual in a desired direction to enable him to develop certain skills, certain understandings, thinking processes, insights, attitudes, etc. Our educational objectives, therefore, are the changes we wish to produce in the child. The changes that must take place through education are represented in the knowledge children acquire, the skills and abilities children attain, the interests children develop and the attitudes children manifest.
E.J.Furst defined educational objectives as "the desired changes in behaviour in a person that we try to bring about through education".

According to Edwin Harper, "objectives are the statements of expected results". This means that the objectives state in what way a pupil will be different at the end of a particular course or lesson. Therefore, objectives are also known as 'learning outcomes'. They are the products of learning and represent what the pupil does after receiving instruction. Instructional objectives, are, therefore, the predetermined targets of learning.

Terms like goals, aims and objectives are related terms. Educational goals are broad and nebulous e.g., goal of education may be to prepare a good man. Goals are divided into a number of aims e.g. the aim of education may be to prepare a good citizen. The aims are further specified into objectives. The objectives are tangible and achievable in educational terms.

Purpose of Instructional Objectives

Instructional objectives serve as the guide posts in teaching and learning. These are required for the purpose of clarifying to the teachers as to what they are expected to teach and to the students as to what is expected of them at the end of a given period of study. A teacher, therefore, needs to be clear about the objectives of his/her subject with a view to :

- bring about desired changes in the pupils
- decide how to bring about these changes
- evaluate whether the changes have taken place

Both teaching and evaluation are based on instructional objectives. The instructional objectives provide directions to them. Instruction is provided to achieve the objectives and evaluation is carried out to find whether the objectives have been achieved and to what extent. Thus,

- an objective is the first step in teaching and learning
- it is also the last step as it validates the instructional process
- it provides the basis for planning the learning experiences
- it helps in selection of evaluation procedures

Classification of Objectives

The taxonomy of educational objectives proposed by B.S.Bloom was a major breakthrough in the history of objectives. According to him, all instructional objectives fall under three main domains of human personality - cognitive, affective and psychomotor. These are related to head, heart and hand respectively. Thus, cognitive domain includes objectives related to intellectual aspect; affective domain is related to feeling i.e. with attitudes, interests and values and psychomotor domain is concerned with physical, motor and manipulative skills.

The classification of objectives in these three domains is as follows:

Cognitive Domain

(By B S Bloom)

Affective Domain
Characterizing

(By Krathwohl)

Psychomotor Domain
Naturalization

(By R H Dave)

In the cognitive domain Bloom has classified the objectives into six categories.

1. Knowledge - This is the information level and is essential for everything. It requires recall and recognition of facts, principles, concepts. It is based on simple memory and in other words can be called remembering information.
2. Comprehen- - This includes knowledge and something more. Some thinking process starts at this level.
3. Application - This includes both knowledge and comprehension of the learnt material and ability to use it in unfamiliar situations.
4. Analysis - This means breaking the problem in parts or its constituent units and seeing their interrelationship. This includes all the above three objectives i.e. knowledge, comprehension and application.
5. Synthesis - This includes putting together elements and parts of concepts and forming a whole in order to form a theory or seek a salutation to a problem.
6. Evaluation - Evaluation is the highest level in cognitive domain. It is concerned with making value judgement about people, methods, processes, materials, ideas, purpose, etc.

Cognitive Domain
(Knowing Aspects)

Description of the Specifications for Different Objectives

A brief explanatory description of the specifications of different instructional objectives is given below :

Objective	Specification	Explanatory Description
Knowledge	1. Recalls - - Defines - Names - Mentions - Lists	It involves responding to a given stimulus, primarily on the basis of memory. The nature of information requires precision and exactness. It should not differ too much from the way it was originally learnt.
	2. Recognizes	It requires identifying the correct response merely on the basis of memory without going into the basis of inappropriateness of alternative responses.

Understanding	3. Translates	Renders in the required medium material from another given medium faithfully, giving the closest possible equivalent of the original.
	4. Illustrates/ Cites examples	Cites (produces) some similar material verbal or otherwise to clarify a point.
	5. Identifies	Shows in a familiar situation as to what is the correspondence between two sets of familiar data.
	6. Compares	Draws out similarities and dissimilarities between sets of data, terms, trends, etc. It can be both on the basis of given criteria or unspecified criteria.
	7. Discriminates	Draws distinctions on some basis between closely related facts, events, ideas, etc.
	8. Classifies	Groups together facts, terms, etc. into homogeneous categories on the basis of criteria provided or implied.
	9. Interprets	Draws meaning from extracts, maps, charts, graphs, table, data, etc.
	10. Summarizes/ Sequences 11. Establishes relationship	Condenses a communication by picking up main ideas and deleting trivial details. Brings out new association(s) or relationship between sets of facts, principle, etc. for the understanding of the new problem.
	12. Gives reasons for cause effect relation	Using the systematic knowledge, explains why and how some process, procedure, material is taking place along with the underlying relationships.

Application	13. Analyses	Breaks down a communication or situation into components and according to the required criteria solves the issue. Clarifies communications, discovers basis for its organization and/or underlying assumptions.
	14. Predicts	Considers the situation in the light of available data and infers about the future events of phenomena, trends, etc.
	15. Infers	Analyses and examines the data and arrives at certain conclusions of decisions pertaining to a situation.
	16. Generalizes	Observes similarities in otherwise different things in a way to derive a principle inductively.
Skill	17. Draws diagrams	Draws diagrams accurately and neatly, etc. displaying the quality of skill expected of the class concerned.
	18. Labels diagrams	Puts correct names, etc. in the map, methodologically and in a systematic manner for recognition as desired.

Summary of Instructional Objectives and frequently used Action Verbs

Questions - Types, Characteristics and Limitations

1. Essay Type Questions

An essay type question is one where the response to a question is extended. There is no single correct response. Accuracy and quality of response can be evaluated by a person who knows the topic. These questions require the candidate to select relevant facts, organize them and write the answer in his own words. They generally open with such words as "Explain", "Describe", "Interpret", "Compare", "Discuss", etc.

Essay type tests have been repeatedly criticized by those who are interested in the scientific measurement of achievement but little effort has been made to improve their reliability in spite of the fact that they are widely used by the classroom teacher. If properly constructed, they can measure important outcomes of learning, which cannot be measured otherwise. They have other potential values and unique advantages as an educative influence. On account of their usefulness, there is a need to further improve these questions.

Essay type questions are easy to administer. They can be easily adapted to the various school subjects. Higher mental processes like ability to organize, interpret, summarize, etc. are better evaluated by essay type questions. For constructing better essay type questions, the following considerations may be kept in view :

Requisites of Essay Type Questions

1. Essay type questions should be set to test only those instructional objectives, which are not amenable to testing by other forms.
2. Each question should be set to test specific mental processes or learning outcomes implied by the objectives in view.
3. Phrase questions in such a way that their meaning and intent are clear to the examinee.
4. Structure questions in such a way that the scope of the expected answer is clear.
5. Directional words like "What do you know of", "Give an account of", "Write short notes" may be avoided or clearly defined to avoid vagueness of answers and consequent subjectivity of scoring.
6. Maturation level of examince must be taken into consideration while constructing an essay question. Length and nature of answer will differ from class to class. For example, questions requiring discussion, interpretation, summarization and valuation may be asked in higher classes whereas questions like listing, describing, selecting etc. may be considered for lower classes.
7. Marks should be clearly allocated part-wise, whenever there are more than one parts in the same essay type question.

Need for Training of the Students

Reliability of essay type examinations can further be improved if the students are trained properly through the use of such questions in day to day testing programme in home examinations. They need to be familiarized with the method of attempting such questions in accordance with the connotation of the various words especially the directional words used to circumscribe the nature and scope of the answers expected. This will ensure to a great extent, the consistency in each students' understanding of what he is required to write in response to a particular question and the way the teacher is going to grade it.

Short Answer Questions

Essay type questions suffer from the lack of objectivity and reliability while objective type questions are often too small to test certain aspects of growth. Short answer questions are a good via-media between the two extremes and serve a useful purpose in overcoming the shortcomings of either type, if understood and framed properly by the teachers. Limits of short answer question cannot be clearly demarcated. For the sake of convenience we can adopt the following criteria. It may be a question whose answer

1. may be within $50-60$ words
2. may be two to six-seven lines
3. may have 2 to 4 credit points
4. can be answered in 3 to 5 minutes

The advantages of short answer questions are as under :

- Short answer question can be used profitably in both external and internal examinations.
- It can be used to test almost all the objectives of teaching.
- It helps students to develop the ability of organizing and selecting relevant facts.
- They can be scored more objectively than essay type questions and thereby ensure reliability.
- These questions help in covering more syllabus because more number of these questions can be put in place of one essay type question. This improves the validity of the question paper also.

Constructing Short Answer Questions

Following suggestions can help in formulating good short answer questions :

- Determine the ability to be tested and frame the question based on it. Generally questions of understanding are best suited to short answer question. Compare and contrast, classify, explain in brief, summarize, etc. are the key words which can be used as directional words. Ability to express precisely can also be tested.
- Do not frame the short answer questions in such a way that a student is tempted to write a short note on the answer. The question should be pinpointed with a specific task.

A short answer question should be framed in such a way that it has a definite answer. Complicated questions involving discussions and explanations can be broken down into several short answer questions. To make the questions more precise, the
writer should keep in mind the language and the directional words to be used and the scope of the intended answer.

Short answer questions are of different varieties :
i) What is the time period of Halley's comet? (Question Form).
ii) The dimensional formula for the coefficient of viscosity is
a)
b)
c)
d)
(Multiple choice type - Applies - Uses the relation)

3. Very Short Answer Questions

Very short answer type questions are those which require one word, one phrase or at the most one sentence answer. These questions generally are for one or half mark each and have one testing point.

Very short answer type questions can be profitably used in internal as well as external examinations. They ensure better validity because more syllabus can be covered by using a number of V.S.A. questions than an essay type question. Morcover, these questions can be scored more objectively than essay type questions, hence providing better reliability to the test.

Very short answer questions are very useful in testing definitions, meanings of scientific terms, equations, formulac etc. They can thus be very profitable items of evaluation.

Very short answer questions may be of different types like fill in the blanks, completion type, statement of definitions, formulae, values, etc.

Constructing Very Short Answer Question

The following points are suggested for constructing very short answer type questions.

- To require a single and unique answer, word the question or incomplete statement carefully.
- Before writing a question think of the intended answer first. Then write the question to which that answer is the only appropriate response.
- Use a direct question, unless the complete sentence permits a more concise or clearly defined correct answer.
- Avoid unintended clues to the correct answer.
- Word the item as precisely as possible without losing the meaning it intends to convey.
- Avoid using the textbook language in working of an important idea as the basis for a very short answer item.

Constructing Selection Type Questions

Selection type questions are all objective type questions. Objective-based and objective type tests are often confused with each other. When a question is framed with the deliberate attention to the objective which we want to measure, it is an objective-based or objective centred question. Such questions may be of any form like Essay type, Short answer type, Very short answer type or Objective type. But when a question is designed to test the students' achievement in an objective way rather than subjective we can call it objective type question. In an objective type question, there is no space for the evaluator's subjectivity. Whoever scores such questions, scores them the same way as the answers are not supplied by the student but selected by them.

Forms of objective Type Questions

There are various forms of objective type tests like True / False type, Yes/ No type, Multiple Choice type, Multiple Selection type, etc. Of these multiple choice type and multiple selection type are most important and widely used in many competitive tests.

3. Multiple Choice Questions

The basic form of all the objective tests is the multiple choice type. As said earlier, it consists of a stem which may be in the question form or in an incomplete statement. The students' task is to select from the given alternatives the one that is correct. For example :
i) Electromagnetic radiation in the frequency range 6×10^{14} belong to
a) IR region
b) Visible region
c) UV region
d) Microwave region
(Knowledge, Recall)
ii) A one meter long wire is bent at 180° in the middle and the two halves are twisted together. The effective resistance of the wire
a) increases
b) decreases
c) remains the same
d) becomes zero
(Understanding, See relation)

The effectiveness of the item should depend on how best the item is framed to test the desired objective.

Constructing Multiple Choice questions

Following points may be kept in view while constructing the multiple choice items :

1. Do not use multiple choice type items when only some memorized fact has to be recalled or when answer in mathematical problem has to be got by simple calculation.
2. Give three or more but not more than five alternatives/ distractors.
3. See that there is only one choice which is correct and avoid choices overlapping with one another.
4. Have a clear central problem in each item. Multiple choice item should not be mere four or more unrelated true false statements connected by a leading question like "which is true".
5. Make the stem part of the item containing the central problem including in it as much of the items as possible. Choices should not contain anything which would have better been out in the stem.
6. If possible, avoid negatively stated item, as it is likely to confuse the examinee. When it is given, the word, 'not' may be either given in capitals or underlined.
7. Avoid the use of textbook language. Mislead the rote learner by using familiar or stereotyped phrases for distractors.
8. See that all choices provided are sufficiently plausible to be selected by a fair proportion of the examinee. Both correct and incorrect choices should be homogeneous in their mode of expression, length and other external characteristics. The distracters should represent errors commonly made by the students who are to be tested.
9. Avoid making the correct response consistently longer or consistently shorter than the distracters.
10. The correct choice must be different from the distracters consistently in meaning only with no superficial verbal clues.
11. Make sure that articles that ' a ', 'an', 'the', do not serve as clues to the correct choice.
12. Arrange the choices in logical order, if one exists.
13. See that the position of the correct answer in the series is chosen entirely at random. Use first and last places as often as the intermediate places.

Table 1
Summary comparison of different Forms of Questions

Sl. No.	Aspect	Essay	Short Answer	Objective Type
1.	Objectives tested	Can be used for testing all objectives, more effective for	Can be used equally effectively for all objectives.	Cannot be used for testing expression, ability to

		certain higher objectives.		organize skill, etc.
2.	Sampling of content	Gives a very poor sampling of content.	Helps in increasing the sample.	The use of a large number of items results in broad coverage, which makes representative sampling possible.
3.	Subjectivity of scoring.	There is a lot of subjectivity of scoring.	Subjectivity of scoring is controlled.	No subjectivity of scoring.
4.	Ease of scoring	Very difficult to score	Comparatively easy to score	Extremely easy score
5.	Ease of preparation	Very easy to prepare	Moderately easy to prepare	Difficult to prepare
6.	Bluffing in answers	Quite possible	Limited	Not at all
7.	Guessing	Not possible	Very little	Quite possible
8.	Halo effect	Predominant	Controlled	Impossible

Action Verbs for testing different objectives

Different action verbs or instructional words are used for testing different objectives. Some action verbs are given below objectivewise.

Knowledge : For testing knowledge of information, following action words may be used. Define, describe, explain, name, list, outline, state, select, recognize, pinpoint, reproduce, identify, match, relate, narrates, find errors, etc.

Understanding : As the abilities involved in understanding are translation, interpretation, inference, extrapolation, comparison, etc. the following action verbs can be used while framing different types of questions.

Write in your own words, rephrase, illustrate, give example, translate, convert, distinguish, compare, contrast, differentiate, classify, arrange, rearrange the sequence, give reasons, justify, discuss, explain, summarise, express, estimate, predict, identify, give the title, identify the main idea or theme, select etc.

Application : For testing application, the student has to analyze, synthesize, apply in an unfamiliar situation, solve problems and evaluate. The action words used for testing application will depend on the context. However, some commonly used action verbs are given below :

Analyse, categorize, synthesize, design, argue, appraise, rate, evaluate, support, defend, judge, value, predict, estimate, discuss, determine, formulate, construct, compose, assemble, combine, etc. It may be noted that many of the action verbs may overlap with different objectives and this will depend on the context in which these terms are being used. It is the context that will in fact decide the actual objective that is being tested.

Considerations for deciding a particular form of question :

Each form of question has its own specific nature and its own strengths and limitations. In fact it is the situation in which a question is used that gives it its advantages or disadvantages.

While selecting a particular form one should keep in mind :

- the purpose of testing
- the objective of testing
- the level of students
- the time and resources available

First PUC

UNIT 1 : INTRODUCTION

Chapter 1: Introduction to Physics

SI.
Question
Obj/ Spec./
No.
Diff. Level

1. Which planet was discovered by the mathematical prediction? K

Recall
Easy
Ans: Neptune (1 mark)
2. What is the time period of Halley Comet ?

K
OR
Recall
Halley's Comet entered the solar system in the year 1986; it is Easy expected again in the year \qquad
Ans: 76 years OR 2062. (1 mark)
3. Name any one Indian scientist who was awarded the Nobel Prize in

U
Locate
Easy

Any one name. Sir C V Raman and Prof.S.Candrashekhar (1 mark)
4. Give an example for scientific discovery through theoretical prediction.

Recall
Easy
Ans: Neptune (1 mark)
5. Observations of irregular speed of which planet led to the prediction and subsequent discovery of the planet Neptune.

Recall
Easy
Ans: Uranus (1 mark)
6. What is scientific method?

U
Recall
Easy

It is a method used in science which involves making a systematic observation using proper reasoning, taking the help of models and the theoretical calculation for the prediction. (1 mark)

Chapter 2: Scalars and Vectors

SI. QuestionObj/ Spec./No.1. What is a vector?Diff. Level
K
Recall
Easy
Physical quantities having magnitude and direction. (1 mark)
2. Give one example for a vector?

K
Recall
Easy
Any example (1 mark)
3. What is a scalar?

K
Recall
Easy
Physical quantity which has only magnitude. (1 mark)
4. Give the geometrical representation of a vector.

Draw a straight line with an arrow mark. (1 mark)
5. Name the vector which has unit magnitude.

K

Recall
Easy

K

Recall Easy
Unit vector (1 mark)
6. Which are the basic properties of a vector?

K
Recall
Easy

1. Magnitude, 2. Direction (2 marks)
2. A bus is moving with a velocity of $100 \mathrm{~km} / \mathrm{h}$ from East to West A represent the vector?

Applies
Average
Representation (2 mark)
8. Find the modulus of \vec{A}.

Ans: A (1 mark)
$\begin{array}{ll}\text { 9. State triangular law of vector addition. } & \mathrm{K} \\ & \text { Recall } \\ \text { Easy }\end{array}$
10. State parallelogram law of vector addition.

K
Recall
Easy
Statement (l mark)
11. What is resolution of vector?

K
Recall
Easy
Splitting of vectors into component. (1 mark)
12. Name the single vector which produces the same effect as that of K individual vectors.

Recall Easy
Resultant (1 mark)
13. Write the expression for the resultant vector in parallelogram law.

K
Recall
Easy
$\vec{R}=\sqrt{P^{2}+Q^{2}+2 P Q \cos \theta}$ (1 mark)
14. How a unit vector can be represented?

K
Recall
Easy
\hat{A} or any representation with cap. (1 mark)
15. How much is the magnitude of a unit vector?

Ans: One (1 mark)
16. Write the value of the angle between \hat{i} and \hat{j}.

Ans: $\theta=90^{\circ}$ (1 mark)
17. If $\vec{A}=9 \hat{i}+6 \hat{j}$ and $\vec{B}=6 \hat{i}+4 \hat{j}$, find the value of $\vec{A}-\vec{B}$.

K
Recall
Easy

U

Relates
Average

A
Applies Easy
$\vec{A}-\vec{B}=3 \hat{i}+2 \hat{j}$ (1 mark)
18. Define dot product of two vectors.

K

Recalls
Easy
Correct statement. (1 mark)
19. Mention two types of vector multiplication.

K

Recalls
Easy

1. Dot product
2. Cross product
(1 mark)
3. Give one example for scalar product.

K

Recalls
Easy
Ans: (work) $\mathrm{W}=\vec{F} \cdot \vec{S}$ (1 mark)
21. Give one example for cross product.

K
Recalls
Easy
Any one example. (1 mark)
22. If $\vec{A} \times \vec{B}=\vec{B} \times \vec{A}$ find the angle between \vec{A} and \vec{B}.
$\vec{A} \times \vec{B}=A B \sin \theta$

$$
\Rightarrow \theta=90^{\circ} \quad(1 \text { mark })
$$

23. If $\vec{A} \bullet \vec{B}=0$ find the angle between \vec{A} and \vec{B}.

$$
\begin{aligned}
& \vec{A} \cdot \vec{B}=\mathrm{AB} \cos \theta=0 \\
& \quad \cos \theta=0 \\
& \quad \theta=90^{\circ} \quad(1 \text { mark })
\end{aligned}
$$

24. If $\vec{A} \times \vec{B}=0$ find the angle between \vec{A} and \vec{B}.
$\vec{A} \times \vec{B}=\mathrm{AB} \sin \theta$
$\sin \theta=0$
$\theta=\sin ^{-1}(0)$
$\theta=0$
(1 mark)
25. Which type of vector multiplication does not obey commutative U
law?
Interpret
Average
Ans: Cross product (1 mark)
26. For which angle between two vectors the sum of two vectors is maximum. See
relationship
Average
Ans: $\theta=0 \quad$ (1 mark)
27. Group the following into vectors and scalars. U1. Mass, 2. Weight, 3. Speed, 4. velocity, 5. Momentum6. Temperature خs $_{s}$ is isClassifyAverageCorrect grouping (2 marks)
28. For which angle the sum of two vectors is minimum?USeerelationshipAverageAns: $\theta=180^{\circ}$ (1 mark)
29. Distinguish between scalars and vectors. UAny two differences. (2 marks)
30. Distinguish between scalar product and vector product. U
Classify
AverageClassify
Average
Any two differences. (2 marks)
31. Define scalar product. Give one example. K
Recall
Easy
Definition and one example. (2 marks)
32. Define cross product. Give one example. KRecallEasyDefinition and example. (2 marks)
33. State and explain triangular law of vector addition. KRecallEasy

Explanation (1 mark), Diagram (1 mark)

34. State and explain parallelogram law of vector addition.

Diagram (1 mark), Explanation (I mark)
35. If $\vec{F}=4 \hat{i}+6 \hat{j}$ and $\vec{S}=6 \hat{i}+3 \hat{j}$, find $\vec{F} . \vec{S}$.
$\vec{F} \cdot \vec{S}=\mathrm{F}(4 \hat{i}+6 \hat{j}) \cdot(6 \hat{i}+3 \hat{j})$ (2 marks)
36. If $\vec{r}=5 \hat{i}+6 \hat{j}$ and $\vec{S}=7 \hat{i}+8 \hat{j}$, find $\vec{r} \times \vec{S}$.

$$
\vec{r} \times \vec{S}=(5 \hat{i}+6 \hat{j}) \times(7 \hat{i}+8 \hat{j}) \quad(2 \text { marks })
$$

37. Find $\vec{A} \times \vec{B}$ in the following two figures.
38.

(1 mark each)
38. The magnitude of two vectors $\vec{A}=4.0 \hat{i}+6.0 \hat{j}-1.0 \hat{k}$ and $\vec{B}=6.0 \hat{i}+5.0 \hat{j}+4 \hat{k}$ are respectively.

A

a) $\sqrt{53}, \sqrt{77}$
b) $\sqrt{52}, \sqrt{77}$
c) $\sqrt{52}, 0$
d) $\sqrt{77}, \sqrt{53}$

Ans: a)

Chapter 3: Units and Dimensions

SI.
Question
Obj/ Spec./
No.
Diff. Level

1. Give an example for a physical quantity
```
K
Recall
Easy
```

Any suitable example. (1 mark)
2. What is meant by unit of measurement?

```
K
Recall
Easy
```

The standard quantity in terms of which the physical quantity is measured. (1 mark)
3. What are Fundamental Physical Quantities?

```
K
Recall
Easy
```

The physical quantities which are measured and expressed independently are called Fundamental Physical Quantities.
(1 mark)
4. Give one example for Fundamental Physical Quantity.

K
Recall
Easy

Any one example. (1 mark)
5. What is a derived physical quantity ? KRecallEasy
The physical quantity which is derived from fundamental physical quantity. (1 mark)
6. Give one example for a derived physical quantity.
K
Recall
Easy
Any one example. (1 mark)
7. Which are the two desirable characteristics of a unit ?

K

Recall
Easy
Accessible and invariable. (1 mark)
8. Define the dimensions of a physical quantity

> K
> Recall
> Easy
Correct definition. (1 mark)
9. What is dimensional formula?
K
Recall
Easy
Correct meaning (1 mark)
10. State the principle of Homogeneity.

K

Recall
Average
Correct principle. (1 mark)
11. Write the dimensional formula for force.
K
Recall
Ans: MLT $^{-2}$ (1 mark)
12. Write the dimensional formula for force.
Ans: $\left[L M T^{-2}\right]$ (1 mark)
13. Write the dimensional formula for surface tension.
Ans: $\left[\mathrm{L}^{0} \mathrm{MT}^{-2}\right]$ (1 mark)
14. Write the dimensional formula for Planck's constant.

Ans: $\left[\mathrm{L}^{2} \mathrm{MT}^{-1}\right]$ (1 mark)
15. Write the dimensional formula for pressure.

Ans: $\left[\mathrm{L}^{-1} \mathrm{MT}^{-2}\right]$ (1 mark)
16. Write the dimensional formula for frequency.

Ans: $\left[\mathrm{L}^{0} \mathrm{M}^{0} \mathrm{~T}^{-1}\right]$ (1 mark)
17. Write the dimensional formula for Impulse of a force.

Ans: $\left[\mathrm{LMT}^{-1}\right]$ (1 mark)
18. Write the dimensional formula for couple.

Ans: $\left[\mathrm{L}^{2} \mathrm{MT}^{-2}\right]$ (1 mark)
19. Write the dimensional formula for stress.

Ans: $\left[\mathrm{L}^{-1} \mathrm{MT}^{-2}\right]$ (1 mark)
20. Write the dimensional formula for work.

Ans: $\left[\mathrm{L}^{2} \mathrm{MT}^{-2}\right]$ (1 mark)
21. Write the dimensional formula for moment of Inertia.

Ans: $\left[\mathrm{L}^{2} \mathrm{MT}^{0}\right]$ (1 mark)
22. Write the dimensional formula for Torque.

Ans: $\left[\mathrm{L}^{2} \mathrm{MT}^{-2}\right]$ (1 mark)

U
Relate
Average

23.	Give an example for dimensionless physical quantity.	K Recall Easy
	Ans: Strain, refractive index, angle measurement, etc. (1 mark)	
24.	Mention a physical quantity which has a unit but no dimension.	K
		Recall
		Easy
	Angle, electric charge, temperature, etc. (1 mark)	
25.	Name the two supplementary S.I. units.	K
		Recall
		Easy
	Plane angle and solid angle. (1 mark)	
26.	Distinguish between Fundamental and derived Units.	K
		Recall
		Easy
	Any two differences. (2 marks)	
27.	Give a pair of physical quantities having same dimensional formula.	
		Recall
		Easy
	Work-energy, Impulse-momentum, work-couple, etc. (1 mark)	
28.	Write the dimensional formula for Gravitational constant using Universal law of gravitation.	K Recall
	Universal lan gravaion.	Easy
	$\begin{aligned} & \left.\mathrm{F}=\frac{G m_{1} m_{2}}{d^{2}} \text { or } \mathrm{G}=\frac{F d^{2}}{m_{1} m_{2}} \text { (2 marks }\right) \\ & =\left[\mathrm{L}^{3} \mathrm{M}^{-1} \mathrm{~T}^{-2}\right] \end{aligned}$	
29.	Write the dimensional formula for coefficient of viscosity.	K
		Recall
		Easy
	Ans: $\left[\mathrm{L}^{-1} \mathrm{MT}^{-1}\right]$ (1 mark)	
30.	Write any two merits of dimensional analysis.	
		Recall
		Easy
	Any two merits. (1 mark each)	

31. Write any two demerits of dimensional analysis. KRecallEasyAny two demerits. (1 mark each)
32. Check the correctness of an equation $v=u+$ at with dimensiona notation. Recall
Easy
Verification (2 marks)
33. Mention any two differences between fundamental and derivedunits.
K
RecallEasyAny two differences. (2 marks)
34. Derive an expression for velocity of sound in air using dimensional K analysis if velocity of sound depends on pressure and density of the Recall medium. Average
35. Factors depends
36. Applying of principle of homogeneity
37. Finding of constants
38. Obtaining final expression
(1 mark each)
39. Derive an expression for the time period of simple pendulum using K dimensional analysis.

K
Recall Easy

1. Factors depends
2. Applying the principle of homogeneity
3. Finding of constants
4. Obtaining final expression
(1 mark each)
5. Derive the expression for pressure of a liquid using dimensional K analysis if the pressure depends on (1) height, (2) density, (3) Recall acceleration due to gravity.
Average
6. Factors depends
7. Applying of principle of homogeneity
8. Finding of constants
9. Obtaining final expression (1 mark each)
10. The centripetal acceleration depends on (1) velocity of a particle,
(2) radius of circular orbit. Obtain the relation between them using Recall dimensional analysis. Easy
11. Factors depends
12. Applying of principle of homogeneity
13. Finding of constants
Obtaining final expression (1 mark each)
14. Check the correctness of an equation :

K

Recall
Easy
a) $\mathrm{PE}=\mathrm{mgh}$
b) $\mathrm{KE}=1 / 2 m v^{2}$

1. Writing dimension for LHS
2. Writing dimension for RHS
3. Verification
(1 mark each)
4. Convert 1 joule in terms of ergs using dimensional analysis.
K
Recall
Easy
5. Writing of dimension of work.
6. Writing of dimension of work in SI and CGS.
7. Applying
8. Getting final answer.
(1 mark each)
9. Convert 1 newton into dynes using dimensional analysis.
K
Recall
Easy
10. Writing dimensions for force.
11. writing dimensions for force in SI and CGS.
12. Applying
13. Getting final answer.
(1 mark each)
14. State the principle of homogeneity. Write any two advantages and K disadvantages of dimensional analysis. Recall
Easy
15. Principle
16. Any two advantages
17. Any two disadvantages
(1 mark each)
18. The dimensional formula for $\frac{1}{\mu_{o} \epsilon_{o}}$ is

A

Applies
Average
a) $\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}$
b) $\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
c) $\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-1}$
d) $\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}$

Ans: a)

UNIT 2 DYNAMICS

Unit 4: Motion in one Dimension

S1.
Question
No.

1. What is a rigid body?
A body cannot change its shape or size by the application of force. (1 mark)
Obj/ Spec./
Diff. Level
$\begin{array}{ll}\text { 2. When is the particle said to be at rest? } & \mathrm{K} \\ & \text { Recall } \\ & \text { Easy }\end{array}$
If the particle does not change its position with respect to its surroundings. (l mark)
2. When is the particle said to be in motion?
K
Recall
Easy
If the particle changes its position with respect to its surroundings. (l mark)
3. Give an example for one dimensional motion. $\begin{array}{ll}\mathrm{K} \\ \text { Recognize } \\ \text { Easy }\end{array}$
A particle moving along a straight line in direction. (1 mark)
4. What is a position - time graph?
K
Recall
Easy
When instantaneous position of a particle is plotted versus time.
(l mark)
5. What does the slope of position-time graph represent?

K
Recall
Easy
Ans: Velocity (1 mark)
7. Draw a position-time graph when a particle is moving with uniform K velocity. Label
Easy
Correct graph (1 mark)
8. Draw a P-t graph when a particle at rest. KLabelEasyCorrect graph (1 mark)
9. A body is projected upwards in an inclined plane reaches the K extreme point and returns back. Draw the v-t graph for the same. Recall
EasyCorrect graph. (1 mark)
10. Draw a P-t graph of a particle moving with increase in velocity. K
Label
Average
Correct graph. (1 mark)
11. Draw a P-t graph of a particle moving with decrease in velocity. KLabelEasyCorrect graph. (1 mark)
12. What is v-t graph? KRecallEasy
A graphical representation of instantaneous velocity versus time.(1 mark)13. What is the slope of v -t graph represent?KRecallEasy
Ans: Acceleration (1 mark)
14. Draw the v-t graph of a particle moving with uniform velocity.KLabelAverageCorrect graph(1 mark)
15. Draw the v-t graph of a particle moving with variable velocity. K
Label
AverageCorrect graph (1 mark)
16. Draw the v -t graph of a particle moving with uniform accelerated K motion.
Correct graph (1 mark)
17. Draw the v-t graph of a particle moving with uniform retardation.

K
Label
Average
Correct graph (1 mark)
18. What does the area under v-t graph represent?

U
Interpret
Easy
Ans: Displacement (1 mark)
19. When a particle is moving with uniform velocity, what is its acceleration?

K
Recall
Easy
Ans: Zero (1 mark)
20. Under what conditions, the distance covered by a particle is equal to its displacement when the particle moves along a straight line?

U
Discriminate
Average
In the same direction and constant velocity. (1 mark)
21. What is a - t graph?

K

Definition
Easy
Instantaneous acceleration of a particle against time. (1 mark)
22. Draw the a-t graph representing a particle moving with constant K acceleration.
Label
Easy
Correct graph (1 mark)
23. Draw the $\mathrm{a}-\mathrm{t}$ graph representing a particle moving with increasing K acceleration.
Correct graph (1 mark)
24. Draw the $\mathrm{a}-\mathrm{t}$ graph representing a particle moving with decreasing K acceleration.
Easy
Correct graph (1 mark)
25. Draw the $a-t$ graph representing a particle moving with various K acceleration.

Label
Easy
Correct graph (1 mark)
26. What is relative velocity?

K
Recall
Easy
Velocity of one object with respect to another object. (1 mark)
27. Mention the S.I. unit of rate of change of acceleration.

K
Recall
Easy
Ans: m/s ${ }^{3}$ (1 mark)
28. Give an example for accelerated motion.

K
Recall
Easy
Circular motion with uniform speed. (1 mark)
29. Distinguish between distance and displacement.

U
Classify
Average
Any two relevant differences. (2 marks)
30. Distinguish between speed and velocity.

U
Classify
Average

Any two relevant differences (2 marks)
31. What type of motion of a particle do the following graphs K represent?

Recognize Easy

1. Rest. 2. Uniform velocity (1 mark each)
2. Derive $\mathrm{v}=\mathrm{u}+$ at by graphical method.

U
Describe
Average
Graph - 1 mark, Derivation - 1 mark
33. The equation of motion of a body is given by $s=1.5 t+0.36 \mathrm{t}^{2}$. A What is the acceleration of a particle?

Compute
Average
Ans: $\mathrm{a}=0.72 \mathrm{~m} / \mathrm{s}^{2}$ (1 mark)
34. Mention two uses of $v-t$ graph.

A
Applies
Average
Any two. One mark each.
35. Write any one equation of motion and explain the terms used.

Any one equation -1 mark. Term expansion -1 mark.
36. Write the expression for the relative velocity when two particles are moving along the same direction.

See
relationship
Average
Ans: $v_{A B}=v_{A}-v_{B}$ (1 mark)
37. Write the expression for the relative velocity when two particles are moving along the opposite direction.

See
relationship
Average
Ans: $\mathrm{v}_{\mathrm{AB}}=\mathrm{v}_{\mathrm{A}}+\mathrm{v}_{\mathrm{B}}$ (1 mark)
38. Mention any two equations of motion under gravity in the case of a freely falling body.

Applies
Average
Any two equations. One mark each.
39. Define acceleration due to gravity.

K
Recall
Easy

The acceleration of a particle towards the earth under the action of gravity. (1 mark)
40. What does the area under the acceleration - time graph represent? K Recognize
Easy
Easy
Increase in velocity. (1 mark)
41. What is $v-t$ graph? Write its significance.

K

Recall
Easy
Definition-1 mark. Four significance - 1 mark each.
42. Derive $\mathrm{S}=\mathrm{ut}+1 / 2 \mathrm{at}^{2}$ by graphical method. K

Recall
Easy
Graph -1 mark, $\mathrm{S}=$ Area of triangle + area of rectangle -1 mark.
Substitution-1 mark, Simplification-1 mark,
Final equation-1 mark.
43. Derive $v^{2}=u^{2}+2 a S$ by graphical method.

K

Recall
Easy
Graph - 1 mark, slope - 1 mark, squaring - 1 mark, simplification 1 mark, final equation - 1 mark.
44. A body moving with constant acceleration travels 54 m in the $5^{\text {th }}$ A sec and 84 m in the $8^{\text {th }} \mathrm{sec}$ at its motion. Find the initial velocity Solve and the acceleration.

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}} \mathrm{th}=\mathrm{u}+\frac{a}{2}(2 \mathrm{n}-1) \quad-1 \text { mark } \\
& \mathrm{S}_{5} \mathrm{th}=\mathrm{u}+\frac{a}{2}(2 \mathrm{n}-1) \\
& \begin{array}{ll}
54=\mathrm{u}+\frac{a}{2}(9) & \ldots .(1) \\
84 & =\mathrm{u}+\frac{a}{2}(15)
\end{array} \quad \ldots . .2 \text {. } \quad 4 \quad \begin{array}{r}
\text { one mark }
\end{array} \\
& 84=u+\frac{15 a}{2} \\
& 54=\mathrm{u}+\frac{9 a}{2} \\
& \text { Sub } 30=\frac{6 a}{2} \quad \therefore a=10 \mathrm{~m} / \mathrm{s}^{2}-1 \text { mark }
\end{aligned}
$$

From (1)
$54=\mathrm{u}+\frac{a}{2} \times 9$
$54=\mathrm{u}+\frac{10}{2} \times 9-1 \mathrm{mark}$
$54=u+45$
$\mathrm{u}=54-45$

$\mathrm{u}=9 \mathrm{~m} / \mathrm{sec}-1 \mathrm{mark}$
45. A cyclist moving with a velocity of $8 \mathrm{~km} / \mathrm{hr}$ in the upward journey A of a hill and $32 \mathrm{~km} / \mathrm{hr}$ in the downward journey. Find the average Solve speed, if the uphill stretches in the same as the downhill.

Drawing of figure - 1 mark
Formula - 1 mark
Substitution - 1 mark
Simplification - 1 mark

Final result with unit - 1 mark
46. A stone projected from the top of a tower when the velocity is A $19.6 \mathrm{~ms}^{-1}$ reaches the ground in 8 sec . What is the height of the Solve tower and the velocity of the stone when it reaches the ground. $\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$.

Formula - 1 mark, substitution - 1 mark, height -1 mark
 Formula for velocity -1 mark, velocity result -1 mark.
47. A ball is thrown vertically upwards with a velocity of $20 \mathrm{~m} / \mathrm{s}$ from the top of a multistory building. The height of the point from where Calculate the ball is thrown is 25 mts from ground. The height raised by it is Easy $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
a) 20 m
b) 25 m
c) 5 m
d) 45 m

Ans: a)

Chapter 5: Newton's Laws of Motion

SI.

Question

Obj/ Spec./
No.
Diff. Level

1. State Newton's first law of motion.

K
Recall
Easy
Correct statement. (1 mark)
2. Define inertia of rest.

K
Recall
Easy
Correct definition. (1 mark)
3. Give an example for inertia of rest.

K
Recall
Easy
Any suitable example. (1 mark)
4. Define inertia of motion.

K
Recall
Easy
Correct definition. (1 mark)
5. Give an example for inertia of motion. K

Recall
Easy
Any suitable example. (1 mark)
6. Define force.

K
Recall
Easy
Correct definition. (1 mark)
7. Define inertia.
K
Recall
Easy

Correct definition. (1 mark)
8. Why the blades of a fan keep moving even after the current is cut A off?

Applies Average Inertia of motion. (1 mark)
9. If a paper placed under a book is pulled out quickly, the book may not move along with it. Why?

Applies
Average
Inertia of rest. (1 mark)
10. Define linear momentum of a body.

Correct definition. (1 mark)
11. How the liner momentum is measured?

K
Recall
Easy
It is measured by the product of mass and velocity. (1 mark)
12. Write the S.I. unit of momentum.

K
Recall
Easy
Ans: $\mathrm{Kg} \mathrm{ms}^{-1}$ (1 mark)
13. Why does an athlete run before he takes a jump?

To acquire the necessary momentum. (1 mark)
14. Name the scientist who defined momentum as a quantity of motion. K

Recall
Easy
Ans: Sir Isaac Newton (1 mark)
15. Name the factor on which the inertia of a body depends.

K
Recall
Easy
Ans: Mass (1 mark)
16. A rubber tube is floating on water. What is the resultant force U acting on it?

See relationship Average
Ans: Zero (1 mark)
17. What is the momentum of a body at rest?

K
Recall
Easy
Ans: Zero (l mark)
18. State Newton's second law of motion. KRecallEasyCorrect statement (1 mark)
19. What is the significance of Newton's second law of motion? KRecallEasyMomentum, measurement of force. (1 mark)
20. Express Newton's second law in mathematical form.KRecallEasyAns: $\mathrm{F}=\mathrm{ma}$ (1 mark)
21. Mention the S.I. unit of force
K
RecallEasyAns: Newton (1 mark)
22. Define : newton KRecallEasyCorrect definition. (I mark)23. Mention the gravitational unit of force.KRecallEasyAns: kg wt. (1 mark)24. Give the relation between gravitational unit and absolute unit of Kforce.RecallEasy
Ans: $1 \mathrm{~kg} \mathrm{wt}=9.8 \mathrm{~N}$ (1 mark)
25. When an automobile is moving with a uniform velocity, what is the Knet force acting on it ?
RecallEasy
Ans: Zero (1 mark)
26. Give an expression for spring forceKRecallEasy
27. Define spring constant. KRecallEasyCorrect definition. (1 mark)
28. Mention any one of the basic forces in nature.
KRecallEasy
Any one. (1 mark)
29. Which is the strongest force in nature?
KRecallEasyAns: Nuclear force (1 mark)
30. Which is the weakest force in nature?
Gravitational force (1 mark)
31. Define impulse of force.
KRecallEasyCorrect definition. (1 mark)
32. Define impulsive force.
Correct definition. (1 mark)
33. Give the S.I. unit of impulse of force. KAns: newton \times second (1 mark)
34. Give an example of impulsive force.KRecallEasy
Any suitable example (1 mark)
35. Mention the force which is involved in the kicking of football. K
RecallEasy
Ans: Impulsive force. (1 mark)
36. Mention any expression for the force acting on the system in the K case of variable mass situation.

Recall
Easy
$\mathrm{F}=v\left[\frac{d m}{d t}\right]=$ velocity $\left[\frac{\text { change in mass }}{\text { change in time }}\right]$ (1 mark)
37. Give an example for variable mass situation associated with K Newton's second law of motion.

Falling of rain, leakage of water in a moving tank. (1 mark)
38. State Newton's third law of motion.

K

Recall
Easy
Correct statement. (I mark)
39. Give the significance of Newton's third law of motion.

Forces always exists in pairs (pair of forces). (1 mark)
40. Which law of motion is involved in swimming?

K
Recall
Easy

K

Recall
Easy
Newton's third law of motion. (1 mark)
41. State the law of conservation of momentum.

Correct statement (1 mark)
42. Give an example of law of conservation of momentum.

Ans: Rocket (1 mark)
43. On which principle, the recoiling of gun works?

Law of conservation of momentum. (1 mark)
44. Mention any one factor on which recoil velocity depends.
45. Which type of frame of reference obeys Newton's laws of motion?

K
Recall
Easy
Inertial frame of reference. (l mark)
46. Give one example for inertial frame of reference.

K
Recall
Easy
Ans: Earth (1 mark)
47. Which type of frame of reference does not obey Newton's laws of motion?

K
Recall
Easy
Non-Inertial frame of reference. (1 mark)
48. What is the apparent weight of an object when the lift is at K stationary?

Recall
Easy
Ans: Zero [apparent weight $=$ real weight] $[\mathrm{w}=\mathrm{mg}] \quad(1 \mathrm{mark})$
49. What is the apparent weight of an object when the lift is moving K downwards with uniform acceleration?

Ans: $\mathrm{W}=\mathrm{mg}-\mathrm{ma}=\mathrm{m}(\mathrm{g}-\mathrm{a}) \quad(1$ mark $)$
50. What is the apparent weight of an object when the lift is moving K upwards with uniform acceleration?

Ans: $\mathrm{W}=\mathrm{mg}+\mathrm{ma}=\mathrm{m}(\mathrm{g}+\mathrm{a}) \quad(1 \mathrm{mark})$
51. Give an example for non-inertial frame of reference. K

An elevator accelerating relative to the ground. (1 mark)
52. When does weightlessness of an object take place?

K

Recall
Easy
When an acceleration of the object = acceleration due to gravity (g) (1 mark)
53. The body that is suspended by a rope as shown in the diagram has a weight of 75 N . Is ' T ' equal to, greater than or less than 75 N when the body is moving downward at increasing speed?

Ans: Less than 75N (app. Weight downward) (1 mark)
54. Compute the weight of 75 kg space ranger (1) on earth, (2) on mass U if $\mathrm{g}=3.8 \mathrm{~ms}^{-2}$.

1. $\mathrm{W}=\mathrm{mg}=75 \times 9.8$
2. $\mathrm{W}=\mathrm{mg}=75 \times 3.8$
(2 marks)
3. Distinguish between mass and weight.

U
Interpret
Average
Any two differences (2 marks)
56. Mention the expression for spring force and explain the terms.

K
Recall
Easy
Expression - 1 mark, Terms - 1 mark
57. Give any two basic forces in nature.

K

Recall
Easy
Any two basic forces. (2 marks)
58. Show that the impulsive force is equal to the change in momentum. K

Recall
Easy
$I=$ force \times time -1 mark
$=\mathrm{mat}$
$I=m v \quad-2$ marks
59. A ball is hit by a batsman. Identify the action and reaction force. U

A ball is hit by a bat - action After hitting - reaction (1 mark each)
60. Distinguish between inertial and non-inertial frame of reference. (Any two)

K
Recall
Average
Any two differences. (1 mark each)
61. A constant force of 20 N acts on a body of mass 7 kg . Find its U acceleration.

Computes

Easy
$\begin{aligned} \mathrm{F} & =\mathrm{ma} \\ \mathrm{a} & =\frac{F}{m}=\frac{20}{7}\end{aligned}$
62. Mention an expression for apparent change in the weight of the body when the lift is moving upwards. What is the apparent change in the weight of the body?

K
Recall
Easy

Ans: $W=m(g+a)$; increases (1 mark each)
63. Mention an expression for apparent change in the height of the K body when the lift is moving downwards. What is the apparent change in the weight of the body?

Recall Easy

Ans: $W=m(g-a)$; decreases (1 mark each)
64. Mention an expression for apparent change in the weight of the body when the lift is at rest or moving with uniform acceleration. What is the apparent change in the weight of the body?

K

Recall
Average

Ans: $\mathrm{W}=\mathrm{mg}$; No change (1 mark each)
65. A body of mass $40 \times 10^{-3} \mathrm{~kg}$ is moving with a constant velocity of $10 \mathrm{~ms}^{-1}$. What is the linear momentum of a body?

Computes
Easy
$\mathrm{M}=\mathrm{mV}$
$\mathrm{M}=40 \times 10^{-3} \times 10$
$\mathrm{M}=400 \times 10^{-3} \mathrm{~kg} \mathrm{~ms}^{-1} \quad$ (1 mark)
66. A bicycle of mass 10 kg and a bus of mass 1000 kg is moving with the same speed in the same direction. Which will have more momentum?

Ans: Bus (because of more mass) (1 mark)
67. Name any two commonly encountered forces in mechanics.

K
Recall
Easy
Gravitational force; contact force. (2 marks)
68. Name the force which governs the motion of satellite round the K earth.

Recall
Easy
Ans: Gravitational force (1 mark)
69. Derive an expression for recoil velocity of a gun.

K
Recall
Easy
$M V+m v=0 \quad$ (1 mark)
$\mathrm{V}=\frac{-m v}{M} \quad$ (1 mark)
70. State Newton's laws of motion. Derive F = ma where the symbols K have the usual meaning.

Recall
Average
Statement - 1
Initial momentum-1; Final momentum-1; Change in momentum-1;
Find expression - 1
71. State the law of conservation of momentum and prove the law for a K system consisting of two colliding objects. Recall

Average
Statement - 1
Force acts on one body - 1
Force acts on II body - 1
Applying III law - 1
Expression - 1
72. A body of mass 4 kg moving along a straight line with a velocity of A $72 \mathrm{~km} / \mathrm{hr}$ accelerates uniformly under the action of a constant Solve force to attain a velocity of $108 \mathrm{~km} / \mathrm{hr}$ in traveling a distance of Average 200 m . Calculate the time for which the force acts and the force acting?

$$
\begin{aligned}
\mathrm{m} & =4 \mathrm{~kg} ; \mathrm{u}=\frac{72 \times 100}{3600}=20 \mathrm{~ms}^{-1} \\
\mathrm{v} & =108 \mathrm{~km} / \mathrm{hr}=30 \mathrm{~ms}^{-1}
\end{aligned}
$$

$$
\text { 1. } \mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{aS} \quad \text { (1 mark) }
$$

$$
\begin{aligned}
& 900=400+400 \mathrm{a} \\
& \mathrm{a}=1.2 \mathrm{~ms}^{-2} \\
& \text { 2. } \begin{array}{l}
\mathrm{v}=\mathrm{u}+\mathrm{at} \\
30=20+1.2 \mathrm{t} \\
\mathrm{t}=\frac{10}{1.2} \\
\text { 3. } \mathrm{F}=\mathrm{ma} \\
=4.8 \mathrm{~N}
\end{array} \quad(1 \text { mark) } \\
& \text { (1 mark) }
\end{aligned}
$$

73. A body of mass 10 kg moving with a velocity of $9 \mathrm{~ms}^{-1}$ splits into 2 A parts. One part of mass 6 kg moves in the original direction with a Solve speed of $5 \mathrm{~ms}^{-1}$. What is the velocity of other part? Which Average direction it moves?
$m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2} \quad$ (1 mark)
$10 \times 9=6 \times 5+4 v_{2}$
$90=30+4 \mathrm{v}_{2}$
$\mathrm{v}_{2}=\frac{60}{4}=15 \mathrm{~ms}^{-1} \quad$ (1 mark)
Same direction. (1 mark)

Chapter 6 : Friction

SI.
Question
Obj/ Spec./
No.
Diff. Level

1. When a table is pulled it will not move in the direction of pull upto K a limit of force. Name the opposing force present here.
Recall Easy
Friction (1 mark)
2. A person cannot walk easily on an oiled surface? Why ?
U
Interprets
Easy
Friction reduces (surface - slippery) (1 mark)
3. Define : coefficient of static friction.
K
Recall
Easy
Definition (1 mark)
4. Give the definition of frictional force. K
Recall
Easy
Definition (1 mark)
5. Define : coefficient of kinetic friction. K
Recall
Easy
Definition (1 mark)
6. What is limiting friction? K
Recall
Easy
Correct definition (1 mark)
7. Define : angle of friction for kinetic friction. K
Recall
Easy
Definition (1 mark)
8. Define : angle of friction for static friction. K
Recall
Easy
Definition (1 mark)
9. In which type of friction, the friction is minimum?
K
Recall
Easy
Rolling friction (1 mark)
10. Mention any one factor on which the coefficient of friction K
depends.
Recall
Easy
Reactional force or limiting friction. (1 mark)
11. Mention any one advantage of friction.

K Recall Easy
Any one advantage. (1 mark)
12. Mention any one disadvantage of friction.

K Recall Easy
One disadvantage (1 mark)
13. Mention any one method of reducing friction. K

 Recall

 Easy
 Any one method (1 mark)
 14. Why lubricants are used in a machine?
U
Reason
Easy
Reduce friction. (1 mark)
15. Why ball bearings are used in vehicles?U
Sees
relationship
Average
Reduce friction (1 mark)
16. Why rusty materials are not used in machines?
U
Reason
Average
To get more efficiency. (1 mark)
17. Why frictional force is called as self-adjusting force?
K
Recall
Easy
Because it is self adjustable when the applied force is increased. (1 mark)
18. Write the relation between angle of friction and the coefficient of static friction.K
Recall Easy
Ans: $\mu_{\mathrm{s}}=\tan \theta$ (1 mark)
19. Mention any two methods of reducing friction.

K
Recall
Easy
Any two methods (1 mark each)
20. Mention any two advantages of friction?

K

Recall
Easy
Two advantages (1 mark each)
21. Give two disadvantages of friction.

K

Recall Easy

Any two disadvantages (1 mark each)
22. State any two laws of friction.

K
Recall
Easy

Any two laws. (1 mark each)
23. A force of 80 N is required to pull a cart of mass 100 kg over ice. A Calculate the coefficient of friction.

Solves
Average
$\mu=\frac{F_{\max }}{R} \quad$ (1 mark)
$=\frac{80}{m g}=\frac{80}{9.8 \times 100}=\frac{80}{980}=\frac{8}{98} \quad(1 \mathrm{mark})$
24. Write four methods of reducing Friction. What is friction?

K
Recall
Easy
Each method-1 mark
Definition - 1 mark
25. Mention any three advantages and two disadvantages of friction. K

Recall
Easy
Each advantage - 1 mark each
Each disadvantage - 1 mark each
26. When a football is kicked, it rolls on the ground and after covering a short distance comes to rest becauseU

Reason
Easy
a) there is a force on the ball opposing its motion
b) the impulsive force acted on the ball is very large
c) there is no unbalanced force on the ball
d) It is its property.

Ans: a)
27. A horizontal force of 50 N is needed to hold the block stationary against a wall. The coefficient of friction between the block and wall is 0.2 , then the weight of the block is

U
Compute
Easy
a) 20 N
b) 50 N
c) 10 N
d) 50.2 N

Ans: c)

Chapter 7: Motion in Two and Three Dimensions

Sl.

Question

Obj/ Spec./
No.
Diff. Level

1. A particle is moving along a circular path as shown in figure. S Represent the directions of acceleration and velocity at points A and Draw B.

Difficult

Each marking - 1 mark.

2. A person starts from the centre of the circular path of radius 500 m, A reaches the edge A , then moves along the circumference and returns Applies to the centre along BO as shown. If the round trip takes 10 min , Average what is the (i) net displacement, and (ii) the average velocity of the person?

Displacement - 1 mark
Average velocity - 1 mark

3. Show the directions of horizontal component, vertical component A and resultant velocity of a particle at A and B shown in the graph. Applies

Average
For each point 1 mark.

4. A disc is thrown with an initial velocity $15 \mathrm{~m} / \mathrm{s}$ into air making an angle at 30° with the horizontal. In second throw he throws the disc Draws with the same velocity making an angle at 45° with the horizontal. Difficult Draw a graph representing it.

A graph with proper scale (1 mark)

5. Name the path traced by the projectile.

K
Recall
Easy
Trajectory (1 mark)
6. Give one example for projectile motion.

K
Recall
Easy
One example (1 mark)
7. Define the angle of friction.

K
Recall
Easy
Definition (1 mark)
8. Which component of velocity of projection remains constant with U time?

See
relationship
Average
Horizontal component. (1 mark)
9. Which component of velocity of projection varies with time?

U
See relationship Average

Vertical component (1 mark)
10. Write the expression for the maximum height of the projectile.

K
Recall
Easy
Expression (1 mark)
11. Write the expression for the horizontal range of the projectile.

K
Recall
Easy
Expression (1 mark)
12. Write the expression for the time of flight of projectile.

K
Recall
Easy
Expression (1 mark)
13. For what angle of projection range is maximum?

K
Recall
Average

Ans: $\theta=45^{\circ}$ (1 mark)
14. What is the relation between height and range of projectile when K
angle of projection is 45° ?

Recall
Easy
Ans: $\mathrm{R}=4 \mathrm{H}$ (1 mark)
15. Define angular velocity.

K
Recall
Easy
Definition (1 mark)
16. Mention S.I. unit of angular velocity.

K
Recall
Easy
Ans: Rad / sec (1 mark)
17. How is frequency related to the time period?

K
Recall
Easy

Ans: $\mathrm{f}=\frac{1}{T} \quad(1 \mathrm{mark})$
18. Write the expression for centripetal acceleration in the form of K linear velocity and radius? Recall Easy Ans: $\mathrm{a}=\mathrm{v}^{2} / \mathrm{r}$ (1 mark)

19. Write the expression for centripetal force in the form of linear K velocity and radius. Recall Easy
 Ans: $\mathrm{F}=\frac{m v^{2}}{r}$ (1 mark)

20. Mention the force acting through the string when a stone tied to a K string rotates?

Centripetal force (I mark)
21. Write expression for linear velocity in the form of angular velocity. K

Recall
Easy
Ans: $v=r \omega$ (1 mark)
22. Define : period of revolution.

K

Recall
Easy
Time required to complete one rotation. (1 mark)
23. Define: angle of banking.

K
Recall
Easy

The angle by which the outer edge is raised with respect to the inner edge at curved roads. (1 mark)
24. Mention one factor on which angle of banking depends.

K
Recall
Easy
Velocity, radius of ' g '. (1 mark)
25. If the velocity of the vehicle increases, how the angle of banking U changes?

Relation
Easy
Increases (1 mark)
26. Instead of a sharp curve, when the radius is more, how the angle of banking changes?

Decreases (1 mark)
27. Mention an expression for velocity of a particle in three dimension?

K
Recall Easy

Ans: $\vec{v}=v_{x} \hat{i}+v_{y} \hat{j}+v_{z} \hat{k} \quad$ (1 mark)
28. Give one example for three dimensional motion

K
Recall
Easy
Any example. (1 mark)
29. Mention the factors on which the maximum height of a projected K particle depends.

Ans: u or g. (1 mark)
30. Mention the factors on which horizontal range of projectile K depends.

Ans: u and g. (1 mark)
31. Mention factors on which time of flight depends.

Depends on u and g. (1 mark)
32. Mention the expression for the angle of banking and explain the terms.

Expression (1 mark)
33. Mention two factors on which the angle of banking depends?

K
Recall
Easy
Any two factors (l mark each)
34. Mention the expression for the position of a particle in threedimensional motion and explain the terms.

Explain Easy
Ans: $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$. (1 mark)
35. An object is moving in a horizontal circular path of radius 4 m . Find the centripetal acceleration if it makes 6 rotations $/ \mathrm{sec}$.

Computes
Average

$$
\begin{aligned}
& a=\frac{v^{2}}{r}=\frac{r^{2} \omega^{2}}{r} \quad(1 \mathrm{mark}) \\
&=r \omega^{2} \\
&=4 \times 36=144 \mathrm{~m} / \mathrm{s}^{2} \quad(1 \mathrm{mark})
\end{aligned}
$$

36. A cyclist moving in a circular path at a speed of $10 \mathrm{~m} / \mathrm{s}$ with radius A 25 m , what is the angle of banking ($\mathrm{g}=9.8 \mathrm{mts}$).

Computes
Average
$\theta=\tan ^{-1}\left(\frac{\mathrm{v}^{2}}{\mathrm{rg}}\right)$ (1 mark)
Answer (1 mark)
37. A projectile is projected with an initial velocity of $25 \mathrm{~m} / \mathrm{s}$ takes an angle of 30° with the horizontal. Find the maximum height attained by the projectile.

A
Computes
Average

Ans: $\mathrm{H}=\frac{u^{2} \sin ^{2} \theta}{2 g}$ (1 mark)
Answer (1 mark)
38. A bullet is fired from the gun with a velocity $250 \mathrm{~m} / \mathrm{s}$, if the angle of projection is 15°, find the range of projectile.

Computes
Average
$\mathrm{R}=\frac{u^{2} \sin 2 \theta}{g}$ (1 mark)
90m (1 mark)
39. A projectile projected with the velocity of $15 \mathrm{~m} / \mathrm{s}$ at an angle of 45° to the horizontal. Find the time of flight of the projectile Computes ($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)

Average
$\mathrm{T}=\frac{2 u \sin \theta}{g}$ (1 mark)
Answer (1 mark)
40. What is a projectile? Show that the trajectory of a projectile is a K parabola.

Recall
Easy
Definition - 1 mark.
Horizontal velocity, vertical velocity - 1 mark each
Substituting and arriving final expression -2
41. An object is moving in a circular path with acceleration acting towards its centre. Derive the expression for it.

K
Recall
Easy
Centripetal acceleration - 1 mark
Diagram - 1 mark
Change in velocity along horizontal and vertical - 1 mark
Arriving final formula - 2 marks
42. A javelin is thrown into air with the speed of $30 \mathrm{~m} / \mathrm{s}$ with an angle A of projection 60°. Find range, height and time of flight of motion. Solves

Average
Range - 1 mark, height - 1 mark, time of flight - 1 mark, formula - 2 marks
43. A body is projected with the velocity of $10 \mathrm{~m} / \mathrm{s}$ at an angle of 45° to A the horizontal. Find the trajectory of the projectile.

Solves
Average
$y=a x-b x^{2}-1 m a r k$
$\mathrm{a}=\tan \theta-1$ mark
$\mathrm{a}=1$
$\mathrm{b}=\frac{-g}{2 u^{2} \cos ^{2} \theta}-1$ mark
$b=-0.98$
$y=x-0.98 x^{2}-2$ marks
44. Obtain an expression for the horizontal range of a projectile.

K

Recall
Easy
Correct expression. (1 mark)
45. Mention the expression for the time of flight of a projectile and K explain the terms used.

Correct expression (1 mark) and explanation (1 mark).
46. Mention the expression for horizontal range of a projectile and K explain the terms used.

Recall Easy

Correct expression (1 mark) and explanation (1 mark)
47. Mention an expression for the maximum height of a projectile and explain the terms used.

K
Recall
Easy
Correct expression (1 mark) and explanation (1 mark)
48. A shell of mass 0.02 kg is fired from a gun of mass 50 kg . If the muzzle speed of the shell is $150 \mathrm{~m} / \mathrm{s}$, the recoil speed of gun is
a) 0.02
b) 0.06
c) 0.1
d) 0.6

Ans: b)
49. When a projectile covers some horizontal distance, the angle of projection are

U
See relation
Average
a) 30° and 60°
b) 40° and 80°
c) 30° and 80°
d) 25° and 50°

Ans: a)
50. At the maximum height of a projectile, the direction of its velocity and acceleration are

U Interprets
a) perpendicular to each other
b) parallel to each other
c) zero and downward
d) opposite to each other

Ans: a)
51. In 1.00 second a particle goes from point A to B, moving in a semi circle of radius 2.0 m , the average speed and magnitude of velocity is
a) $1.571,4$
b) $3.142,4$
c) 2,4
d) $6.284,4$

Ans: a)
52. In which two points in the diagram the magnitude of vertical component are equal.
a) A and C
b) A and B
c) B and D
d) I and $/ \mathrm{b}$

Ans: a)
53. Which of the following is zero in a uniform circular motion?
a) Speed
b) Displacement

K
Recall
Easy
c) Acceleration
d) Distance

Ans: b)

U
Locate
Average

A

Solves Average
-
54. A passenger in a moving train tosses a coin. If the coin falls behind Average him, the train must be moving with
a) an acceleration
b) a deceleration
c) a uniform speed
d) any of the above

Ans: a)
55. A food packet is released from a helicopter rising steadily at the speed of $2 \mathrm{~m} / \mathrm{s}$. After 2 s the velocity of the pocket is $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.
a) $22 \mathrm{~m} / \mathrm{s}$
b) $20 \mathrm{~m} / \mathrm{s}$
c) $18 \mathrm{~m} / \mathrm{s}$
d) none of the above

Ans: c)
56. A mass ' m ' slips along the wall of a semispherical surface of radius R. The velocity of the bottom of the surface.
a) $\sqrt{R g}$
b) $\sqrt{2 R g}$
c) $2 \sqrt{\pi R g}$
d) $\sqrt{\pi R g}$

Ans: b)
57. A body is thrown vertically upward. Which of the following graphs represent the velocity of the body with time?

Ans: d)
58. If an iron ball and a wooden ball of the same radius are released from a height h in vacuum, then time taken by both of them to reach ground will be
a) unequal
b) exactly equal
c) roughly equal
d) zero

Ans: (b)

Chapter 8 : Work, Power and Energy

SI.
Question
No.

1. When is work said to be done?

K
Recall
Easy

When a force acts on a body and when it displaces the body in any direction except perpendicular to the direction of the force. (1 mark)
2. Mention the formula for work done, when a body displaced in a K direction making an angle with the direction of the force.

Recall Easy
Ans: $\mathrm{W}=\mathrm{FS} \cos \theta$ (1 mark)
3. Give the mathematical expression for work done on a body K displaced in the direction of the force. Recall Easy
Ans: W = F S (1 mark)
4. Write the S.I. unit of work.
Ans: joule (I mark)
5. Define S.I. unit of work. K

1 newton force acting on a body of mass 1 kg , displaces through a distance of 1 m in the direction of force. (1 mark)
6. Give an example, when work done is said to be zero.

Earth revolving around the circular orbit. Planets revolving around the circular orbit. Force and work done are perpendicular to each other. (1 mark)
7. When is work done (i) minimum, (ii) maximum?

K
Recall
Easy
i) $\theta=90^{\circ}$, ii) $\theta=0^{\circ}$ (1 mark each)
8. A man walks 2 m carrying a mass of 15 kg on his hands. Another man walks the same distance pulling the rope behind him. The rope U Interpret goes over a pulley and a mass of 15 kg hangs at its other end. In Average which case is the work done greater?

Second case (1 mark)
9. Give the graphical representation of work done by a constant force.

K
Recall
Easy
Correct graph (1 mark)
10. Give the graphical representation of work done by a variable force.

K

Recall
Easy
Correct graph (1 mark)
11. What does the area under the force against displacement curve represent?

Work done (1 mark)
12. Define power.

K
Recall
Easy
Rate of doing work. $(\mathrm{P}=\mathrm{W} / \mathrm{t})$ (1 mark)
13. Define the S.I. unit of power.

K

Recall
Easy
1 joule work is done in one second. (1 mark)
14. Mention the relation between instantaneous power, force and K velocity.

Ans: $\mathrm{P}=\mathrm{Fv}$ (1 mark)
15. A person is completing 20 J of work in 5 min , another person is U completing the 20 J of work in 10 mm . Which person has more See power? relationship Average
A person completing the work in 5 min has more power. (1 mark)
16. Give the physical quantity which define the ability to do work or K capacity to do work.

Ans: Energy (I mark)
17. Write the types of mechanical energy.

K

 Recall Easy1. Potential energy
2. Kinetic energy.
(1 mark each)
3. Define potential energy.

K

Recall Easy
Energy possessed by the body by virtue of its position. (1 mark)
19. Give the physical quantity, which define the energy possessed by a K body, by virtue of its motion.

Kinetic energy (1 mark)

20.	Give an example for potential energy.	K Recall Easy
	Any one relevant example. (1 mark)	
21.	Give an example for kinetic energy.	K Recall Easy
	Any one relevant example. (1 mark)	
22.	Mention the expression for potential energy of a spring.	K Recall Easy
	Potential energy of a spring $=1 / 2 \mathrm{kx}^{2}$ (1 mark)	
23.	State Work-Energy theorem.	K Recall Easy
	Change in kinetic energy or potential energy of a system is equal to the work done. (1 mark)	
24.	What is the change in kinetic energy of a particle moving on a circular path with a constant speed?	U See relationship Average
	Zero (1 mark)	
25.	How does the kinetic energy of a particle change when its velocity changes from $-5 \mathrm{~ms}^{-1}$ to $+5 \mathrm{~ms}^{-1}$?	U See relationship Average
	No change (1 mark)	
26.	Which type of energy is stored in the winding of watch spring?	U Interpret Average
	Potential energy (1 mark)	
27.	State the law of conservation of energy.	K Recall Easy
	Statement (1 mark)	

28. Energy can neither be created nor be destroyed, what changes take K place?

Recall
Easy
Transforms from one form to another. (1 mark)
29. Mention the commercial unit of energy.

K
Recall
Easy
Ans: kwh (1 mark)
30. When a body is moving along a inclined plane, what is the change K in total mechanical energy?

Recall
Easy
Constant or no change. (1 mark)
31. What is conservative force?

K
Recall
Easy
Work done by a force depends on only initial and final positions of the object. (1 mark)
32. Give an example for conservative force.

K
Recall
Easy
Any one relevant example. (1 mark)
33. Mention the work done by a force depends only on the path K followed.

Non-conservative force. (1 mark)
34. Give an example for conservative force.

K
Recall
Easy
Any one relevant example. (1 mark)
35. In which type of a collision both momentum and kinetic energy are K conserved?

Recall Easy
Elastic collision. (1 mark)
36. Give an example for elastic collision.

K Recall Easy

Mention any one relevant example (1 mark)
37. In which type of collision only momentum is conserved but not kinetic energy?

K
Recall
Easy
Inelastic collision. (1 mark)
38. Give an example for inelastic collision.

K
Recall
Easy
Any one of the relevant example. (1 mark)
39. Define coefficient of restitution.

K
Recall
Easy
Related definition. (1 mark)
40. What is the value of the coefficient of restitution in the case of K perfectly elastic collision? Recall Easy
Ans: $\mathrm{e}=1$ (1 mark)
41. What is the value of the co-efficient of restitution in the case of K perfectly elastic collision? Recal Easy
Ans: $\mathrm{e}=0$ (1 mark)
42. Derive the expression for potential energy.

K

Recall
Easy
Explanation-1 mark, Derivation-1 mark.
43. Derive an expression for kinetic energy of a particle.

K
Recall
Easy
Explanation-1 mark, Derivation-1 mark.
44. Mention the expression for Potential Energy of a spring and explain the terms.

K
Recall
Easy
Expression-1 mark, terms explanation - 1 mark.
45. Show that power is equal to the product of force and velocity.

K
Relation
Easy
Definition for power, $\mathrm{P}=\mathrm{W} / \mathrm{t}-1$ mark
Final expression $P=F v \quad-1$ mark
46. In the special case of an inclined plane, what is the value of θ and K find the acceleration in terms of acceleration due to gravity?

Ans: $\mathrm{a}=\mathrm{g} \sin \theta$	1 mark
showing $\mathrm{a}=\mathrm{g}$	1 mark

47. A person weighing 40 kg skips 0.6 m high 20 times. Calculate the S work done by the person.

$\mathrm{W}=\mathrm{F} \mathrm{S}$	1 mark
Final answer	1 mark

48. Water is falling on the blades of a turbine at a rate of $18000 \mathrm{~kg} / \mathrm{min}$. U

The height of fall is 200 m , find the power gained by the turbine. Solve
Average
$\mathrm{P}=\frac{\mathrm{W}}{\mathrm{t}}=\frac{\mathrm{mgh}}{\mathrm{t}} \quad 1$ mark
Final answer I mark
49. Distinguish between conservative and non-conservative forces.

U
Classify
Average
Any two differences. (1 mark each)
50. Distinguish between elastic and inelastic collisions.

U

Classify
Average

Any two relative difference (one mark each)
51. An engine lifts 6000 litres of water per hour from a well 25 m deep. A If 10% of energy of the engine is wasted, the power of the engine is Solves

Average
Formula : 1 mark.
$W=m g h$
Substituting $\mathrm{P}=\frac{m g h}{t} \quad \ldots 1$ mark
Energy used ... 1 mark
Final calculation 2 marks
$\left(90 \%\right.$ of actual power $\left.=\frac{90}{100} \times P\right)$
52. State the law of conservation of energy and prove this in the case of an object sliding down in an inclined plane.
\qquad
Recall Easy
Statement: 1 mark
Diagram: 1 mark
Verification for two steps : 2 marks
Final conclusion: I mark
53. A body of mass 5 kg at rest explodes into three fragments with masses in the ratio $1: 1: 3$. The fragments with equal masses fly in mutually perpendicular direction with speeds $2100 / \mathrm{s}$. The velocity of the heaviest fragment is
a) $9.9 \mathrm{~m} / \mathrm{s}$
b) $10.9 \mathrm{~m} / \mathrm{s}$
c) $99.9 \mathrm{~m} / \mathrm{s}$
d) $999 \mathrm{~m} / \mathrm{s}$

Ans: a)

Chapter 9: Rotational Motion and Rigid Body Dynamics

SI.	Question	Obj/ Spec./
$\begin{aligned} & \text { No. } \\ & 1 . \end{aligned}$	When is a body said to be rigid?	${ }_{K}^{\text {Diff. Level }}$
	When is a body said to be rigid?	Recall
		Easy
	By the action of external force, there is no change in shape and size of the object. (1 mark)	
2.	Define angular displacement.	K
		Recall
		Easy
	Definition (1 mark)	
3.	Define angular velocity.	K
		Recall
		Easy
	Definition (1 mark)	
4.	Define angular acceleration.	K
		Recall
		Easy
	Definition (1 mark)	

5. Write any one equation of motion in terms of angular motions.
K
Recall
Easy
Any one (mention) (1 mark)
6. Define moment of inertia.

Define moment of inertia.	K Recall Definition (1 mark)

7. Define radius of gyration.

Define radius of gyration.	K Recall Easy
Definition (1 mark)	

8. What is meant by axis of rotation? K
Recall
Easy
It is the line in the rigid body, along which particles remains at rest during the rotation. (1 mark)
9. Write the expression for moment of inertia of a thin rod.

K
Recall
Easy
Correct expression. (1 mark)
10. Write the expression for moment of inertia of a thin rod.

K

Recall
Easy
Expression (1 mark)
11. Write the expression for moment of inertia of a cylinder.

K
Recall
Easy
Expression (1 mark)
12. Write the expression for moment of inertia of a sphere.

K

Recall
Easy
Expression (1 mark)
13. State law of conservation of angular momentum.

K

Recall Easy
Statement (1 mark)
14. Mention an example for law of conservation of angular momentum. K
Recall

 Easy
 Any one example.
 15. Give the relation between angular acceleration and linear K acceleration. Recall
Easy
Ans: $\mathrm{a}=\mathrm{r} \alpha$ (1 mark)
16. Mention the relation between angular acceleration and torque. K
Recall
Easy
Ans: $\vec{\zeta}=I \vec{\alpha}$ (l mark)
17. Mention the expression for moment of inertia and explain the terms used. RecallEasyExpression - 1 mark, terms used -1 mark
18. Mention any two factors on which the moment of inertia depends. K
Recall Easy
Mass and radius. (1 mark each)
19. Mention the expression for radius of gyration and explain the terms. K
Recall
Easy
Expression - 1 mark, Terms - 1 mark
20. Mention the factors on which the radius of gyration depends. K
Recall
EasyMass and perpendicular distance. (1 mark each)
21. State and explain parallel axis theorem. K
Recall
EasyStatement - 1 mark, Explanation - 1 mark
22. State and explain perpendicular axis theorem. K
Recall
Easy
Statement -1 mark, Explanation -1 mark
23. Illustrate the principle of conservation of angular momentum in the K case of a spinning ballet dancer.

Recall Easy
Principle - 1 mark, explanation - 1 mark

Chapter 10: Gravitation

Sl. Question
Obj/Spec./
No.

1. State Newton's universal law of gravitation.

Correct statement - 1 mark.
2. Define gravitational constant.

Correct definition - 1 mark
3. Write the relation connecting g and G .

K
Recall
Easy
Ans: $\mathrm{g}=\frac{G M}{R^{2}}$ (1 mark)
4. Give the value of G in S.I. system.

K
Recall
Easy
Ans: $6.673 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$ (1 mark)
5. Will the gravitational force between two bodies change, if the medium between them is changed?

K
Recognize
Easy
No, the gravitational force is independent of the medium. (1 mark)
6. What is the weight of a body?

K
Recall
Easy
The force of attraction exerted by the earth on a body. (1 mark)
7. How does ' g ' vary with altitude?

U
Interpret
Average
Decreases (1 mark)
8. How does acceleration due to gravity vary with depth?

Decreases (1 mark)
9. At which point on the surface of the earth acceleration due to gravity is maximum?

K
Recall
Easy
' g ' is maximum at the poles. (1 mark)
10. At which point on the surface of the earth, acceleration due to gravity is minimum?

K
Recall
Easy
' g ' is minimum at the equator. (1 mark)
11. What is acceleration due to gravity?

U
Recall
Easy

The acceleration produced in a body due to gravitational force of earth. (1 mark)
12. Write an expression for the mass of the earth in terms of density ρ.

Ans: $\mathrm{m}=\frac{4}{3} \pi R^{3} \rho$ (l mark)
13. How does acceleration due to gravity vary with latitude?

U
Recall
Easy
Increases (I mark)
14. At infinite distance from the surface of the earth, what is the value of acceleration due to gravity?

U
Recall
Easy
Zero (1 mark)
15. What is the value of acceleration due to gravity at the centre of the earth?

U
Recognize
Average
$\left.\begin{array}{l}\text { 16. What will be the weight of an object at the centre of the earth? } \\ \text { 17. Dero (} 1 \text { mark) }\end{array} \begin{array}{l}\text { U } \\ \text { Recognize orbital velocity. } \\ \text { Average }\end{array}\right\}$
24. What is the time period of a geostationary satellite?

K
Recall
Easy
Ans: 24 hours (1 mark)
25. What is a geostationary satellite?

K

Recall
Easy
A satellite whose time period is equal to the earth. (1 mark)
26. When do astronaut's feel weightlessness?

K
Recall
Easy
Correct statement (1 mark)
27. Write any one application of geostationary satellite.

Communication, broadcasting, weather condition. (1 mark)
28. We are watching TV programmes. Through which satellite we are getting the information?

K
Recall
Easy
Geo-stationary satellite. (1 mark)
29. State and explain Newton's universal law of gravitation.

Statement - 1 mark, Explanation - 1 mark.
30. Why Newton's law of gravitation is called universal law of gravitation?

U
Explain
Average
It does not depend on mass of a body.
It does not depend on P, t of the atmosphere.
(1 mark each)
31. Derive the relation connecting ' g ' and ' G '.

K
Recall
Easy
$\mathrm{F}=\mathrm{mg}$ and $\mathrm{F}=\frac{G M m}{R^{2}} \quad$ (1 mark)
$\mathrm{g}=\frac{G M}{R^{2}} \quad(1$ mark $)$
32. Give an expression for the escape velocity and explain the terms. $\begin{array}{ll}\mathrm{K}\end{array}$
$\begin{aligned} & \text { Kecall } \\ & \text { Easy }\end{aligned}$
33. Expression (1 mark), abbreviation expansion (1 mark)
Give an expression for the orbital velocity of a satellite/ planet and
explain the terms. $\begin{aligned} & \mathrm{K} \\ & \text { Eecall } \\ & \text { Expression (1 mark), Abbreviation Expansion (1 mark) }\end{aligned}$
34. Write the expression for the variation of ' g ' with altitude. Explain the terms.

K
Recall
Easy
Expression (1 mark), Abbreviation Expansion (1 mark)
35. Write the expression for the variation of ' g ' with depth. Explain the K terms.

Recall Easy
Expression (1 mark), Abbreviation Expansion (1 mark)
36. Give any two differences between inertial and gravitational mass.

U
Classify
Average
Any two differences. (1 mark each)
37. State any two Kepler's laws of planetary motion.

K
Recall
Easy
Any two (1 mark each)
38. Find the acceleration due to gravity at a depth 20 km from the surface of earth. $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{R}=6.4 \times 10^{6} \mathrm{~m}$.

A

Solve
Average
Formula - 1 mark, Final result with unit - 1 mark
39. Find the acceleration due to gravity at an altitude of 40 km above the surface of the earth.
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{R}=6.4 \times 10^{6} \mathrm{~m}$
Formula - 1 mark, Final result with unit - 1 mark
40. State and explain Kepler's laws of planetary motion.

Statement - 3 marks, Explanation - 2 marks.
41. State and explain Newton's universal law of gravitation and arrive the relation connecting between ' g ' and ' G '.

Statement - 1 mark, Explanation - 1 mark
Derivation of $\mathrm{g}=\frac{G M}{R^{2}} \quad$ (3 marks)
42. ' A ' and ' B ' are two objects having the gravitational force
$6.4 \times 10^{-7} \mathrm{~N}$. When the distance between them is reduced by 2 m ,

A

the force increases to $14.4 \times 10^{-7} \mathrm{~N}$. Find their original distance and Difficult find the mass of ' A ' and ' B ' if the mass of ' A ' is twice that of ' B '.
$\mathrm{F}=\frac{G m_{1} m_{2}}{d^{2}}-1$ mark
Substitution for two distance -1 mark.
$\mathrm{d}=1.5 \mathrm{~m}$ (1 mark)
Substitution for one equation - 1 mark
$\mathrm{m}_{1}=$ \qquad
$\mathrm{m}_{2}=$ \qquad \} 1 mark
43. The mean distance of mars from the sun is 1.524 times that of earth from sun. Then the number of years required for mars to make one revolution about sun is
a) 1.88 years
b) 1.99 years
c) 2.8 years
d) 3.4 years

Ans: a)

Chapter 11: Elasticity

SI.

Question

Obj/ Spec./
No.
Diff. Level

1. Mention the property by which matter regains its original shape and size after the removal of deforming force.

Recall
Easy

Elasticity (1 mark)
2. Name the force acting on a body which tends to change its original Kshape and size.RecallEasyDeforming force (I mark)
3. When is a body said to be perfectly elastic? KRecallEasyBoth kinetic energy and momentum is conserved. (1 mark)
4. When is a body said to be inelastic? K
Recall
EasyOnly momentum is conserved but not kinetic energy. (1 mark)
5. Define stress. KRecallEasyForce / unit area. (1 mark)
6. Mention any one type of stress. KRecallEasyAny one of the type. (1 mark)7. Define strain.KRecall
EasyChange in dimension to the original dimension. (1 mark)
8. Mention any one type of strain.KRecall
Easy
Any one of the type. (1 mark)
9. State Hooke's law. K
Recall
Easy
Statement (1 mark)
10. Define modulus of elasticity.K
Recall
EasyRatio of longitudinal stress to the longitudinal strain within theelastic limit. (1 mark)
11. Give the S.I. unit of modulus of elasticity.

K
Recall
Easy
Ans: $\mathrm{N} / \mathrm{m}^{2}$ or pascal (1 mark)
12. Mention an expression for the Young's modulus of elasticity in the case of a stretched string.

K
Recall
Easy
Expression (1 mark)
13. State and explain Hooke's law.

K
Recall
Easy
Statement - 1 mark, Explanation-1 mark.
14. Write the expression for the Young's modulus of elasticity in the K case of a stretched string. Explain the symbols.

Recall
Easy

Expression-1 mark, explanation of symbols - 1 mark

UNIT 3 STATICS

Unit 12: Concurrent Co-planar Forces

SI.

Question

Obj/ Spec./
No.
Diff. Level

1. What are concurrent forces?

K
Recall
Easy
Number of forces acting at a point. (1 mark)
2. What are co-planar forces?

K
Recall
Easy
Forces acting in the same plane. (1 mark)
3. Two forces are acting at a point at an angle ' θ ' with each other. K

Write the expression for the magnitude of the resultant force.
Recall
Easy
Ans: $\mathrm{F}=\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos \theta} \quad$ (1 mark)
4. Define the equilibrium of a body under the action of system of K forces.

Recall
Easy
The state of the body is at rest. (1 mark)
5. State the law of parallelogram of forces.

K
Recall
Easy
Correct statement (1 mark)
6. State the law of triangle of forces.

K
Recall
Easy
Correct statement (1 mark)
7. What is the magnitude of the resultant of two forces \vec{P} and \vec{Q} acting in the same line and in the same direction?

K
Recall Easy

$$
\begin{aligned}
& \longrightarrow \stackrel{\rightharpoonup}{P} \\
& |\vec{R}|=\sqrt{P^{2}+Q^{2}+2 P Q \cos \theta}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{P^{2}+Q^{2}+2 P Q \cos 0^{\circ}} \\
& =\mathrm{P}+\mathrm{Q} \quad(1 \text { mark })
\end{aligned}
$$

8. What is the magnitude of the resultant of two forces \vec{P} and $\vec{Q} \quad \mathrm{U}$ acting in the same line and in the opposite direction?

$|\vec{R}|=P-Q$
(1 mark)
9. State Lami's theorem.

K

Recall Easy
Correct statement. (1 mark)
10. State and explain the converse of law of triangle forces.

Correct statement - 1 mark, explanation with diagram - 1 mark
11. What is the component of \vec{F} along AB in the diagram.

Component of \vec{F} along AB is $\mathrm{F} \sin \theta$ (1 mark)
$F \sin 30^{\circ}=\mathrm{F} \times 1 / 2 \quad\left(\because \cos 60^{\circ}=\sin 30^{\circ}\right)$
$=\frac{F}{2} \quad(1 \mathrm{mark})$
12. A force of 10 N makes an angle of 60° with positive x -axis. What K is its magnitude along x -axis?

Recall Average
x - component is, $\vec{F}_{x}=\vec{F} \cos \theta \quad$ (1 mark)
$\mathrm{F}_{\mathrm{x}}=10 \times \cos 60^{\circ}$
$F_{x}=10 \times 1 / 2=5 \mathrm{~N} \quad$ (1 mark)
13. Two nails are driven into a wall 1.5 m apart along a horizontal line. A A weight of 5 kg is hung from a string tied to the two nails. The Calculate length of the sagging strings are 0.9 m and 1.2 m respectively. Average Calculate the tension in the strings.

Figure (I mark)
Formula (1 mark)
Substitution and simplification (2 marks)
Result with unit (1 mark)
$\mathrm{T}_{1}=4 \mathrm{~kg} \mathrm{wt}$.
$\mathrm{T}_{2}=3 \mathrm{~kg} \mathrm{wt}$.
14. Two forces 5 kg wt and 3 kg wt act at a point making an angle of 60° with each other. Find the magnitude and direction of the Calculate resultant force.

Figure - I mark
Formula - 1 mark
Substitution and calculation -1 mark
Answer : $\mathrm{R}=7 \mathrm{~kg}$. wt (l mark)
Direction $\alpha=38^{\circ} 13^{\prime}$ (1 mark)
15. Obtain an expression for the magnitude and direction of the K resultant of two forces acting at a point.

Recall Easy

Figure (1 mark)
Explanation (1 mark)
Arriving at the expression $\mathrm{R}=\sqrt{P^{2}+Q^{2}+2 P Q \cos \theta} \quad$ (2 marks)
Direction of Resultant $\tan \alpha=\frac{Q \sin \theta}{P+Q \cos \theta} \quad$ (1 mark)
16. State the law of moments. Using the law find the resultant of two K like parallel forces.

Statement (1 mark)
Diagram (1 mark)
Applying the law of moments (I mark)
Arriving at the expression $\mathrm{R}=\mathrm{P}+\mathrm{Q}$ (2 marks)

Multiple Choice Questions

17. Which of the following sets of concurrent forces F_{1}, F_{2} and F_{3} (in K N) respectively may be in equilibrium

Recall
Easy
a) $3,5,6$
b) $3,5,15$
c) $3,5,1$
d) $3,5,9$

Ans: a)
18. Two concurrent forces of equal magnitude 5 N each, act at an angle K 120°. The magnitude of their resultant is

Recall
a) 15 N

Easy
b) $5 \sqrt{3} \mathrm{~N}$
c) 5 N
d) 10 N

Ans: c)
19. The resultant of two forces $3 P$ and $2 P$ is R. If the first force is A doubled, then the resultant is also doubled. The angle between the Solving two forces is
a) 180°
b) 90°
c) 120°
d) 60°

Ans: c)
20. The resultant of two forces, one double the other in magnitude, is perpendicular to the smaller of the two forces. The angle between them is

S
a) 60°
b) 120°
c) 150°
d) 120°

Ans: b)
21. A mass of 4 kg is suspended by a rope of length 3.0 m from the U ceiling. A force of 30 N in the horizontal direction is applied to the Compute midpoint of the rope. The angle the rope makes with the vertical in Difficult equilibrium is (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$. Neglect the mass of the rope)
a) 37°
b) 47°
c) 57°
d) 27°

Ans: a)

22. A block of mass 15 kg hangs from three chords as shown in figure. U

The tension in the chord is
Compute
a) 134 N
b) 103 N
c) 147 N
d) 175 N

Ans: c)
23. The resultant of two forces $3 P$ and $2 P$ is R. If the first force is doubled, then the resultant is also doubled. The angle between the Compute two forces is
a) 180°
b) 90°
c) 120°
d) 60°

Ans: c)
24. Figure below shows three light rods forming a right angled triangle. The tension in the rod AC, when a force of 300 N is applied vertically downwards at ' C ' is
a) 100 N
b) 300 N
c) 400 N
d) 500 N

Ans: d)

25. Describe an experiment to verify the law of parallelogram of forces. S

Draw
Average
Scheme:
Diagram-1 mark
Tabular column - 1 mark
Formula-1 mark
Procedure - 2 marks
Total - 5 marks
26. Describe an experiment to verify the law of triangle of forces.

S
Draw
Average

Scheme:

Diagram - 1 mark
Tabular column - 1 mark
Formula - 1 mark
Procedure - 2 marks
Total - 5 marks
27. Describe an experiment to verify Lami's theorem.

S
Draw
Average

Scheme :

Diagram - 1 mark
Tabular column-1 mark
Formula - 1 mark
Procedure - 2 marks
Total-5 marks

Unit 13: Moment of a Force

SI.
Question
No.

1. When is the moment of a force negative?

Obj/ Spec./
Diff. Level
K
Recall
Easy
Clockwise (1 mark)
2. Write the S.I. unit of moment of a force.

K

Recall
Easy
Newton - metre (N.m) (1 mark)
3. Define moment of a force.

K

Recall
Easy
Rotational effect produced by the force about the axis. (1 mark)
4. When is the moment of force positive?

K
Recall
Easy
Anticlockwise (1 mark)
5. Define a couple and give a suitable example.

K
Recall
Easy
Correct definition - 1 mark. Example - 1 mark
6. What are the factors on which moment of a couple depend?

K
Recall
Easy

1. Magnitude of force
2. Perpendicular distance
(1 mark each)
3. State the law of moments.

K
Recall
Easy
Correct statement (1 mark)
8. Give an example for moment of a force.

Correct example (1 mark)
9. When does the moment of a couple become zero?

K
Recall
Easy
When the lines of action of two forces that constitute a couple coincide. (1 mark)
10. Write the expression of the resultant of two like parallel forces acting on a body.

Recall
Easy
$\vec{R}=\vec{P}+\vec{Q}(1$ mark $)$
11. Describe an experiment to verify the conditions of equilibrium of parallel forces.

Drawing and explaining
Difficult

Diagram - 1 mark
Tabular column - 1 mark
Relevant formula - 1 mark
Procedure - 2 marks
Total - 5 marks
12. Verify the conditions of equilibrium of a system of coplanar forces acting on a uniform metre scale, the following readings are Verifies obtained. Verify the conditions.

Weight of the metre scale $(W)=75 \times 10^{-3} \mathrm{~kg}$

Trial No	$\mathrm{P} \times 10^{-3}$ $\mathrm{~kg} w t$	$\mathrm{Q} 10^{-3}$ $\mathrm{~kg} w t$	$\mathrm{R} 10^{-3}$ $\mathrm{~kg} w \mathrm{wt}$	$\mathrm{S} 10^{-3}$ $\mathrm{~kg} w t$	$\mathrm{OA10}^{-3}$ $\mathrm{~kg} w t$	$\mathrm{OBI} 0^{-3}$ $\mathrm{~kg} w t$	$\mathrm{OC10} 0^{-3}$ $\mathrm{~kg} w t$	$\mathrm{OD} 10^{3}$ $\mathrm{~kg} w t$
1	150	175	100	150	25	75	20	74
2								
3								

1. $P+Q=150+175=325 \times 10^{-3} \mathrm{~kg} w t$
2. $R+S+W=100+150+75=325 \times 10^{-3} \mathrm{~kg} \mathrm{wt}$
(1) and (2) are equal $\mathrm{P}+\mathrm{Q}=\mathrm{R}+\mathrm{S}+\mathrm{W}$
3. $\mathrm{P} \times \mathrm{OA}+\mathrm{Q} \times \mathrm{OB}=150 \times 25+175 \times 75$
$\mathrm{R} \times \mathrm{OC}+\mathrm{S} \times \mathrm{OD}+\mathrm{W} \times \mathrm{OE}=100 \times 20+150 \times 74+75 \times 50$
(3) and (4) are equal.
$\mathrm{P} \times \mathrm{OA}+\mathrm{Q} \times \mathrm{OB}=\mathrm{R} \times \mathrm{OC}+\mathrm{S} \times \mathrm{OD}+\mathrm{W} \times \mathrm{OE}$
This verifies the second condition.
Formula - 1 mark
Each condition verification : $2+2=4$ marks
Total : 5 marks

UNIT 4 FLUID MECHANICS

Unit 14: Fluid Thrust

Sl. Question Obj/ Spec./
No. Diff. Level

1. State Pascal's law. K
RecallEasyCorrect statement (1 mark)
2. Write the relation between 1 atm and 1 Pascal.
KExpress one atmosphere in SI unit of pressure.Recall
$1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ or Pa. (1 mark)
3. What is buoyancy? KRecallEasyCorrect definition (1 mark)
4. An ice cube floats on water. Why ?
KRecallAverageDensity of ice in less than that of water. (1 mark)
5. State the laws of floatation.
K
K
Recall
Easy
Correct statement. (1 mark)
6. State and explain Archimede's principle.
K
Recall
Easy
Correct statement - 1 mark. Brief explanation -1 mark.
7. Why does a cloudy track form behind an aeroplane flying at a high altitude? U
Explain
Average
When an aeroplane is flying fast, a stream of air also moves behindit at a greater speed. Thus pressure is lowered behind it and at oncewater vapour condenses in the form of droplets of water.(2 marks)
8. The blood pressure in humans is more at the feet than at the brain. U

Why?
Generalize
Average
The height of the blood column is more at the feet than at the brain.
(1 mark)
9. When will a body float in a liquid?

K
Recall
Easy
The weight of the body is less than the upthrust. (1 mark)
10. What is centre of buoyancy?

K
Recall
Easy
The resultant of thrust acts through the centre of gravity of the displaced liquid. (1 mark)
11. Give any two applications of Pascal's law.

K
Recall
Easy

1. Hydraulic Brakes
2. Hydraulic lift
(related to any example) (1 mark each)
3. Write an expression for pressure at a point in a liquid. Explain the symbols used.

K
Recall
Easy

Ans: $\mathrm{P}=\rho \mathrm{gh}$ (1 mark) Explanation (1 mark)
13. Calculate the specific gravity of the solid and the liquid, the A following readings are obtained. Hence calculate the error involved. Calculation Average

Mass of solid in air $W_{1}=25.5 \times 10^{-3} \mathrm{~kg}$
Mass of solid in water $W_{2}=23 \times 10^{-3} \mathrm{~kg}$
Mass of solid in liquid $\mathrm{W}_{3}=24.2 \times 10^{-3} \mathrm{~kg}$
Specific gravity of solid $S=\frac{W_{1}}{W_{1}-W_{2}}=10.2(3$ marks $)$
Specific gravity of liquid $\mathrm{S}_{\mathrm{L}}=\frac{W_{1}-W_{3}}{W_{1}-W_{2}}=0.52$

Percentage of error in solid $\frac{\Delta S}{S} \times 100=0.0121 \%$
Percentage of error in liquid $\frac{\Delta S_{L}}{S_{L}} \times 100=0.0162 \% \quad$ (2 marks)
14. Describe an experiment to determine specific gravity of an A insoluble solid and a liquid by using Archimede's principle. Also Describe estimate the error involved in the experiment.

Average

Scheme :
Diagram - Imark
Formula - 1 mark
Observations - 1 mark
Procedure and error calculation - 2 marks
Total - 5 marks
15. A piece of wood floats on water. When it is placed in alcohol, the U piece

Relation
Average
a) floats higher
b) sinks
c) has no change in floating level
d) may sink or float depending on its density

Ans: d)
16. The buoyant force on an object, immersed in a liquid depends on
a) its depth in liquid

K
b) density of the solid

Recall
c) density of the liquid
d) both on depth and density of the solid

Ans: c)
17. A coin is at the bottom of a beaker containing water. If the beaker is allowed to fall freely, during the free fall
a) the coin comes to the surface of water

Compare
Easy
b) the coin comes out of the beaker
c) the coin continues to be at the bottom
d) the coin stays exactly at half the water level

Ans: c)
18. A boat having a length of 3 m and breadth 2 m is floating on a lake. A When a man gets into it, the boat sinks by 0.01 m . The mass of the Average man is
a) 60 kg
b) 62 kg
c) 72 kg
d) 50 kg

Ans: a)
19. Which of the following devices is used to measure the atmospheric K pressure?
a) Venturimeter
b) Pyrometer
c) Barometer
d) Hygrometer

Ans: c)
20. A body floats in a liquid when
a) the weight of the body is less than the upthrust K
b) the weight of the body is greater than the upthrust

Recal!
c) the density of the body is greater than liquid.
d) Weight of the body does not depend on floating

Ans: a)
21. The pressure at a point in a liquid depends
a) only on the depth of the point in the liquid
b) only on the density of the liquid

K
c) depth, density and acceleration due to gravity
d) only density and acceleration due to gravity

Ans: c)

Unit 15: Fluid Dynamics

1. Define critical velocity of a liquid in motion. K

Recall
Easy
Correct definition (1 mark)
2. When does the flow of a liquid become turbulent?

K
Recall
Average
The flow of liquid becomes turbulent when its velocity of flow becomes greater than critical velocity. (1 mark)
3. What is streamline flow of fluid?

K
Recall
Easy
Correct definition (1 mark)
4. Define turbulent flow of a liquid.

K
Recall
Easy
Correct definition (1 mark)
5. State and explain Bernoulli's theorem

K

Recall
Easy
Statement - 1 mark. Explanation - 1 mark
6. Write an expression for the equation of continuity for fluids.

K

Recall
Easy
$\mathrm{a}_{1} \mathbf{v}_{1}=\mathrm{a}_{2} \mathrm{v}_{2}$
$\mathrm{av}=\mathrm{a}$ constant
$a=$ area of cross section of the tube
$v=$ velocity of fluid
(I mark)
7. Write the expression for the pressure energy of a liquid.

K

Recall Easy
Pressure Energy $=\frac{P}{\rho} \quad$ (1 mark)
8. Write any two conditions for applying Bernoulli's theorem.

1. The flow of liquid must be steady.
2. The fluid should be incompressible
3. Friction and viscosity should be negligible.

Any two - one mark each.
9. What shapes of aeroplane wings are desirable so that it can fly in U air? Explain Average
Velocity of air becomes larger at the upper surface and lower at the lower surface. (1 mark)
The pressure on the upper surface is less than that of the lower surface. (1 mark)
10. Mention two applications of Bernoulli's theorem.

K
Recall
Easy

1. Sprayer
2. Uplift of an aircraft
(1 mark each)
3. Write an expression for kinetic energy of a liquid in steady flow with usual meaning.

K
Recall
Easy
$\mathrm{KE}=\frac{1}{2}\left(\frac{m}{v}\right) v^{2} \quad(1$ mark $)$
$\operatorname{OrKE}=\frac{1}{2} \rho v^{2}$
$\rho=? \quad(1$ mark) $)$
$v=? \quad$
12. A liquid is flowing through a tube of different cross sections; then the velocity of the liquid is

K
Recall
Easy
a) greatest at the least cross section
b) least at the least cross section
c) same at all cross section
d) greatest at greatest cross section

Ans: a)
13. A paint-gun is based on
a) Bernoulli's theorem
b) Archimede's principle

U

Generalize
Easy
c) Boyle's law
d) Newton's law of motion

Ans: a)
14. A liquid flows through a horizontal tube of different cross-section U A_{1} and A_{2}. Then the ratio of the speed of the liquid at the two cross Relation sections is
a) $\mathrm{A}_{1}: \mathrm{A}_{2}$
b) $\mathrm{A}_{2}: \mathrm{A}_{1}$
c) $\mathrm{A}_{1}{ }^{2}: \mathrm{A}_{2}{ }^{2}$
d) $\mathrm{A}_{2}{ }^{2}: \mathrm{A}_{1}{ }^{2}$

Ans: b)
15. The lift of an airplane is based on
a) Torricelli's theorem

Reason
b) Bernoulli's theorem

Average
c) Law of gravitation
d) Conservation of linear momentum

Ans: b)

Unit 16: Surface Tension

1. Define surface tension of a liquid. K

Recall
Easy
Correct definition (1 mark)
2. Write the S.I. unit of surface tension. K

Recall
Easy
Ans: N / m (1 mark)
3. Define angle of contact.

K
Recall
Easy
Correct definition (1 mark)
4. What should be the angle of contact of a liquid that can wet a K contact surface?

Recall
Easy
$\theta<90$ (1 mark)
5. What should be the angle of contact of a liquid that cannot wet a K contact surface?

Recall
Easy
$\theta>90$ (1 mark)
6. What is capillarity?

K Recall
Easy
Correct definition (1 mark)
7. Why water wets glass?

U
Generalize Easy

Adhesive force is more than the cohesive force. (1 mark)
8. Why does mercury not wet the glass?

U
Generalise
Average
Cohesive force > adhesive force (1 mark)
9. Write an expression for the capillary rise of a liquid and explain the K terms.

Recall Easy
$\mathrm{h}=\frac{2 T \cos \theta}{r \rho g}$ (1 mark)
Explanation of terms (1 mark)
10. Explain how liquid drops are formed.

U
Explain
Easy

1. Gravitational potential energy
2. Potential energy due to surface tension (1 mark each)
3. Explain the capillary action in the wick of a lamp.
4. Capillary rise. 2. Surface tension. (1 mark each)
5. Explain the action of detergents in cleaning of dirty clothes.

K
Recall
Easy

K
Recal! Easy

1. Capillary rise. 2. Surface tension (1 mark each)
2. Distinguish between cohesive and adhesive forces with suitable U example.

Discriminate Easy

Correct explanation - 1 mark. Example - 1 mark
14. Define surface energy of a liquid. K

Recall
Easy
Correct definition (1 mark)
15. What are cohesive forces?

K

Recall
Easy
Correct definition (1 mark)
16. What are adhesive forces?

K
Recall
Easy
Correct definition (1 mark)
17. If a graph of capillary rise (h) versus radius (r) of the capillary tube S for a given liquid is plotted, what is the shape of the resulting Draw curve?

Difficult
The shape of the curve is rectangular hyperbola. (1 mark)
18. Why is it difficult to introduce mercury into a capillary tube?

U
Explain
Average
The angle of contact is obtuse. (1 mark)
19. How do trees draw water from the ground?

Capillary action (1 mark)
20. Calculate the surface tension of water from the following observations recorded in capillary rise method experiment.
i) L.C. of traveling microscope $=0.001 \mathrm{~cm}$
ii) Radius of capillary tube $=2 \times 10^{-4} \mathrm{~m}$
iii) Density of water $=10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$

Tr.	Reading of T.M.			
	For meniscus R			
	For Pin	$\left(\mathrm{R}_{2}\right)$		
	MSR	CVD	MSR	CVD
1.	6.55 cm	21	3.65 cm	21
2.	5.8 cm	25	2.9 cm	34

Scheme of Valuation :

Calculating h_{1} and $h_{2}: 2$ marks
Formula : 1 mark
Substitution : 1 mark
Result with unit : 1 mark
21. Describe an experiment to determine the surface tension of water by K
capillary rise method.
Recall
Average
Diagram - 1 mark
Tabular column - 1 mark
Formula - 1 mark
Procedure - 2 marks
22. Name the intermolecular forces acting between molecules of same substance.

Generalize
Easy
a) Cohesive force
b) Adhesive force
c) Gravitational force
d) Nuclear force

Ans: a)
23. Name the intermolecular forces acting between molecules of U
different substances.
a) Cohesive force

Generalize Easy
b) Adhesive force
c) Gravitational force
d) Nuclear force

Ans: b)
24. Surface tension arises due to
a) adhesive force between molecules
b) cohesive force between molecules
c) gravitational force between molecules
d) electrical force between molecules

Ans: a)
25. When salt is added to pure water, the surface tension
a) increases

K

b) decreases
c) remains unchanged
d) becomes zero

Ans: a)
26. A capillary of diameter $10^{-3} \mathrm{~m}$ is vertically dipped in water $\left(\rho=10^{3}\right.$ $\mathrm{kg} \mathrm{m}^{-3}$ and $\left.\mathrm{T}=0.072 \mathrm{Nm}^{-1}\right)$, then the capillary ascent is $(\mathrm{g}=10 \mathrm{~m}$ $\sec ^{-2}$)

Compute
a) 28.8 mm
b) 2.88 mm
c) 0.288 m
d) 2.88 m

Ans: a)
27. R and 2 R are the radii of two capillary tubes A and B respectively. Tube A is dipped vertically in a liquid of surface tension T_{1} and B

U in a liquid of surface tension T_{2}. If h_{1} and h_{2} are the capillary Difficult ascents then $h_{1}: h_{2}$ is equal to
a) $T_{1} R_{2}: T_{2} R_{2}$
b) $T_{1} R_{l}: T_{2} R_{2}$
c) $T_{1}^{2} R_{2}: T_{2}^{2} R_{1}$
d) $T_{1} R_{1}^{2}: T_{2} R_{2}^{2}$

Ans: a)
28. Two capillary tubes T_{1} and T_{2} are of same radius. T_{1} is made up of U glass of density $2 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ and T_{2} is of density $4 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$. If h_{1} and h_{2} are the capillary ascents when the two tubes are dipped Compare vertically in water then
a) $\mathrm{h}_{1}<\mathrm{h}_{2}$
b) $h_{2}<h_{1}$
c) $\mathrm{h}_{1}=\mathrm{h}_{2}$
d) $\mathrm{h}_{1}=2 \mathrm{~h}_{2}$

Ans: c)
29. The dimensional formula for surface tension per unit mass is
a) $M^{1} L^{0} T^{-2}$

K

Recall
Easy
b) $\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-2}$
c) $M^{0} L^{0} T^{-2}$
d) $M^{1} 1^{1} T^{-2}$

Ans: c)

Chapter 17 : Viscosity

	Write the Poiseuille's formula for the flow of a liquid through a capillary tube and explain the symbols used. $\mathrm{V}=\frac{\pi P r^{4}}{8 l \eta} \quad \text { (1 mark) Explanation (1 mark) }$	K Recall Easy
2.	State and explain Stoke's law.	K Recall Easy
	Statement - 1 mark. Explanation - 1 mark	
3.	Which is more viscous? Castor oil or kerosene?	U Classify Average
	Castor oil is more viscous than kerosene. (1 mark)	
4.	Why does a larger raindrop fall faster than a smaller raindrop?	U Explain Average

The terminal velocity of a drop is directly proportional to the square of its radius. (1 mark)

5. What is the effect of temperature on the viscosity of liquids?

K

Recall

Easy

Viscosity decreases as temperature increases. (1 mark)
6. What is the effect of temperature on the viscosity of gases?

K

Recall
Average
Viscosity of gases increases with increase in temperature. (1 mark)
7. Why does hot liquid move faster than cold liquid?

This is due to decrease of viscosity with increase of temperature. (1 mark)

[^0]16. State any two differences between streamline and turbulent flow of K liquids.

Any two differences (1 mark each)
17. Calculate the coefficient of viscosity of water using the following U data.
i) Radius of the capillary tube $=0.06 \times 10^{-2} \mathrm{~m}$
ii) Length of the capillary tube $=0.38 \mathrm{~m}$

Tr	Time of	Height of the water level		Volume of No.
wlow	Floter in cc			
1	120 sec	0.244	$\left(\mathrm{~h}_{2}\right) \mathrm{m}$	0.242
2	180 sec	0.240	0.237	60

Assuming g $=9.8 \mathrm{~m} \mathrm{sec}^{-2}$
Density of water $=10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$

Scheme of valuation :

Trial No. $1 \frac{h_{1} t_{1}}{v_{1}}$ (1 mark)
Trial No. $2 \frac{h_{2} t_{2}}{V_{2}}$ (1 mark)
Mean $\frac{h t}{V}$ (1 mark)
Formula (1 mark)
Result with unit (I mark)
18. Describe an experiment to determine the coefficient of viscosity of water by Poiseuille's method.

K
Describe
Average
Diagram - 1 mark
Formula - 1 mark
Tabular column - 1 mark
Procedure - 2 marks
Total: 5 marks
19. A hole is near the bottom of a tank. The volume of liquid emerging from the hole does not depend upon
a) area of hole
b) height of liquid level
c) density of water
d) gravitational acceleration

Ans: c)
20. Which of the following substances has greater viscosity?
a) Mercury

U
Cite example Easy
b) Water
c) Oxygen
d) Glycerine

Ans: d)
21. The clouds float in atmosphere because of
a) low temperature

U
b) low viscosity

Reason
c) low density
d) creation of low pressure

Ans: c)
22. Viscosity is most closely related to
a) Friction
b) Adhesive force

K
Recall
Easy
c) Cohesive force
d) Bernoulli's theorem

Ans: a)
23. The dimensional formula for the coefficient of viscosity is
a) $M^{1} L^{1} T^{-1}$
b) $\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{-2}$

A

c) $\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-1}$
d) $M^{6} L^{1} T^{-2}$

Ans: c)

Applies
Average

Unit 5 HEAT AND THERMODYNAMICS

Unit 18: Gas Laws

SI.

Question

Obj/ Spec./
No.
Diff. Level

1. Name the two coefficients of expansion of gases.

K
Recall
Easy
Volume coefficient
Pressure coefficient (1 mark each)
2. Define the volume coefficient of gas.

Correct definition (1 mark)
3. Define pressure coefficient of gas.

Correct definition (1 mark)
4. Write the expression for volume of a gas at any temperature ' t ', if V_{o} is its volume at $0^{\circ} \mathrm{C}$.
$\mathrm{V}=\mathrm{V}_{\mathrm{o}}\left(1+\frac{t}{273.15}\right)$ (1 mark)
5. Write the expression for ideal gas equation.

Ans: $\mathrm{PV}=\mathrm{RT}$ (1 mark)
6. State and explain Boyle's law.

Statement (1 mark), Explanation (1 mark)
7. What is absolute zero temperature.

K
Recall
Easy
Definite lower limit of temperature $\left(-273.15^{\circ} \mathrm{C}\right)$ (1 mark)
8. Give the value of universal gas constant for 1 kg mole of a gas.

K
Recall

Ans: $\mathrm{R}=8.31 \times 10^{8} \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ (1 mark)
9. State and explain Charle's law. K

Recall
Easy
Statement (1 mark), Explanation (1 mark)
10. Write the expression for Van der Waal's equation of state for real K gases with usual meanings.

Recall
Easy
$\left(P+\frac{q}{V^{2}}\right)(V-b)=\mathrm{nR}$
Equation - 1 mark, Explaining terms - 1
11. Give the mathematical representation of Boyle's law.

K
Recall
Easy
$P V=$ constant
$P_{1} V_{1}=P_{2} V_{2}$ when T - constant. (1 mark)
12. Give the mathematical representation of Charle's law.

K
Recall
Easy
$\mathrm{P} / \mathrm{T}=$ constant
$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$ at $\mathrm{V}=\mathrm{constant} \quad(1$ mark)
13. Define: isothermal process. Give one example.

K
Recal!
Easy
Statement - 1 mark, example - 1 mark.
14. Define: adiabatic process. Give one example.

K

Recall
Easy

Statement - 1 mark, Example - 1 mark
15. Write the relation between P and V for (i) isothermal processes and K
(ii) adiabatic processes.

Recall Easy
$P V=$ constant (1 mark)
$P V^{\gamma}=$ constant (1 mark)
16. A gas contained in a sealed container is heated up. What is the K effect on its pressure?

Recall
Easy
Increases (according to Charle's law) (1 mark)
17. At constant temperature, the volume of a gas is doubled. What will K happen to its pressure?

Halved (reduced to half) (from Boyle's law) (1 mark)
18. At constant pressure, the temperature of a gas is halved. What will happen to its volume?

K
Recall
Easy
Halved (from Charle's law) (1 mark)
19. When automobile travels for a long distances air pressure in the U tyres increases. Why?

Generalize
Average
i) Due to friction between tyres and road temperature increases.
ii) According to Charle's law pressure increases. (1 mark each)
20. What is absolute zero temperature? Explain the absolute (or Kelvin scale) of temperature.

K

 Recall EasyLowest possible temperature $\left(-273.15^{\circ} \mathrm{C}\right)$
Volume coefficient $\alpha=\frac{1}{273.15}$ (1 mark)

Relation $\mathrm{V}=\mathrm{V}_{0}(1+\alpha \mathrm{t}) \quad$ (1 mark)
At $\mathrm{t}=-273.15^{\circ} \mathrm{C}$, substitution and arriving $\mathrm{V}=0$ (2 marks)
21. Write the perfect gas equation for ' n ' mole of a gas. Calculate the value of universal gas constant for one kg mole of gas.

$\mathrm{PV}=\mathrm{nRT}$	
$\mathrm{R}=\frac{\mathrm{PV}}{\mathrm{T}}$ for $\mathrm{n}=1 \mathrm{k}$ mole	(1 mark)
Substitution and calculation of $\mathrm{R}=8.31 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$	$(1$ mark $)$
Unit marks)	
$(1$ mark $)$	

22. Absolute zero of temperature is

K
a) $273.15^{\circ} \mathrm{C}$

Recall
b) $0^{\circ} \mathrm{C}$

Easy
c) The temperature of liquid Helium
d) $-273.15^{\circ} \mathrm{C}$

Ans: d)
23. An ideal gas has a volume of $3 l$ at atmospheric pressure. Keeping U the temperature constant, the pressure is doubled. Then the volume See relation of gas will be
a) 31
b) 61
c) 1.5 l
d) any value

Ans: c)
24. At constant pressure V_{1} and V_{2} are the volumes of a given mass of a gas at temperature $27^{\circ} \mathrm{C}$ and $54^{\circ} \mathrm{C}$ respectively. Then the ratio

U $\frac{V_{1}}{V_{2}}$ is

Compute
Easy
a) $\frac{54}{27}$
b) $\frac{27}{54}$
c) $\frac{100}{109}$
d) $\sqrt{\frac{100}{109}}$

Ans: c)
25. A monoatomic gas is suddenly compressed to $1 / 8^{\text {th }}$ of its initial U volume adiabatically. The ratio of its final pressure to initial See relation pressure is $\left(\gamma=\frac{5}{3}\right)$
a) $\frac{40}{3}$
b) 32
c) 8
d) $\frac{24}{5}$

Ans: b)

Unit 19: Specific Heat Capacities of gases

1. Define: specific heat of a gas at constant volume. K

Recall
Easy
Correct definition (1 mark)
2. Define : specific heat of a gas at constant pressure.

K

Recall
Easy
Correct definition (1 mark)
3. Write the SI unit of specific heat.

K

Recall
Easy
Ans: $\mathrm{J} \mathrm{Kg}^{-1} \mathrm{~K}^{-1}$ (1 mark)
4. Write the relation between the specific heat at constant volume and specific heat at constant pressure for a gas.

K
Recall Easy
Ans: $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$ (1 mark)
5. Mention two factors on which the degrees of freedom of a gas depends.

K
Recal! Easy
i) atomicity, ii) temperature (1 mark each)
6. The internal energy of a monoatomic gas is directly proportional to RT. Write the dimensional formula for RT.

U
Recall Easy
Ans: Joules ($\mathrm{ML}^{2} \mathrm{~T}^{-2}$) (1 mark)
7. Why different materials possess different specific heat?

U
Generalize
Average
The atomic or molecular structures are different. (1 mark)
8. Define degrees of freedom of a molecule.

K
Recall
Easy
Correct definition (1 mark)
9. State the law of equipartition energy for a gas.

K
Recall
Easy
Statement (1 mark)
10. What is the importance of γ, the ratio of specific heats of a gas?

K
Recall
Easy
i) Atomicity, ii) Molecular structure (1 mark each)
11. What is the value of mean kinetic energy per molecule per degrees K of freedom?

Ans: $1 / 2 \mathrm{kT}$ (1 mark)
12. Mention the number of degrees of freedom for a monoatomic and a diatomic molecule.

For monoatomic - 3 (1 mark)
For diatomic - 5 (1 mark)
13. When is the specific heat of a gas a) zero and (b) infinity

U

Generalise Average
a) In adiabatic processes, it is zero. (1 mark)
b) In isothermal processes, it is infinity (1 mark)
14. Why C_{p} is greater than C_{v} ?

U

Generalize
Easy

1. In case of C_{v} heat supplied is used to increase the internal energy. (1 mark)
2. While in C_{p} heat supplied is used to increase the internal energy and to do an external work. (1 mark)
3. Establish the relation between velocity of sound in a gas and degrees of freedom of gas.

A
Formulate Difficult

Velocity of Sound, $\mathrm{v}=\sqrt{\frac{\gamma P}{\rho}} \quad$ (1 mark)
$\mathrm{V}=\sqrt{\left(1+\frac{2}{n}\right)\left(\frac{R T}{m}\right)}$ (1 mark)
16. Write the S.I. unit of $\mathrm{C}_{\mathrm{p}} \mathrm{dT}$.

Ans: joule (J) (1 mark)
17. Draw the graph showing the variation of internal energy of the gas S with respect to the change in temperature for constant volume.

Correct graph (1 mark)
18. Describe an experiment to verify the Newton's law of cooling using
calorimeter.

Draw
Average
Diagram-1 mark
Tabular column-1 mark
Graph - 1 mark
Procedure - 2 marks
Total - 5 marks
19. Derive Mayer's equation.

OR
Derive the expression for $C_{p}-C_{v}=R$
Diagram-1 mark
External work done by the heat energy
$\mathrm{W}=\mathrm{P} \mathrm{dv}$ (1 mark)
$C_{p} d T=C_{v} d T+P d V$ (1 mark)
For perfect gas, $\mathrm{PV}=\mathrm{RT}$ (1 mark)
$\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$ (1 mark)
20. Describe an experiment to determine the specific heat of solid by the method of mixture using calorimeter.

Describe
Average
Diagram - 1 mark
Formula-1 mark
Observations - 1 mark
Procedure - 2 marks
Total-5 marks
21. Calculate the specific heat of solid by the method of mixture by using calorimeter, the following reading were obtained.

A

Calculation Average

Mass of the calorimeter + stirrer, $\mathrm{m}_{1}=68.5 \times 10^{-3} \mathrm{~kg}$
Mass of the calorimeter + stirrer + water, $m_{2}=130 \times 10^{-3} \mathrm{~kg}$
Mass of the calorimeter + stirrer + solid, $m_{3}=211.8 \times 10^{-3} \mathrm{~kg}$
Initial temperature, $\theta_{1}=23^{\circ} \mathrm{C}=286 \mathrm{~K}$
Temperature of the solid, $\theta_{2}=95^{\circ} \mathrm{C}=368 \mathrm{~K}$
Resultant temperature of the mixture, $\theta_{3}=32^{\circ} \mathrm{C}=305 \mathrm{~K}$
Specific heat of material of calorimeter $\mathrm{S}_{\mathrm{c}}=385 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
Specific heat of water $S_{w}=4200 \mathrm{~J} / \mathrm{kg} / \mathrm{K}$

Scheme :

$\mathrm{S}=\frac{\left[m_{1} s_{c}+\left(m_{2}-m_{1}\right) s_{w}\right]\left(\theta_{3}-\theta_{1}\right)}{\left(m_{3}-m_{1}\right)\left(\theta_{2}-\theta_{3}\right)}$
$\mathrm{S}=\frac{\left[68.5 \times 10^{-3} \times 385+\left(130 \times 10^{-3}-68.5 \times 10^{-3}\right) 4200\right](305.296)}{\left(211.8 \times 10^{-3}-130 \times 10^{-3}\right)(368-305)}$
Specific heat of the solid $=502.4 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$

Formula : 1 mark
Substitution: 1 mark
Calculation: 2 marks
Answer with unit : I mark
Total : 5 marks
22. At $4^{\circ} \mathrm{C}$, a given mass of water has the maximum
a) specific heat

K

Recall
Easy
b) density
c) energy
d) volume

Ans: b)

Chapter 20: Mode of Heat Transfer

1. Name any two methods of transmission of heat energy.

K
Recall
Easy
Gives any two methods. (1 mark each)
2. What is conduction of heat?

K
Recall
Easy

Correct definition (1 mark)
3. What is meant by steady state of a body?

K
Recall
Easy
Correct statement (1 mark)
4. Define : temperature gradient.

K

Recall Easy

Correct definition (1 mark)
5. Define: coefficient of thermal conductivity.

Correct definition (1 mark)
6. Give the dimensions of thermal conductivity.

K
Recall Easy

Ans: $\left[\mathrm{LMT}^{-3} \theta^{-1}\right]$ (l mark)
7. Give the SI unit of thermal conductivity.

K
Recall
Easy

Ans: $W \mathrm{~m}^{-1} \mathrm{~K}^{-1}$ (1 mark)
8. Why does the temperature of every part of a metal rod remains U constant in steady state?
Because in steady state, no part of the metal rod absorbs any heat. (1 mark)
9. State and explain convection of heat.
K
Recall
Easy
Statement - I mark, Explanation- 1 mark
10. Define : emissive power of a body. Write its SI unit.

K
Recall
Easy
Definition - I mark, Unit (1 mark)
11. Define : emissivity of a body. What is the emissivity of a perfect black body?

K
Recall
Easy
Definition - 1 mark
Emissivity, $\mathrm{e}=1$ mark
12. Define : absorptivity of a body. What is the absorptive power of a perfect black body?

K
Recal!
Easy
Definition - 1 mark, $\mathrm{a}=1$ mark
13. State and explain Kirchhoff's law of radiation with an example.

K
Recal!
Average
Statement - 1 mark
Explanation-2 marks
Relation- 1 mark
Example - 1 mark
Total : 5 marks
14. State and explain Newton's law of cooling.

K
Recall
Easy
Statement - 1 mark, explanation - 1 mark
15. Write an expression for Planck's law of radiation. Explain the symbols therein. K
Recall EasyEquation - 1 mark, Explanation of terms - 1 mark
16. Write the characteristics of thermal radiation. K
Recall
Easy
Write any four properties. ($1 / 2$ mark each -2 marks)
17. State and explain Stefan's law of radiation. KRecallEasy
Statement - 1 mark, Explanation-1 mark
18. State and explain Wein's displacement law of radiation. KRecallEasy
Statement - 1 mark, Explanation - 1 mark
19. What is meant by a perfect black body? Explain construction and K working of Fery's black body. Recall
Easy
Scheme of Valuation :
Definition-1 mark
Figure - 1 mark
Construction and working - 3 marks
Total : 5 marks
20. State and explain Planck's law of radiation. KScheme of Valuation :Statement - 1 markExplanation- 1 mark
21. Write the expression for Stefan's law of Radiation. Give the unit/ Kdimension of Stefan's constant.RecallEasy

Scheme of Valuation :

$E=\sigma T^{4} \quad$ (1 mark)
$\sigma=5.672 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} / \mathrm{K}^{4}$ (1 mark)
22. Double walled containers are used for keeping ice. Why?

U
Reason
Average

Ice box is constructed with a double wall and the space between them is filled with non-conducting material. This provides thermal insolation and loss of heat is minimized. (2 marks)
23. Define solar constant. Describe the method of estimating the temperature of the sun.
OR
K
Recall
Easy
Explain how the temperature of the sun can be estimated.

Scheme of Valuation :
Definition-1 mark
Explanation - 2 marks
Expression-2 marks
Total - 5 marks
24. Describe the construction and working of total radiation pyrometer.

K
Recall
Easy

Scheme of valuation :

Figure : 1 mark
Construction : 2 marks
Working : 2 marks Total : 5 marks
25. A spherical perfectly black body of radius 0.01 m is at 400 K .

Calculate the energy radiated by the body per second per unit area.
What is the total energy radiated by the entire body per second?

A
Calculate
Average

Assume the body to be perfectly black.
(Given $\sigma=5.7 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$).

Energy radiated by the body / sec/ unit area is
$E=\sigma T^{4}$
$\mathrm{E}=5.7 \times 10^{-8} \times(400)^{4}=1459 \mathrm{~J} \quad$ (2 marks)
Area of the body, $A=4 \pi r^{2}$

$$
\mathrm{A}=4 \times 3.142 \times\left(10^{-2}\right)^{2}=12.57 \times 10^{-4} \mathrm{~m}^{2}(1 \text { mark })
$$

Total energy radiated by the body $/ \mathrm{sec}$
$\mathrm{E}=\mathrm{A} \times \sigma \times \mathrm{T}^{4}$
$\mathrm{E}=12.56 \times 10^{-4} \times 5.7 \times 10^{-8} \times(400)^{4}$
$=1.833 \mathrm{~J} \quad(2$ marks $)$
26. A rectangular slab of stone of length 1.30 m and breadth 0.20 m and area $2600 \times 10^{-4} \mathrm{~m}^{2}$ and thickness 0.1 m is exposed to steam on the lower surface at 373 K . A block of ice at 273 K rests on the upper surface of the slab. In one hour, 2.4 kg of ice is melted. Calculate the thermal conductivity of the stone. Given $\mathrm{L}=336 \times 10^{3} \mathrm{~J} \mathrm{~kg}^{-1}$.

Quantity of heat conducted is $\mathrm{Q}=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{d} \times t$
But Q is also the head that melts the ice i.e. $\mathrm{Q}=\mathrm{mL} \quad$ (1 mark)
$\mathrm{mL}=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{d} t$
$\mathrm{K}=\frac{m L d}{A\left(\theta_{1}-\theta_{2}\right) t}=\frac{2.4 \times 336 \times 10^{3} \times 0.1}{2600 \times 10^{-4}(373-273) 3600}$ (2 mark)
$\mathrm{K}=0.86 \mathrm{JS}^{-1} \mathrm{~m}^{-1} \mathrm{~K}^{-1} \quad$ (1 mark)
27. Give any two applications of thermal conductivity.

U
Generalize
Easy
Each application - 1 mark
28. What is the importance of Wein's displacement law?

K
Recall
Easy

To determine the temperature of heavenly bodies such as sun. (1 mark)
29. Assume that the thermal conductivity of copper is four times that of brass. Two rods of copper and brass having the same length and cross section are joined end to end. The free end of copper is kept Calculation Easy at 273 K and the free end of iron is kept at 373 K . Calculate the temperature of the junction of the two rods at equilibrium.

Scheme of Valuation :

$\mathrm{K}_{1}=4 \mathrm{~K}_{2}$
Let ' θ ' be the temperature of the interface.
At equilibrium, $\frac{K_{1} A_{1}(\theta-273)^{\prime}}{d_{1}}=\frac{K_{2} A_{2}(373-\theta) t}{d_{2}}$
$d_{1}=d_{2} \quad A_{1}=A_{2} \quad(1 \mathrm{mark})$
$4 \mathrm{~K}_{2}(\theta-273)=\mathrm{K}_{2}(373-\theta) \quad(1 \mathrm{mark})$
$50=373 \times 4 \times 273=1465$ (1 mark)
$\theta=293 \mathrm{~K}$ (1 mark)
30. Which law explains correctly the distribution of energy in the spectrum of black body?

Recall
Easy

Planck's law of radiation based on quantum theory of radiation.
(1 mark)
To verify the Newton's law of cooling graphically, the following readings were obtained. Draw a graph of rate of cooling versus temperature and interpret the graph.
Room temperature $\theta_{0}=25^{\circ} \mathrm{C}$

Trial No.	$\begin{aligned} & \text { Temperature }{ }^{\circ} \mathrm{C} \\ & \text { ' } \theta \text { ' } \end{aligned}$	Time (s)
1	70	0
2	68	108
3	66	221
4	64	340

Scheme of Valuation :
Correct graph (1 mark)
Rate of cooling vs. Excess temperature (a straight line graph)
(1 mark)
31. A thermos flask contains hot coffee. The flask is vigorously U shaken. Then the temperature of the coffee will
a) rise

Interpret
Average
b) fall
c) remains the same
d) fall below $0^{\circ} \mathrm{C}$

Ans: a)
32. 2 kg of water at $60^{\circ} \mathrm{C}$ is mixed with 1 kg of water at $30^{\circ} \mathrm{C}$ kept in a vessel of heat capacity $200 \mathrm{~J} \mathrm{~K}^{-1}$. The specific heat of water is 4200 Calculate $\mathrm{Jkg}^{-1} \mathrm{k}^{-1}$. Then final temperature is nearly Average
a) $55^{\circ} \mathrm{C}$
b) $50^{\circ} \mathrm{C}$
c) $35^{\circ} \mathrm{C}$
d) $45^{\circ} \mathrm{C}$

Ans: b)

Chapter 21: Thermodynamics

1. What is meant by isothermal process? Give an example. K

Recall
Easy
Definition - 1 mark. Example - 1 mark
2. State the first law of thermodynamics.

K
Recall
Easy
Correct statement (1 mark)
3. What is the significance of the first law of thermodynamics? K

Energy (1 mark)
4. What is a reversible process? Give an example.

K
Recall
Easy
Definition-1 mark. Example-1 mark.
5. What is the function of a heat engine and define efficiency of a K heat engine?

Recall
Easy
Function (1 mark), correct definition (1 mark)
6. What is an adiabatic process? Give an example.

K
Recall
Easy
Definition-1 mark. Example-1 mark
7. What is an isochoric process and what is an Isobaric process?

K
Recall
Easy
Correct definition - one mark each
8. Name the thermodynamic variables.

K
Recall
Easy
Pressure, volume and temperature are the basic thermodynamic variables or parameters. (1 mark)
9. What is a thermodynamic process?

K
Recall
Easy

A process in which thermodynamic parameters of a system undergo a change. (1 mark)
10. State the zeroth law of thermodynamics.

K
Recall
Easy
Correct statement
11. Give the Kelvin-Planck statement of second law of K thermodynamics.

Recall
Easy
Correct statement (| mark)
12. Write the Claussius-Clapeyron equation and explain the symbols.

K

Recall
Easy
$\frac{d P}{d T}=\frac{L}{T\left(V_{2}-V_{1}\right)} \quad$ (1 mark)
$L=$
$\mathrm{V}_{1}=$
$\mathrm{V}_{2}=$
$\mathrm{T}=$
$\mathrm{dP}=$
$d T=$
13. What is a cyclic process?

K
Recall
Easy

Correct definition (1 mark)
14. What is the change in internal energy of a system subjected to a K cyclic process?

Recall
Easy
The change in internal energy is zero. (1 mark)
15. Explain briefly the action of a refrigerator on the basis of (or using) K the second law of thermodynamics.
OR
Give a brief explanation of the working of a refrigerator using thermodynamic principle.

Block diagram of refrigerator - 1 mark, Explanation - 1 mark
16. What is a heat engine? Explain the parts of a Carnot heat engine.

Definition of engine -1 mark
Figure - 1 mark
Explanation of parts of engine -3 marks
Total : 5 marks
17. What is meant by entropy?

K
Recall
Easy
Entropy of an isolated system is a measure of the state of the system. (1 mark)
18. Distinguish between reversible and irreversible process.

K
Recall
Easy
Each difference - 1 mark
19. Explain the different stages of Carnot cycle with the help of a K ($\mathrm{P}-\mathrm{V}$) diagram. Write the expression for its efficiency. Recall Easy

Explanation of stages : 3 marks
($\mathrm{P}-\mathrm{V}$) diagram : 1 mark
Expression of efficiency : 1 mark
Total: 5 marks
20. A reversible heat engine of efficiency 40% has its efficiency increased to 50% when the temperature of the sink is lowered by Calculation 50 K . Find the temperatures of the source and the sink.

Average
Formula : 1 mark
Discuss 3 cases : 2 marks
Temperature of source $T_{1}=500 \mathrm{~K}=1$
Temperature of sink $T_{2}=300 \mathrm{~K}=1$
Total : 5 marks.
21. In a cyclic process the amount of heat given to a system is equal to K
a) network done by the system Recall
b) net increase in internal energy Easy
c) net decrease in internal energy
d) net change in volume

Ans: a)
22. "Heat cannot flow from a cold to a hot body without the aid of any K external agency". This was enunciated by
a) Kelvin and Planck

Recall
Easy
b) Clausius
c) Joule and Thomson
d) Einstein

Ans: b)
23. The internal energy of an ideal gas depends only on
a) temperature

K

b) pressure

Recall
c) volume
d) temperature and volume both

Ans: a)
24. If dQ is heat supplied, ' dU ' is the change in internal energy of gas and dW the work done by the gas, the first law of thermodynamics states

K Recall Easy
a) $\mathrm{dQ}=\mathrm{dU}-\mathrm{dW}$
b) $d U=d Q-d W$
c) $d U=d W-d Q$
d) $d Q+d U+d W=0$

Ans: b)
25. The area under $\mathrm{P}-\mathrm{V}$ diagram represents

K

a) the state of the system

Recall
b) heat supplied to system Easy
c) change in internal energy of the system
d) work done by the system

Ans: d)
26. Which of the following relations between C_{p} and C_{v} is correct?
a) $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}^{-1}$

K
b) $\mathrm{C}_{\mathrm{p}}+\mathrm{C}_{\mathrm{v}}=\mathrm{R}$

Recall
Easy
c) $\frac{C_{p}}{C_{v}}=R$
d) $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}$

Ans: d)
27. The first law of thermodynamics is connected with the U conservation of Relation
a) number of molecules

Easy
b) energy
c) mass
d) temperature

Ans: b)
28. The first law of thermodynamics is a special case of
a) Newton's law

K
b) Charle's law

Recall
c) Law of heat exchange
d) Law of conservation of energy

Ans: a)
29. The second law of thermodynamics implies
a) whole of heat can be converted into mechanical energy
b) no heat engine can have efficiency 100%

Infer
c) some heat engines working in reversible process can have efficiency 100%
d) a refrigerator can reduce the temperature to absolute zero.

Ans: b)
30. By opening the door of a refrigerator which is inside a room, the A temperature of the room

Infer
a) decreases

Average
b) increases
c) remains unchanged
d) first decreases and then increases

Ans: c)
31. In the gas equation $\mathrm{PV}^{\gamma}=\mathrm{constant}$ (with $\gamma=1$) the process is K
a) isothermal

Recall
b) Adiabatic Easy
c) Isobaric
d) Irreversible

Ans: a)
32. Four curves $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are drawn in the figure for a given amount U of gas. The curves which represent adiabatic and isothermal Compare changes are

Difficult
a) C and D respectively
b) D and C respectively
c) A and B respectively
d) B and A respectively

Ans: c)
33. In an isothermal process
a) pressure remains constant

K
b) temperature remains constant

Recall
c) volume remains constant
d) kinetic energy remains constant

Ans: b)
34. System A is in thermal equilibrium with B and B is separately in equilibrium. From which law of thermodynamics it follows? Average
a) Zeroth
b) First
c) Second
d) Third

Ans: a)
35. An ideal monoatomic gas is taken around the cycle ABCDA . The U work done is

Compute
Average
a) $1 / 2 \mathrm{PV}$
b) PV
c) 2 PV
d) 4 PV

Ans: b)
36. Wavelength of radiations emitted by a body depends upon
a) nature of the surface
b) area of the surface
c) temperature of the surface
d) all of the above factors

Ans: d)
37. A Carnot engine is made to work between $200^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ first and then between $0^{\circ} \mathrm{C}$ and $-200^{\circ} \mathrm{C}$. The ratio of efficiencies of the engine in the two cases

Compute Average
a) $1.73: 1$
b) 1:1.73
c) $1: 1$
d) $1: 2$

Ans: b)
38. A Carnot engine takes heat from a reservoir at $627^{\circ} \mathrm{C}$ and rejects at $27^{\circ} \mathrm{C}$. Calculate efficiency.
a) $\frac{200}{209}$
b) $\frac{3}{5}$
c) $\frac{1}{3}$
d) $\frac{2}{3}$

Ans: d)

UNIT 6 OSCILLATIONS - WAVES AND SOUND

Chapter 22: Oscillations

SI.
Question
Obj/ Spec./
No.
Diff. Level

1. $\quad y_{1}=A \sin \omega t$ and $y_{2}=A \cos w t$ are the equations of motion of two K particles. What is the phase difference between them? Recall Easy
Ans: $\frac{\pi}{2}$ OR 90° (1 mark)
2. A and B are two particles executing uniform circular motion with U the same angular frequency Projections OM and ON executes SHM Computing through the point O . What is the phase difference between them? Average

Ans: $\Phi=\quad$ Phase difference $=\frac{\pi}{3}+\frac{\pi}{4}=\frac{(4+3) \pi}{y 12}=\frac{7 \pi}{12}$
(1 mark)

3. At which position of a particle executing simple harmonic motion, K its potential energy is maximum?

Recall Easy

At extreme point / maximum displacement position (1 mark)
4. A particle is executing SHM. Its displacement is given by the K equation $y=A \sin (\omega t+\pi / 2)$. Represent this graphically.

Recall
Average
Correct graph (1 mark)
5. At which position is the velocity maximum for a particle in S.H.M?

K
Recall
Easy
At mean position / at equilibrium position (1 mark)
6. At which position is the acceleration a maximum for a particle in K simple harmonic motion?

Recall
Easy
At extreme position / maximum displacement position (1 mark)
7. Write two differences between rotational and vibrational motion. K

Recall
Easy

Rotational	Vibrational	
1. It is motion of a body	1.To and fro motion about a point. around a point or axis.	
2. At a point in the path, direction of motion same.	2. At a point in its path, it	
has two directions.		

One mark each.
8. What is the direction of acceleration of a particle executing SHM?

K
Recall
Easy

Acceleration is directed towards mean position / equilibrium position. (1 mark)
9. Write down the positions at which the acceleration is i) maximum, ii) minimum for a particle in SHM.

K
Recall
Easy

1. Acceleration is maximum at maximum displacement position/ extreme position. (1 mark)
2. Minimum at mean / equilibrium position. (1 mark)
3. Write down the maximum and minimum values of acceleration for particle executing SHM.

K
Recall Easy

1. $A \omega^{2} /-A \omega^{2}$ (1 mark)
2. Zero (1 mark)
3. In the equation $y=A \sin \omega t$ where A is in meters, what is the U displacement (y) at time $t=\frac{\pi}{2 \omega}$ sec. Amplitude $A=10 \mathrm{~m}$.

Compute
Average
$y=10 \mathrm{~m}$ (1 mark)
12. At which position of a particle executing SHM, the kinetic energy is a maximum and a minimum?

K
Recall
Easy

Maximum at mean position. (1 mark)
Minimum / zero at extreme position. (1 mark)
13. A mass of 10 kg suspended from a spring of negligible mass is pulled a little and released so that the mass executes SHM of period T. If the mass is increased by M, the time period is $\frac{5 T}{3}$. Find increased mass, if k is the spring constant.

$$
\left.\begin{array}{l}
\mathrm{T}=2 \pi \sqrt{\frac{m}{k}} \quad(1 \text { mark }) \\
\mathrm{T}_{1}^{2}=4 \pi^{2} \frac{10}{k}(1 \text { Mark }) \\
\mathrm{T}_{2}^{2}=4 \pi^{2}\left(\frac{10+M}{k}\right) \tag{1mark}\\
\frac{25}{9} \times 10=10+M-1 \\
\mathrm{M}=17.77 \mathrm{~kg}
\end{array}\right\} \quad(1 \text { mark })
$$

14. $y=0.5 \sin (31.4 t)$ is the equation of motion of a particle executing A simple harmonic motion. Find
a) amplitude
b) period
c) Maximum velocity
d) Maximum kinetic energy of mass of particle is 10 mg
e) Displacement of particle

At $t=0.05 \mathrm{sec}$ (follow SI system)

1. Amplitude $\mathrm{A}=0.5 \mathrm{~m}$ (1 mark)
2. $\omega=\frac{2 \pi}{T}=31.4, \quad \frac{2 \times 3.14}{T}=31.4, \mathrm{~T}=0.2 \mathrm{~s} \quad(1 \mathrm{mark})$
3. $\mathrm{v}=\mathrm{A} \omega=0.5 \times 31.4=15.7 \mathrm{~ms}^{-1}$ (1 mark)
4. $\mathrm{KE}=1 / 2 \mathrm{~mA}^{2} \omega^{2}$
5. $y=A \sin \omega t$ $y=0.5 \mathrm{~m} \quad$ (1 mark)
6. Write the equations for (i) the velocity and (ii) the acceleration of a particle executing SHM, explain their variations with respect to displacement.
7. $\mathrm{v}=\omega \sqrt{A^{2}-y^{2}}$ (1 mark)
$\mathrm{v} \rightarrow$ Minimum $\mathrm{v}=0 \mathrm{y}=\mathrm{A}$ (1 mark)
8. $\left.\begin{array}{lll}a=-\omega^{2} y \quad(1 \text { mark }) & a=0, y=0 \\ v \rightarrow \text { Maximum when } y=0 & (1 \text { mark }) & a=\max , \mathrm{y}=A\end{array}\right\}$ mark
9. The length of the string of a simple pendulum, executing SHM is U increased by 44%. Find the percentage increase in its period.

Compute
Easy
$\mathrm{T}=2 \pi \sqrt{\frac{l}{g}}$ (1 mark)
$l=l_{l} \quad \mathrm{~T}_{1}=2 \pi \sqrt{\frac{l}{g}}$
If length is increased by 44%

$$
\frac{T_{2}}{T_{1}}-1=0.2
$$

$l_{2}=l_{1}+\frac{44}{100} l_{1}=1.44 l_{l} \quad(1$ mark $) \quad \frac{T_{2}-T_{1}}{T_{1}} \times 100=0.2 \times 100$
$\mathrm{T}_{2}=2 \pi \sqrt{\frac{1.44}{g} l_{1}} \quad(1 \mathrm{mark}) \quad=20 \%$
$\frac{T_{2}}{T_{1}}=1.2$
17. The length of a simple pendulum is increased by 4%, then calculate A the percentage change in its time period.

Solves
Average

Since $T=2 \pi \sqrt{\frac{l}{g}} \quad$ (1 mark)
Therefore, $\mathrm{T}_{1}=2 \pi \sqrt{\frac{l_{1}}{g}}, \mathrm{~T}_{2}=2 \pi \sqrt{\frac{l_{2}}{g}} \quad$ (1 mark)
$\therefore \frac{T_{2}}{T_{1}}=\sqrt{\frac{l_{2}}{l_{1}}}$. As $l_{2}=l_{1}+\frac{4 l_{1}}{100}=\frac{104 l_{1}}{100} \quad(1 \mathrm{mark})$
$\therefore \frac{T_{2}}{T_{1}}=\sqrt{\frac{104 l_{1}}{100 l_{1}}}=\sqrt{1+\frac{4}{100}}=\left(1+\frac{4}{100}\right)^{1 / 2}=1+\frac{1}{2} \times \frac{4}{100}=1.02$
$\therefore \mathrm{T}_{2}=1.02 \mathrm{~T}_{1}$ (1 mark)

Chapters 23 and 24 : Waves and Sound

1. In the diagram below for what value of phase the wave undergoes a U reflection from a rigid surface.

Interpret
Easy

When a wave undergoes a reflection from a rigid surface its phase changes by π radians. (1 mark)
2. What is the state of vibration of the particle midway between two K antinodes?

The particles midway between two antinodes is always at rest. (1 mark)
3. For what wavelength of waves, does a closed pipe of length 0.3 m emit the first overtone?

Frequency of first overtone $\mathrm{f}=\frac{3 \mathrm{~V}}{4 l}=\frac{3 \mathrm{~V}}{4(0.3)} \quad(1 \mathrm{mark})$
Since $\lambda=\frac{V}{f}=\frac{V}{\frac{3 V}{1.2}}=\frac{1.2}{3}=0.4 m \quad$ (1 mark)
4. Give an example for free vibrations. K

Recall
Average
Vibrations of a simple pendulum in vacuum (1 mark)
5. Particles A and B executes SHM with the same frequency. What is the phase difference between them?

U
Compute Easy


```
Phase difference \(=\Phi=90+45\) (1 mark)
    \(\Phi=135^{\circ}\)
```

6. Which variable quantity of a wave remains constant when it travels from one medium to another?
a) wavelength
b) amplitude
c) frequency
d) velocity

Ans:c)
7. A progressing wave traveling in positive x-axis is as shown. Write U the wave equation if its position at $t=0$ is as shown.
Given $\mathrm{a}=0.04 \mu_{\mathrm{j}}^{\mathrm{m}} \mathrm{v}=200 \mathrm{~m} / \mathrm{s}, \lambda=0.2 \mathrm{~m}$.

Interpret
Easy

$y=a \sin \frac{2 \pi}{\lambda}(v t-x)$
$y=0.04 \sin (2000 \pi-10 \pi x)$
or $\mathrm{y}=0.04 \sin \frac{2 \pi}{0.2}(200 t-x)$
$y=0.04 \sin (2000 \pi t-10 \pi x) \quad$ (1 mark)
$\mathrm{y}=\mathrm{a} \sin \left(\frac{2 \pi}{\lambda} v t-\frac{2 \pi}{\lambda} x\right)$
8. The shape of a pulse gets deformed during propagation in a K dispersive medium. Explain.

Understand Easy

The wavelength of the pulse changes as it passes through a dispersive medium. Hence its shape also changes. (1 mark)
9. The displacement y of a particle in a medium can be represented by $y=10^{-6} \sin \left(100 t+20 x+\frac{\pi}{4}\right) m$, where t is in second and x is in m.

U
Compute
Average What is the speed of the wave?

By comparing the given equation with the standard equation, speed of the wave is found to be $v=5 \mathrm{~m} / \mathrm{s}$.
Compare with $\mathrm{y}=\mathrm{a} \sin (\omega \mathrm{t}+\mathrm{k}+\phi) \quad$ (1 mark)
$\omega=2 \pi v=\left(\frac{2 \pi}{\lambda}\right) v=k v$
$v=\frac{\omega}{k}=\frac{100}{20}=5 \mathrm{~ms}^{-1} \quad$ (1 mark)
10. Write the equation of a sinusoidal wave traveling along the negative x-direction having angular frequency ω, amplitude A and wavelength λ.

K
Recall
Average

Ans: $y=A \sin (\omega t+k x)$ (I mark)
11. A wave having a frequency of 50 Hz is as shown in the figure. Find its wavelength and speed.

Wavelength $\lambda=4 \mathrm{~m}$ (1 mark)
Speed $v=200 \mathrm{~ms}^{-1} \quad$ (1 mark)
12. Which of the following phenomena is not exhibited by sound K waves?
a) Interference
b) Diffraction
c) Beats
d) Propagation in vacuum

Ans: d)
13. Name the property exhibited by electromagnetic waves, which is not exhibited by mechanical waves.

Recall Easy

Polarization (1 mark)
14. The property exhibited by electromagnetic waves and not exhibited by mechanical waves is
a) interference Recall
b) reflection
c) refraction
d) polarization

Ans: d)
15. What is the phase difference between the waves?
$y_{1}(x, t)=a \sin (w t+k x)$ and $y_{2}(x, t)=a \cos (w t+k x)$.
K
Recall Easy

Phase difference between the waves $y_{1}\left(x_{1}, t\right)$ and $y_{2}(x, t)$ is 90°. Since wave and cosine waves differ by a phase of $\phi=\pi / 2 \mathrm{rad}$. (1 mark)
16. If oil of density higher than that of water is used in place of water in K resonance tube, its frequency will

Recal! Easy
a) decrease
b) increase
c) remains the same
d) cannot say

Ans: c)
17. In a stationary wave, node is a point having
a) maximum density

K
b) minimum displacement

Recall
c) minimum density
d) maximum strain

Ans: b)
18. There is no net transfer of energy through the medium in
a) longitudinal wave

K

Recall
Easy
b) transverse wave
c) progressive wave
d) stationary wave

Ans: d)
19. Describe an experiment to find the velocity of sound at zero degree Celsius.

Scheme of Valuation :
$\mathrm{v}_{\mathrm{t}}=2 \mathrm{f}\left(l_{2}-l_{1}\right) \mathrm{ms}^{-1}$
$\mathrm{v}_{\mathrm{o}}=\frac{V_{t}}{\sqrt{1+\frac{t}{273}}} \mathrm{~ms}^{-1}$

TR	f in Hz	Resonating length $\times 10^{2} \mathrm{~m}$		$\mathrm{~V}=2 \mathrm{f}\left(l_{2}-l_{1}\right)$
		l_{1}	l_{2}	

Diagram - 1 mark
Table-1 mark
Procedure - 2 marks
20. Calculate the velocity of sound from following readings.

Scheme of Valuation :

TR	Fre ' f '	Resonating length in meter	
No.	in Hz	L_{1}	$\mathrm{~L}_{2}$
1	520	0.16	0.49
2	480	0.18	0.54

A
Calculate
Average

Formula - 1 mark
Calculation l_{1} and $l_{2}-1$ mark
Substitution and calculation - 2 marks
Correct result with unit - 1 mark
21. Following are the readings obtained in a sonometer experiment to determine the frequency of a tuning fork.
Mass of weight hanger $=0.5 \mathrm{~kg}$
Length of the specimen wire $=4 \mathrm{~m}$
Mass of the specimen wire $=12.48 \mathrm{~g}$

Trial No.	Mass added to the weight hanger $\mathrm{m}_{1} \mathrm{~kg}$	Resonating length $l \times 10^{-2} \mathrm{~m}$
1	0.5	6.6
2	1.0	8.0
3	1.5	9.3

Formula : 1 mark $\mathrm{f}=\frac{1}{2 \sqrt{m}} \times\left(\frac{\sqrt{T}}{l}\right)_{a v} . H z$
Finding $\frac{\sqrt{T}}{l}$ for each trial - 1 mark each.
$\left(\frac{\sqrt{T}}{l}\right)_{a v}=47.65$
Substitution and simplification - 1 mark.
$\mathrm{f}=426.5 \mathrm{~Hz}$
22. An air filled tube, closed at one end, resonates with a tuning fork of frequency 512 Hz . The first two successive lengths of the resonant air columns are $15.5 \times 10^{-2} \mathrm{~m}$ and $50 \times 10^{-2} \mathrm{~m}$. If the experiment is Calculate Average performed at $30^{\circ} \mathrm{C}$, calculate the speed of sound at $0^{\circ} \mathrm{C}$.
$\mathrm{v}_{\mathrm{t}}=2 \mathrm{f}\left(\mathrm{l}_{2}-\mathrm{l}_{1}\right) \quad$ (1 mark)

1. Find the speed of sound at $30^{\circ} \mathrm{v}_{\mathrm{t}}=353.3 \mathrm{~m} / \mathrm{s} \quad$ (1 mark)
2. Speed of sound at $0^{\circ} \mathrm{C} \mathrm{v}_{0}=\frac{v_{1}}{\sqrt{1+\frac{1}{273}}}$ (1 mark)
3. Substitution and simplification (1 mark)
4. Final result with unit (1 mark)
$\mathrm{v}_{\mathrm{o}}=335.2 \mathrm{~m} / \mathrm{s}$
5. Describe an experiment to determine the acceleration due to gravity at a place using simple pendulum.
6. Figure - 1 mark
7. Formula - 1 mark
8. Empty tabular column - 1 mark
9. Procedure -2 marks
10. What is an open pipe? Obtain the relation between the fundamental frequency and overtones in an open pipe.

A
Derive
Difficult

Definition of open pipe (l mark)
Diagram showing modes vibration in open pipe (1 mark)
Obtaining the fundamental frequency (1 mark)
Obtaining the equation for 1 and II overtone (1 mark)
Showing $\mathrm{f}_{1}: \mathrm{f}_{2}: \mathrm{f}_{2}=1: 2: 3$ (1 mark)
25. Write any four differences between progressive and stationary wave.

K

Recall
Average
One mark each
26. Derive the expression for the frequency of vibration of a stretched string.

U

Derive
Difficult

Modes of vibration of the string (1 mark)
Expression for the velocity of wave in a string $\mathrm{v}=\sqrt{\frac{T}{m}}$ (1 mark)
Fundamental frequency (l mark) $\mathrm{f}_{1}=\frac{1}{2 l} \sqrt{\frac{T}{m}}$
Expression I and II overtone (I mark)
Arriving at $\mathrm{f}=\frac{1}{2 l} \sqrt{\frac{T}{m}}$ (1 mark)
27. A simple harmonic wave is given by the equation
$y=4 \sin (8 \pi t-0.02 x+1.57)$, where x and y are in cm and t is in second. Calculate the (i) amplitude, (ii) frequency, (iii)

A
Solve
Average
wavelength, (iv) propagation constant and the (v) initial phase.
$y=4 \sin (8 \pi t-0.02 x+1.57)$
Std. Eqn. $y=a \sin (\omega t-k x+\phi)$

Comparing the two equations. (I mark for each physical quantity)
$\mathrm{a}=4 \mathrm{~cm}, \mathrm{f}=4 \mathrm{~Hz}, \lambda=3.14 \mathrm{~m}, \mathrm{k}=0.02 \mathrm{rad} / \mathrm{m}$.
Initial phase $\phi=90^{\circ}$.
28. Reverberation time in an empty hall is longer than in a crowded hall. Explain.
$y_{1}=A \sin w_{1} t \quad y_{2}=A \sin w_{2} t$

Amplitude $\mathrm{R}=2 \cdot \mathrm{~A} \cos 2 \pi\left(\frac{f_{1}-f_{2}}{2}\right) t \quad(1$ mark $)$
Intensity is Max when $\left(\frac{f_{1}-f_{2}}{2}\right) t= \pm 1 \quad$ (1 mark)
Period of beats $=\mathrm{T}_{\mathrm{b}}=\frac{1}{f_{1}-f_{2}}$
Frequency of beats $f_{b}=f_{1}-f_{2}$ (1 mark)
32. How does the following factors affect the velocity of sound in gases?
i) Pressure, ii) temperature, iii) humidity and the density of the medium in which sound propagates.
i) to iv) (one mark each). $\mathrm{v} \propto \sqrt{T} \quad$ (1 mark)
33. Why is velocity of sound independent of change in pressure? constant. (1 mark)
34. Derive Newton's formula for velocity of sound in a gaseous medium. What is Laplace correction?

K Recall Average

K

Recall
Easy

If pressure changes, density also changes so that ratio remains

K
Recall
Average
Velocity of sound in a medium is the square root of ratio of elastic constant of the medium to the density of the medium.
$v=\sqrt{\frac{E}{\rho}}$ (1 mark) In space $E=B$.
$v=\sqrt{\frac{B}{\rho}}$ (1 mark) Elastic constant $(\mathrm{E})=$ Bulk modulus, (B)
$\mathrm{v}=\sqrt{\frac{P}{\rho}}$ (1 mark)
Propagation of sound in space is according to adiabatic process.
(1 mark)
$\mathrm{v}=\sqrt{\frac{\gamma P}{\rho}} \quad$ (1 mark)
35. A source and listener approach each other with the velocity v_{s} and U v_{i} respectively. Frequency of sound produced by source appears to Relation be doubled. Then $\frac{v_{L}}{v}$ is (Given $v=$ velocity of sound, $\mathrm{v}_{\mathrm{w}}=0, \quad$ Average $\mathrm{v}_{\mathrm{w}}=$ velocity of wind).
a) $\frac{\mathrm{v}}{\mathrm{v}_{s}}-2$
b) $\frac{\mathrm{v}_{s}}{\mathrm{v}}-2$
c) $2-\frac{\mathrm{v}}{\mathrm{v}_{\mathrm{s}}}$
d) $2-\frac{v_{s}}{\mathrm{v}}$

Ans: a)
36. A sound wave is propagating in a medium. Its amplitude is 1.414. What is the required amplitude to double the intensity?

U

Computation
Average
a) 1.414
b) 1
c) 2
d) 3
c) 2
37. At one ATP the velocity of sound in a gas is v. At 4 ATP velocity of sound in same gas is

K
Relation
Easy
b) $2 v$
c) $\sqrt{2} v$
d) v
d) v
38. A source of sound and listener moving with same velocity $60 \mathrm{~ms}^{-1}$. A Direction of source makes an angle 60° with direction of listener. Calculate Source produces sound of frequency 900 Hz . What is the apparent Difficult frequency with respect to listener? If source is moving in opposite direction, what is the apparent frequency? Given velocity of sound is $3.30 \mathrm{~ms}^{-1}$.
$v_{\mathrm{s}}=60 \times \cos 60^{\circ}=30 \mathrm{~ms}^{-1}$
$v_{\lambda}=60 \mathrm{~ms}^{-1} \quad \mathrm{v}=330 \mathrm{~ms}^{-1}$
When $\theta=60$
$\mathrm{f}=\left(\frac{\mathrm{v}-\mathrm{v}_{1}}{\mathrm{v}-\mathrm{v}_{s}}\right) f \quad$ (1 mark)
$f^{\prime}=\left(\frac{330-60}{330-30}\right) 900=270 \times 3$
$\mathrm{f}^{\prime}=810 \mathrm{~Hz}$ (1 mark)

Source in opposite direction :
$\mathrm{v}_{\mathrm{s}}=120^{\circ}$
$\mathrm{v}_{\mathrm{s}}=60 \cos 120^{\circ}$
$v_{s}=-30 \mathrm{~ms}^{-1}$ (1 mark)
$f^{\prime}=\left(\frac{330-60}{330+30}\right) 900$
$=\frac{270}{360} \times 900$
$\mathrm{f}^{\prime}=675 \mathrm{~Hz} \quad$ (1 mark)
39. Define beats. Explain two applications of beats.

K
Recall

Definition (1 mark). Each application (2 marks)
40. Write three differences between music and noise and explain two K characteristics of musical sound.

Each difference (1 mark), each characteristic (1 mark)
41. What is Doppler effect? Write the expression for apparent K frequency in general case. What is the cause for Doppler effect? Recall

Average

What is Doppler effect?	$(2$ marks $)$
Explanation of notation	$(1$ mark $)$
Expression	$(1$ mark $)$
Cause for Doppler effect	$(1$ mark)

42. The mean molecular weight of air is 28.8 . If the ratio of the two specific heats is 1.4 , calculate the velocity of sound in air at 300 K . Gas constant $\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} / \mathrm{kelvin}$.

U Calculate Easy

Velocity of sound in air $v=\sqrt{\frac{\gamma P}{\rho}}$ (1 mark)
$P V=R T$ (1 mark)
Volume of 1 mole $\mathrm{V}=\frac{\text { mass }}{\text { density }}=\frac{M}{\rho}=\frac{28.8 \times 10^{-3}}{\rho}=\mathrm{RT}$
$\frac{P}{\rho}=\frac{R T}{28.8 \times 10^{-3}} \quad$ (1 mark)
$v=\sqrt{\frac{\gamma R T}{28.8 \times 10^{-3}}} \mathrm{~m} / \mathrm{s}$
$\mathrm{v}=\sqrt{\frac{1.4 \times 8.31 \times 300}{28.8 \times 10^{-3}}} \quad$ (1 mark)
$\mathrm{v}=348 \mathrm{~ms}^{-1} \quad$ (1 mark)
43. The intensity of sound is $5 \times 10^{-5} \mathrm{Wm}^{-2}$. If the frequency is A 1000 Hz , calculate amplitude of sound wave in air at STP. Also Calculation calculate amplitude of sound wave if temperature is 30°. Velocity Difficult of sound in STP is $332 \mathrm{~ms}^{-1}$ and density of air is $1.29 \mathrm{~kg} \mathrm{~m}^{-3}$.
$\mathrm{a}=\frac{1}{\pi f} \sqrt{\frac{l}{2 \rho \mathrm{v}}}$ (l mark)
$\mathrm{a}=7.7 \times 10^{-8} \mathrm{~m} \quad(1 \mathrm{mark})$
Velocity at $30^{\circ} \mathrm{C} \quad \mathrm{v}=\mathrm{v}_{\mathrm{o}} \sqrt{\frac{273+t}{273}} \quad$ (1 mark)
$v=349.8 \mathrm{~ms}^{-1}$ (1 mark)
Amplitude $\mathrm{a}=\frac{1}{\pi \times 1000} \times \sqrt{\frac{5 \times 10^{-5}}{2 \times 1.29 \times 349.8}}$
$\mathrm{a}=7.49 \times 10^{-8} \mathrm{~m} \quad(1 \mathrm{mark})$
44. A listener is moving towards an excited tuning fork of frequency

100 Hz . With velocity of $1 / 20$ of velocity of sound, the frequency
Calculation of tuning fork as heard by listener is
a) 105 Hz
b) 100 Hz
c) 95 Hz
d) 10 Hz
a) 105 Hz
45. A listener is moving away from stationary source with a velocity
a) $-15 \mathrm{~ms}^{-1}$
b) $+15 \mathrm{~ms}^{-1}$
c) $20 \mathrm{~ms}^{-1}$
d) $10 \mathrm{~ms}^{-1}$

Ans: b)
46. A source of sound is moving along $X Y$ as shown in the figure with velocity v_{s}. A listener is also moving with speed v_{s}. For which direction of listener, there is no Doppler effect?

[^1]a) along OB
b) along OC
c) along OA
d) $x y$ direction

Ans: d)

47. Explain why a listener placing his ear to one end of a long pipe U hears two distinct sounds, when a person hammers at the other end. Explain Average

1. Sound waves travel through gases (air) and solid s (pipe) (I mark)
2. As the speed of sound in solids is greater in solids than in gases, therefore two distinct sounds can be heard. (1 mark)
3. Sketch a graph showing the relation between speed of sound in a gas and its pressure.

Draw a
graph Easy

Since the speed of sound is independent of pressure, hence V remains constant with change of P (1 mark).
49.

A progressive wave is represented by $y=1.2 \sin \pi\left(\frac{2 t}{5}-\frac{x}{4}\right)$ where x and y are in m and t in s. Find the intensity of the wave

A
Solves
Average given $\rho=1.31 \mathrm{~g} / \mathrm{m}^{3}$.
$\mathrm{y}=\mathrm{a} \sin 2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)$ Comparing $\mathrm{a}=1.2 \mathrm{~m}, \mathrm{~T}=5 \mathrm{~s}, \lambda=8 \mathrm{~m}$,
$\mathrm{f}=\frac{1}{8}=0.125 \mathrm{~Hz} \quad(1 \mathrm{mark})$
$\mathrm{y}=\mathrm{a} \sin 2 \pi\left(\frac{t}{5}-\frac{x}{8}\right)$ (1 mark)
$\mathrm{v}=\mathrm{f} \lambda=0.125 \times 8=10.00 \mathrm{~m} / \mathrm{s}$ (1 mark).

Intensity $\mathrm{I}=2 \pi^{2} \mathrm{a}^{2} \mathrm{f}^{2} \rho \mathrm{v}$ (1 mark)
$=2 \times \pi^{2} \times 1.2^{2} \times\left(\frac{1}{8}\right)^{2} \times 1.3 \times 10$
$=5.775 \mathrm{Wm}^{-2}$ (1 mark)
50. Deduce the general expression for a progressive wave.

K

Derives
Average

Consider a simple harmonic wave produced at O traveling with a velocity v along the positive x -direction. The particle at O executes SHM due to the disturbance. The displacement from the mean position at any instant t is given by A -amplitude,
ω-angular frequency, T - period.
$y=A \sin \omega t \longrightarrow 1$ (1 mark)

Now consider a particle at P at a distance r from the origin would reach in a time $\frac{x}{\mathrm{v}}$. (1 mark)
Therefore, displacement of the particle at P at a time t is same as that of the particle at O , at a time $\left(t-\frac{x}{\mathrm{v}}\right)$ (1 mark)
$\therefore \mathrm{y}=\mathrm{A} \sin \mathrm{w}\left(t+\frac{x}{\mathrm{v}}\right)$ displacement of the particle at P .
(1 mark)

Chapter 25 : Stationary Waves

1. Why strings of different thickness and material are used in a sitar or violin?

Ans: $\mathrm{n} \propto \frac{1}{\sqrt{m}}$ (1 mark)
2. A vibrating string is heated to higher temperatures. What happens to the pitch of the note produced?

1. Due to heating of the string, it expands, hence density decreases. (1 mark)
2. As frequency is inversely proportional to the density, frequency of note emitted increases. Then the note becomes higher pitch. (1 mark)
3. A tuning fork produces resonance with a closed pipe. But the same tuning fork is unable to produce resonance with an open organ pipe of same length. Why?

The fundamental frequency of closed pipe of given length is different from that of the open pipe of same length (1 mark)
4. State and explain the laws of vibrations in a stretched string.

1. Statement for each law (3 marks)
2. Explanation of symbols (1 mark)
3. Show that the overtones in a closed pipe are odd harmonics of the fundamental.
4. Writing the diagram to show modes of vibration of air columns in a pipe. (1 mark)
5. Fundamental frequency expressions (1 mark)
6. Expressions for II and III overtones - 1 mark each
7. Showing $f_{1}: f_{2}: f_{3}=1: 3: 5$ (1 mark)

UNIT 7 EARTH'S ATMOSPHERE AND ASTROPHYSICS

Chapter 27: Earth's Atmosphere

SI. Question
No. Question
Obj/ Spec./
Diff. Level

1. Write the approximate height of earth's atmosphere in kilometers.

K
Recall
Average
560 kilometers from the surface of earth. (1 mark)
2. Write the percentage of nitrogen present in the atmosphere.

Ans: 78% (1 mark)
3. Write the percentage of oxygen present in the atmosphere.

Ans: 21\% (1 mark)
4. Write three main layers of the atmosphere.

1. Troposphere, 2. Stratosphere, 3. Mesosphere (1 mark each)
2. Write the range of troposphere from surface of earth.

8 km to 14.5 km (1 mark)
6. Write two lower layers of atmosphere.

1. Tropopouse 2. Troposphere (1 mark each)
2. Write the range of stratosphere from the surface of earth.

50 kilometers or 50 km (1 mark)
8. Which layer is close to the stratosphere?

K
Recall
Average
Ozone layer (1 mark)
9. Which is the topmost layer of atmosphere? K
Recall
Average
Ionosphere (1 mark)
10. How does air pressure vary with height ? KRecallAverage
Atmospheric pressure decreases with increase in height. (1 mark)
11. Name the atmospheric layer, which absorbs high energy radiation K from space. Recall
lonosphere (1 mark)
12. Name the thin layer which separates Troposphere and Stratosphere. K
Recall
Easy
Tropopouse (1 mark)
13. Which radiation is absorbed by the ozone layer? K
Recall
Easy Ultraviolet radiation (1 mark)
14. What is the colour of ozone layer? K
Recall
Easy
Colourless (1 mark)
15. What happens when ozone layer is depleted? K
Recall
EasyAmount of ultraviolet radiation reaching earth increases. This cancause skin cancer. (l mark)
16. How the Van-Allen belts surround earth? K
Recall
EasyThe belts surround the earth like doughnuts. (1 mark)
17. Draw layers of the earth's atmosphere and label the layers.
ADrawAverage

Ionosphere
$\frac{\text { Mesosphere }}{\text { Stratosphere }}-$ ozone layer (1 mark each)
18. On which base atmospheric layers are divided?

Atmospheric layers are divided on basis of thermal conditions and density. (1 mark)
19. How does the atmosphere provide a moderate climate?

The atmosphere provides a moderate climate by recycling water and other chemicals. (1 mark)
20. Write the formula for variation of atmospheric pressure with height.

The atmospheric pressure at height h above sea level is given by $P=P_{o} e^{-M g / R T}$
Where $\mathrm{P}_{\mathrm{o}}=$ pressure at sea level. (1 mark)
21. Write the importance of Ionosphere.

Ionosphere is used as a means of radio communication. (1 mark)
22. Write one important function of magnetosphere.

The magnetosphere shields the earth from solar wind. (1 mark)
23. Where is tropopause located in earth's atmosphere?
K
Recall
Easy

K
Recall
Easy

K
Recall
Average
,
K
Recall
Easy

K

Recall
Easy

K

Location Easy
$\frac{\overline{\text { Stratosphere }} \text { Tropopause }}{\frac{\text { Troposphere }}{\text { Earth }}}$
(1 mark)
24. Indicate the location of ozone layer in earth's atmosphere.
K
Location
Easy

Mesosphere
Ozone layer
Stratosphere
(1 mark)
25. Mention the height at which Van-allen belts are situated.

K
 Recall
 Easy

The inner ring about 32000 km above and outer ring about 16000 km above the earth surface. (1 mark)
26. How do you measure atmosphere pressure?

Atmosphere pressure is measured using a barometer. (1 mark)
27. Draw a neat diagram of atmosphere, label the layers and write the ranges in kilometers.

S

Draw
Average

Neat diagram (1 mark) parts labelled (2 marks) and heights (2 marks)
28. Draw the π - diagram of earth's atmosphere and mention the percentage of composition of gases present.

S
Figure
Average

Diagram (1 mark), marking (1 mark), percentage (1 mark).
The earth's atmosphere primarily consists of about 78% nitrogen, 21% oxygen and 1% other gases like organ. The oxygen in the atmosphere is produced by plants i.e. blue-green algae.

Unit 28: Astrophysics

1. What is the magnitude of the faintest star?

K
Recall
Easy
Sixth magnitude of star is called faintest star. (1 mark)
2. What is the apparent magnitude of a star?

K
Recall
Easy
Light energy received at the earth is the apparent magnitude of a star. (1 mark)
3. How bright is a bright star, compared to a faint star?

K

Recall Easy

A brightest star is 100 times brighter than the faintest star. (1 mark)
4. What is the range of diameter of stars in kilometers?

K
Interpret
Average
Few kilometers to billion kilometers (1 mark)
5. What is mass relation of stars?

Ans: $\mathrm{L} \propto \mathrm{m}^{3}$ (1 mark)
6. What is a black hole?

Definition of black hole. (1 mark)
7. Which stars die first?

Massive stars die first. (1 mark)
8. At which location in a star is the pressure higher?

K

Recall
Easy

```
K
Recall
Easy
```

```
K
Recall
Easy
```

U

Discriminate Average

Pressure of stars is large near the centre of the star. (1 mark)
9. Draw HR diagram to show red giants and white dwarf.

K and S
Recall \&
Draw
Easy
Diagram (1 mark), marking (1 mark)
10. On what factor does the life of a star depend on?

K
Recal!
Easy
Lifetime of a star depends on its mass (1 mark)
11. Write any two properties of a star.

> K
> Recall
> Easy

1. Luminosity 2. Brightness (1 mark each)
2. What is indicated by the given equation?

K
Recognize
$\mathrm{R}=\left(\frac{L}{4 \pi 6 T^{4}}\right)^{1 / 2}$

Stellar radius (1 mark)
13. Draw HR diagram and identify the informations contained in it.

K \& S
Recall
Average
Diagram (1 mark), information as below (1 mark each)
a) At the lower right, coolest, reddish least bright have low mass.
b) Farther up towards left, hotter, more luminous, yellowish. Still further UP more luminous, more massive.
c) Red giant
d) White dwarfs
14. What are the main physical properties of a star?

K
Recall
Average
a) Luminosity
b) Brightness
c) Size of star
d) Mass of star ($1 / 2$ mark each)
15. Give brief account of stellar evolution.

1. Draw HR diagram. (1 mark)
2. Formation of a star from a protostar (1 mark)
3. Formation of red giant. (1 mark)
4. Which one of the following decides the life time of a star?
a) mass
b) volume

K

Recall
Average

K

Recall
Easy
c) temperature
d) pressure

Ans: a)
17. Locate the position of sun in HR diagram.

U
Classify
Average

Main sequence (1 mark)
18. Luminosity of a star depends upon its
a) mass
b) volume
c) temperature
d) pressure

Ans: a)
19. At the sunspots which of the following is maximum?
a) temperature
b) volume
c) magnetic field
d) pressure

Ans: c)
20. The temperature of the sun is maximum at
a) centre K
b) outer side Recall
c) above the sun
d) inner side

Ans: a)

I PUC Practicals

Long Answer Type Questions

Sl.

Question

Obj/ Spec./
No.
Diff. Level

1. Describe an experiment to determine the diameter and radius of K wire using screw gauge.

Recall
Easy

Neat diagram - 1 mark, Formula - 1 mark, Tabular column - 1 mark, Procedure - 2 marks.
2. The following were the observations while determining the A diameter of a given wire using a screw gauge. Calculate the Measure diameter and hence the radius of the wire.

No. of divisions on the head scale $=100$
No. of divisions moved on the pitch scale $=5$
[Each division is equal to the length of a mm]
No. of rotations moved on the pitch scale $=5$
Zero error $=-5$

Trial No.	PSR (mm)	HSR
1	1	56
2	1	58
3	1	54

Scheme :
Finding LC -1 mark
Formula-1 mark
Calculations - 2 marks
Answer with unit - 1 mark
3. Describe an experiment to determine the acceleration due to gravity K at a place using simple pendulum.

Diagram - 1 mark; Formula with unit - 1 mark;
Tabular column - 1 mark; Procedure -2 marks.
4. Calculate the acceleration due to gravity at a place from the S following data.

Measure
Difficult

Trial	Length of the	Time taken (s) for 20 oscillations			
No.	Pendulum 'L' (m)	1	2	3	
1	0.6	34	33	35	
2	0.8	36.5	36	35.5	

Scheme :

Formula - 1 mark
Trial No. $1\left(\mathrm{~L} / \mathrm{T}^{2}\right)-1$ mark
Trial No. $2\left(\mathrm{~L} / \mathrm{T}^{2}\right)-1$ mark
Finding final answer with unit -2 marks
5. The following observations were taken while conducting an experiment to determine the length, outer and inner diameter of the hollow tube. Calculate length, outer and inner diameter.

Dimension	Trial No.	MSR	CVD
Length	1	5.4	6
	2	5.4	5
	3	5.4	7
Outer diameter	1	2.6	3
	2	2.6	2
	3	2.6	4
Inner diameter	1	2.2	5
	2	2.2	5
	3	2.2	6

Value of one M.S.D. $=0.1 \mathrm{~cm}$
No. of V.S.D. $=10$
Scheme point :
LC - 1 mark
Formula-1 mark
Calculation of length -1 mark
Calculation of outer diameter - 1 mark
Calculation of inner diameter - 1 mark
6. Describe an experiment to determine the length, outer and inner diameter at the hollow tube.

Figure - 1 mark
Formula - 1 mark
Tabular column-1 mark
Procedure - 1 mark
7. In an experiment to determine the spring constant of a given spring, the following readings were recorded.

Trial	Load W		
No.	$10^{-3} \mathrm{~kg}$ Wt	Pointer reading cm	Load increasing
1	0	11.2	Load decreasing
2	50	11.8	11.2
3	100	12.6	12.6
4	150	13.5	13.5
5	200	14.7	14.7
6	250	15.9	15.9

Draw a graph of load against extension. Hence, calculate spring constant.
Plotting the graph - 1 mark
Scale - 1 mark
Slope - 1 mark
Calculation - 1 mark
Solution with accuracy - 1 mark
8. Describe an experiment to determine the spring constant of a given
spring by plotting load extension graph for it.
Recall
Easy
Figure - 1 mark
Formula - 1 mark
Tabular column - 1 mark
Procedure - 2 marks

Second PUC

UNIT 1 GEOMETRICAL OPTICS

Chapter 1: Refraction at plane surface

SI.
Question
Obj/ Spec./
No.
Diff. Level
$\begin{array}{lll}\text { 1. Draw a ray diagram, when a ray of light travels from glass to water. } & \text { S } \\ \text { Indicate the critical angle and the phenomenon of total internal } \\ \text { reflection of the ray. } \\ \text { OR } & \begin{array}{l}\text { Drawing } \\ \text { Average }\end{array} \\ \text { Illustrate using a ray diagram, the phenomenon of total internal } & \\ \text { reflection. } \\ \text { OR } \\ \text { Illustrate the phenomenon of total internal reflection and critical } \\ \text { angle when a ray of light passes from a denser medium to rarer } \\ \text { medium. } & \\ \text { Ray diagram indicating critical angle and total internal reflection. } & \\ \text { (2 marks) } & \\ \text { A ray of light travels from a medium of R.I. 1.56 to a medium of } & \text { A } \\ \text { R.I. 1.68. Does the ray suffer total internal reflection? } & \text { Reasoning } \\ \text { Justify your answer. }\end{array}$
No, since the ray passes from rarer to denser medium. (2 marks)
3. A coin at the bottom of a beaker 0.1 m deep appears to be raised by

U
Compute

Expression (1 mark)
Computing $\mathrm{n}=1.43$ (1 mark)
4. When a glass plate of R.I. 1.5 is placed on an ink dot drawn on a paper, it appears to be raised by 1 cm . Calculate the thickness of the glass plate.

Formula (1 mark)
$\mathrm{t}=3 \mathrm{~cm}$ (1 mark)
5. What is lateral shift?

Average

U
Compute
Average

K
Recall
Easy

Sidewise shift when a ray of light is incident obliquely on a paralle]
sided glass slab. (1 mark)
6. When is lateral shift zero?

When does a ray of light get refracted with no lateral shift?
U
Recall
Average
Ans: At normal incidence (1 mark)
7. Mention any one factor on which lateral shift depends.

Any one factor. (1 mark)
8. For what angle of incidence is the lateral shift maximum?

See relationship average

Ans: 90°

(1 mark)
9. The quantity which does not change during refraction is
a) amplitude of light
b) wavelength of light

K
c) phase angle
d) speed of light

Ans: c)
10. The ray of light travels from a medium of refractive index 1.5 to another medium of refractive index 1.0 . If the angle of incidence is 42°, the angle of deviation of the incident ray is
a) 50°
b) 132°
c) 48°
d) 90°

Ans: c)
11. How does the lateral shift vary with the increase in R.I. of the medium?

Increases (1 mark)

K
Recall
Easy
12. Name the colour of light for which lateral shift is maximum.

Violet (1 mark)
13. Name the colour of light for which lateral shift is minimum.

Ans: Red
14. What is normal shift?

U
See relationship Average

K
Recall
Average

$$
\begin{aligned}
& \mathrm{K} \\
& \text { Recall } \\
& \text { Easy }
\end{aligned}
$$

Apparent shift in the position of an object placed in one medium and viewed from other medium. (1 Mark)
15. A person standing on the bank of a swimming pool looks at a swimmer under water. Does the person look longer or shorter?

A
Applies
Average
Longer (1 mark)
16. Define normal shift.
K
Define
Easy

Definition (1 mark)
17. Write the expression for normal shift.

```
K
Recall
Easy
```

Expression (1 mark)
18. Define critical angle for a total internal reflection of a body.

> K
> Recall
> Easy

Correct definition (1 mark)
19. Write the relation between R.1. of the medium and critical angle.

K
Recall
Easy
Relation (1 mark)
20. When refraction takes place from denser medium of R.I. n_{2} to rarer medium of R.I. n_{1} the critical angle c is given by
a) $\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right)=c$
b) $\frac{\sin n_{2}}{\sin n_{1}}=c$
c) $\sin ^{-1}\left(\frac{n_{1}}{n_{2}}\right)=c$
d) $\frac{\sin n_{1}}{\cos n_{2}}=c$

Ans: a)
21. Name the colour of light for which the critical angle is minimum. K

Ans: Violet (1 mark)
22. The critical angle for total internal reflection is
a) minimum for green light
b) minimum for violet light
c) the same for all colours
d) minimum for red light

Ans: b)
23. Mention two factors on which critical angle of a medium depend. K

Recall
Easy
R.I. of medium colour or wavelength. (1 mark)
24. Find the critical angle for a material of R.I. $\sqrt{2}$.

U
Compute
Average

Relation finding, $\mathrm{C}=45^{\circ}$ (1 mark)
25. For which colour of light is the critical angle of medium maximum? U

Compute
Average
Ans: Red (1 mark)
26. What is an optical fibre ?
K
Recall
Easy

Device which conducts the light along any desired path. (1 mark)
27. Calculate the R.I. of the medium for which the critical angle is 42°. U
Compute
Easy
Expression (1 mark)Finding $\mathrm{n}=1.49$ (1 mark)
28. Mention the conditions for total internal reflection of a light ray. K
Recal!
Easy
Ray should travel from denser to rarer medium. (1 mark)
i > C (1 mark)
29. Mention any two applications of total internal reflection. K
Recall
Easy
Any two applications (each 1 mark)
30. Write any two advantages of optical fibres over metallic cable in communication. K
Recall Easy
Any two advantages (each 1 mark)
31. A tank contains a slab of glass 8 cm thick and of refractive index U
1.6. Above this, is a depth of 4.5 cm of an oil and upon this a layer Seeof water 6 cm thick and of refractive index 4/3. To an observer, relationshiplooking down from above, a mark at the bottom appears to be raised Difficultupto position 6 cm from the bottom of the slab. The refractiveindex of oil is
a) 0.8
b) 1.2
c) 1.5
d) 1.8
Ans:c) 1
32. A diverging beam of light from a point source S having divergence angle α, falls symmetrically on a glass slab as shown in the figure. The angles of incidence for two extreme rays are equal. If the slab has the thickness t and refractive index n, the divergence angle of the emergent beam is
a) zero
b) α
c) $\sin ^{-1}\left(\frac{1}{n}\right)$
d) $2 \sin ^{-1} \frac{1}{n}$

Ans: b)
33. Draw a graph showing the relationship between angle of incidence

S
Draw
Difficult

Diagram (1 mark)
34. Draw the graph showing the relationship between the apparent shift and refractive index of denser medium when a point object in a denser medium is viewed through a rarer medium.

Draw
Difficult
Apparent shift (1 mark)
35. Define lateral shift. Derive an expression for the lateral shift for a ray of light passing through a parallel sided glass slab.

K
Recall
Average
Definition - 1 mark
Ray diagram - 1 mark
Showing $i=i^{\prime}$
Obtaining final expression -2 marks

Chapter 2: Refraction through Prism

SI.
Question
Obj/ Spec./
No.
Diff. Levei

1. Mention the formula for angle of deviation in terms of angle of incidence and angle of emergence when a ray of light passes K through a prism at minimum deviation.
Recall
Average
Formula $d=i_{1}+i_{2}-A$ (1 mark)
2. When a ray of light passes through a prism of angle A with i_{1} and $\mathrm{i}_{2} \quad \mathrm{~K}$
as the angles of incidence and emergence, the angle of minimum deviation is equal to

Recall
Average
a) $i_{1}-i_{2}+A$
b) $i_{1}+i_{2}-A$
c) $i_{1}+i_{2}+A$
d) $i_{1}+A$

Ans: b)
3. What is dispersion of light?

K

Recall
Easy

Splitting of white light into its constituent colours when passed through a dispersing medium (prism) (1 mark)
4. The angle of minimum deviation of a ray passing through an U equilateral prism is 50°. Find the angle of incidence.

Relation
Difficult
Ans: 55° (1 mark)
5. What is a thin prism?

K
Recall
Easy
Angle of prism is less than 10° (1 mark)
6. Give an example for impure spectrum.

U

Example
Average
Any one example, like rainbow. (1 mark)
7. Write the expression for deviation produced by thin prism.

K
Recall
Easy

Expression (1 mark)
8. For which colour of light is the deviation maximum in a prism.

K
Recall
Easy
Ans: Violet (1 mark)
9. Define dispersive power.

K
Define
Easy
Correct definition (1 mark)
10. Distinguish between deviation and dispersion.

K
Recall
Easy
Correct answer (1 mark)
11. Which colour of light produces minimum deviation in a prism?

U
Recall Easy

Ans: Red (1 mark)
11. Define angular dispersion for a prism.

K
Define
Easy
Correct definition (1 mark)
12. For which colour of light is deviation maximum in prism?

K
Recall
Easy
Ans: Violet (1 mark)
13. A glass prism produces a minimum angle of deviation in air. How does the angle of minimum deviation vary when it is immersed in a R liquid of R.I. 1.2? Justify your answer.

A Reasoning
Average
Relative R.I. of glass (1 mark)
Decreases (1 mark)
14. Calculate the R.I. of the material of an equilateral prism for which the angle of minimum deviation is 60°.

U
Relationship Easy

Formula (1 mark)
Arriving $\mathrm{n}=\sqrt{3} \quad$ (1 mark)
15. When a ray of light passes through a prism it is found that the deviation at the first phase is $4^{\circ} 36^{\prime}$ and that at the second phase is $5^{\circ} 24^{\prime}$. What is the net deviation of the ray ?
$\mathrm{d}=\mathrm{d}_{1}+\mathrm{d}_{2}$ (1 mark)
$\mathrm{d}=10^{\circ}$ (1 mark)
16. What is the difference between pure and impure spectrum?

Distinct colours for precise measurement, Dispersing medium is enough. (1 mark each)
17. Draw a neat labelled diagram of an experimental arrangement to get pure spectrum using a prism.

Neat diagram with labelling (2 marks)
18. Mention the two conditions for dispersion without deviation.

Two prisms must be made up of different materials and of different angles. Refracting angles must be in opposite direction. (2 marks)
19. Two prisms are made up of materials having R.I. 1.50 and 1.54 A respectively. If the angle of the prism having R.I. 1.50 is 40°, Interpret what is the angle of second prism placed in opposite manner with Average the first one to produce dispersion without deviation.

Arriving $\frac{A^{\prime}}{A}=\frac{n-1}{n-1} \quad$ (1 mark)
Finding $\mathrm{A}^{\prime}=37^{\circ}$ (1 mark)
20. A ray of light passes through an equilateral glass prism such that the angle of incidence is equal to the angle of emergence. If the angle of emergence is $3 / 4$ times the angle of the prism, calculate the Average angle of the glass prism.

Writing $\mathrm{D}=2 \mathrm{i}-\mathrm{A}$
$\mathrm{i}=45^{\circ}$
$\mathrm{D}=30^{\circ}$
Formula (1 mark)
Arriving $\mathrm{n}=\sqrt{2} \quad(1 \mathrm{mark})$
21. Derive the expression for R.I. of the material of the prism in terms K of the angle of prism and the angle of minimum deviation.

Recall
OR
Easy

Derive $\mathrm{n}=\frac{\sin \left(\frac{A+1}{2}\right)}{\sin \frac{A}{2}}$ where the symbols have their usual
meaning.
Ray diagram - 1 mark
Arriving $\mathrm{A}=\mathrm{r}_{1}+\mathrm{r}_{2}-1$ mark
Finding $\mathrm{d}=\mathrm{i}_{1}+\mathrm{i}_{2}-\mathrm{A}-1$ mark
Minimum deviation position -1 mark
Arriving final expression - 1 mark
22. A ray of light incident on one face of an equilateral prism made of A glass of R.I. 1.544 undergoes grazing emergence at the other face. Applies Calculate the angle of incidence.

Figure (1 mark)
Expression (1 mark)
Finding $\mathrm{C}=40^{\circ} 22^{\prime}$ (1 mark)
$\mathrm{r}_{1}=\mathrm{A}-\mathrm{C}$ and finding $\mathrm{r}_{1}=19^{\circ} 38^{\prime} \quad$ (1 mark)
Finding $i_{1}=31^{\circ} 15^{\prime}$ (1 mark)
23. An equilateral prism of R.I. 1.54 is immersed in water of R.I. 1.33. A

Calculate the angle of minimum deviation and the corresponding Applies angle of incidence.

Expression $\mathrm{w}_{\mathrm{g}}=\frac{\sin \left(\frac{A+D}{2}\right)}{\sin A / 2}$ (1 mark)
Substitution finding $\frac{A+D}{2}$ (2 marks)
Calculating $\mathrm{D}=10^{\circ} 44^{\prime} \quad(1$ mark $)$
Identification of $\mathrm{i}=\frac{A+D}{2} \quad(1$ mark $)$
24. Calculate the dispersive powers of crown and flint glass prisms K, U from the following data.

Recall
Average

For crown glass $\mathrm{n}=1.522$

$$
w=0.0153
$$

For flint glass $\mathrm{n}^{\prime}=1.657$

$$
w^{\prime}=0 .-274 \quad(5 \text { marks })
$$

25. A thin prism P_{1}, with an angle 4° and made from glass of refractive index 1.54 is combined with another thin prism P_{2} made Relation from glass of refractive index 1.72 to produce dispersion without Average deviation. The angle of prism P_{2} is
a) 4^{0}
b) 5.33°
c) 3°
d) 2.6°

Ans: c)
26. When a glass prism of refracting angle 60° is immersed in a liquid, U its angle of minimum deviation is 30°. The critical angle of glass with respect to the liquid medium is
a) 45°
relationship
average
b) 42°
c) 50°
d) 52°

Ans: a)
27. A beam of red light is incident on a right angled prism $A B C$ as U shown. The refractive index of the material of the prism for red See light is 1.39 . The light
relationship Difficult
a) goes out through BC
b) grazes AC and goes out
c) goes out through AC
d) reflects back through AB

Ans:c)

28. One face of a glass prism is silver polished. A light ray falls at an angle of 45° on the other face. After refraction, it is subsequently reflected from the silver face and then it retraces its path. The See refracting angle of the prism is 30°. The refractive index of the relationship Difficult material of the prism is
a) $\frac{3}{2}$
b) $\sqrt{2}$
c) $\frac{\sqrt{3}}{2}$
d) $\sqrt{3}$

Ans: b)

29. A ray is incident at an angle of incidence i on one face of a prism U of small angle A and emerges normally from the opposite face. If See the the refractive index of the prism is n, angle of incidence i is nearly relationship equal to
a) $\frac{A}{n}$
b) $\frac{A}{2 n}$
c) nA
d) $\frac{n A}{2}$

Ans: c)

Chapter 3 :Refraction at Spherical Surfaces

Sl.
Question
No. magnification of the image.
Formula $\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}} \quad$ (1 mark)
Finding $\mathrm{f}=0.30 \mathrm{~m}$ (1 mark)
$\frac{1}{f}=\frac{1}{u}+\frac{1}{v} \quad$ (l mark)

Obj/ Spec./

1. A convex lens of focal length 0.15 m is placed in contact with a concave lens of focal length 0.3 m . An object placed at a distance of 0.15 m from the lens combination. Find the position and the linear

Substitution and finding v (1 mark)
Magnification m (1 mark)
2. A small air bubble within a glass sphere of radius 9 cm is at a K distance of 3 cm from the centre of the sphere. When viewed from the nearest side the air bubble appears to be at a distance of 5 cm from the surface. What will be its apparent distance when viewed from the farthest side?

Figure (1 mark)
Formula (l mark)
R.I. of object space $n=1.6$ (1 mark)

Substitution and arriving at $v^{\prime}=-15 \mathrm{~cm}$ (1 mark)
3. A glass lens of R.I. 1.6 has a focal length of 0.1 m in air. Find its focal length when immersed in a liquid of R.I. of 1.33. Also find the change in focal length.

Lens maker's formula ($1 / 2$ mark)
Finding $\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{1}{0.06} \quad(1 / 2$ mark $)$
Modified form of lens maker's formula
$\frac{1}{f}=\left[\frac{n g}{n w}-1\right]\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right]$ (1 mark)
Substitution (1 mark)
Finding $\mathrm{f}=0.2956 \mathrm{~m}$ (1 mark)
Change in focal length 0.1956 m (1 mark)
4. What is an equivalent lens? Deduce an expression for the K equivalent focal length of two thin lenses placed co-axially in Recall contact with each other.

Definition (1 mark)
Ray diagram (1 mark)
Applying Len's formula (1 mark)
Image produced by first thin lens acts as virtual object for second lens (1 mark)
Arriving the final relation (1 mark)
5. An equiconvex lens of glass of R.I. $\frac{3}{2}$ has a focal length of 30 cm . A with respect to air. It is kept on the surface of water so that only the lower surface is touching the water. If the R.I. of water is $\frac{4}{3}$, where will a parallel beam of light incident normally on the lens converges to ?

Lens maker's formula ($1 / 2$ mark)
Finding $\mathrm{R}=30 \mathrm{~cm}$ (1 mark)
For upper surface $\frac{n_{1}}{u}+\frac{n_{2}}{v}=\frac{n_{1}-n_{2}}{R} \quad(1 / 2$ mark $)$

Finding $v^{\prime}=90 \mathrm{~cm}$ (1 mark)
Applying the formula for the bottom surface $\mathrm{v}=60 \mathrm{~cm}$ (2 marks)
6. How does an air bubble inside water behave? A beam of light is incident on an air bubble inside water. What will be the nature of Interpret the beam emerging from the bubble?

Diverging lens (2 marks)
7. What is the relation between the focal length of a convex lens and its refractive index with respect to the medium?

Decreases
Use $\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \quad$ (1 mark)
8. Write an expression for the power of a spherical surface.
$\mathrm{P}=\frac{\mu-1}{R} \quad$ (1 mark)
9. Define power of a lens.

K
Define
Easy

Ability to converge or diverge a beam. (l mark)
10. Two convex lenses of focal lengths 0.20 m and 0.40 m are K separated by a distance of 0.40 m . Find the equivalent focal length Recall of the combination if the lenses are placed co-axially.

Average
$\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}} \quad$ (1 mark)
Substitution $\mathrm{f}=0.40 \mathrm{~m} \quad$ (1 mark)
11. A concave lens and a convex lens of the same power are placed co-
axially in contact with each other. Find the focal length of the Recall combination. Easy

Correct answer (1 mark)
12. The focal length of a convex lens is 20 cm . Find its power.

K
Recall
Easy
$\mathrm{P}=\frac{1}{f} \quad$ (1 mark)
Calculation $\mathrm{P}=5$ dioptres (1 mark)
13. The power of a convex lens of focal length 20 cm is
a) 5 dioptres

K
b) 0.05 dioptres

Recall
Easy
c) 0.20 dioptres
d) 0.5 dioptres

Ans: a)
14. Two thin lenses of focal lengths f_{1} and f_{2} respectively are combined coaxially with a separation d between them. The equivalent focal length of the combination is given by

Relation
Average
a) $\frac{1}{f}=\frac{1}{f_{1}}-\frac{1}{f_{2}}+\frac{d}{f_{1} f_{2}}$
b) $\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\frac{\mu d}{f_{1} f_{2}}$
c) $\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{\mu d}{f_{1} f_{2}}$
d) $\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}}$

Ans: d)
15. Give the expression for equivalent focal length of a combination of two thin lenses placed co-axially and separated by a distance d and Recall explain the terms.

Average
Formula : $\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}}$ (1 mark)
Explain terms. (1 mark)
16. A small object is placed in air 1 m away from a convex spherical surface of radius of curvature $0 . \mathrm{lm}$. Find the position of the image if the R.I. of glass is 1.5 .

K
Recall
Average

Formula, substitution and arriving $\mathrm{v}=0.375 \mathrm{~m}$. (1 each)
17. Mention any two factors on which the focal length of a lens depends.

K
Recall
Easy
Any two factors (1 mark)
18. Write lens maker's formula for a convex lens and explain the symbols.

Formula and explanation of symbols. (1 each)
19. When an equiconvex lens of focal length is cut into two halves by means of a plane perpendicular to the principal axis, what is the focal length of each part?
$\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}} \quad$ (1 mark)
$\mathrm{f}_{1}=\mathrm{f}_{2}$
Showing f_{1} or $f_{2}=2 f(1$ mark $)$
20. Derive the lens maker's formula for a convex lens.

K
Recall
Easy

Show that $\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$ for a convex lens where the symbols have their usual meaning.

Figure (1 mark)
$\frac{1}{u}+\frac{n}{v^{\prime}}=\frac{n-1}{R_{1}} \quad(1$ mark $)$
$\frac{-n}{v^{\prime}}+\frac{1}{v}=\frac{n-1}{R_{2}}$ (1 mark)
$\frac{1}{f}=\frac{1}{u}+\frac{1}{v}=(n-1)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)(2$ marks $)$
21. Obtain an expression for refraction through a spherical surface concave side towards a point object in a denser medium.
OR

K

Recall
Average

Derive the formula $\frac{n_{1}}{u}+\frac{n_{2}}{v}=\frac{n_{1} \sim n_{2}}{R}$ for refraction at spherical surface in which concave side is towards a point object in a denser medium.

Ray diagram (1 mark)
Applying sine rule for both triangles. (1 mark)
Taking ratio i.e. $\frac{\sin i}{\sin r}$ (1 mark)
Substitution (1 mark)
Arriving final expression (1 mark)
22. A thin lens of focal length of f has an aperture d . It forms an image of intensity I. The central part of the lens upto diameter $\frac{d}{2}$ is painted black. The intensity of the image will change to

A
Solves and applies Difficult
a) $\frac{I}{4}$
b) $\frac{I}{2}$
c) $\frac{3 I}{4}$
d) I

Ans: c)
23. The focal length of a convex lens of refractive index 1.5 is 40 cm . U

Then focal length of the same lens when it is immersed in a liquid Relation of refractive index 2 is

Average
a) 40 cm
b) -40 cm
c) 80 cm
d) -80 cm

Ans: d)
24. A convex lens of focal length 40 cm is in contact with a concave lens of focal length 25 cm . The power of the combination is
a) -1.5 D

K
Recall
b) -6.5 D
c) +6.5 D
d) +6.67 D

Ans: a)
25 Two thin lenses of focal lengths f_{1} and f_{2} are placed coaxially in U contact. The combination acts as a single lens of focal length of
a) $\frac{f_{1} f_{2}}{f_{1}+f_{2}}$
b) $\sqrt{f_{1} f_{2}}$
c) $\frac{f_{1}+f_{2}}{f_{1} f_{2}}$
d) $\frac{f_{1}+f_{2}}{2}$

Ans: a)
26. Describe the experiment to determine the focal length of the K material of a convex lens by shift method and hence calculate the Recall R.I. of a convex lens.

Figure (shift method) - 1 mark
Procedure - 2 marks
Formula-1 mark
Tabular column - 1 mark
27. The following readings were observed while determining the refractive index of the material of a convex lens. Calculate the refractive index by finding focal length by shift method and radii at

Recognize Average curvature using Boy's method.

Sl. No.	Distance between screen and Object (m)	Shift in the position of lens (m)
1	0.80	0.201
2	0.85	0.205

Given $x_{1}=0.10 m \quad x_{2}=0.10 m$
$\mathrm{A}=1+\frac{R_{1} R_{2}}{f\left(R_{1}+R_{2}\right)}$
(1 mark)
$\mathrm{f}_{1}=\frac{D^{2}-S^{2}}{4 D}=\frac{(0.80)^{2}-(0.201)^{2}}{4 \times 0.8}=0.1875 \mathrm{~m}$
$\mathrm{f}_{2}=\frac{D^{2}-S^{2}}{4 D}=\frac{(0.85)^{2}-(0.205)^{2}}{4 \times 0.85}=0.20 \mathrm{~m}$
(2 marks)
$\mathrm{f}=\frac{f_{1}+f_{2}}{2}=\frac{0.1875+0.20}{2}=0.194 \mathrm{~m}$
$R_{1}=R_{2}=f-x_{1}=\frac{0.194 \times 0.10}{0.194-0.10}=\frac{0.0194}{0.094}=0.2064 \quad(1 \mathrm{mark})$
$\mathrm{n}=1+\frac{0.2064 \times 0.2064}{0.194(0.2064+0.2064)}=1.533 \quad(1 \mathrm{mark})$

UNIT 2 PHYSICAL OPTICS

Chapter 4: Introduction to Theories of Light

SI.

Question

No.

1. Mention the significance of Hertz's experiment on electromagnetic waves.
First experiment to confirm the existence of electromagnetic wave. (1 mark)

Obj/ Spec./
Diff. Level
2. When does the particle nature of light become noticeable?

K
Recall
Average
During the interaction of light with matter in atomic level. (1 mark)
3. What is the nature of electromagnetic wave?

K
Recall
Easy
Transverse (1 mark)
4. What is the rest mass of a photon ?

K
Recall
Easy

Zero (1 mark)

5. Name any two phenomena which can be explained/interpreted using particle nature of light.

K
Recall
Easy
Any two phenomena (each 1 mark)
6. Draw a neat diagram of Hertz experimental set up on K electromagnetic waves.

Recall Average

Neat labelled diagram (2 marks)
7. Mention any two reasons for discarding Huygen's wave theory. K

Recall Easy

Two reasons or demerits. (each 1 mark)
8. Write a brief note on the dual nature of light.

K
Recall
Easy

Dual nature - some phenomenon revealing wave nature and particle nature. (2 marks)
9. Which are the oscillating field vectors in an electromagnetic K waves?

Recall Easy
Electric and magnetic field vectors. (1 mark)
10. The colour of light which travels fastest in free space is
a) violet

K
b) red

Recall
Easy
c) yellow
d) all the colours

Ans: d)
11. The colour of the light which travels fastest in glass is
a) violet

U
b) yellow

See
c) red
relationship
d) green

Ans: c)

Chapter 5: Interference of light

Sl. \begin{tabular}{l}
Question

No.

Obj/ Spec./

1. In Young's double slit experiment using light of wavelength

$5898 \mathrm{~A}^{\circ}, 92$ fringes are seen. How many fringes are seen in the

same region if light of wavelength $5461 \mathrm{~A}^{\circ}$ is used?

See

relationship

Average
\end{tabular}

Formula and substitution - 1 mark

Answer - 1 mark | 2. Which of the following is conserved when the light waves |
| :--- |
| interfere? |
| a) Intensity |
| b) Energy |
| c) Amplitude |
| d) Momentum |

Ans: b)
3. In the double slit interference experiment, the width of the two A slits is halved. If 4I represents the original intensity of the bright Solves fringe, the new intensity of the bright fringe is

Difficult
a) 1
b) 21
c) 3 I
d) 41

Ans: b)
4. If yellow light is replaced by red light in Newton's ring K experiment, the radius of bright rings

Recall
a) increases

Average
b) decreases
c) remains the same
d) gets doubled

Ans: a)
5. A and B are two points on a traveling wave which differ in phase by 2π. How far are the two points?

See
relationship
easy
Wavelength (λ) (1 mark)
6. What is the resultant intensity observed when two waves having $\begin{array}{ll}\text { a path difference of } \frac{3 \lambda}{2} \text { interfere? } & \text { Recall } \\ \text { Easy }\end{array}$

Zero (1 mark)
7. Write an expression for the fringe width in Young's double slit experiment.

K
Recall
Easy

Expression $\beta=\frac{d D}{d}$ (1 mark)
8. How does the fringe width depend on the wavelength of light when two waves interfere?

See
relationship
Average
$\beta \propto \lambda$ (1 mark)
9. What is interference of light ?

K, S
Recall
Easy
Correct definition (meaning) (1 mark)
10. State the condition for constructive interference in terms of phase difference between the two waves.

K, A
Recall Easy

An even multiple of π (1 mark)
11. A lens is made up of two different materials as shown in A diagram. How many images of an object placed in front of it is Applies formed by the lens?

2 images (1 mark)
12. The radius of curvature of a plano convex lens of material of R.I. K 1.5 is 20 cm . Calculate its focal length.

Formula (1 mark)
Calculation of f. (1 mark)
13. If a thin glass plate covers one of the double slits, what happens

U to the interference pattern observed in Young's double slit Interpret experiment?

Average
The fringe pattern is shifted towards the side where the glass plate is introduced. (1 mark)
14. Name any one factor on which the radius of Newton's rings K depend.

Recall
Easy

Wavelength of light or radius of curvature of the surface of lens. (1 mark)
15. For which colour of light is the fringe width minimum in an U interference experiment?

Violet (1 mark)
16. What happens if one of the slits is covered in Young's double slit U experiment? Interpret Average

Interference pattern will disappear. (1 mark)
17. Sketch the graph of fringe width versus the separation between S the slits in the case of interference at double slits.

Draws
Difficult
$\beta \propto \frac{1}{d}$ (1 mark)
Sketch (1 mark)
18. $y_{1}=a \sin \omega t$ and $y_{2}=a \sin (\omega t+\pi)$ represent two waves K traveling in the same direction, meeting at a point P. Find the Recall resultant intensity at P.

Zero (1 mark)
19. What are coherent sources?

K
Define
Easy
Two sources emitting waves with the same phase or with constant phase. (1 mark)
20. Consider the interference between two sources of intensities I U and 41 . Obtain the intensity at a point where the phase difference See is $\pi / 2$.

Formula: $\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{1}+\mathrm{I}_{2}+2 \sqrt{I_{1}} \sqrt{I_{2}} \cos \phi(1 \mathrm{mark})$
Substitution and calculation $\mathrm{I}_{\mathrm{R}}=5 \mathrm{I}$. (1 mark)
21. In Young's double slit experiment, the slits are separated by K 0.24 mm . The screen is 1.2 m away from the slits. The fringe Recall width is 3 mm . Calculate the wavelength of the light used. Average

Formula (1 mark)
Arriving $\lambda=6000 \mathrm{~A}^{0}$ (1 mark)
22. In Young's double slit experiment, each virtual source has an intensity I_{0}. What is the intensity at the point of constructive Computes interference?

Formula $\mathrm{I}=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}$ (1 mark)
Finding $I=4 I_{0} \quad(1$ mark $)$
23. In Young's double slit experiment, what is the distance between the central bright fringe and fourth dark fringe in terms of the Calculate fringe width β ? Average
$\lambda_{n}=\left(\frac{2 n-1}{2}\right) \frac{d D}{d}(1$ mark $)$
substitution and arriving $\frac{7}{2} \beta$ (1 mark)
24. Draw the intensity level diagram for interference pattern in S double slit experiment.

Draw
Average
Draw the diagram I versus x. (2 marks)
25. Draw the ray diagram for interference at thin film due to K reflected light.

Average
Neat ray diagram (2 marks)
26. Mention any two factors on which the fringe width depends. K

Recall
Easy
Any two factors. (1 mark each)
27. Draw a labelled diagram of Newton's ring experimental set up.

K
Recall
Easy

Diagram, labeling (1 mark each)
28. The colours observed in the beam reflected by a thin film will be K missing in the beam transmitted through thin film and vice-versa. Recall Explain.

The condition for maxima and minima is reflected and transmitted light are just opposite. (2 marks)
29. Draw the ray diagram for interference at a thin film due to K refracted light.

Neat ray diagram (2 marks)
30. What is the effect on interference fringes in Young's double slit U experiment due to each of the following ?

See
a) the screen is moved away from the slits
relationship
b) the source is replaced by another source of shorter Average wavelength.
a) Fringe width increases (1 mark)
b) Fringe width decreases (1 mark)
31. Explain the term: interference and describe the Young's double slit experiment to obtain sustained interference pattern.

K
Recall Easy

Meaning of interference (1 mark)
Explanation (1 mark)
Diagram (1 mark)
Description and conditions to get sustained interference
(2 marks)
32. Give the theory of interference and deduce the conditions for constructive and destructive interference in terms of phase difference/ path difference.

K
Recall
Easy
Writing both wave equations. (1 mark)
Arriving at resultant displacement. (1 mark)
Arriving at expression for resultant amplitude, conditions for constructive interference and conditions for destructive interference.
(3 marks)
33. Derive an expression for the fringe width in the interference pattern in double slit experiment.

K
Recall
Average
Diagram (1 mark)
Obtaining expression for path difference. (1 mark)
Equating this with nd or $(2 n+1) \frac{\lambda}{2}$. $(1$ mark $)$
Obtaining expression for λ_{n} ($1 / 2$ mark)
Writing expression for λ_{n+1} ($1 / 2$ mark)
Obtaining expression $\beta=\frac{\lambda D}{d}$ (1 mark)
34. In Young's double slit experiment the distance between the slits is 1.2 mm and the distance of the screen is 0.75 m from the slits. If the distance of $5^{\text {th }}$ bright fringe from the central fringe on the Calculate Average screen is 1.5 mm , calculate the wavelength of light used. What will be the distance of $5^{\text {th }}$ dark fringe from the centre of the screen?

Value points :

Formula $\lambda_{\mathrm{n}}=\frac{5 \lambda d}{d}(1 \mathrm{mark})$
Substitution (1 mark)
λ, wavelength calculation. (1 mark)
Calculation of $\lambda_{m}=(2 m-1) \frac{\lambda D}{2 d} \quad(1$ mark $)$
Arriving $\lambda_{\mathrm{m}}=1.35 \times 10^{-3} \mathrm{~m}$ (1 mark)
35. In Young's double slit experiment the two coherent sources are A
1.74 mm apart. Fringes are formed on the screen at a distance of Solves
1.5 m from the sources. If the wavelength of light used is 5800 Difficult Λ^{0}, find the number of fringes in the part of interference pattern which is 2 mm long having bright fringes at ends.

Expression $\beta=\frac{\lambda D}{d}$ (1 mark)
Fringe width $\beta=0.5 \mathrm{~mm} \quad$ (1 mark)
No. of bright fringes $=\frac{2 \mathrm{~mm}}{0.5 \mathrm{~mm}}+1 \quad(1$ mark $)$
$=4+1=5$
Among 5 bright fringes, there will be 4 dark fringes. (1 mark)
Total number of fringes $=9 .(1$ mark $)$
36. A beam of light consisting of two wavelengths $7000 \mathrm{~A}^{0}$ and 5000 A^{0} is used in the double slit experiment. The distance between the slits is 0.3 mm and the distance of the slits from the screen is 1 m . Find the least distance of the point from the central maximum, when bright fringes due to both wavelengths coincide.

Value points:

$\lambda_{\mathrm{n}}=\mathrm{n} \lambda_{1} \frac{D}{d} \quad(1 / 2$ mark $)$
$\lambda_{m}=m \lambda_{2} \frac{D}{d} \quad(1 / 2$ mark $)$
$\lambda_{\mathrm{n}}=\lambda_{\mathrm{m}}$ (1 mark)
$\frac{n}{m}=\frac{5}{7} \quad$ (1 mark)
For minimum distance $\mathrm{n}=5$ and $\mathrm{m}=7$. (1 mark)
$\lambda_{\mathrm{n}}=1.17 \mathrm{~mm}$ (1 mark)
37. In Young's double slit experiment, the slits are separated by $1.1 \quad$ A mm . The screen is 3 m away from the double slit. On the screen, Applies 8 consecutive bright fringes separated by 9 mm are formed. Average Calculate the frequency of light used.

Finding $\beta=1.5 \times 10^{-3} \mathrm{~m}(6 \beta=9 \mathrm{~mm})$ (1 mark)
Formula $\beta=\frac{\lambda D}{d} \quad(1 \mathrm{mark})$
Calculating $\lambda=5500 \times 10^{-10} \mathrm{~m} \quad(1 \mathrm{mark})$
Formula $v=\frac{c}{\lambda} \quad(1$ mark $)$
Finding $v=5.454 \times 10^{14} \mathrm{~Hz}$. (1 mark)
38. Describe an experiment to determine the thickness of a paper K forming interference pattern when placed in an air wedge.

Diagram-1 mark
Procedure - 2 marks
Formula-1 mark
Tabular column-1 mark

Chapter 6: Diffraction

SI.

Question

Obj/ Spec./
No.
Diff. Level

1. Define diffraction of light.

K
Recall
Easy

Bending of light around the edges of an obstacle. (1 mark)
2. What should be the order of the size of the obstacle to observe K diffraction phenomenon?

Recall
Average
A^{0} or order of wavelength of light. (1 mark)
3. Write the condition for the first minima in the case of diffraction due to a single slit.

K Recall
Easy
$\mathrm{D} \sin \theta=\lambda$ (1 mark)
4. Why short wavelength radio waves are used in long distance broadcasts?

K
Recall Easy

Short wavelength radio waves are diffracted less and hence can be transmitted as a beam. (1 mark)
5. Define Fresnel diffraction of light.

K
Recall
Easy

Light from near source is diffracted through a narrow slit. (1 mark)
6. Define Fraunhofer diffraction of light.

K
Recall
Easy

Light from distance source is diffracted through a narrow slit. (1 mark)
7. How does the spreading of light due to diffraction depend on the wavelength of light ?

K
Recognize
Average
Inversely proportional to wavelength. (1 mark)
8. Define resolving power of an optical instrument.

K
Recall
Easy
The ability to distinguish two close objects. (1 mark)
9. Why does resolving power of a microscope increase when red light illuminating the object is replaced by the blue light ?
R.P. $\propto \frac{1}{\lambda}$ (1 mark)
(λ is blue light is less than that of red light)
10. Define resolving power of a telescope.

K
Recall
Easy

It is numerically equal to the reciprocals of the limit of resolution. (1 mark)
11. Define limit of resolution of a telescope.

K
Recall
Easy
The angle subtended at the objective of the telescope by two distant objects whose images are just resolved. (1 mark)
12. What is the relation between the wavelength of light and the size K of the obstacle for diffraction to be effective?

Recall
Easy

Of comparable size (1 mark)
13. What is meant by wave front of a light wave ?
K
Recall
Easy

The locus of all particles which are in the phase. (1 mark)
14. What is the shape of the wave front used in discussing Fresnel diffraction?

Spherical (1 mark)
15. How can the resolving power of a microscope be increased ?

K
Recall
Average
By increasing the R.i. of the medium or by decreasing the λ. (1 mark)
16. How can the resolving power of a telescope be increased ?

K
Recall
Average
By increasing the diameter of the objective. (1 mark)
17. Draw the intensity distribution curve for the diffraction of light at a single slit.

K
Recognize Easy

Drawing and labeling (1 mark)
18. On what factors does the diffraction of light depend?

K
Recall
Easy

1. size of the obstacle, $2 . \lambda$ of the wave (1 each)
2. Write the formula for the resolving power of a microscope and with usual meaning.

K

Recognize Easy
R.P. $=\frac{2 n \sin \theta}{1.22 \lambda} \quad(1$ mark $)$

Labelling (1 mark)
20. State and explain Rayleigh's criterion for resolution of two K nearby objects.

Recognize Average

Statement-1 mark
Graph - 1 mark
21. Write the expression for the limit of resolution of a microscope K for luminous point objects and with usual meaning.
Recognize
Easy
$\mathrm{d}=\frac{1.22 \lambda}{2 n \sin \theta}$ (1 mark)
Labelling (1 mark)
22. Compare the two phenomena: interference and diffraction of K light waves.
Each difference carries 1 mark.
23. Distinguish between Fresnel diffraction and Fraunhofer K diffraction. Recall Easy

Fresnel Diffraction

1. Source of light and the screen are finite.
2. Incident wave front is spherical.
(1 mark each)

Fraunhofer Diffraction

1. Source of light and the screen are at infinite.
2. Incident wave front is plane.
3. Explain the phenomenon of Fraunhofer diffraction through a single slit and indicate in a diagram the variation of intensity in the pattern.

Figure - 1 mark
Explanation-1 mark
Equation - 1 mark
25. A microscope is used to resolve two luminous point objects A separated by $5.55 \times 10^{-7} \mathrm{~m}$. What is the numerical aperture if Compute light of wavelength 546 nm is used? What will be the numerical Easy aperture and limit of resolution if air between the objective and the objects is replaced by oil of R.I. 1.50 ?

Scheme:

$\mathrm{d} \theta=\frac{1.22 \lambda}{2 n \sin \theta} \quad(1 \mathrm{mark})$
For air ;
$n \sin \theta=\frac{1.22 \lambda}{2 d}=0.6 \quad(1 \mathrm{mark})$

For oil,
$\mathrm{n} \sin \theta=\frac{1.22 \lambda}{2 d}=0.9$ (1 mark)
$\mathrm{d} \theta=\frac{1.22 \lambda}{2 n \sin \theta}=\frac{1.22 \times 546.1 \times 10^{-9}}{2 \times 0.9}$
$\mathrm{d} \theta=3.7 \times 10^{-7} \mathrm{~m} \quad$ (1 mark)
26. Angular separation between two stars is $6 \times 10^{-6} \mathrm{rad}$ when they are just resolved by a telescope. Find the resolving power and radius of the objective of telescope. Wavelength of light is 5500 A^{0}.
R.P. $=\frac{1}{6 \times 10^{-6}}=1.667 \times 10^{5} \quad(1 \mathrm{mark})$
R.P. $=\frac{\lambda}{1.22 \lambda}$ (1 mark)
$\mathrm{D}=$ R.P. $\times 1.22 \times \lambda$
$D=1.667 \times 10^{5} \times 1.22 \times 55 \times 10^{-8}$
$\mathrm{D}=0.1118 \mathrm{~m}$ (1 mark)
$\mathrm{R}=\frac{D}{2}=0.0556 \mathrm{~m}$ (1 mark)
27. In an experiment with microscope, the wavelength of light used is $5800 \mathrm{~A}^{\circ}$. If the semi vertical angle is 35°, calculate the limit of solution and resolving power.
$\mathrm{d} \theta=\frac{\lambda}{2 \sin \theta} \quad(1 \mathrm{mark})$
$\mathrm{d} \theta=\frac{58 \times 10^{-8}}{2 \times \sin 35^{\circ}}=\frac{58 \times 10^{-8}}{2 \times 0.5736}=5.056 \times 10^{-7} \mathrm{~m}(2 \mathrm{marks})$
$\mathrm{RP}=\frac{1}{d \theta}=\frac{1 \times 10^{7}}{5.056}=0.1978 \times 10^{7}$
$R \mathrm{P}=1.978 \times 10^{6} \mathrm{~m}$ (1 mark)
28. With a neat labelled diagram, explain how to determine the

U, S
Explain, draw Easy

Figure - 1 mark
Procedure - 2 marks
Formula-1 mark
Tabular column - 1 mark
29. In a single slit diffraction experiment, if the width of the slit is 10 U cm , then the diffraction pattern will
a) be prominent

See
b) be less prominent
relationship
Average
c) remain the same
d) disappear

Ans: d)
30. The resolving power of a telescope whose lens has a diameter of
1.22 m for a wavelength of $5000 \mathrm{~A}^{0}$ is
a) 2×10^{5}

Recall
Average
b) 2×10^{6}
c) 2×10^{2}
d) 2×10^{4}

Ans: b)
31. Which of the following waves are diffracted by an obstacle of U size 1 cm ?
a) Light waves
b) Sound waves
relationship
c) Ultra sonic waves
d) X-rays
average

Ans: c)
32. Angular width of the central maximum in single slit diffraction pattern does not depend on
a) distance between slit and source
b) wavelength of light used
relationship
c) width of the slit
d) frequency of light used.

Ans: a)

Chapter 7 : Polarisation

SI.
Question
Obj/ Spec./
No.

1. Define Polarisation of light.
Diff. Level
K
Recall
Easy

The phenomenon of restricting the vibrations of light wave in a particular direction in a plane. (1 mark)
2. Define polarizing angle.

K
Recall
Easy
The angle of incidence for which the reflected light from a surface is completely plane polarized. (1 mark)
3. State Brewster's law.

K
Recognize
Easy

The tangent of the polarizing angle is equal to the refractive index of the material. (1 mark)
4. What is meant by optic axis ?

K
Recall
Easy

The direction along which velocity of ordinary ray is equal to that of extraordinary ray. (1 mark)
5. When unpolarised light is incident on the polariser, what is the intensity of transmitted polarized light?

U
Generalize Easy

Half of the intensity of unpolarised light. (1 mark)
6. Name the phenomenon taking place in a calcite crystal when light is incident on it.

Double refraction (1 mark)
7. Give the relation between polarizing angle and the R.I. of the material of a reflector.

K Recognise Easy
$\mathrm{n}=\tan \mathrm{i}_{\mathrm{p}}$ (1 mark)
8. What is the polarizing angle of a medium of refractive index K
1.732? $\quad \begin{aligned} & \text { Recognise } \\ & \text { Easy }\end{aligned}$
Easy
$\mathrm{n}=\tan \mathrm{I}_{\mathrm{p}}$ (1 mark)
$\mathrm{i}_{\mathrm{p}}-\tan ^{-1} 1.732=60^{\circ}$ (1 mark)
9. What is the angle of incidence for complete polarization of K reflected light for a medium of R.I. $\sqrt{2}$?
Recall
Easy
$\mathrm{n}=\tan \mathrm{i}_{\mathrm{p}}$ (1 mark)
$\mathrm{i}_{\mathrm{p}}=\tan ^{-1} \sqrt{2}$ (1 mark)
10. Name the phenomenon which confirms the transverse nature of K light.
Recall
Easy
Polarization (1 mark)
11. Give an example for a wave which cannot be polarized.
K
Recal!
Easy
Sound waves (1 mark)
12. Distinguish between ordinary and plane polarized light. K
Recall
Average
Two correct differences (each carries 1 mark)
13. On what factors does the optical rotation of the plane of K polarization of polarized light produced by a solution depend? Recall
Easy

1. Length of solution
2. concentration of solution
(1 mark each)
3. Define uniaxial and biaxial crystal. Mention one example each. K
Uniaxial crystal: A crystal having only one optic axis. ($1 / 2$ mark)
Ex: Quartz, Calcite, Tourmaline crystal. ($1 / 2$ mark)
Biaxial crystal : a crystal having two optic axes. ($1 / 2$ mark)
Ex: Selenite, mica, ice cube ($1 / 2$ mark)

crystal.
 Diagram-1 mark
 Labeling - 1 mark

15. Draw a neat diagram showing the plane of vibration and the plane of polarization of polarized light produced by a tourmaline

K
Recognize
Average
16. Mention any two methods of producing plane polarized light.

K
Recall
Easy
Each carries one mark.

1. by reflection
2. by refraction
3. by double refraction
4. by selective absorption
5. Explain the phenomenon: double refraction of light.

K
Recall
Average
Definition-1 mark
Diagram or explanation - 1 mark
18. The R.I. of a medium is 1.5 . What is the polarizing angle in the medium?

K
Recognize
Average
$\mathrm{n}=\tan \mathrm{I}_{\mathrm{p}} \quad$ (1 mark)
$i_{p}=\tan ^{-1} 1.5=56^{\circ} 19^{\prime} \quad(1$ mark $)$
19. Explain an experiment to show the transverse nature of light.

U
Explains
Average
For two figures - 2 marks.
Explanation-2 marks
20. Show that reflected and refracted rays are perpendicular to each other at the polarizing angle of incidence.

K
Recognize Easy

Figure - 1 mark
Snell's law $\mathrm{n}=\frac{\sin i}{\sin r}-1$ mark
Brewster's law equation $n=\tan i_{p} \quad(1$ mark $)$
Obtaining $\mathrm{r}+\mathrm{I}_{\mathrm{p}}=90^{\circ}$ (1 mark)
21. Explain the phenomenon of optical activity with an example.

Define specific rotation in solids and liquids.
Recall
Average

Definition - 1 mark
Explanation / example - 1 mark
Specific rotation of solid - 1 mark
Specific rotation of liquid - 1 mark
22. Define double refraction. Explain with a diagram the distinction K between ordinary and extraordinary rays

K
Recall
Average
Definition - 1 mark
Diagram - 1 mark
Three differences - 3 marks
23. What are polaroids? Mention any three applications.

K
Recall
Easy
Polaroids are the crystals of Iodoquine sulphate. (1 mark)
Applications: Any four (each 1 mark)
24. Explain the phenomenon of optical activity with an example. K

Define specific rotation in solids and liquids.

Recall
Easy

Definition - 1 mark
Example / explanation - 1 mark
Specific rotation of solid - 1 mark
Specific rotation of liquid - 1 mark
25. A ray of light incident at 52° on a refracting surface gets plane polarized on reflection. The critical angle is
a) $51^{\circ} 22^{\prime}$

Relation
Average
b) 52°
c) $46^{\circ} 21^{\prime}$
d) 90°

Ans: a)
26. A sugar solution of concentration $90 \mathrm{~kg} \mathrm{~m}^{-3}$ produces a rotation of 12°. What is the length of the solution?U Given specific rotation $=0.011 \mathrm{rad}^{2} \mathrm{~kg}^{-1}$.

Compute Easy
$\mathrm{S}=\frac{\theta}{l c}$ (l mark)
$1=\frac{\theta}{S \times C} \quad \theta=12^{\circ}=0.20093 \mathrm{rad} \quad(2 \mathrm{marks})$
$I=\frac{0.2093}{0.011 \times 90}=0.21 \mathrm{~m}$
Result with unit (1 mark)
27. A sugar solution rotates the plane of the vibration by 10°. The U length of the solution is 0.25 m and concentration is $80 \mathrm{~kg} \mathrm{~m}^{-3}$. What is the specific rotation of sugar solution?

Compute
Easy
$\mathrm{S}=\frac{\theta}{l c}(1 \mathrm{mark})$
$\left.\begin{array}{l}\theta=\frac{10 \times 3.14}{180}=0.1744 \mathrm{rad} \\ \mathrm{S}=\frac{0.1744}{0.20 \times 90}=0.0096\end{array}\right\} \quad 2 \mathrm{marks}$
$\mathrm{S}=0.01 \mathrm{rad} \mathrm{m}^{2} \mathrm{~kg}^{-1}$ (1 mark)
28. An optically active solution of length 0.25 m produces a rotation of plane of polarization 8°. What is the concentration of the solution? Given $\mathrm{S}=0.011 \mathrm{rad} \mathrm{m}^{2} \mathrm{~kg}^{-1}$.
$\mathrm{S}=\frac{\theta}{l c}$ (1 mark)
$\theta=\frac{8 \times \pi}{180}=0.1395=0.14 \mathrm{rad}$
$\left.\mathrm{C}=\frac{\theta}{S l}=\frac{0.14}{0.011 \times 0.25}=50.9\right\} \quad(2$ marks $)$
$\mathrm{C}=51 \mathrm{~kg} \mathrm{~m}^{-3}$
Unit (1 mark)
29. Plane polarized light passing through a solution of length 0.25 m rotates the plane of polarization by 8°. The concentration of the solution is
a) $32 \mathrm{~kg} \mathrm{~m}^{-3}$
b) $51 \mathrm{~kg} \mathrm{~m}^{-3}$
c) $0.14 \mathrm{~kg} \mathrm{~m}^{-3}$
d) $0.28 \mathrm{~kg} \mathrm{~m}^{-3}$

Ans: b)
30. Calculate the thickness of quartz plate cut with its faces perpendicular to the optic axis which would produce half the rotation of plane of polarization of an optically active solution 0.3 m long and having concentration of $200 \mathrm{~kg} \mathrm{~m}^{-3}$. Given specific rotation of quartz $=380 \mathrm{rad} / \mathrm{m}$, specific rotation of solution $=0.01 \mathrm{rad} \mathrm{m}^{2} \mathrm{~kg}^{-1}$.
$\theta=$ slc
$\theta=0.011 \times 0.3 \times 200=0.66 \mathrm{rad}$ (1 mark)
For solid:
$\theta=0.66 / 2=0.33 \mathrm{rad}$ (1 mark)
$\mathrm{t}=\frac{\theta}{S}$ (1 mark)
$t=\frac{0.33}{380}=8.68 \times 10^{-4} \mathrm{~m}(1 \mathrm{mark})$
31. Describe an experiment to determine the specific rotation of K sugar solution using a polarimeter. Easy

Figure - 1 mark
Procedure - 2 marks
Formula - 1 mark
Tabular column - 1 mark
32. The following readings were obtained in an experiment to K determine the specific rotation of sugar using a polarimeter. Average Calculate specific rotation of sugar.
Length of the tube $=0.20 \mathrm{~m}$
Reading with distilled water $=53^{\circ} 15^{\circ}$

Concentration (C) $10^{3} \mathrm{kgm}^{-3} \quad$ Reading with sugar solution

0.20
$77^{\circ} 21^{\prime}$
0.10

$$
65^{\circ} 27^{\prime}
$$

$\mathrm{S}=\left[\frac{\theta}{C}\right] \operatorname{rad~m}{ }^{2} \mathrm{~kg}^{-1} \quad$ (1 mark)
Trial 1: $\theta=\theta_{2}-\theta_{1}=77^{\circ} 20^{\prime}-53^{\circ} 15^{\prime}=24^{\circ} 5^{\prime}=24.08^{\circ}$
$\frac{\theta}{C}=\frac{24.08 \times 3.14}{180 \times 0.20} \times 10^{-3}=2.10 \times 10^{-3} \quad(1$ mark $)$
Trial 2: $\theta=65^{\circ} 27^{\prime}-53^{\circ} 15^{\prime}=12^{\circ} 12^{\prime}=12.2^{\circ}$
$\frac{\theta}{C}=\frac{12.2 \times 3.14}{180 \times 0.10} \times 10^{-3}=2.182 \times 10^{3} \quad(1$ mark $)$
$\left(\frac{\theta}{C}\right)=\left(\frac{2.10+2.182}{2}\right) 10^{-3}=2.141 \times 10^{-3}$
substitution (1 mark)
$\therefore S=\frac{2.141 \times 10^{-3}}{0.20}=0.0107 \mathrm{rad} \mathrm{m}^{2} \mathrm{~kg}^{-1} \quad(1 \mathrm{mark})$
33. When light falls on a given plate at an angle of incidence, the U reflected and infracted rays are found to be normal to each other. Sce The angle of incidence is 60°, the refractive index of a material relationship of a plate is Average
a) 0.866
b) 1.5
c) 1.732
d) 2

Ans: a)
34. A ray of light is incident on a surface of water at polarizing angle A 53°. The angle of deviation of the ray of light affected by refraction is
a) 6°

Applies and solves
b) 7^{0}
c) 8°
d) 47°

Ans: a)
35. When plane polarized light is passed through an analyser, it emerges out with maximum intensity. If the analyser is rotated through 90° then intensity of emerging light

K

Recall
Average
a) varies between maximum and minimum
b) becomes zero
c) does not vary
d) varies between maximum and zero

Ans: b)
36. Angle of rotation is measured using polarimeter for two samples. U

In one sample, 10 gm of sugar is dissolved in 100 cc . In another See sample, 20 gm of sugar is dissolved in 100 cc . Then specific relationship rotation is

Average
a) more for sample one
b) more for second sample
c) same for both
d) cannot be estimated

Ans: c)
37. In a polarimeter, the concentration of the solution and the length of the tube have been doubled. Then angle of rotation of plane polarized light becomes

U

See relationship Average
a) doubled
b) zero
c) three fold
d) fourfold

Ans: d)

UNIT 3 ELECTROSTATICS

Chapter 9: Electric Charges

SI. Question Obj/ Spec./
No. Diff. Leve!

1. What is an elementary charge ? K
Elementary charge is the smallest charge that can be added to or removed from an object. (1 mark)
2. Mention one method of charging an object.
Friction / Induction / Conduction (any one) (1 mark)
3. How many electronic charges make one coulomb of charge?

K
Recall
Average
6.25×10^{18} electronic charges (1 mark)
4. Define : surface density of charge.

K
Recall
Easy
Surface density of charge at any point on the surface is defined as the amount of charge per unit area of the surface around that point. (1 mark)
5. How does the surface density of charge depend on the radius of K
curvature of the surface?

Recall
Average
It is inversely proportional to square of the radius of curvature. (1 mark)
6. How does the surface density of charge depend on the curvature of K the surface?

Recall
Average
It is directly proportional to the curvature. (1 mark)
7. Mention the SI unit of surface density of charge.

K
Recall
Easy
Ans: $\mathrm{C} \mathrm{m}^{-2}$ (1 mark)
8. What happens to the force between two charged objects, when a K glass plate is introduced in between them? Recall Easy
Decreases (1 mark)
9. Why do electrostatic experiments not work well on humid days?

K
Recall
Easy
Leakage of electric charges (1 mark)
10. How are the charges produced in clouds?

U
Recognize
Average
Due to friction (1 mark)
11. Where do excess charges reside on a conductor?

U
Recall
Easy
On the outer surface of conductor (1 mark)
12. Mention any two methods of charging of bodies.

K
Recall Easy
i) Friction, ii) Induction, iii) Conduction (1 mark each)
13. Write an expression for Coulomb's law in vector form and explain the terms.

K Recall Easy
i) $\vec{F}=\frac{1}{4 \pi \epsilon_{o}} \frac{q_{1} q_{2}}{d^{2}} \hat{d}$ (1 mark)
or $\vec{F}=\frac{1}{4 \pi \epsilon_{o}} \frac{q_{1} q_{2}}{d^{3}} \vec{d}$
ii) Explanation (1 mark)
14. Calculate the electrostatic force between two protons separated by $1 \mathrm{~A}^{0}$ in air. Given: Charge of proton $1.6 \times 10^{-19} \mathrm{C} . \quad \begin{aligned} & \text { Computing } \\ & \text { Average }\end{aligned}$

$$
\begin{aligned}
& \left(\frac{1}{4 \pi \epsilon_{o}}\right)=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2} \\
& \mathrm{~F}=\frac{1}{4 \pi \epsilon_{o}} \cdot \frac{q_{1} q_{2}}{d^{2}}(1 \text { mark }) \\
& \mathrm{F}=9 \times 10^{9} \times \frac{\left(1.6 \times 10^{-19}\right)^{2}}{\left(1 \times 10^{-10}\right)^{2}}=9 \times(1.6)^{2} \times 10^{-18} \mathrm{~N} \\
& \mathrm{~F}=-------\mathrm{N} \cdots-------(1 \text { mark })
\end{aligned}
$$

15. Write the relation between relative permittivity of a medium and K absolute permittivity of free space.

Relation $\epsilon_{\mathrm{r}}=\frac{\epsilon}{\epsilon_{o}}$ (1 mark)
16. 27 small drops of mercury each of radius r and charge q merge to A form a big drop. Find the ratio of the surface density of each small Applies drop to that of the big drop.
$\sigma_{1}=\frac{q}{4 \pi r^{2}} \quad 27 \frac{4}{3} \pi r^{3}=\frac{4}{3} \pi R^{3}$
$\sigma_{2}=\frac{27 q}{4 \pi R^{2}} \quad \mathrm{R}=3 \mathrm{R}$
$\frac{\sigma_{1}}{\sigma_{2}}=\frac{1}{27}\left(\frac{R^{2}}{r^{2}}\right) \quad$ (1 mark)
$=\frac{1}{27}\left(\frac{(3 r)}{r^{2}}\right)=\frac{1}{27} \times \frac{9 r^{2}}{r^{2}}=\frac{1}{3}$ (1 mark)
$\sigma_{1}: \sigma_{2}=1: 3$ (1 mark)
17. Identical charges each of magnitude 10 nC are placed at the corners A of the square of side 1 m . what is the net force on a proton placed at the centre of the square.

Application Difficult
i) Force due to opposite charges at corners cancel each other. (1 mark)
ii) Because they are at same distance from the centre. Hence net force is zero. (1 mark)
18. A comb run through the dry hair of a person attracts small bits of \mathbf{U} paper. Why? What happens when hair is wet?

Interpretation Average

Due to friction charges introduced on comb and it attracts light bits of paper. When hair is wet, conduction of charges takes place through water and hence paper bits are not attracted by comb. (2 marks)
19. The force between two charges separated by a certain distance in air is F. What will be the force between them at the same separation Compares when it is placed in a dielectric medium of dielectric constant K ?

Average
$\mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{d^{2}}$
$\mathrm{F}_{\mathrm{m}}=\frac{1}{4 \pi \epsilon_{o}} \frac{q_{1} q_{2}}{k \times d^{2}}$ (1 mark)
$\mathrm{F}_{\mathrm{m}}=\mathrm{F} / \mathrm{K}$ (l mark)
20. Two point charges q_{1} and q_{2} are such that $q_{1} q_{2}<0$. The nature of K the force between them is

Recall
Average
b) repulsive
c) both (a) and (b)
d) either (a) or (b)

Ans: a)
21. For the surface of the conductor shown below identify the region where the surface density of charge is maximum.
a) AB

Locate
Average
b) BD
c) CB
d) DC

Ans: a)
22. The force of repulsion between two point charges of 1 C each kept 1 m part in vacuum is
a) $9 \times 10^{9} \mathrm{~N}$

Compute
b) $\frac{1}{9 \times 10^{9}} \mathrm{~N}$
c) 0
d) $9 \times 10^{-9} \mathrm{~N}$

Ans: a)
23. If the dielectric constant of water is 80 , then its permittivity is
a) $80 \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
b) $708.3 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$

A
c) $708.3 \mathrm{C}^{2} \mathrm{~m}^{-2} \mathrm{~N}^{-1}$
d) $70.8 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$

Ans: b)
24. The dimensional formula of permittivity of free space is
a) $\mathrm{L}^{-3} \mathrm{M}^{-1} \mathrm{~T}^{-4} \mathrm{~A}^{2}$

K

Recall
Average
c) $L^{-3} \mathrm{M}^{-1} \mathrm{~T}^{4} \mathrm{~A}^{2}$
d) $\mathrm{L}^{3} \mathrm{M}^{-1} \mathrm{~T}^{-4} \mathrm{~A}^{2}$

Ans:c)

Chapter 10: Electric Field

SI. No.	Question	Obj/ Spec./ Diff. Level
	How do we represent the direction of the electric field at any point on a line of force?	U Recognize Average
	Tangent to the curve at any point on the line of force gives the dimension of electric field. (1 mark)	
2.	How do we represent uniform electric field pictorially?	K Recall Average
	Parallel lines with arrows in the same direction (1 mark)	

3. What happens to the strength of the electric field due to the K presence of a dielectric medium?

Electric field decreases (1 mark)
4. Mention the SI unit of electric flux.

K
Recall
Easy
Ans: $\mathrm{Nm}^{2} \mathrm{C}^{-1}$ or Vm (1 mark)
5. What is an electric dipole?

```
K
Recall
Easy
```

Electric dipole is a system of two equal and opposite charges separated by a certain distance. (1 mark)
6. Write the expression for the dipole moment of an electric dipole. K

Recall
Easy
$\mathrm{P}=(2 \mathrm{a}) \mathrm{q}=2 \mathrm{aq}$ where 2 a is distance between the two charges.
(1 mark)
7. A charge of 20 pC is enclosed by a cubical surface. What is the U total flux over that surface $\left(\epsilon_{0}=8.854 \times 10^{-12} \mathrm{Fm}^{-1}\right)$. See relationship Average
$\phi=\frac{1}{\epsilon_{o}} \Sigma q=\frac{20 \times 10^{-12}}{8.854 \times 10^{-12}}=\frac{20}{8.854}=\ldots--\mathrm{Nm}^{2} \mathrm{C}^{-1} \quad(2$ marks $)$
8. What is the potential difference between two points on an U equipotential surface?
p. $\mathrm{d}=0$ (because at all the points potential is same). (1 mark)
9. Define electric potential.

K

Recall
Easy

It is the amount of work done in moving a unit positive charge from infinity to a given point against the field direction. (1 mark)
10. A spherical surface surrounds a charge q at the centre of a sphere. U

What happens to the total flux through the surface when the Interpret surface is changed to a cube?

Remains same (because charge inside is same and $\phi=\frac{\Sigma q}{\epsilon_{o}}$.
(1 mark)
11. Write the expression for the electric field at a point on the axial K line of a dipole and explain the terms.

Recal!
Easy
$\mathrm{E}=\frac{1}{4 \pi \epsilon_{o}} \frac{2 p r}{\left(r^{2}-a^{2}\right)^{2}} \quad$ (1 mark)
p - dipole moment; r - distance from the centre of the dipole to the point. 2 a -distance between two charges,
$\frac{1}{4 \pi \epsilon_{o}}$ - constant, ϵ_{0} - permittivity of free space (1 mark)
12. Write the expression for the electric field at a point on the K equatorial line of a dipole and explain the terms.
$\mathrm{E}=\frac{1}{4 \pi \epsilon_{o}} \cdot \frac{p}{\left(r^{2}+a^{2}\right)^{3 / 2}} \quad$ (1 mark)
p - dipole moment
ϵ_{0} - permittivity of free space
r - distance from point to the centre of dipole
2 a - distance between two charges (1 mark)
2 a - distance between two charges
13. Write the expression for the torque on a dipole and explain the terms.

K
Recall
Easy
$\mathrm{T}=\vec{p} \times \vec{E}=\mathrm{pE} \sin \theta$ (1 mark)
p -dipole moment
E - electric field intensity (1 mark)
θ - angle between P and E$\}$
14. Indicate in a diagram a point in the (i) end on position, (ii) broad u side on position of a dipole.

Locate Average

Diagram of dipole (1 mark)
Marking of two points ($1 / 2$ each)
15. What is the magnitude of the electric field intensity inside a U charged conducting sphere?

Recall and apply Easy

Ans: Zero (due to symmetric distribution of charge) (1 mark)
16. What is the electric flux through a closed surface which encloses U an electric dipole?

Recognize
Average
Zero (because surface encloses equal and opposite charges, therefore, net charge $=0)$. $(1$ mark $)$
17. What is the nature of the equipotential surface due to a point U charge?

Recall
Average
Spherical surfaces with common centre where the charge is placed. (1 mark)
18. A charge q is moved through a distance ' d ' on an equipotential surface of field intensity E . What is the work done?

U
Recognize
Average
Work done $=0$ (because charge is moved on an equipotential surface) (1 mark)
19. Classify the following field representations into uniform and non- U uniform electric field.

Average

(a)

(b)

(c)

(d)
(a) is uniform, (b), (c) and (d) are non-uniform. ($1 / 2$ mark each)
20. The potential at any point inside a hollow charged spherical U conductor of radius 0.05 m is 3 V . What is the potential on the See surface of conductor?
relationship
Average

Potential inside the spherical conductor is same and is equal to potential on the surface of conductor i.e. 3 V . (1 mark)
21. What is the effect of torque on an electric dipole placed in an K electric field?

Recall
Easy

Rotating effect is produced due to the action of torque on dipole. (1 mark)
22. At what points around an electric the dipole the electric potential becomes zero?

At all the points on the equitorial plane potential is zero. (1 mark)
23. A dipole consists of two charges +4 e and -4 e separated by $4 \mathrm{~A}^{\circ} \quad U$ What is its dipole moment? $\left(\mathrm{e}=1.6 \times 10^{-19} \mathrm{C}\right)$.

Recall
Easy
$p=2 \mathrm{aq} \quad$ (1 mark)
$=\left(4 \times 10^{-10}\right)\left(4 \times 1.6 \times 10^{-19}\right)$
$=25.6 \times 10^{-29}=2.56 \times 10^{-28} \mathrm{Cm} . \quad$ (2 marks)
24. A dipole consists of two charges +_ 4 e and -4 e separated by 4 A . Its dipole moment is
a) $23.56 \times 10^{-239} \mathrm{Cm}$
b) $6.4 \times 10^{-38} \mathrm{Cm}$
c) $1.6 \times 10^{-28} \mathrm{Cm}$
d) $4.0 \times 10^{-19} \mathrm{Cm}$.

Ans: a)
25. Derive an expression for the electric field due to an isolated point U charge.

Recall
Easy

Diagram (1/2 mark)
Intensity $=$ Force on a unit positive charge ($1 / 2$ mark)
i.e. $\mathrm{F}=\frac{1}{4 \pi \epsilon_{o}} \frac{q \times 1}{d^{2}}=\frac{1}{4 \pi \epsilon_{o}} \frac{q}{d^{2}} \quad$ (1 mark)
26. A charge is placed at the centre of a sphere of radius r. If the charge is moved through a distance $\mathrm{r} / 3$ from the centre, how does the flux through the surface change?

Remains same according to Gauss theorem. (1 mark)
27. When is the torque on a dipole maximum? dipole moment is 90°.
i.e. $\theta=90 \quad(1 \mathrm{mark})$
28. Mention any two properties of electric lines of force.

Describe /
explain
Average

1. Electric lines of force never intersect.
2. They originate from the charge and terminate at negative charge.
3. Always perpendicular to the charged conductor.
4. It does not form any closed loop.

Any two (1 mark each)
29. Calculate the electric flux through a closed surface given below. $\epsilon_{\mathrm{o}}=8.854 \times 10^{-12} \mathrm{Fm}^{-1}$

U

Recall
Average

Torque is maximum when angle between electric field strength and
28. Mention any foroperies felectric lines of force.

$\phi=\frac{1}{\epsilon_{o}} \Sigma q \quad$ (1 mark)

$$
\begin{aligned}
& \phi=\frac{1(-3+2+4+6)}{8.854 \times 10^{-12}} \times 10^{-9} \\
& =\frac{9}{8.854} \times 10^{3}=1.065 \times 10^{3} \mathrm{Nm}^{2} \mathrm{C}^{-1} \quad(1 \text { mark })
\end{aligned}
$$

30. A change is placed at the center of a sphere or radius r. If the U change is moved through a distance $\mathrm{r} / 2$ from the center, the flux Relation through the surface.
a) doubles
b) decreases by half
c) remains the same
d) becomes zero

Ans: c)
31. A spherical Gaussian surface of radius R surrounds a point charge $+q$. What happens to the total flux if
a) the charge is doubled

Interpret
Average
b) the radius of the surface is increased to three times.
a) remains the same (1 mark)
b) remains the same (1 mark)
32. Draw a graph of electric intensity versus distance from the centre of a charged spherical conductor of radius R.

Graphical representation A verage
Indication of E and d along axis correctly. (1 mark)
Correct curve a least on one side (1 mark)
33. Draw a graph of electric potential vs. distance from the centre of a charged spherical conductor of radius R.

Graphical representation Average
Indication of V and d along axis (1 mark)
Curve at least on one side of y-axis (1 mark)
34. Distinguish between electric-field intensity and electric potential.

U
Distinguish Easy

Electric intensity

i) Force experienced by unit positive. Charge m on electric field.
ii) It is a vector.

Electric Potential

i) Work done in moving unit positive. Charge from infinity to a given point against field.
ii) It is a scalar.

2 correct points (2 marks)
35. Arrive the relation between electric field intensity and electric potential.

K

Recall
Easy

Work done $=$ Force \times distance

$$
=-\mathrm{E} \times \mathrm{dx}(1 \text { mark })
$$

But work done $=$ potential difference between two points
$=\mathrm{dV}=-\mathrm{E} . \mathrm{dx}$
or $\mathrm{E}=-\frac{d V}{d x}$ (1 mark)
36. Assume the expression for electric intensity outside the spherical conductor of radius r and hence obtain the expression for the intensity at a point very near to the surface of conductor.
$\mathrm{E}=\frac{1}{4 \pi \epsilon_{o}} \cdot \frac{q}{d^{2}}$ outside the special conductor (1 mark)
If point is close to the surface, $\mathrm{d} \approx \mathrm{r}$
$\therefore \mathrm{E}=\frac{1}{4 \pi \epsilon_{o}} \cdot \frac{q}{r} \quad$ (1 mark)
37. State and explain Gauss's theorem in electrostatics.

K

Recall
Easy
The total normal electric flux through a closed surface in air is equal to $\frac{1}{\epsilon_{o}}$ times the algebraic sum of the charges enclosed by the surface (1 mark)
Figure ($1 / 2$ mark)
i.e. $\phi=\frac{\Sigma q}{\epsilon_{o}}$
i.e. $\phi=\left(\frac{+q_{1}-q_{4}+q_{3}-q_{2}}{\epsilon_{o}}\right) \quad(1 / 2 \mathrm{mark})$
38. Calculate the torque on a dipole placed in an electric field of $200 \mathrm{NC}^{-1}$ with its axis at an angle of 60° to the direction of field. The magnitude of each charge is $1 \mu \mathrm{C}$ separated by a distance of 1 cm .
$\tau=P E \sin \theta=(2 a q) \sin \theta \quad 2 \mathrm{a}=1 \mathrm{~cm}$ $=1 \times 10^{-2} \mathrm{~m}$
$\mathrm{p}=2 \mathrm{aq} \quad \mathrm{q}=1 \times 10^{-6} \mathrm{C}$
$\tau=1 \times 10^{-2} \times 200 \times 10^{-6} \times \sin 60^{\circ} \quad \mathrm{E}=200 \mathrm{NC}^{-1}$
$=200 \times \frac{\sqrt{3}}{2}$
$10^{-8}=\sqrt{3} \times 10^{-6} \mathrm{Nm} \theta=60^{\circ} \quad$ (1 mark)
39. The electric potential at a point distant r from a charge q is V.

When the charge q is replaced by 10 q , what will be the potential at that point?

$$
\begin{aligned}
& \mathrm{V} \propto \mathrm{q} \text { or } \mathrm{V}=\frac{1}{4 \pi \epsilon_{o}} \cdot \frac{q}{d} \quad(1 \text { mark }) \\
& \therefore \quad \mathrm{V}^{1}=\frac{1}{4 \pi \epsilon_{o}} \cdot \frac{10 q}{d}=(10) \mathrm{V} \\
& \mathrm{~V}^{\prime}=10 \mathrm{~V} \text { (1 mark) }
\end{aligned}
$$

40. 125 identical mercury dropiets charged to same potential V merge to form a single bigger drop. What will be the potential of the new drop?

A

Application Difficult
$\left.\begin{array}{l}\mathrm{V}=\frac{1}{4 \pi \epsilon_{o}} \cdot \frac{q}{r} \\ \mathrm{~V}^{1}=\frac{1}{4 \pi \epsilon_{o}} \cdot \frac{n q}{r^{1}}\end{array}\right\} \begin{aligned} & \mathrm{r}^{1}=\mathrm{n}^{1 / 3} \mathrm{r}\end{aligned}$
$V^{1}=\mathrm{n}^{2 / 3} \mathrm{~V} \quad$ (1 mark)
$V^{\prime}=\left(125^{2 / 3}\right) V=25 \times V=25 V \quad$ (1 mark)

Chapter 11: Capacitors

SI.	Question	Obj/ Spec./ No.
Diff. Level		
1.	Define electrical capacity of a conductor.	K
		Recall
		Easy

Addition of charges raise the potential of a conductor. (1 mark)
2. Mention any one factor on which the capacity of a conductor K depends on.

Recall
Easy
Size and shape of a conductor/ dielectric constant of surrounding medium/ nature of nearby conductors. Any one. (1 mark)
3. Give the SI unit of capacitance.

K

Recall
Easy
Farad (1 mark)
4. Find the dimensional formula for Farad.

K

Recall
Easy
Ans: $\left[\mathrm{L}^{-2} \mathrm{M}^{-1} \mathrm{~T}^{4} \pi^{2}\right]$ (1 mark)
5. Define capacitance of a capacitor.

K
Recall
Easy

Capacitance of capacitor is the ratio of the magnitude of charge on either conductors to the p - d between them. (1 mark)
6. Calculate the capacitance of a spherical conductor of radius 5 m . when surrounded by a medium of dielectric constant 5 .

Compute
Average
Ans: $\mathrm{C}=4 \pi \epsilon_{\mathrm{o}} \in_{\mathrm{r}} \mathrm{R}=2.8 \mathrm{nF}$.
Formula (1 mark), Answer (1 mark)
7. The capacitance of a spherical conductor of radius 5.0 m U surrounded by a medium of dielectric constant 5 is
a) $2.8 \times 10^{-9} \mathrm{~F}$

Calculate
Average
c) $9 \times 10^{-9} \mathrm{~F}$
d) $1.0 \times 10^{-9} \mathrm{~F}$

Ans: a)
8. Compute the radius of a spherical conductor of capacitance 1 nanofarad placed in air.

A

Compute
Average

Ans: $r=\frac{C}{4 \pi \epsilon_{o}}$ (1 mark)
Ans $=9 \mathrm{~m}$ (1 mark)
9. The capacitance of a spherical conductor of radius r and surface area A kept in a medium of dielectric constant ϵ_{r} is

Recall
Average
a) $4 \pi \epsilon_{0} \in_{r} r$
b) $4 \pi \in_{o} \in_{o} A$
c) $\frac{1}{4 \pi \epsilon_{o} \epsilon_{r} r}$
d) $\frac{1}{4 \pi \epsilon_{o} \in_{r} A}$

Ans: a)
10. Capacitance of a capacitor is expressed as

K
a) $\mathrm{C}=\frac{V}{Q}$

Recall
b) $\mathrm{C}=\frac{Q}{V}$
c) $\mathrm{C}=\mathrm{QV}$
d) $\mathrm{C}=\mathrm{Q}+\mathrm{V}$

Ans: b)
11. The energy stored in a capacitor is given by
a) $U=\frac{Q^{2}}{2 C}$

K

Recognize
Easy
b) $U=1 / 2 C V^{2}$
c) $U=1 / 2 Q V$
d) All of the above

Ans: d)
12. Capacitance of a spherical conductor
a) increases with the increase of radius

K

b) decreases with the increase of radius

Recognize
c) remains same with the increase of radius
d) first increases and then decreases with increase of radius.

Ans: a)
13. If two capacitors $2 \mu \mathrm{~F}$ and $4 \mu \mathrm{~F}$ are connected in parallel, the K effective capacitance of the combination is Recall
a) $\frac{4}{3} \mu \mathrm{~F}$
b) $\frac{3}{4} \mu \mathrm{~F}$
c) $6 \mu \mathrm{~F}$
d) $\frac{1}{3} \mu \mathrm{~F}$

Ans: c)
14. If two capacitors $3 \mu \mathrm{~F}$ and $6 \mu \mathrm{~F}$ are connected in series, the effective K capacitance of the combination is
a) $9 \mu \mathrm{~F}$
b) $2 \mu \mathrm{~F}$
c) $1 / 2 \mu \mathrm{~F}$
d) $1 / 3 \mu \mathrm{~F}$

Ans: b)
15. Two capacitors C_{1} and C_{2} are connected in series. The equivalent capacitance of the combination is

Average
a) $\mathrm{C}_{\mathrm{s}}=\mathrm{C}_{1}+\mathrm{C}_{2}$
b) $\mathrm{C}_{\mathrm{s}}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$
c) $\mathrm{C}_{\mathrm{s}}=\frac{C_{1}+C_{2}}{C_{1} C_{2}}$
d) $\mathrm{C}_{\mathrm{s}}=\frac{C_{1}+C_{2}}{C_{1}-C_{2}}$

Ans: b) $\frac{C_{1} C_{2}}{C_{1}+C_{2}}$
16. Two capacitors C_{1} and C_{2} are connected in parallel. The U equivalent capacitance of the combination is

Recall
Average
a) $\mathrm{C}_{\mathrm{p}}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$
b) $\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{1}+\mathrm{C}_{2}$
c) $\mathrm{C}_{\mathrm{p}}=\frac{C_{1}+C_{2}}{C_{1} C_{2}}$
d) $\mathrm{C}_{\mathrm{p}}=\frac{C_{1}-C_{2}}{C_{1}+C_{2}}$

Ans: b)
17. Write the expression for the capacitance of a cylindrical capacitor. K Explain the terms.

Average
$C=\frac{2 \pi \epsilon_{,} \epsilon_{o} l}{2.303 \log (b / a)}$ (1 mark)
Explanation of the terms (1 mark)
18. Write the expression for the capacitance of a spherical capacitor. Explain the terms.

> Recall
$C=\frac{4 \pi \epsilon_{r} \epsilon_{o} a b}{(b-a)} \quad$ (1 mark)
Explanation of terms (l mark)
19. What is the equivalent capacitance of the combination of three capacitors connected in series. Draw the series circuit.

K

Recall
Average
$\frac{1}{C_{s}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \quad(1 \mathrm{mark})$
Figure (1 mark)
20. What is the effective capacitance of the combination of threeU capacitors connected in parallel. Draw the parallel combination diagram.

See relationship Average
$\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$ (1 mark)
Figure (1 mark)
21. Derive an expression for an equivalent capacitance of the combination of three capacitors connected in series.

U
See relationship Average

Figure (1 mark)
$V=V_{1}+V_{2}+V_{3}$ (1 mark)
$\mathrm{C}_{1}=\frac{q}{V_{1}}, \mathrm{C}_{2}=\frac{q}{V_{2}}, \quad \mathrm{C}_{3}=\frac{q}{V_{3}}, \quad \mathrm{C}_{5}=\frac{q}{V} \quad$ (1 mark)
Explanation for effective capacitance (1 mark)
$\frac{1}{C_{s}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \quad$ (1 mark)
22. Derive an expression for the effective capacitance of combination U of three capacitors connected in parallel.

See relationship Average

Figure (1 mark)
$\mathrm{q}=\mathrm{q}_{1}+\mathrm{q}_{2}+\mathrm{q}_{3}$ (1 mark)
$\mathrm{q}_{1}=\mathrm{C}_{1} \mathrm{~V}, \quad \mathrm{q}_{2}=\mathrm{C}_{2} \mathrm{~V}, \quad \mathrm{q}_{3}=\mathrm{C}_{3} \mathrm{~V}, \quad \mathrm{q}=\mathrm{C}_{\mathrm{p}} \mathrm{V} \quad$ (1 mark)
Explanation of effective capacitance (1 mark)
$\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$ (1 mark)
23. Explain the principle of a capacitor.

U
Interpret
Average
Three Diagram (1 mark each), Explanation (2 marks)
24. Arrive at an expression for the energy stored in a capacitor.

U
See
relationship
Average
Diagram (1 mark)
The energy stored in a charged capacitor is the amount of work done.
$\mathrm{Q}=\mathrm{CV}$ (1 mark)
$\mathrm{dW}=\left(\frac{Q}{C}\right) d Q$ (1 mark)
$\mathrm{W}=\int_{0}^{Q} \frac{Q}{C} d Q$ (1 mark)
$\left.\begin{array}{l}\mathrm{U}=\frac{Q^{2}}{2 C} \\ \text { Or } \mathrm{U}=1 / 2 C V^{2} \\ \text { Or } U=1 / 2 Q V\end{array}\right\}$ (1 mark)
25. Write down the expression for the capacitance of a parallel plate K capacitor.
$C=\frac{\epsilon_{r} \epsilon_{o} A}{d}$ (1 mark)
26. The potential difference (V) between the two plates of a parallel plate capacitor of separation d is given by
a) $\frac{E}{d}$

See
relationship Average
b) Ed
c) $E^{2} d$
d) $E d^{2}$

Ans: b)
27. Find the capacitance between A and B in the following U combination.

Solve Average

$\frac{1}{C}=\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4} \mu \mathrm{~F}(1$ mark $)$
$C=\frac{4}{3} \mu \mathrm{~F} \quad$ (1 mark)
28. Find the capacitance between B and C in the following figure.

$$
\begin{aligned}
& \frac{1}{C}=\frac{1}{2}+\frac{1}{2}=1 \mu \mathrm{~F} \quad(1 \text { mark }) \\
& \mathrm{C}=1+1=2 \mu \mathrm{~F}(1 \text { mark })
\end{aligned}
$$

UNIT 4 CURRENT ELECTRICITY

Chapter 12: Electric Current

Sl.
Question
Obj/ Spec./
No.
Diff. Level

1. Define electric current.
K
Recall
Easy
Charges in motion (1 mark)
2. What is the net charge of a conductor? K
Recall
Easy
Zero (1 mark)
3. Define strength of electric current.
K
Recall
Easy
Rate of flow of charge (1 mark)
4. Mention the SI unit of electric current.
K
Recall
Easy
Ampere (1 mark)
5. When do electric charges move through a conductor?
K
Recall
Easy
Potential difference between two points. (1 mark)
6. Define an ampere.

$$
\begin{aligned}
& \text { K } \\
& \text { Recall } \\
& \text { Easy }
\end{aligned}
$$

One coulomb of charge flowing any cross section in one second. (1 mark)
7. How many electrons flowing per second constitute a current of one K ampere?
Recall Easy
6.25×10^{18} (1 mark)
8. Explain the concept of drift velocity of electrons.

U
Explain
Average

Equation for charge - 1 mark
Current equation - 1 mark
Arriving $\mathrm{v}_{\mathrm{d}}=\frac{I}{n e \Lambda}$ (3 marks)
9. Mention the SI unit of mobility. K
$\mathrm{m}^{2} /$ volt - $\mathrm{s}(1 \mathrm{mark})$
10. Define mobility. K

Recall
Easy
Ratio between drift velocity and electric field. (1 mark)
11. Write the expression for the current strength in terms of drift K velocity.

Recall
Easy
$I=n e A v_{d}$ (1 mark)
12. State Ohm's law.

K
Recall
Easy
Statement (1 mark)
13. Name the device which does not obey Ohm's law.

K
Recal!
Easy
Diode (1 mark)
14. Under which conditions is Ohm's law not obeyed by a conductor? K

Recall
Easy
Very low temperature and very high temperature (1 mark)
15. Define internal resistance of a cell.

K
Recall
Easy
Statement (1 mark)
16. Define current density.

K
Recall
Easy
Statement : current flowing/ unit area (1 mark)

17.	What is the cause of resistance in a conductor?	K Recall Easy
	Due to collision free motion of electron is opposed. (1 mark)	
18.	Five identical wires, each having a resistance of one ohm are joined parallel to one another, what is the equivalent resistance of this parallel combination?	U Relation Easy
	R_{p} formula (1 mark) Ans: 0.2Ω (1 mark)	
19.	If x amperes of current flows for y seconds in a conductor, how much charge in coulomb pass through the conductor during that time?	U Relation Easy
	$\begin{aligned} & \mathrm{I}=\frac{q}{t}(1 \text { mark }) \\ & \mathrm{q}=\mathrm{it},=\mathrm{xy}(1 \text { mark }) \end{aligned}$	
20	What is the purpose of connecting a battery in an electrical circuit?	K Recall Easy
	To maintain pd across conductor (1 mark)	
21	Why is the drift velocity of electron small in a conductor?	K Recall Easy
	Frequent collision suffered by electron (1 mark)	
22	A wire is cut into half. What is the effect on its specific resistance?	K Recall Easy
	No effect on specific resistance (1 mark)	
23	As the thickness of wire is increased, what happens to the resistance of wire?	K Recall Easy
	Decreases (1 mark)	
24	Why is copper wire more suitable as a connecting wire in an electrical circuit? Low resistance (1 mark)	K Recall Easy

25 A one metre long wire is bent at 180° in the middle and the two u halves are twisted together? What will be the effect on the Infer resistance? Average

If the length is half area of cross section is doubled. (1 mark)
Therefore, resistance decreases. (1 mark)
26 Why does the resistance of a superconductor become almost zero?
K
Recall
Easy

- Electrons are mutually coherent. (1 mark)
- At critical temperature, no collision between ions. (1 mark)

27 The light from an electric bulb gets dim for a moment when a U geyser is switched on in your house. Why? Reason

Easy
The resistance of geyser is small and hence draws large current.
(2 marks)
28 When a battery ' E ' of internal resistance ' r ' is connected to a resistance ' R ', a current I flows through it. Write down the relation Interpret between them.
$\mathrm{I}=\frac{E}{R+r} \quad$ (1 mark)
29 Explain the concept of drift velocity.

U
Explain Average

Figure (1 mark)
Definition (1 mark)
Average velocity with which charge carrier moves in a conductor under the influence of electric field.
Explanation-3 marks
30. Derive the expression $\mathrm{I}=\operatorname{neAv}_{\mathrm{d}}$ for the current strength in a K
conductor.

Recall
Easy
$\mathrm{N}=\mathrm{nA} l(1$ mark)
$l=\mathrm{v}_{\mathrm{d}} \mathrm{t}$ (l mark)
$\mathrm{I}=\mathrm{ne} \mathrm{A} \mathrm{v}_{\mathrm{d}}$ (1 mark)
31. Obtain an expression for the effective resistance of three resistors connected in series.

U
Relation Easy

Figure: (1 mark)
Value Point : $V=V_{1}+V_{2}+V_{3}$ (1 mark)
$\mathrm{V}=\mathrm{IR}$ (1 mark)
Substitution arriving $R_{s}=R_{1}+R_{2}+R_{\ldots}$ (2 marks)
32. Obtain an expression for the effective resistance if three resistances are connected in parallel.

U
Relation Easy

Figure (1 mark)
$I=I_{1}+I_{2}+I_{2}$ (I mark)
$\mathrm{I}=\frac{V}{R}$ (1 mark)
Substituting and arriving final expression
$\mathrm{R}_{\mathrm{p}}=\frac{1}{R_{1}}+\ldots \ldots \ldots \ldots$ (2 marks)
33. What are branch currents? Obtain an expression for branch currents when two resistances are connected in parallel.

Figure (1 mark)
$I=I_{1}+I_{2}$ (1 mark)
$I_{1} R_{1}=I_{2} R_{2}$ (1 mark)
Finding I_{1} (1 mark)
Finding I_{2} (1 mark)
34. What is a thermistor? How does the resistance of a thermistor vary
with temperature? Mention three applications of thermistor.
Explain Average

Definition of thermistor (1 mark)
Graphical representation (1 mark)
Application (3 marks)
35 What is the resistance value of a resistor, with the colour code
Orange - orange - orange - silver

K

Recall
Easy
$33 \times 10^{3} \pm 10 \%$ (1 mark)
36 Draw the $\mathrm{V}-1$ graph for ohmic and non-ohmic material.

K

Recall Easy
Ohmic (1 mark)
Non-ohmic (1 mark)

37 Expand SQUIDS.

K
Recall
Easy

Acronyming SQUIDS. (1 mark)
38. Two wires A and B are of the same material. A is three times U longer than B and diameter A is thrice that of B. If the resistance of See relation A is 4Ω find that of B.

Average
$\mathrm{R}=\rho \frac{L}{A} \quad$ (1 mark)
For wire $\mathrm{A}, 4=\frac{12 \rho L}{9 \pi d^{2}} \quad$ (1 mark)
$\mathrm{B}, \mathrm{R}=\frac{4 \rho L}{\pi d^{2}}$ (1 mark)
Comparing A and B , find $\mathrm{R}=12 \Omega$ (2 marks)
39. For the $V-I$ graph shown aside, arrange the resistance of the U conductor in increasing order of resistance.

Value point A, B, C, D. (1 mark)

Interpret
Average
40. Two wires A and B are of same material and A is three times longer U than B and the diameter of a is three times that of B. If the resistance of A is 4Ω. that of B is

Compute
Easy
a) 120 hms
b) $8 o h \mathrm{~ms}$
c) 40 ohms
d) 160 hms

Ans: a)

Chapter 13: Kirohhoff's law

1. State Kirchhoff's junction law.

K
Recall
Easy
$1^{\text {st }}$ law - Statement (1 mark)
2. State Kirchhoff's loop law.

K

Recall
Easy
$2^{\text {nd }}$ law - statement (1 mark)
3. What is the condition for balancing a Wheatstone bridge ?

K
Recall
Easy
$\mathrm{I}_{\mathrm{g}}=\mathrm{o} \quad$ or $\frac{P}{Q}=\frac{R}{S} \quad$ (1 mark)
4. In a balanced Wheatstone network, if the galvanometer resistance is K increased by 10Ω, what happens to the balancing? Recall Easy
No change in balance. (1 mark)
5. If A is area of cross section of conductor, v_{d} the drift velocity of K electron, e the charge on electrons and n, the number density of Recall electrons, then the current density through the conductor is Easy
a) $\frac{A}{n e v_{d}}$
b) $\frac{\mathrm{v}_{d}}{\text { Ane }}$
c) neA v_{d}
d) $n e v_{d}$

Ans: d)
6. When an electric field \vec{E} is applied to the ends of a conductor, the K free electrons start moving in the direction
a) similar to \vec{E}
b) opposite to \vec{E}
c) perpendicular
d) cannot be predicted

Ans: b)
7. Five identical wires, each having a resistance of one ohm are joined in parallel. What is the equivalent resistance of this parallel Compute combination?
a) 5Ω
b) 0.5Ω
c) 2Ω
d) 0.2Ω

Ans: a)
8. A one metre long wire is bent at 180° in the middle and the two U halves are twisted together. What will be the effect on the See relation
resistance?

Average
a) resistance increases
b) resistance remains same
c) resistance decreases
d) none of these

Ans: c)

9 Identify from the graph given below which conductor will have U more resistance?
a) conductor A
b) conductor B
c) conductor c
d) conductor D

Ans: a)

10 When do we say that a Wheatstone network is balanced ?
K
Recall
Easy
If no current flows through galvanometer. (1 mark)
11 On what principle meter bridge works?
K
Recall
Easy
Wheatstone network (1 mark)
12. State and explain Kirchhoff's laws of electrical network.

K
Recall
Easy

Statement of two laws (1 mark)
$\mathrm{EI}=0, \mathrm{EE}=\mathrm{EIR}$ (1 mark)
13. Derive the balancing condition of Wheatstone network.

U
Derive
Average
Figure (1 mark)
Condition (1 mark)
2 Loop equation (2 marks)
Arriving final equation $\frac{P}{Q}=\frac{R}{S}$ (1 mark)
14. Two cells rated as $10 \mathrm{~V}, 2 \Omega$ and $8 \mathrm{~V}, 1 \Omega$ are connected in parallel to send current in the same direction across a 6Ω resistor. Find the pd across the 6Ω resistor.

Figure with direction
Applying KVL for $1^{\text {st }}$ mesh
Getting equation $4 I_{1}+3 I_{2}=5$
Similarly, KVL for $2^{\text {nd }}$ mesh $6 \mathrm{I}_{1}+7 \mathrm{I}_{2}=8$

Finding $I_{1}=\frac{11}{10} \mathrm{~A}$ (I mark)
(I mark)
$I_{2}=\frac{1}{5} A$
Substituting find pd across $6 \Omega=7.8 \mathrm{~V}$ (2 marks)

Chapter 14: Magnetic Effect of Electric Current

Si. No.	Question	Obj/ Spec./ Diff. Level
1.	Magnetic field due to a current carrying element of length $\mathrm{d} l$ at a	K
	point distant r from it is directly proportional to	Recall
	a) strength of the current I	Easy
	b) length of the current element dl	
	c) $1 / r^{2}$	
	d) all these	

Ans: d)
2. Two conductors of equal lengths carrying equal amount of current held perpendicular to each other. Mark the direction of the magnetic field due to this combination in the four regions by dots and crosses :

S
Draws, locate Difficult

Correct marking : 2 marks
3. A current carrying conductor is passed through a cardboard on U
which iron filings are spread horizontally. Mark the magnetic lines Draw of force with direction.

Average

Correct marking (1 mark)
4. A coil consisting of 50 turns creates a field of $3.5 \times 10^{-5} \mathrm{~T}$. A Compute the value of current flowing in the coil (Given radius of Solve the coil $=0.08 \mathrm{~m}$)

Average
$\mathrm{B}=\frac{\mu_{o}}{4 \pi}\left(\frac{2 \pi n I}{r}\right)$ i.e. $\mathrm{I}=\frac{2 B r}{\mu_{o} n} \quad(\mathrm{I}$ mark $)$
$I=\frac{2 \times 3.5 \times 10^{-5} \times 0.08}{4 \pi \times 10^{-7} \times 50}=0.089 \mathrm{~A}(1 \mathrm{mark})$
5. The lines passing through places of equal declination are called

K
a) agonic lines

Recall
b) isoclinals Easy
c) isogonals
d) isodynamic lines

Ans:c)
6. Lines passing through places of the same value of horizontal K component are called as

Recall
a) isogonals Easy
b) isodynamic lines
c) agonic lines
d) isoclinals

Ans: b)
7. A circular current carrying conductor produces a magnetic field. U Derive an expression for the magnetic field at a point on the axial Interpret, line.

Diagram with specifications (1 mark)
Apply Laplace Law $\mathrm{dB}=\frac{\mu_{o}}{4 \pi}\left(\frac{I d l \sin \theta}{r^{2}}\right) \quad$ (1 mark)
Show that the cosine components cancel (1 mark)
Arrive at
$\mathrm{B}=\frac{\mu_{o}}{4 \pi}\left[\frac{2 \pi n I r^{2}}{\left(r^{2}+x^{2}\right)^{3 / 2}}\right]$ (2 marks)
8. State, explain and give the mathematical form Biot-Savart's law. K

Explain the terms with a diagram. Give the vector form of the law. State, Recall, Label

Explanation of the concept with diagram (1 mark).
Statement of law (2 marks)
Mathematical representation (1 mark)
$\mathrm{dB}=\left(\frac{\mu_{o}}{4 \pi}\right)\left(\frac{I d l \sin \theta}{r^{2}}\right)$
Vector representation of the law i.e.
$\overrightarrow{d B}=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{I \overrightarrow{d l} \times \vec{r}}{r^{3}}$ (1 mark)
9. State Laplace's law for a current carrying element which produces a K magnetic field.

State,Recall
Easy
Statement only (2 marks)
10. Write Laplace's law is mathematical form when a current carrying element produces a magnetic field. Give its vector form

Recall Easy
$\mathrm{dB}=\left(\frac{\mu_{o}}{4 \pi}\right)\left(\frac{I d l \sin \theta}{r^{2}}\right)(1$ mark $)$
Vector form, $\overrightarrow{d B}=\left(\frac{\mu_{0}}{4 \pi}\right) \frac{I \overrightarrow{d l} \times \vec{r}}{r^{3}}$ (1 mark)
11. Write an expression for the magnetic field produced by a current

U
carrying circular coil at its centre. Show graphically the variation
Recall and of field with distance on the axial line.

Average
Expression (1 mark)
Graph (1 mark)
12. Write an expression for the magnetic moment of a current loop and explain the symbols used.

K
Recall Easy
$\mathrm{M}=\mathrm{nIA}$ (1 mark)
M - magnetic moment
I - current in a loop
A - Area of the current loop (1 mark)
13. At one end of an ideal current carrying long solenoid, the magnetic U
ficld is

See
a) $B=\mu_{0} n I$
b) $\mathrm{B}=\frac{\mu_{o} n \bar{I}}{2}$
c) $\mathrm{B}=4 \mu_{0} \mathrm{nl}$
d) $B=2 \mu_{0} n I$

Ans: b)
14. Show graphically the variation of magnetic field along the axis of S an ideal solenoid.

Draw graph, Mark the length of the solenoid in the graph.

Field is uniform over major part of the solenoid of length L. (1 mark)
15. Write an expression for the magnetic field at a point on the axis of a K solenoid. Explain the symbols with the help of a diagram.

Recall
Easy
$\mathrm{B}=\frac{\mu_{o} n I}{2}\left(\cos \phi_{1}-\cos \phi_{2}\right) \quad(1$ mark $)$
Explanation of the terms with diagram (1 mark)
16. Magnetic field due to a current carrying ideal solenoid at its mid U point on its axis is
a) $\mathrm{B}=\frac{\mu_{o} n I}{2}$ See relationship Average
b) $2 \mu_{\mathrm{o}} \mathrm{nI}$
c) $B=4 \mu_{0} \mathrm{nl}$
d) $B=\mu_{0} n I$

Ans: d)
17. Give the theory of tangent galvanometer.

U

Explain
Average

Explaining that the coil must be placed such that its field at its centre is perpendicular to B_{H}. (1 mark)
$\mathrm{B}=\frac{\mu_{o}}{4 \pi}\left(\frac{2 \pi n I}{r}\right) \quad$ (1 mark)
$\frac{\mu_{o}}{4 \pi}\left(\frac{2 \pi n I}{r}\right)=\mathrm{B}_{\mathrm{H}} \tan \theta \quad$ (1 mark)
$I=\left\{\frac{2 r B_{H}}{\mu_{o} n}\right\} \tan \theta$ (1 mark)
Reduction factor
$\therefore I=K \tan \theta$ (1 mark)
18. State the tangent law in magnetism. Express it in mathematical K terms.

For a given restoring field, the deflecting field is directly proportional to the tangent of the angle of deflection. (1 mark) $\mathrm{B}=\mathrm{B}_{\mathrm{H}} \tan \theta$ (1 mark)
19. Define the terms: (i) Declination, (ii) Magnetic dip θ

K
Recall
Easy

Declination at a place is the angle between the geographic meridian and the magnetic meridian. (1 mark)
Dip at a place is the angle between the earth's total magnetic field and the horizontal drawn in the magnetic meridian. (1 mark)

Chapter 15: Mechanical Effect of Electric Current

Sl.

Question

Obj/Spec./ Diff. Level

1. Force on a charged particle moving in a magnetic field is given by U
a) $\mathrm{F}=\mathrm{Bq} v \cos \theta$
b) $F=B q \vee \sin \theta$
c) $\mathrm{F}=\frac{B q}{\mathrm{v}} \cos \theta$ relationship, generalize Average
d) $\mathrm{F}=\frac{B q}{\mathrm{v}} \cos \theta$

Ans: b)
2. The force on a charged particle moving in a magnetic field is K maximum at

Recall
Easy
a) $\theta=0$
b) $\theta=45^{\circ}$
c) $\theta=90^{\circ}$
d) $\theta=180^{\circ}$

Ans: c)
3. A charged particle at rest is placed in a magnetic field experiences zero force. Why?

K
Recall Easy
$\mathrm{F}-\mathrm{Bq} \mathrm{q} \sin \theta$
At rest $v=0, \therefore F=0$ (1 mark)
4. State Fleming's left hand rule.

K
State
Easy
Statement - (i Mark)
Show directions of Force field and velocity (1 mark)
5. Mention an expression for the torque acting on a current loop placed in a uniform magnetic field.

K
Recall
Easy
$\tau=\mathrm{MB} \cos \theta$ (1 mark)
6. Mention an expression for the torque on a current loop placed in a uniform magnetic field with the normal to the plane of the coil making an angle α with the direction of the field.

K Recall Easy
$\tau=M B \sin \alpha$ (1 mark)
7. Write the relation for the force on a current-carrying conductor kept in a magnetic field. Recall Easy
$\mathrm{F}=\mathrm{B}!/$ (1 mark)
Or $\mathrm{F}=\mathrm{BI} I / \sin \theta$
8. Briefly mention how a galvanometer can be converted to an ammeter.

By connecting a small resistance in parallel with galvanometer. (1 mark)
$\mathrm{S}=\frac{I_{g} G}{I-I_{g}}$ (1 mark)
9. Briefly mention how a galvanometer can be converted to a volt K meter.

Recall and express

By connecting a high resistance in series with galvanometer.
(1 mark)
$\mathrm{R}=\frac{V}{I_{g}}-\mathrm{G} \quad$ (1 mark)
10 Arrive at an expression for the force between two parallel U conductors carrying currents.

Explain and establish
Average
Field on second conductor due to current I_{1} of first conductor
$\mathrm{B}=\frac{\mu_{o} I_{1}}{2 \pi a}$ (1 mark)
Force $\mathrm{F}=\mathrm{BI}_{2} l$ (1 mark)
$\mathrm{F}=\frac{\mu_{0} I_{1}}{2 \pi a} \times I_{2} l$ (1 mark)
$\mathrm{F}_{1}=\frac{\mu_{o} I_{1} I_{2}}{2 \pi a}$ (1 mark)

11 Describe with theory the working of a moving coil galvanometer. K
Describe,
locate,
express
Average
Diagram (1 mark)
Description of working (1 mark)
$\mathrm{C}=\mathrm{NB} \mid l \times \mathrm{b}=\mathrm{NB}!\mathrm{A}$ (1 mark)
Restoring couple $=$ deflecting couple
$\mathrm{C}_{\mathrm{r}}=\mathrm{D}_{\mathrm{D}}$ (1 mark)
Showing I $\propto \theta$ (1 mark)
12 Describe an experiment to determine the current sensitivity of a U pointer galvanometer.

Recall, express, tabulate
Average

Diagrams (1 mark)
Formula
Current sensitivity $=\frac{d(P+Q) R \times 10^{-6}}{E Q}$ divisions $/ \mu \mathrm{A}$ (1 mark)
Procedure in brief (2 marks)
Tabular columns (1 mark)

13 Calculate the current sensitivity of the pointer galvanometer using the following data.

Compute
EMF of the cell $=2 \mathrm{~V}$.
Average

Trial No.	Resistance unplugged (ohms)		Current in one direction (A)		Current in the opposite direction (A)	
1.	5000	5000	23	4000	25	4100
2.	6000	4000	19	4100	19	4000
3.	7000	3000	15	4050	14	4050

Trial No. 1.
Formula
Mean deflection $=24$ div.
Mean $R=4050 \Omega$
(1 mark) (1 mark)
Current sensitivity $=0.097$ div/ $\mu \mathrm{A}$
Trial No. 2 :
Mean deflection $=19$ div.
Mean $\mathrm{R}=4050 \Omega$
Current Sensitivity $=0.096 \mathrm{div} / \mu \mathrm{A}$
Trial No.3.
Mean deflection $=14.5 \mathrm{div}$
Mean $R=4050 \Omega \quad\}$ (1 mark)
Current sensitivity $=0.098 \mathrm{div} / \mu \mathrm{A}$
Overall (1 mark)

14 Describe an experiment to convert a galvanometer into a voltmeter. U

Diagram (1 mark)
Formula $\mathrm{R}=\frac{V}{I_{g}}-G$ (1 mark)
Procedure in brief (2 marks)
Tabular column (1 mark)

15 Calculate the resistance to be connected in series with the given galvanometer to convert it into a voltmeter using the following data.

Resistance of the galvanometer $=200 \Omega$
Current sensitivity of the galvanometer $=5 \mathrm{div} / \mu \mathrm{A}$
No. of div. On one side of the end of the galvanometer $=30 \mathrm{div}$.
Range of the voltmeter $=0$ to 10 V .

$$
\begin{aligned}
& \mathrm{R}=\frac{V}{I_{g}}-G(1 \text { mark }) \\
& =\frac{10}{5 \times 10^{-3}}-200=1800 \Omega(1 \text { mark })
\end{aligned}
$$

16 Describe an experiment to determine the value of B_{H} at a place using a tangent galvanometer.

Recall, Express, Explain Average

Diagram (1 mark)
Formula $\mathrm{B}_{\mathrm{H}}=\frac{\mu_{o} n K}{2 r} \quad$ (1 mark)

$$
\left.\mathrm{K}=\frac{I}{\tan \theta} \quad\right\}
$$

Procedure (2 marks)
Tabular column (1 mark)
17. Compute the value of B_{14} at a place using following data.

Circumference of the coil $=0.50 \mathrm{~m}$

A
Compute Difficult

	Current through T.G. in mA .	Deflections			
No.		θ_{1}	θ_{2}	θ_{3}	θ_{4}
1	500 mA	40°	41°	41°	40°
2	800 mA	45°	46°	46°	45°

$\mathrm{c}=2 \pi \mathrm{r}=0.50$
$\therefore r=\frac{0.5}{2 \times 3.142}=0.079 \mathrm{~m}$

Trial No. 1
$\mathrm{K}=\frac{I}{\tan \theta}$, mean $\theta=41.5^{\circ} \quad(1$ mark $)$
$K=\frac{0.5}{\tan 41.5^{\circ}}$ (1 mark)
$\mathrm{B}_{\mathrm{H}}=\frac{\mu_{o} n k}{2 r}$ (1 mark)
Trial No. 2 also to be done.

Chapter 16: Electromagnetic Induction

Sl.

Question

Obj/Spec./
No.
Diff. Level

1. Derive an expression for the current in an AC circuit containing a K pure inductor when a sinusoidal voltage $\mathrm{V}=\mathrm{V}_{0} \sin \omega \mathrm{t}$ is applied. Recall Show graphically the phase relation between V and I.
Average
Circuit and explanation (1 mark)
Explanation and $V=V_{0} \sin \omega t$ (1 mark)
Simplification $\mathrm{L} . \mathrm{dl} / \mathrm{dt}=\mathrm{V}_{\mathrm{o}} \sin \omega \mathrm{t}$ (1 mark)
$\left.\begin{array}{l}I=\frac{V_{o}}{\omega L} \sin \left(\omega t-\frac{\pi}{2}\right) \\ I=I_{0} \sin (\omega t-\pi / 2)\end{array}\right\}$ (1 mark)

Phase relation between V and I by graph or phasor diagram
(l mark)
2. Derive an expression for the induced emf in an AC generator. K

Represent the variation of the induced emf in graph.

Figure (1 mark)
$\phi=n A B \cos \theta=n A B \cos \omega t$ (1 mark)
$E=\frac{-d \phi}{d t}$ (1 mark)
$E=E_{0} \sin \omega t$ (1 mark)
$E_{0}=n A B \omega$ (l mark)
3. Derive an expression for the current in an $A C$ circuit containing a K
pure capacitor when a sinusoidal voltage $V=V_{0} \sin w t$ is applied. Recall
Average
Circuit and explanation (1 mark)
$\mathrm{V}=\mathrm{V}_{\mathrm{o}} \sin \omega \mathrm{t}$ and $\mathrm{V}_{\mathrm{c}}=\frac{q}{c}$ (1 mark)
$\mathrm{I}=\frac{d q}{d t}=\mathrm{CV}_{0} \omega \cos \omega \mathrm{t}$ (1 mark)
$\mathrm{I}=\mathrm{I}_{\mathrm{o}} \sin (\omega \mathrm{t}+\pi / 2) \quad(1 \mathrm{mark})$
Where $\mathrm{I}_{0}=\mathrm{C} \omega \mathrm{V}_{\text {。 }}$
Phase relation between V and I by graphic or by phasor diagram
(1 mark)
4. Derive an expression for the impedance and current in a series LCR K circuit by phasor diagram method. Write the expression for phase Recall difference between V and I . Average

Circuit (1 mark)
$\mathrm{V}=\mathrm{V}_{\mathrm{o}} \sin \omega \mathrm{t}$
$V_{R}=I_{0} R, V_{L}=I_{0} X_{L}, V_{C}=I_{0} X_{C}$ (1 mark)
Phasor diagram (1 mark)
Arriving at $\mathrm{Z}=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \quad$ (1 mark)
And $\mathrm{I}=\mathrm{I}_{0} \sin (\omega \mathrm{t} \pm \phi)$
$\tan \phi=\left(\frac{X_{L}-X_{C}}{R}\right) \quad$ (1 mark)
5. Impedance versus frequency graph is as shown in the figure. A and U B respectively correspond to resistances R_{1} and R_{2}. Write the See relation between R_{1} and R_{2}.
relationship Easy
$R_{2}<R_{1}$ (1 mark)

6. What is the principle used in moving iron type ammeter ?

K
Recall
Easy

Motion of iron piece from region of weaker magnetic field to stronger magnetic field. OR iron piece attached to the pointer attracted due to magnetic field produced by the current through the coil. (1 mark)
7. Draw a graph of capacitive reactance versus frequency of U alternating current applied to a capacitor.
$\mathrm{X}_{\mathrm{C}} \propto \frac{1}{f}$ (1 mark)
8. Current versus frequency graph for an LCR circuit is as in the U figure. Curves A and B correspond respectively to resistances R_{1} and R_{2}. Give the relation between R_{1} and R_{2}.

$\mathrm{R}_{1}>\mathrm{R}_{2}$ (1 mark)
9. X_{C} is the capacitive reactance at certain frequency f of $A C$. What is the new capacitive resistance when the frequency of AC is reduced to half the initial value?

Interpret
Average
$\mathrm{X}_{\mathrm{C}} \propto \frac{1}{f} \quad \therefore \mathrm{X}^{\prime} \mathrm{C}^{\prime}=2 \mathrm{X}_{\mathrm{C}}$ (1 mark)
X_{C} becomes double the previous value.
10. Draw a graph of X_{L} versus frequency for an inductor.

K
Recall
Easy
Correct graph(1 mark)
11. How does the inductive reactance depend on the frequency of AC ?

K
Recall
Easy
$X_{C} \propto f .(1$ mark)
12. How does the value of current depend on the resistance in a series LCR circuit under resonance?

U Sce relationship Average
$I_{\max } \propto \frac{1}{R}$ (I mark)
13. Draw the circuit symbol of choke.

K
Recall
Easy
Correct drawing (1 mark)
14. If $\mathrm{V}=\mathrm{V}_{0} \sin (\omega \mathrm{t}+\pi / 3)$, where V_{0} and V are in volts represents the U expression for the instantaneous voltage, then what is its initial See
phase?
relationship
Average
$\phi=\pi / 3$ radians (1 mark)
15. Write the expression for the phase difference between current and U voltage in a series LCR circuit in the following phasor diagram.

Voltage leads the current by $\pi / 3 \mathrm{rad}$ or $\pi / 3 \mathrm{rad}$. (1 mark)
16. Draw phasor diagram if current leads the voltage by a phase angle S
of $\pi / 4$ radians.

Draw
Average

Correct diagram (1 mark)
17. Write the relation between rms value and peak value of AC .

K
Recall
Easy
$I_{\mathrm{rms}}=\frac{I_{o}}{\sqrt{2}}(1 \mathrm{mark})$
18. Write the relation between rms and mean value of AC .

K
Recall
Easy
$I_{\text {mean }}=\frac{2 \sqrt{2} I_{r m s}}{\pi} \quad(1$ mark $)$
19. What is the rms value of an AC when its peak value is $\sqrt{2} \mathrm{~A}$?

U
Relation
Easy
$\mathrm{I}_{\mathrm{rms}}=\frac{I_{o}}{\sqrt{2}}=\frac{\sqrt{2}}{\sqrt{2}}=1 \mathrm{~A} .(1 \mathrm{mark})$
20. What is the peak value of an $A C$ if its mean value is $2 A$?

Relation Easy
$\mathrm{I}_{\mathrm{o}}=\frac{\pi I_{\text {mean }}}{2}=\frac{\pi \times 2}{2}=\pi A \quad(\mathrm{l}$ mark $)$
$I_{0}=3.142 \mathrm{~A}$
21. What is the significance of Lenz's law?

K
Recall
Easy

It is the law of conservation of energy. (I mark)
22. Write the expression for the magnetic flux associated with a coil of K area Λ and explain the symbols.

Recall Easy
$\phi=\mathrm{B} \cdot \mathrm{A} \cdot \cos \theta \quad$ (1 mark)
$\left.\begin{array}{l}B \text { - magnetic field } \\ A \text { - area of the surface }\end{array}\right\}$ (1 mark)
θ - Angle between B and normal to the surface. \int
23. The magnetic flux (ϕ) of a surface is given by

U
$\phi=\vec{B} \cdot \vec{A}$
Interpret
where B is the magnetic induction and A is the area of the surface.
What is the direction of \vec{A} ?

The direction of \vec{A} is normal into the plane of the surface.
(l mark)
24. At what orientation of the coil in the magnetic field, the flux is U maximum?

When plane of the coil is perpendicular to magnetic field.
OR
When $\theta=0$ where 0 is perpendicular between normal to the plane of the coil and magnetic field.
(1 mark)
25. If the frequency of AC is 50 Hz , then what is the period of AC ?

U
See relationship Average
$\mathrm{T}=\frac{1}{f}=\frac{1}{50}=0.02 \mathrm{~s}$ (1 mark)
26. How can we minimize the loss of energy due to eddy currents in a K transformer?

Recall
Easy
By laminating the core of the transformer. (1 mark)
27. Draw a graph of current versus time in an inductance coil during the growth and decay of current.

Sketch graph
Average
Correct graph (1 mark)
28. Name a device which works on the principle of mutual induction.

K
Recall
Easy
Transformer or Induction coil (1 mark)
29. What is mutual induction? K

Recall
Easy
The phenomenon in which an induced emf appears in one coil due to the change in current in another coil near to it is called mutual induction. (1 mark)
30. Write Neumann's relation for induced emf.

K
Recall
Easy
$\mathrm{e}=\frac{-d \phi}{d t}$ (1 mark)
31 What is the direction of the induced emf with respect to the applied emf when the current in an inductance coil decreases?

The induced emf is in the same direction as that of applied emf. (1 mark)

32 Why the emf induced in a coil during the decay of current in an inductance is called the forward emf?

It is in the direction of applied emf. (1 mark)
33 In which form the energy is stored in an inductance coil?

Magnetic field in and around the coil. (1 mark)
34 Name the device which works on the principle of self-induction.
K
Recall
Easy
Choke (1 mark)
35 Generally, the forward emf is greater than the back emf. Why?

U
Reasoning
Average

Because, rate of decay of current is higher than the rate of growth of current. (1 mark)

36 Define the S.I. unit of self-inductance.
K
Recall
Easy
The self-inductance of the coil is said to be one henry, if one volt of emf is induced in the coil, the current through it changes at the rate of 1 ampere per second. (1 mark)

37 A step down transformer having a power output of 10 kW and efficiency 90% reduces the voltage from 11 kV to 220 V . Calculate Compute (i) the number of turns in the primary if the secondary has 100 turns Difficult and (ii) the current in the primary.
$P_{0}=10 \mathrm{~kW}$
$\mathrm{V}_{\mathrm{o}}=11 \mathrm{kV} \quad \mathrm{V}_{\mathrm{i}}=220 \mathrm{~V}, \quad \mathrm{n}_{\mathrm{s}}=100$
$\mathrm{I}_{\mathrm{S}}=\frac{P_{o}}{V_{o}} \quad(1 \mathrm{mark})$
$\mathrm{n}=\frac{V_{S} I_{S}}{V_{p} I_{p}} \quad$ (1 mark)
$0.9=\frac{11 \times 10^{3}}{220} \times \frac{I_{S}}{I_{P}} \Rightarrow 1_{\mathrm{P}} \quad(1$ mark $)$
$\frac{N_{s}}{n_{p}}=\frac{V_{s}}{V_{p}}(1$ mark $)$
$\mathrm{n}_{\mathrm{p}}=$ \qquad (1 mark)
38. Calculate the self-inductance of the choke required to operate a A bulb marked $100 \mathrm{~W}, 100 \mathrm{~V}$ on $220 \mathrm{~V}-50 \mathrm{~Hz}$ ac supply. In place Compute of inductance if another resistance is connected, then what is its Difficult value?
$\left.\begin{array}{l}\mathrm{I}=\frac{P}{V}=\frac{100}{100}=1 \Omega \\ \mathrm{R}=\frac{V}{I}=100 \Omega\end{array}\right\}$
$\mathrm{Z}=\frac{V_{r m s}}{I_{r m s}}=\frac{220}{100}=220 \Omega(1 \mathrm{mark})$
$\mathrm{L}=\frac{\sqrt{Z^{2}-R^{2}}}{2 \pi f}$ (1 mark)
$\mathrm{L}=$ \qquad
$\mathrm{Z}=\mathrm{R}+\mathrm{R}^{\prime} \Rightarrow \mathrm{R}^{\prime}=\mathrm{Z}-\mathrm{R}=---------\Omega$ (1 mark)
39. An inductance of 3 H is connected in series with a resistance of $15 \Omega \mathrm{~A}$ to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply What is the value of the capacitor to Compute be connected in series to make the power factor unity? Calculate Average the impedance and current in the circuit.
$\operatorname{Cos} \phi=\frac{R}{Z} \quad \ldots$ (1 mark)
$\mathrm{Z}=\sqrt{R^{2}+\left(X_{L} X_{C}\right)^{2}}$
$\mathrm{R}=\mathrm{Z} \Rightarrow \mathrm{X}_{L}^{2}=\mathrm{X}_{C}^{2} \Rightarrow \mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}} \quad$ (1 mark)
$\therefore \mathrm{C}=\ldots \ldots . . \mu \mathrm{F}$ (1 mark)
$\mathrm{Z}=\sqrt{R^{2}+O}=\mathrm{R} \quad$ (1 mark)
$\mathrm{I}=\frac{V}{Z}=\frac{V}{R}=$ \qquad

40 A bulb marked $60 \mathrm{~W}, 60 \mathrm{~V}$ is connected in series with a capacitor to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply. The bulb is found to operate under Compute normal wattage. Calculate the value of the capacitance. Difficult
$\mathrm{P}=60 \mathrm{~W}, \mathrm{~V}=6 \mathrm{~V}$
$\mathrm{I}=\frac{P}{V}=1 \mathrm{~A}, \mathrm{R}=\frac{V}{I}=60 \Omega \quad(1 \mathrm{mark})$
$\mathrm{V}_{\mathrm{rms}}=220 \mathrm{~V}, \mathrm{I}_{\mathrm{rms}}=1$
$\therefore Z=\frac{V_{r m s}}{I_{r m s}}=220 \Omega \quad$ (1 mark)
$\mathrm{X}_{C}^{2}=\mathrm{Z}^{2}-\mathrm{R}^{2}$
$\mathrm{X}_{\mathrm{C}}=\ldots \ldots \ldots . . \Omega$ (1 mark)
$\mathrm{C}=\frac{1}{2 \pi f X_{C}} \quad$ (1 mark)
$\mathrm{C}=\ldots \ldots \Omega$ (l mark)
41 Describe the construction, principle and working of a transformer. U Mention any two sources of power loss in a transformer.

Describe Average

Construction (1 mark)
Principle (1 mark)

Brief explanation of working (1 mark)
Two sources of power loss (2 marks)
Total (5 marks)
42 What is meant by resonance in a series LCR circuit? Derive an U expression for the resonant frequency. Draw a graph of frequency Derive vs. current in series LCR circuit.

Definition (1 mark)
Condition for resonance (1 mark)
Applying and getting $\mathrm{f}_{\mathrm{o}}=\frac{1}{2 \pi \sqrt{L C}} \quad$ (2 marks)
Graph of I vs. f (1 mark)
43 Calculate the self-inductance of the coil by direct method using the
following data. Frequency of $\mathrm{AC}=50 \mathrm{~Hz}$.

Calculation
Average

DC Reading		
Tr.No.	V in V	I in A
1	1.0	0.65
2	1.5	1.0
3	2.0	1.33

AC Reading		
Tr. No.	V in V	I in A
1	1.0	0.3
2	1.5	0.43
3	2.5	0.75

$\mathrm{R}=\left(\frac{V}{I}\right)_{D C} \quad \mathrm{R}=\left(\frac{V}{I}\right)_{A C} \quad$ (1 mark)
Mean $R=1.51 \Omega$ (1 mark)
Mean $Z=3.38 \Omega$ (1 mark)
$\mathrm{L}=\frac{\sqrt{Z^{2}-R^{2}}}{2 \pi f} \quad$ (1 mark)
$\mathrm{L}=9.63 \mathrm{mH}$ (1 mark)
44 Describe an experiment to determine the self-inductance of a coil by direct method.

U
Describe Average

Circuit diagram (1 mark)
Formula with graph (1 mark)
Procedure (2 marks)
Tabular column (1 mark)
Total (5 marks)

45 In figure below, when the magnet is moved towards the metallic plate P, eddy current is found to flow in the path given by R. Mark the direction of flow of free electrons in that path.

Electron flows opposite to induced eddy current. (1 mark)
46 How is the sharpness of resonance in a series LCR circuit related to resistance in the circuit?

Sharpness of resonance decreases with increase in resistance. (l mark)
47. How is the sharpness of resonance in a parallel LCR circuit related to resistance in the circuit?

U
Reasoning
Average
Sharpness of resonance decreases with increase in resistance. (1 mark)

48 A magnet is held close to a coil and both the coil and the magnet are in motion. But the emf induced in the coil is zero. Under what condition this can happen?

U Interpret
Easy

U
Reasoning
Average

Whenever there is no relative motion between them, emf $=0$ i.e. if both are moved in the same direction with the same speed.
(1 mark)
49 Figure shows a circular plate of an insulator with a conducting ring A on its circumference. When a magnet is moved toward the ring, what is the direction of the induced current in the ring?

U
Interpret Average

Anticlockwise w.r.t. the magnet facing the coil. (1 mark)
50. A battery of emf 2 V is connected across the primary coil of a step up transformer. The output across the secondary is

Reasoning
a) 0
b) 2 V
c) 4 V
d) 1 V

Ans. a)
51. A hot wire ammeter reads 10 A in an AC circuit. The peak value of the current is

A
Reason
Difficult
a) 10 A
b) $\frac{10}{\sqrt{2}} \mathrm{~A}$
c) $10 \sqrt{2} \mathrm{~A}$
d) $\frac{10}{\pi} \mathrm{~A}$

Ans: c)
52. In a series LCR resonant circuit, the ac voltage across the resistance R , inductance L and capacitance C are $50 \mathrm{~V}, 40 \mathrm{~V}$ and 40 V
respectively. The ac voltage applied to the circuit is
a) 40 V
b) 90 V
c) 50 V
d) 130 V

Ans: c)
53. The reactance of a capacitor for alternating currents of frequency

U
Relation
Difficult
a) $10 \mu \mathrm{~F}$
b) $100 \mu \mathrm{~F}$
c) $25 \mu \mathrm{~F}$
d) $1000 \mu \mathrm{~F}$

Ans: b)
54. The resonant frequency of a series LCR circuit is 2500 Hz and the band width is 250 Hz . The Q factor of the circuit is
a) $1 / 10$
b) 10
c) 250
d) 2500

Ans: b)
55. Calculate the mean value of the alternating current taken over half a cycle in the figure shown below.

Interpret
Average

Ans: $I_{\text {ave }}=\frac{2 I_{o}}{\pi}=\frac{10}{\pi} \mathrm{~A} .(1$ mark $)$
56. Direct current can flow easily through an inductor but an alternating one cannot pass through easily. Explain.

U
Reason
Average

The inductance reactance $\mathrm{X}_{\mathrm{L}}=\mathrm{W}_{\mathrm{L}}=2 \pi \mathrm{fL}$
For de $\mathrm{f}=0, \therefore \mathrm{X}_{\mathrm{L}}=0$
Since indicator offers no resistance to the flow of dc. It can flow easily through the inductor. (1 mark)
For ac $\mathrm{f}=$ finite, therefore, $\mathrm{X}_{\mathrm{C}}=$ finite value since inductor offers resistance to the flow of a.c. so it cannot flow easily through the inductor. (1 mark)
57. Distinguish between inductive reactance and capacitive reactance.

U

Discriminate
Easy
Any two correct relevant differences (2 marks)
58. Mention any two applications of a choke.

K
Recall
Two applications (one mark for each)
59. What is Q factor? Write the expression for Q factor in terms of R , L and C.

K
Recall
Easy
Definition (1 mark)
$\mathrm{Q}=\frac{1}{R} \sqrt{\frac{L}{C}}$ (1 mark)
60. What is wattless current? Why is it called so ?

K

Recall
Easy
Definition (1 mark)
Because power loss is almost zero. (1 mark)
61. What is hysteresis? What does the area of hysterisis loop represent?

K
Recall
Easy
Definition (1 mark)
Heat produced on the material i.e. loss of energy per cycle per unit volume (1 mark)
62. When does the current in a series LCR circuit a) lead the applied voltage, b) lag the applied voltage?
$\mathrm{X}_{\mathrm{L}}>\mathrm{X}_{\mathrm{C}}$ - current lags the V (1 mark)
$\mathrm{X}_{\mathrm{L}}<\mathrm{X}_{\mathrm{C}}$ - current leads the V (1 mark)
63. Distinguish between resistance and impedance.

Each relevant difference (1 mark)
64. In an LCR series circuit the voltage across each of the components L, C and R is 60 V . What is the voltage across the LC combination?

0 (because under resonance $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}$ and $\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{C}}$). (1 mark)
65. Arrange the following three quantities in an AC circuit in the increasing order of strength of current:
$I_{\text {rms }}$ - RMS value of $A C, I_{m}$ - mean value of $A C$ and $I_{\text {peak }}$ - peak value of $A C$.
$\mathrm{I}_{\mathrm{m}}<\mathrm{I}_{\text {rms }}<\mathrm{I}_{\text {peak }}$
66. Calculate the rms value of AC shown in the following figure.

U
Reasoning
Average

U
Discriminate Average

A

Compute
Average

A

Reason out
Difficult

A
Calculate
Average
67. If a conductor is moving along the positive Y axis perpendicular to a magnetic field which is along the negative X -axis then what is the direction of the induced current?

Use right hand thumb rule along positive z -axis. (2 marks)
68. The impedance at resonance of a series $L C R$ circuit with $L=10$ $\mathrm{mH}, \mathrm{C}=10 \mu \mathrm{~F}$ and $\mathrm{R}=50$ ohms is
a) $\sqrt{70} \mathrm{ohms}$

U
Interpret
Difficult
b) 700 ohms
c) zero
d) 500 hms

Ans: d)
69. The current in a coil of self-inductance 3 mH changes from 3.5 amp to 0.5 amp in 0.01 s . Find the emf induced in the coil.

U

Compute
Easy
$\mathrm{e}=\mathrm{L} \frac{d I}{d t}$ (1 mark)
$\mathrm{e}=\ldots \ldots .(1$ mark $)$
70. The magnetic flux linked with a coil at any instant ' t ' is given by $\phi=5 t^{2}-50 t+200$. Find the emf induced in the coil at $t=1 \mathrm{~s}$.

A
Interpret
Difficult
$\mathrm{e}=\frac{-d \phi}{d t}(1$ mark $)$
$\mathrm{c}=\ldots \ldots \ldots \ldots$.at $\mathrm{t}=1$ (1 mark)
71. Draw a graph of current vs. frequency in an ac circuit containing a pure resistor.

U
Drawing Easy

Correct graph (1 mark)
72. Indicate the direction of the induced current in the following situation.

U
Reason out
Average

Anticlockwise w.r.t. to the magnet facing the coil. (1 mark)

$$
\begin{array}{ll}
\text { 73. Why alternating current cannot be used for electroplating? } & \text { A } \\
& \text { Reason out } \\
& \text { Difficult }
\end{array}
$$

Because for every $1 / 2$ cycle of AC there is a change in the direction of current. For every $1 / 2$ cycle cathode and anode plates interchanged. (1 mark)
74. Why a transformer cannot be used to step up DC voltages?

A

Reason out Difficult

By using (steady voltage) DC, magnetic flux through the coil remains constant. (1 mark)
$\begin{array}{ll}\text { 75. Represent in a graph two alternating quantities which are out of } & \mathrm{S} \\ \text { phase with each other. } & \text { Draw } \\ & \text { Easy }\end{array}$
Correct graph (1 mark)
$\begin{array}{ll}\text { 76. Phase difference between } V \text { and } I \text { is } \pi / 3 \text { radians. What is its power } & U \\ \text { factor? } & \text { Compute } \\ & \text { Easy }\end{array}$
Power factor $=\cos \phi=\cos \pi / 3=1 / 2=0.5$. (1 mark)

UNIT 5 ATOMIC PHYSICS

Chapter 17: Introduction to Atomic Physics

SI.

Question

Obj/ Spec./
No.
Diff. Leve!

1. Which electromagnetic waves are used in television broadcasting and reception?
K
Recall
Average
Radio waves (I mark)
2. Which of the following has greater frequency range X - rays or infra-red-rays?

K

Recognise
Average

$$
X \text { - rays } \quad \text { (l mark) }
$$

3. The line spectrum of the sun seen during a total solar eclipse is
a) Absorption line spectrum
K
b) Emission line spectrum
Recall
c) Continuous Spectrum
d) Band absorption

Ans: b)
4. A Sodium vapour lamp is introduced in the path of light from a mercury vapour lamp.

K
The Spectrum obtained in this case will be
Recall
a) line emission
b) line absorption
c) Continuous emission
d) Band absorption

Ans: b)
5. The mass of ${ }_{7} \mathrm{~N}^{14}$ is 14.00307 amu and the sum of atomic masses of H_{1}^{1} and ${ }_{6} \mathrm{C}^{13}$ is 14.01117 amu . In the reaction

A
Reasoning
Difficult
a) there is a net absorption of energy
b) there is emission of energy
c) in the condition of zero gravity
d) emission of an uncharged particle

Ans: b)

Chapter 18 : Photoelectric Effect

SI.
Question
Obj/ Spec./
No.
Diff. Level

1. In a photoelectric emission experiment the anode is made-ve with respect to the cathode. Write the conditions under which photoelectric current can be observed

U
See relationship
Difficult

1. frequency of incident radiation
(1 mark)
2. stopping potential
(l mark)
3. For which frequency of incident light the stopping potential becomes zero in photoelectric effect?

U

Sees
relationship
Average
Threshold frequency (1 mark)
3. What is meant by threshold frequency in photoelectric emission?

K
Recall
Easy
Particular frequency of incident radiation for a given metal below which there is no photoemission (1 mark)
4. How does the kinetic energy of the photoelectrons vary with the

K frequency of incident radiation?

Recall
Average
KE is inversely proportional to λ (l mark)
5. Why there is no photo emission if the frequency of the incident radiation is less than the threshold frequency? Explain.

```
U
```

Explains
Average
γ depends on energy (1 mark)
Energy is not sufficient (1 mark)
6. Using the graph shown below, calculate the work function of the photomaterial.
Planck's constant $=6.625 \times 10^{-34} \mathrm{JS}$

A
Calculation
Average

Intercept gives threshold frequency
Work function

$$
\begin{aligned}
\mathrm{W} & =h v_{0} \cdots \cdots-\cdots \cdots \\
& =6.625 \times 10^{-34} \times 6 \times 10^{14} \\
\mathrm{~W} & =39.750 \times 10^{-20} \mathrm{~J}
\end{aligned}
$$

7. Describe an experiment to demonstrate photoelectric effect. What happens to the photocurrent if the battery potential is increased U above the stopping potential?

Explains Average

Diagram	(1 mark)
Explanation	$(3$ marks $)$
Photo current is independent of battery potential	$(1$ mark $)$

8. Using suitable diagrams, write the principle of any two applications K of photoemissive/voltaic/conductive effect.

Recall Easy
Figure 1 mark
Principle 2 marks
Each application 1 mark
9. Discuss how Einstein's theory could satisfactorily explain the photoelectric effect.

U
Explains Average

1) Explanation of instantaneous process (1 mark)
2) Threshold frequency
(I mark)
3) Kinetic energy dependence
(1 mark)
4) Photo current
(1 mark)
5) Stopping potential (1 mark)
10. List the experimental observations of photoelectric effect.

K

Recall
Average

1. Instantaneous (1 mark)
2. Threshold frequency/wavelength (1 mark)
3. Above vo, KE of photoelectron \propto frequency (I mark)
4. Above vo, photocurrent \propto intensity (1 mark)
5. Stopping potential (1 mark)
6. Write the S.I unit of Planck's constant.
```
J-s (l mark)
```

12. A graph of photoelectric current versus voltage is as shown. What inference can be drawn from the graph about the frequency and intensity of incident radiation

13. Alkali metals are just photosensitive to visible light. Do they produce photo electric effect with (a) x-rays (b) I-R radiations ? Give reason for your answer.

A
Reasoning Average

X-rays - produces - high frequency (1 mark)
I-R rays - does not produce (1 mark)

Chapter 19: Dual Nature of Light

SI.
Question
Obj/ Spec./
No.
Diff. Level

1. Bring out any two differences between matter waves and U electromagnetic waves Experiment Average
1) Production (1 mark)
2) Speed (1 mark)
2. Explain the concept of matter waves. Give the expression for de Broglie wavelength in terms of (1) linear momentum, (2) kinetic energy of the particle.

K
Recal! Average

Concept of matter waves (1 mark)
Expression for λ - (1 mark)
$\lambda=\frac{h}{m \mathrm{v}} \quad$ (1 mark)
$\lambda=\frac{h}{\sqrt{2 m V e}} \quad$ (1 mark)
3. With a neat diagram, explain the principle and working of G.P

Thomson's experiment on electron diffraction.

Diagram	$(1 \mathrm{mark})$
Principle	$(1 \mathrm{mark})$
Working	$(2$ marks $)$

4. What are matter waves?

K
Recall
Easy
Wave associated with material particle. (1 mark)
5. Why electron microscope is better than an optical microscope? OR

A
Reasoning
Compare the resolving power of an electron microscope with that of Easy an optical microscope.

Resolving power of electron microscope is much greater than that of optical microscope (l mark)
6. Explain the principle of electron microscope.
K
Recall
Average
Principle (2 marks)
7. Explain the principle of atomic microscope.

K

Recall
Average
Principle (2 marks)
8. Calculate the change in energy of an electron so that its de Broglie wavelength decreases from $10^{-10} \mathrm{~m}$ to $0.5 \times 10^{-10} \mathrm{~m}$
Formula (1 mark)
Answer (1 mark)
9. What happens to the de Broglie wavelength of an electron when its velocity increases?

K
Recall
Easy
Wavelength decreases. (1 mark)
10. Which of the following systems will have minimum radius of first
orbit? ($\mathrm{n}=1$)
a) Singly ionized helium

Recall
Easy
b) Doubly ionized lithium
c) Denetrium atom
d) Hydrogen atom

Ans: b)
11. Why is the wave nature of matter not noticeable in our daily observations?

K

Recall
Easy
Small wave length (1 mark)
12. Write down the relation between energy and momentum of photon.

K

 Recall Easy$$
\mathrm{P}=\frac{E}{c} \quad \text { (l mark) }
$$

Chapter 20 : Bohr's Atom Model

Sl.
No.
Question
Obj/ Spec./ Diff.
Level

1. Derive an expression for total energy of the electron in the nth orbit of a hydrogen-like atom. (Assuming the expression for the radius of the nth orbit). What is the significance of the negative sign in the expression for energy?
$\mathrm{PE}=\mathrm{E}_{\mathrm{p}}=\frac{-Z e^{2}}{4 \pi E_{o} r} \quad$ (1 mark)
$\mathrm{KE}=\mathrm{E}_{\mathrm{k}}=1 / 2\left\{\frac{Z e^{2}}{4 \pi \epsilon_{o} r}\right\}$ (1 mark)
Total energy $\mathrm{E}_{\mathrm{n}}=\mathrm{E}_{\mathrm{p}}+\mathrm{E}_{\mathrm{k}}=\frac{-Z e^{2}}{8 \pi \epsilon_{0} r} \quad$ (1 mark)
Substitution of $\mathrm{r}=\frac{\epsilon_{o} n^{2} h^{2}}{\pi m Z e^{2}}$ and $\mathrm{E}_{\mathrm{n}}=\frac{-m Z^{2} e^{1}}{8 \epsilon_{0}^{2} n^{2} h^{2}}$ (1 mark)
The negative sign implies electron is bound to nucleus/ energy should be supplied to remove from field of the nucleus.
(5 marks)
2. Arrive at an expression for the wave number of a spectral line of hydrogen - like atom assuming the expression for energy in the nth orbit.

K
Recalls
Average
$\mathrm{E}_{2}=\frac{-m Z^{2} e^{1}}{8 \epsilon_{0}^{2} n_{2}^{1} h^{2}}$ and $\mathrm{E}_{1}=\frac{-m Z^{2} e^{4}}{8 \epsilon_{0}^{2} n_{2}^{2} h^{2}} \quad$ (1 mark)
$\mathrm{h} \nu=\mathrm{E}_{2}-\mathrm{E}_{1}=\frac{m Z^{2} e^{4}}{8 \epsilon_{0}^{2} h^{2}}\left\{\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right\}$ (1 mark)
$\frac{C}{\lambda}=\frac{m Z^{2} e^{4}}{8 \epsilon_{0}^{2} h^{3}}\left\{\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right\}$
or $\bar{v}=\frac{m Z^{2} e^{4}}{8 \epsilon_{0}^{2} c h^{3}}\left\{\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right\} \quad$ (1 mark)
$\bar{v} \mathrm{R}=\left\{\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right\} \quad$ (1 mark)
where $\mathrm{R}=1.097 \times 10^{7} \mathrm{~m}^{-1} \quad(1$ mark)
Total : 5 marks
3. State Bohr's postulates for Hydrogen-like atoms. Do any of these contradict the results of classical physics? Explain.

U
Explain Average

1. Concept of stationary or selected orbits. (1 mark)
2. Quantization of stationary orbit

Bohr Quantum Condition mvr $=\frac{n h}{2 \pi} \quad(1$ mark $)$
3. Transition of electron and frequency of radiation emitted

$$
v=\frac{E_{2}-E_{1}}{h}(1 \text { mark })
$$

4. Yes, according to classical physics, electron in motion must emit radiation. (1 mark)
Total : 4 marks
5. Obtain an expression for the radius of the nth orbit of an electron in Hydrogen like atoms. Draw a graph between the radius of the orbit and the principal quantum number for hydrogen atom.

Centripetal force $=$ Electrostatic force

$$
\frac{m V^{2}}{r}=\left\{\frac{1}{4 \pi \epsilon_{o}} \cdot \frac{2 e^{2}}{r^{2}}\right\} \quad \ldots \ldots \ldots(1) \quad \text { (1 mark) }
$$

Bohr's quantum condition
$\mathrm{mvr}=\frac{n h}{2 \pi}$
(1 mark)

$$
\begin{equation*}
\mathrm{m}^{2} \mathrm{v}^{2} \mathrm{r}^{2}=\frac{n^{2} h^{2}}{4 \pi^{2}} \ldots \ldots \tag{2}
\end{equation*}
$$

Dividing 3 by 1
$r=\frac{\in_{o} n^{2} h^{2}}{\pi m 2 e^{2}} \quad$ (1 mark)
Graph :

5. Calculate the radii of $n=2$ and $n=3$ electron orbits of a U hydrogen atom if the radius of the innermost orbit is 5.3×10^{-11} See
m.
relationship
Average
Writing expression for radius (1 mark)
$\mathrm{r}_{2}=2.12 \times 10^{-10} \mathrm{~m}$ and $\mathrm{r}_{4}=4.77 \times 10^{-10} \mathrm{~m} \quad$ (1 mark)
6. Two energy levels in an atom are separated by 2.3 eV in energy. U What is the frequency of radiation emitted when the atom moves from the upper level to the lower level?

See relationship Difficult

$$
\begin{aligned}
& \text { Formula (} 1 \text { mark) } \\
& \qquad \gamma=5.6 \times 10^{14} \mathrm{~Hz} \text { (} 1 \text { mark) }
\end{aligned}
$$

7. Give the expression for the orbital velocity of the electron in the K
first orbit of Hydrogen atom.

Recall
Average
Expression (1 mark)
8. What is relation between frequency and wave number of a K spectral line?

Recall
Easy
Wave no $=\bar{v}=\frac{1}{\lambda}=\frac{v}{c}$ (1 mark)
9. In the Bohr model of hydrogen atom, what is the significance of 'stationary orbits'?

Recall Easy

The electron in the stationary orbit does not emit radiation.
(1 mark)
10. If the velocity of an electron in the first orbit is v , what is the K velocity in the $4^{\text {th }}$ orbit?

Recall
Average
$\mathrm{v} \propto \frac{1}{n}, \quad \mathrm{v}_{4}=\frac{1}{4} \vee(1$ mark $)$
11. What is spatial quantisation?

K
Recall
Average

Orientation of electron orbits fixed with respect to direction of applied magnetic field. (1 mark)
12. Name the model of atom proposed to explain fine structure of spectral lines which failed to predict the number of fine structure lines.

Sommerfield's relativistic model of atom (1 mark)
13. Name the spectral series of Hydrogen atom in the visible region of electromagnetic spectrum.

Balmer series (1 mark)
14. An electron makes a transition from the $5^{\text {th }}$ orbit to the $4^{\text {th }}$ orbit in a hydrogen atom, to which series the corresponding spectral line belong?

K
Recall
Easy
Bracket series (1 mark)
15. The excitation energy of a given electron is 13.6 eV . Calculate the corresponding excitation potential.

K
Recall
Average
13.6 V (1 mark)

Excitation energy in eV numerically equal to excitation potential in volt.
16. What is the value of Rydberg's constant for doubly ionized lithium atom?

A
Calculate
Average
$\mathrm{R}=\mathrm{Z}^{2} \mathrm{R}_{\mathrm{H}}$
$\mathrm{R}=9 \times 1.097 \times 10^{7} \mathrm{~m}^{-1}$ (1 mark)
17. Define excitation energy of an atom.

K
Define
Easy

Energy in eV to raise an electron from a lower orbit to higher orbit (1 mark)
18. Write the value of ionization energy of hydrogen atom.

K
Recall
Easy

Ans: +13.6 eV (1 mark)
19. The wavelengths of some of the spectral lines obtained in K hydrogen spectrum are $911 \mathrm{~A}^{\circ}, .3646 \mathrm{~A}^{\circ}, 8220 \mathrm{~A}^{\circ}$. Which one of Recall these wavelengths belongs to Paschen series?

Average
Ans: 8220 A $^{\circ}$ (1 mark)
20. The total energy of an electron in the first excited state of K hydrogen is about -3.4 eV . What is the kinetic energy in this Recall state?

Average
Ans: $+3.4 \mathrm{eV}(1$ mark $)$
21. What is the angular momentum of an electron in the third orbit of hydrogen atom according to Bohr Model?

K
Recall
Average
Ans: $\mathrm{mVR}=\frac{n h}{2 \pi} ; \mathrm{L}=\frac{3 h}{2 \pi} \quad$ (1 mark)
22. Write the dimensional formula for Planck's constant.

K
Recall
Average
Ans: $\mathrm{L}=\frac{n h}{2 \pi}=\operatorname{mvr}\left(\mathrm{kg} \mathrm{ms}^{-1} . \mathrm{m}\right)\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right] \quad(1 \mathrm{mark})$
23. Identify the graph showing the relation between the angular U momenta of an electron and the principal quantum number of Interpret orbits in Bohr's theory of hydrogen atom.

Difficult

24. Identify the graph showing the relation between radii of orbits and the principal quantum number of orbits in Bohr's theory of Interpret hydrogen atom.

Difficult

Ans: b)
25. The total energy of an electron in the first excited state of U hydrogen atom is about -3.4 eV . Its potential energy in this state is
a) 3.4 eV
b) 6.8 eV
c) -6.8 eV
d) -3.4 eV Average

See relationship

Ans: c)
26. Which of the following is proportional to quantum number n ? U $r \rightarrow$ radius of orbit, $v \rightarrow$ velocity of electron, $E \rightarrow$ total energy of Relation electron. Easy
a) vr
b) rE
c) $\frac{r}{E}$
d) $\frac{r}{v}$

Ans: a)
27. A 10 kg satellite circles the earth every 2 hour in an orbit of A radius 8000 km . Assuming Bohr's angular momentum postulate, Compute find the quantum number of the orbit of the satellite.

Writing mvr $=\frac{n h}{2 \pi}$ (1 mark)
$\mathrm{v}=\frac{2 \pi r}{T}$ (1 mark)
Calculation of v (1 mark)
Subtraction and calculation of quantum number (2 marks)
Total: 5 marks
28. Ishanth Sharma bowls a ball of mass 0.3 kg with a speed of 145 $\mathrm{km} / \mathrm{hr}$. Calculate the de-Broglie wavelength associated with the Computes ball. Compare this with the wavelength of visible light of Difficult frequency $6 \times 10^{14} \mathrm{~Hz}$. What is your inference?

Formula (1 mark)
Calculation of wavelength of ball (1 mark)
Comparing the wavelength of visible light and comparing
(2 marks)
Inference (1 mark)
Total: 5 marks
29. A positronium atom corresponds to the bound state of an electron and its anti particle the positron, revolving round their centre of mass. In which part of the electromagnetic spectrum does the system radiate when it moves from its first excited state to the ground state?

Comparing or applying Bohr model to positronium atom and replacing m_{c} by reduced mass of the electron (1 mark)
Reduced mass me/2 (1 mark)
For $n=2$ to $n=1 \quad \lambda=1217 A^{\circ} \quad(1$ mark)
Calculate wavelength $\lambda=2 \times 1217=2434 \mathrm{~A}^{\circ}$ (1 mark)
$\mathrm{U}-\mathrm{V}$ region (1 mark)
30. The radius of the first orbit of the electron in a hydrogen atom is K $0.53 \mathrm{~A}^{\circ}$. The radius of the second orbit must be Recall
a) $1.59 \mathrm{~A}^{\circ}$
b) $1.06 \mathrm{~A}^{\circ}$
c) $2.12 \mathrm{~A}^{\circ}$
d) $4.24 \mathrm{~A}^{0}$
Easy

Ans: c)
31. If the electron in a hydrogen atom jumps from the orbit $n_{1}=3$ to the orbit $n_{2}=1$, in terms of Rydberg constant R, the emitted radiation has the wavelength equal to

U Compute Easy
a) $\frac{8}{9} R$
b) $\frac{9}{8} R$
c) $\frac{9}{4} R$
d) $\frac{3}{1} R$

Ans: b)
32. A hydrogen atom and a Li^{++}ion are both respectively in their second excited state. The ratio of their angular momenta is
a) $1: 3$
b) $3: 1$
c) $1: 1$
d) $1: 2$

Ans: c)
33. The electron in a hydrogen atom is in its second excited state.

The energy required to ionize it is
a) 1.51 eV
b) 3.4 eV
c) 13.6 eV
d) 12.1 eV

Ans: a)
34. Draw the energy level diagram and the transitions of an electron in a hydrogen atom.

K

Recalls
Difficult
Drawing (1 mark)
Representing energy levels and transition with region (1 mark)
35. What is the difference between angular momenta of the electron in the $2^{\text {nd }}$ orbit and $1^{\text {st }}$ orbit of hydrogen atom?

U
Compares
Average
$\mathrm{L}_{2}-\mathrm{L}_{1}=\frac{h}{\pi}-\frac{h}{2 \pi}=\frac{h}{2 \pi}-2$
36. Establish the relation between the de Broglie wavelength of linear momentum of the electron from first Bohr's orbit of hydrogen atom.

A

Compares
Average

$$
\begin{aligned}
& \mathrm{mvr}=\frac{h}{2 \pi} \quad \text { (1 mark) } \\
& 2 \pi \mathrm{r}=\frac{h}{p}=\lambda \quad \text { (1 mark) }
\end{aligned}
$$

37. The ground state energy of a hydrogen atom is -13.6 eV . Determine

Solves
Difficult atom spectrum.
(ii) The excitation energy of the $\mathrm{n}=31$ level of He^{+}atom.
(iii) The ionization potential of ground state of Li^{++}atom.

$$
\mathrm{E}_{\mathrm{n}}=\frac{-13.6 Z^{2}}{n^{2}} \mathrm{eV} \quad(1 \text { mark })
$$

i) For lyman series :

$$
\begin{array}{ll}
\mathrm{E}_{1}=-13.6 \mathrm{eV}, & \mathrm{E}_{2}-\mathrm{E}_{1}=\frac{h c}{\lambda}, \lambda=1225^{\circ} \mathrm{A} \quad \text { (1 mark) } \\
\mathrm{E}_{2}=-3.4 \mathrm{eV} & \text { (in joules) }
\end{array}
$$

ii) For He^{+}atom $\mathrm{Z}=2$
$E_{1}=\frac{-13.6 \times 4}{1}=54.4 \mathrm{eV}$
$E_{3}=\frac{-13.6 \times 4}{9}=6.0 \mathrm{eV}$
Excitation energy $E_{3}-E_{1}=48.1 \mathrm{eV}$ (1 mark)
iii) For $\mathrm{Li}^{++}, \mathrm{Z}=3$.
$E_{1}=\frac{-13.6 \times 9}{1}=122 \mathrm{eV} \quad$ (1 mark)
Ionisation potential of $\mathrm{Li}^{++}=122 \mathrm{~V}$ (1 mark)
Total Marks : 5 marks
38. The excitation energy of electron is 13.6 eV . Calculate the A corresponding excitation potential.

Recal!
Easy

Ans: 13.6 V (1 mark)
39. An electron jumps from an orbit $n=4$ to $n=3$. To which series K
the spectral line belong?

Recognise Easy

Paschen series (1 mark)
40.

From Bohr's quantum condition $\mathrm{L}=\mathrm{mvr}=\frac{n h}{2 \pi}$ plot a graph between angular momentum of electron and principal quantum

Draw
Easy number of orbits. Interpret the graph.

Drawing (1 mark)
Interpret (1 mark)

Chapter 21 : Scattering of Light

Sl.
No.
Question Obj/ Spec./

1. Distinguish between Stokes and antistokes lines. iff.
Level K
Any two differences (2 marks)
2. Mention two applications of Raman effect.

K

Recall
Average
Write any two applications. (2 marks)
3. Give an example for incoherent scattering.

K

Recall
Easy
Write any one example. (1 mark)
4. Mention one application of Raman Effect.

K
Recall
Easy
Any one application (1 mark)
5. Give an example for coherent scattering.
K
Recal!
Easy

One example (1 mark)
6. What is incoherent scattering?

K

Recall
Easy
The frequency of scattered light is different from that of incident light. (1 mark)
7. What is Raman Effect.
K
Recall
Easy
Definition (1 mark)
8. What is coherent scattering?
K
Recall
Easy
No change..... of scattered light. (1 mark)
9. Why red light is used in danger signals or stop signals?

```
K
Recall
Easy
```

Red is least scattered. (1 mark)

Chapter 22: Lasers

Sl.
Question
No.
1 What is meant by population inversion?

Correct explanation (2 marks)
2 Distinguish between spontaneous and stimulated emission?

Write any two difference (2 marks)
3. Mention any two properties of laser?

Write any two properties (2 marks)
4 Mention any two application of lasers

Write any two application (2 marks)
5 What are the advantages of photonics over electronics

Each advantage 1 mark

Obj/ Spec./
Diff. Level
K
Recall
Average

K

Recall
Average

K

Recall
Average

> K

Recall
Average

U

Discriminate Easy
6 Lasers are used for carrying out surgery because it
a) is highly monochromatic
K
Recall
b) is highly coherent
Easy
c) is highly directional
d) can be sharply focused
Ans: c)
7 A laser beam is used for locating distant objects because
a) it is monochromatic

K
Recall
Easy
b) it is coherent
c) it is not absorbed
d) it has smaller angular spread

Ans: d)
8 What is the need for population inversion in laser action ?
K
Recalls
Easy
Lasing action demands more number of atoms in the excited state. (1 mark)

Chapter 23: Nuclear Physics

1. Distinguish between controlled and uncontrolled chain reaction.

U
Explains
Comparative explanation (1 mark)
Example (1 mark)
Total : 2 marks
2. Name a nucleus which lies on the peak of specific binding energy K curve.
${ }_{2} \mathrm{H}^{4},{ }_{4} \mathrm{Be}^{8},{ }_{6} \mathrm{C}^{12}$ (1 mark)
3. How is mass defect related to the binding energy ?
K
Recall Easy
Binding energy is energy equivalent of mass defect. (1 mark)
4. In a nuclear reaction, the number of protons and neutrons are A conserved. But energy is absorbed or evolved. Explain how.

Here mass number is conserved. But the average mass of the nucleons before the reaction and after the reaction is different. (1 mark)
This mass defect appears as binding energy leads to the energy (1 mark)
Total : 2 marks
5. In a nuclear reaction a neutron combines with a proton to give a A deuteron and energy. Here mass number and charge number are Reasons conserved. Reason out for emission of energy.
out
Difficult
Same as above (2 marks)
6. What is ratio of volume of an atom to the volume of the nucleus?

K
Recall
A verage
$\frac{V_{A}}{V_{N}}=\frac{\left(10^{-10}\right)^{3}}{\left(10^{-15}\right)^{3}}=\frac{10^{-30}}{10^{-45}}=10^{15} \quad(1$ mark $)$
7 M R I scanning is preferred to x -rays for diagnosis. Why?

X-rays can cause damage to living cells. (1 mark)
8 The atomic mass of nitrogen is 14.003 and its mass number is 14 . What is its packing fraction?

Ans: 2.14×10^{-4} (1 mark)
9 What safety measures should be taken while handling radioactive materials?

Each measure (1 mark)
10 Which are the two cycles responsible for stellar energy?
K
Recall
Easy

Proton - proton cycle - 1
Carbon-nitrogen cycle -1
11 What is the significance of critical mass in a fusion process?

K Recall Easy
To have sustained chain reaction. (1 mark)
12 Compare an atomic nucleus to a liquid drop as in liquid drop model.

K

Recall
Easy
Each comparison (1 mark) Total 5 marks
13 What is the source of stellar energy?
K
Recall
Easy
Thermo nuclear fusion/reaction (1 mark)
14 Explain the characteristics of nucleus with reference to (i) size (ii) charge (iii) mass (iv) density (v) magnetic moment.
U
Explain
Average

Explain Size	(1 mark)
Mass	$(1$ mark)
Charge	$(1$ mark $)$
Density	$(1$ mark)
Magnetic Moment $(1$ mark)	

15 Explain the terms mass defect and nuclear binding energy.
K
Recall
Average
Explanation mass defect - 2 marks
B.E - 2 marks
γ - ray photon - 1 mark
16 List the characteristics of the nuclear forces
K
Recal!
Average
Each characteristics - 1 mark (total 5 marks)
17 What is the difference between nuclear fusion and fission?
Each difference 1 mark (total 5 marks)
18 Name any one type of nuclear reactor.
K
Recall
Easy
Name any one (1 mark)

19 What is the relation between a.m.u and electron volt?
K
Recall
Easy
Ans: 1 a.m.u $=931 \mathrm{amu}(1 \mathrm{mark})$
20 If the ratio of the mass numbers of two nuclei is $3: 1$, what is the ratio K
of their nuclear densities.
a) $1: 1$

Recall
Easy
b) $1: 3$
c) $3: 1$
d) $27: 1$

Ans: a)
21 What is the consequence of an electron and a positron combining together?

Correct answer (1 mark)
22. In the following nuclear equation, what is X ?

$$
{ }_{5} \mathrm{~B}^{10}+\mathrm{X} \longrightarrow{ }_{3} \mathrm{Li}^{7}+{ }_{2} \mathrm{He}^{4}
$$

a) proton
b) neutron
c) electron
d) neutron

Neutron

$$
\begin{aligned}
10+A & =7+4 \therefore A=1 \\
5+Z & =3+2 \therefore Z=0 \quad \therefore 0 X^{1} \longrightarrow{ }^{1} \longrightarrow
\end{aligned}
$$

23 Express 16 mg mass into equivalent energy in electron- volt.
a) $14.4 \times 10^{11} \mathrm{e} \mathrm{V}$
b) $1.44 \times 10^{12} \mathrm{eV}$
c) $9 \times 10^{-30} \mathrm{eV}$
d) $9 \times 10^{+30} \mathrm{eV}$

Ans: c)

Relation
Average

24 What is nuclear fusion?

K

Recall
Easy
Definition (1 mark)
25 What is a thermonuclear reaction?

K

Recall
Easy
Nuclear fusion (1 mark)
26 What is the charge of ${ }_{3} \mathrm{Li}^{6}$ nucleus if the charge on an electron is $1.602 \times 10^{-19} \mathrm{C}$?

U

Compute
Easy
$3 \mathrm{e}=4.806 \times 10^{-19} \mathrm{C} \quad(1$ mark $)$
27 Mention any one nuclear hazard.

K

Recall
Easy
Any one (1 mark)
28 The binding energy of the nucleus ${ }_{2} \mathrm{He}^{4}$ is 28.3024 MeV . What is its specific binding energy?

K
Recall
Average
Formula (1 mark)
7.0756 Mev (1 mark)

29 Nuclear forces are short range forces. Explain

K

Recall
Average
Explanation (2 marks)
30 Write Einstein's mass energy relation and explain the symbols?

K

Recall
Average

$E=m c^{2}$	$(1$ mark $)$
Explanation	$(1$ mark $)$

31 What is the density of nuclear matter?

> K
> Recall
> Easy
32 What is meant by packing fraction of a nucleus?
K
Recall
Average
Definition (l mark)
33 Write the relation between radius and atomic mass number of a nucleus.
K
Recal!
Average
$R=\operatorname{RoA}^{1 / 3} \quad$ (1 mark)
34 Which is the strongest force in nature?
Nuclear force (1 mark)
35 What is the approximate size of an atom?
$10^{-10} \mathrm{~m} \quad$ (1 mark)
36 What is the order of magnitude of the diameter of the nucleus?
K
Recall
Easy
Ans: $10^{-15} \mathrm{~m}$ (1 mark)
37 What is nuclear fission?
Definition (1 mark)
38 What is a nuclear reactor?
Definition (1 mark)
39 Define electron volt?

K
Recall
Easy
K
Recall
Easy

K
Recall
Easy
Definition (1 mark)

40 Define a.m.u?
K
Recall
Easy
Definition (1 mark)
41 What is meant by the term : binding energy of nucleus?
K
Recall
Easy
Correct definition (1 mark)
42 What is meant by the term : specific binding energy?

K

Recall
Easy
Correct definition (1 mark)

Chapter 24 : Radioactivity

Sl .

Question

Obj/ Spec./
No.
Diff. Level

1. Li^{7} is bombarded with a certain particle. Two alpha particles are produced. Identify the bombarding particle.

Solves
Average
$\mathrm{X}+{ }_{3} \mathrm{Li}^{7} \longrightarrow 2{ }_{2} \mathrm{He}^{4}$
Ans: Proton or ${ }_{1} \mathrm{H}^{1} \quad\left({ }_{1} \mathrm{H}^{1}+{ }_{3} \mathrm{Li}^{7} \longrightarrow 2{ }_{2} \mathrm{He}^{4}\right)$ (1 mark)
2. ${ }_{92} \mathrm{U}^{238}$ is an α emitter and ${ }_{83} \mathrm{~B}^{210}$ is an β emitter. Write the nuclear reactions in each case. Explain in each reaction whether the neutron to proton ratio increases or decreases.

A
Reasoning
Average
${ }_{92} \mathrm{U}^{238} \xrightarrow{{ }_{2} \mathrm{He}^{4}}{ }_{90}{ }^{\text {Th234 }}$ (1 mark)
Before α-decay
$\frac{\text { No. of neutrons }}{\text { No. of protons }}=\frac{238-92}{92}=\frac{146}{92}$

After α - decay
$\frac{\text { No. of neutrons }}{\text { No. of protons }}=\frac{234-90}{90}=\frac{144}{90} \quad \frac{144}{90}>\frac{146}{92}$
(ratio increases.
${ }_{83} \mathrm{Bi}^{210} \xrightarrow{B}{ }_{84} \mathrm{Po}^{210}+{ }_{-1} \mathrm{e}^{\mathrm{o}} \quad(1$ mark $)$

Before β - decay
$\frac{\text { No. of neutrons. }}{\text { No. of protons }}=\frac{210-83}{83}=\frac{127}{83}$

After β-decay
$\frac{\text { No. of neutrons }}{\text { No. of protons }}=\frac{210-84}{84}=\frac{126}{84} \quad \frac{126}{84}<\frac{127}{83} \quad$ (ratio
decreases)
(1 mark)

Ratio increases in case of α decay and ratio decreases in case of β decay (I mark)
Total : 5 marks
3. A radioactive nucleus undergoes a series of decays according to the following scheme.

K
Recal!
Average

If the mass number and atomic number of A are 180 and 72 respectively, what are these numbers for the element E ?
a) 69,172
b) 172,69
c) 180,72
d) 72,180

Ans: b)

4. Define decay constant for radioactivity.

K

Defines
Easy
Definition (1 mark)
5. Define half life of radioactive element.

K
Defines
Easy
Definition (1 mark)
6. State Soddy's group displacement law for α decay

	Recall
Statement (1 mark)	Easy

7. State the law of radio active decay.

K
Recall
Easy
Statement (1 mark)
8. State and explain Soddy's group displacement laws with examples.

K
Recall
Average
Statement for α-decay (1 mark)
Statement for β - decay (1 mark)
Example for α - decay (1 mark)
Example for β - decay (1 mark)
9. What is the antiparticle of electron?

Antiparticle - positron (1 mark)
10. Derive an expression for the half-life of a radioactive element. K Define mean life. Write the relation between half-life and mean life.

Recal!
Average
$\mathrm{N}=\operatorname{Noe}^{-\lambda t} \quad$ (1 mark)
When $\mathrm{t}=\mathrm{T}, \quad \mathrm{N}=\frac{\text { No }}{2} \quad$ (1 mark)

$$
\mathrm{T}=\frac{0.693}{\lambda} \quad \text { (1 mark) }
$$

Definition mean life (l mark)
Relation $T=0.693 \mathrm{~T}_{\mathrm{m}}$ (1 mark)
11. State the law of radioactive decay.

Arrive at the relation $\mathrm{N}=\mathrm{N}_{\mathrm{o}} \mathrm{e}^{-\lambda t}$ symbols have usual meaning. Define activity of radioactive sample.

K

Recall
Average

Statement - (1 mark)

$$
\begin{array}{ll}
\frac{d N}{d T} \propto-N & (1 \text { mark }) \\
\log _{e} N=-\lambda t+C, C=\log _{e}{ }^{\text {No }} & (1 \text { mark })
\end{array}
$$

$\mathrm{N}=\mathrm{N}_{\mathrm{o}} \mathrm{e}^{-\lambda t}$	(1 mark)
Define activity	(1 mark)

12. Define a.m.u and electron- volt.

K

Recall
Average

Define a.m.u	$\quad(1$ mark $)$
Define 1 eV	$(1$ mark $)$
$\mathrm{E}=\mathrm{mc}^{2}$	$(1$ mark $)$
1 a.m.u $=931 \mathrm{MeV}$	$(2$ marks $)$

13. Write the S.I unit of radioactivity.

K

Recall Easy

Curie (1 mark)
14. Mention any one application of radio isotopes?

K

Recall
Easy
One application (1 mark)
15. The mass number of a nucleus before β decay is 198 . What is its mass number after β - decay?

U

Interprets
Average
(No change)
198 (1 mark)

Chapter 25: Elementary Particles

SI. Question1. Write the quark model of proton
UUd (1 mark)
2. What are leptons? Give an example.

Definition	$(1 \mathrm{mark})$
Example	$(2 \mathrm{marks})$

3. How many leptons are there, name one of the leptons?
KRecallEasy
6 (1 mark)
Naming (1 mark)
4. Distinguish between hadrons and leptons. K
Type of force between them (1 mark)
Example (1 mark)
5. Reason out whether the following equation is correct or not.

$$
{ }_{92} \mathrm{U}^{238} \longrightarrow{ }_{91} \mathrm{U}^{234}+{ }_{2} \mathrm{He}^{4}+{ }_{-1} \mathrm{p}^{0}+\lambda
$$

Correct or not (1 mark)
Reasoning (1 mark)
6. Justify the need for neutrino hypothesis in β-decay.

Violation of law of conservation of angular momentum (1 mark)	
Missing energy	(1 mark)

7. Based on what factor the elementary particles are classified into hadrons and leptons?

K

Recall
Easy
Type of force that act between them (1 mark)

Chapter 26 : Soft Condensed Matter Physics

SI.

Question

Obj/ Spec./
No.

1. Why is the conductivity of n-type semiconductor greater than that of p-type semiconductor though they have the same level of doping?
Diff. Level
K
Recall
Difficult
Mobility of electrons is greater than that of holes (1 mark)
2. With the same amount of impurity doped, the conductivity of an n type semiconductor is greater than that of a p-type semiconductor K because
a) the effective charge of a hole is less than that of an electron.
b) The mobility of electrons is greater than that of holes.
c) The concentration of charge carriers is more in n-type than in p-type.
d) Of all the above
Ans: d)
3. Which of the following statements is true in the case of p-type semiconductors?
a) Electrons are majority carriers and trivalent atoms are dopant.
b) Electrons are minority carriers and pentavalent atoms are dopant.
c) Holes are minority carriers and pentavalent atoms are dopant.
d) Holes are majority carriers and trivalent atoms are dopant.

K

Recall
Easy
Difficult

Ans: d)
4. Why is the energy gap called as a forbidden energy gap?

U
Reason
Average
Electrons cannot possess these energy values in the given solid. (1 mark)
5. The conductivity of a conductor decreases with increase in temperature but for semiconductors it increases. Why?

More electrons from valence band rise to the conduction band in semiconductors (1 mark)
6. What is a transistor? Describe the action of transistor.

U
Describe
Average
Definition of transistor (1 mark)
Circuit diagram - (1 mark)
Explanation with E-B Junction
Forward biased and C-B Jn reverse biased - (2 marks)

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}
$$

(1 mark)
7. What is a rectifier? Describe the construction and working of a full wave rectifier.

K

Recal!
Easy
Definition of rectifier (1 mark)
Circuit diagram (1 mark)
Construction (1 mark)
Working with input wave form \& output waveform (2 marks)
8. Describe the construction and action of a p-n junction diode in forward and reverse bias. Represent graphically the relation between voltage and current.

K

Recall
Easy

Construction	$(2$ marks $)$
Working	$(2$ marks $)$
Graphical Representation	$(1$ mark $)$

9. Explain the function of an N-P-N, transistor as an amplifier in C.E K mode.

Recall Difficult

Circuit diagram	$(1$ mark $)$
Explanation	$(3$ marks $)$
Input and Output waveforms	$(1$ mark $)$

What is a semiconductor? On the basis of energy band diagram, distinguish between conductors, semiconductors and insulators

K
Recall
Average

Definition	$(1$ mark $)$
Energy bond diagram	$(1$ mark $)$
Distinguish each carry one mark	$(3$ marks $)$

Chapter 27 Digital Electronics

SI.
Question
Obj/Spec./
No.
Diff. Level

1. Describe an experiment to verify the truth tables of OR and AND logic gates.
K
Recalls
Average
Circuit diagram (1 mark)
Boolean equation (1 mark)
Brief procedure (2 marks)
Truth tables (1 mark)
2. Draw a circuit symbol of Half adder.

K

Recall
Average
Circuit symbol (2 marks)
3. Write the truth table of Half adder.

Truth Table (2 marks)
4. Write the circuit diagram of Full adder.

Circuit (2 marks)

5. Write the truth table of full adder.

K
Recall
Average
Truth Table (2 marks)
6. Write the Booleon expressions for OR and AND gates.

K
Recall
Average
$Y=A+B \quad$ (1 mark)
$Y=A . B \quad$ (1 mark)
7. Write the symbol and truth table of NAND gate

K

Recall
Average
Symbol and Truth Table (1 mark each)
8. Write the symbol and truth table of NOT gate

```
K
Recall
Average
```

Symbol and Truth Table (1 mark each)
9. Write the logic circuit of the Boolean expression $\mathrm{Y}=\overline{A+B} . \quad \mathrm{K}$ Recognise Average

Logic symbol (1 mark)
10 Write the logic circuit of Boolean expression $Y=A+B$

K

Recognise Average

Logic symbol (1 mark)
11 What is a NAND gate?

$$
\begin{aligned}
& \mathrm{K} \\
& \text { Recall } \\
& \text { Easy }
\end{aligned}
$$

AND followed by NOT (1 mark)
12 Write the symbol of OR gate.

S

Recall
Easy
Symbol (I mark)
13 Write the symbol of AND gate.
K
Recall
Easy
Symbol (1 mark)
14 Name the three funademental gates.
K
State
Easy
OR gate, AND gate and NOT gate (1 mark)
15 Give the truth table of OR gate.

16 Name the logic gate used to construct one logic level into the opposite logic level

K
Recall
Easy
NOT gate (1 mark)
17 Name the universal gates.

K
 Recall
 Easy

NOR \& AND gates (1 mark)
18 Give the truth table of NOT gate.

Truth Table (1 mark)
19 Give the symbol of NOT gate.

Symbol (1 mark)
20 Write the logic corresponding to the truth table given below.

A	B	Y
0	0	0
1	0	1
0	1	1
1	1	1

U
Interpret
Easy

OR gate (1 mark)

Chapter 28 : Soft Condensed Matter Physics

SI.
No.

1. What are liquid crystals?

Question

Obj/Spec./
Diff. Level
K
Recall
Easy

Intermediate phase between crystalline and liquid states (l mark)
2. Name the collidal system having gas as dispersed phase and liquid dispersion medium.

[^2]Foams (1 mark)
3. What is the other name given to the mesophase of matter?
K
Recognise
Easy

Liquid crystals (1 mark)
4. Compare the colloidal systems emulsions and gels by giving examples.

U
Compare
Easy
$\begin{array}{lr}\text { Explanation } \quad(1 \mathrm{mark}) \\ \text { Examples } & (1 \mathrm{mark})\end{array}$
5. Name the different types of thermotropic liquid crystals. What is the basis of their classification?

Compare
Easy

[^3]
Questions on Practicals

SI. Question	Obj/ Spec./	
No.		Diff. Level

1. Describe an experiment to verify the law of combination for two K, S resistances in series using Ohm's law. Practical Easy

Labelled diagram on circuit (1 mark)
Formula with explanation of terms (1 mark)
Tabular column (1 mark)
Procedure (2 marks)
2. Describe an experiment to verify the law of combination of two K and S resistances in parallel using Ohm's law. Practical

Easy
Labelled diagram or circuit (1 mark)
Formula with explanation of terms (1 mark)
Tabular column (1 mark)
Procedure (2 marks)
3. Describe an experiment to determine the resistivity of the material

U \& S
of a conductor using meter bridge.

Practical
Easy
Labelled circuit diagram (1 mark)
Formula with explanation (1 mark)
Tabular column (1 mark)
Procedure (2 marks)
4. Describe an experiment to determine the temperature co-efficient of U \& S resistance of a thermistor using meter bridge.

Labelled diagram or circuit (Imark)
Formula with explanation (1 mark)
Tabular column (1 mark)
Procedure (2 marks)
5. Calculate the temperature co-efficient of a thermistor using the following data, obtained in a meter bridge experiment.

A
Practical
problems
Easy

Trial No.	Temp ${ }^{\circ} \mathrm{C}$	Resistance in resistance box Ω	Balancing length in m
1	27.5	200	0.5
2	29.5	200	0.48

Formula $\alpha=\frac{2.303\left(\log R_{1}-\log R_{2}\right)}{T_{1}-T_{2}} \quad(1$ mark)

Calculating $\mathrm{R}_{1}=\frac{S l}{1-l}$ and R_{2} (1 mark)
Substitution and calculation of $\alpha=-0.040 / \mathrm{K}$ (2 marks)
Result with unit (1 mark)
6. Calculate the value of the capacitor using the following data using graphical method.

A
Calculation
Average

Charging

Time second	Volts
0	0
40	5.15
80	5.30
160	7.75
240	8.64
320	9.00
400	9.17
480	9.30
560	9.41
680	9.53
1000	9.75

Discharging

Time second	$\mathrm{V}_{\text {volt }}$
0	9.75
40	6.79
80	4.7
160	2.31
240	1.16
320	0.58
400	0.32
480	0.18
560	0.10

7. Describe an experiment to determine the capacitance of a capacitor by the charging and discharging method.

K \& S
Recall
Easy
Circuit (1 mark)
Procedure (2 marks)
Tabular column (1 mark)
Formula and graph (l mark)
8. Verify the law of combination of resistances, using Ohm's law.

The following observations are recorded in an experiment, with two resistances 2Ω and 4Ω connected in series.

A \& S
Practical problems Easy

Trial No.	$\mathrm{V}(\mathrm{v})$	$\mathrm{I}(\mathrm{A})$
1	3.6	0.6
2	4.8	0.8
3	5.4	0.9

Formula $\mathrm{R}=\frac{V}{l} \Omega_{2} \quad$ (1 mark)
Calculating $\left.\mathrm{R}_{1}=\ldots \ldots \Omega\right) \quad$ (2 marks)
$\mathrm{R}_{2}=\ldots \ldots \ldots . \Omega$
$\mathrm{R}_{3}=\ldots . . \Omega$
Finding average and writing correct result with unit (2 marks)
9. Verify the law of combination of resistances using Ohm's law. The following observations are recorded in an experiment with two resistors 2Ω and 4Ω connected in parallel.

Calculate Easy

Trial No.	$\mathrm{V}(\mathrm{v})$	$\mathrm{I}(\mathrm{A})$
1	0.4	0.3
2	0.8	0.6
3	1.6	1.2

Formula $\mathrm{R}=\frac{V}{I} \Omega \quad(1$ mark $)$
Calculating $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3} (2 marks)
Finding average and writing correct result with unit (2 marks)
10. Calculate resistivity of the material of the given wire using the following data obtained in a meter bridge experiment.

U

Calculate
Easy

Trial No.	Resistance unplugged In Ω (right gap)	Balancing length In ' m '
1	2	0.42
2	3	0.33
3	4	0.27

Given that length of the given wire $=0.75 \mathrm{~m}$.
Mean diameter of the wire is $0.3 \times 10^{-3} \mathrm{~m}$.
Formula (1 mark)
Finding $\mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3} (1 mark)
Substituting and finding value of ρ (2 marks)
Result with unit (1 mark)
11. In the diffraction grating experiment the following readings are obtained. Calculate the wavelength of the yellow and violet lines in the first order spectrum if the light is incident obliquely on the grating.
Number of lines $/ \mathrm{m}=5.9 \times 10^{5}$
L.C. of spectrometer $=1^{\prime}$

Direct reading $=85^{\circ} 55^{\prime}$

Trial No.	Colour of the Spectral lines	MSR	CVD
1	Yellow	$65^{\circ} 30^{\prime}$	5
2	Violet	71°	49

Formula, $\lambda=\frac{2 \sin \left(\frac{D}{2}\right)}{N \times n}$ (1 mark)
Trial 1 : For yellow (colour) line
$\mathrm{D}_{\mathrm{y}}=\mathrm{R}_{\mathrm{o}}-\mathrm{R}_{\mathrm{o}}=85^{\circ} 55^{\prime}-65^{\circ} 35^{\prime}=20^{\circ} 20^{\prime}$
$\left.\begin{array}{l}\lambda=\frac{2 \sin \left(\frac{20^{\circ} 20^{\prime}}{2}\right)}{5.9 \times 10^{5} \times 1}=\frac{2 \times \sin \left(10^{\circ} 10^{\prime}\right) \times 10^{-5}}{5.9} \\ \lambda=\frac{2 \times 0.1765 \times 10^{-5}}{5.9}=5.983 \times 10^{-7} \mathrm{~m}\end{array}\right\}(2$ marks $)$
Trial 2 : For violet line
$\mathrm{D}=85^{\circ} 55^{\prime}-71^{\circ} 49^{\prime}=14^{\circ} 6^{\prime}$
$\lambda=\frac{2 \sin \left(\frac{140^{\circ} 6^{\prime}}{2}\right)}{N \times n}$
$\lambda=\frac{2 \sin \left(7^{\circ} 3^{\prime}\right)}{N \times n}$
$\lambda=\frac{2 \times 0.1228 \times 10^{-5}}{5.9 \times 1}$
$\lambda=4.163 \times 10^{-7} \mathrm{~m}$

12 Using the following observations made during an experiment to determine specific heat of liquid, calculate the specific heat of the given liquid.

Mass of the empty calorimeter $=60.5 \times 10^{-3} \mathrm{~kg}$
Mass of the Calorimeter + liquid $=0.1598 \mathrm{~kg}$
Initial temperature of liquid $=27^{\circ} \mathrm{c}$
Ammeter reading $=1.2 \mathrm{~A}$
Voltmeter reading $=1.5 \mathrm{~V}$
Time of flow of current $=900$ Seconds
Final temperature of liquid $=32^{\circ} \mathrm{c}$
Specific heat of mateial of calorimetetr= $3.80 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$

13 Describe an experiment to determine the specific heat of water using Joules calorimeter.

K
Recall
Average
Circuit diagram - 1 mark
Formula 1 mark
Proceduere 2 marks
Observations I mark
14 Describe an experiment to determine the forward resistance of a given semiconductor diode by plotting the V-I characteristics.

K
Recall
Average
Circuit diagram - 1 mark
Formula with graph I mark
Procedure 2 marks
Tabular Column I mark

15 Plot a graph of current against voltage and calculate the forward resistance of the diode from the following data

V (volt)	0.1	0.15	0.2	0.25	0.3	0.35
$\mathrm{I}(\mathrm{mA})$	0	1	4	11	28	62

Plotting the graph - 3 marks
Calculation of resistance - 2 marks
16 Describe an experiment to determine the internal resistance of a cell using a potentiometer.

U \& S Practical Average

Circuit diagram 1 mark
Formula with graph 1 mark
Procedure 2 marks
Tabular Column 1 mark

A

Calculates
Average

[^0]: 8. Define velocity gradient of a liquid.

 K
 Recall
 Easy
 Rate of change of velocity of a flow of liquid with a distance measured normal to the direction. (1 mark)
 9. Why does a briskly-stirred liquid in a beaker come to rest after a U short time?

 Explain
 Average
 This is due to the viscosity of the liquid. (1 mark)
 10. A beaker containing water and another beaker containing glycerine are both stirred rapidly and kept on the table. In which beaker will U the liquid come to rest earlier? Why?

 Discriminate
 Average
 In the beaker containing glycerine (1 mark)
 Due to the greater viscosity of glycerine (l mark)
 11. Give the dimensions of coefficient of viscosity.

 Ans: $\left[\mathrm{L}^{-1} \mathrm{MT}^{-1}\right]$ (1 mark)
 12. Define coefficient of viscosity.

 K
 Recall
 Easy
 Correct definition (l mark)
 13. Define viscosity of a fluid.

 K
 Recall
 Easy
 Internal fluid friction is called viscosity. (1 mark)
 14. Write S.I. unit of coefficient of viscosity.

 K
 Recall
 Easy
 Ans: NSm^{-2} / Poise (1 mark)
 15. When air is blown between two balls suspended close to each other U they come closer. Why?

 Explain
 Average
 The reason of blowing of air between the balls increases speed of air and decreases pressure. There is atmospheric pressure in the region outside the balls. Hence the balls get attracted towards a region of lower pressure. (2 marks)

[^1]: U
 Discriminate Average

[^2]: K
 Recognise Easy

[^3]: Naming (1 mark)
 Basis (structure) (1 mark)

