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PREFACE

The 21-day training programme in Physics for the PGTs of 

Navodaya Vidyalaya Samiti, New Delhi was held in the Physics Section 

(DESM) of Regional Institute of Education, Mysore from 2nd to 22nd 

June 2003.

The programme was arranged at the request of NVS, New Delhi. 

The main objective of the programme was to enrich the content level of 

the teachers as per the revised curriculum.

The present volume contains a detailed report as well as the 

enrichment material provided to the teachers. Every effort has been 

made to make the material as explanatory as possible so that the 

teachers could find it useful in the classroom transactions.

The enrichment material on Communication Technology has 

been provided to the participants in the form of a CD.

I am glad to place on record the enthusiasm shown by the 

participating teachers in all the sessions and we thank them for the 

same.

My thanks are due to the authorities of Navodaya Vidyalya 

Samiti, New Delhi for having provided the funds for the programme 

and also for deputing the teachers for the course.

I am also grateful to Prof J S Rajput, Director, NCERT for having 

selected this Institute as one of the venues for this programme.



I express my heartfelt thanks to Prof G Ravindra, Principal, RIE, 

Mysore for extending cooperation for the conduct of the programme.

I wish to sincerely thank all the resource persons and guest 

lecturers who have actually contributed and shared their experiences 

with the participants.

My thanks are due to my colleagues in the Physics Department 

for their active participation and valuable guidance during the 

planning and implementation of the programme.

I wish to place on record the cooperation extended by my 

colleagues in other sections and departments during the conduct of 

the programme.

Lastly, I express my thanks to the administrative staff of the 

Institute and to the laboratory staff of the Physics Section who have 

spared no efforts in making the programme a grand success.

(R Narayanan) 
Academic Coordinator



ABOUT THE TRAINING PROGRAMME

Knowledge in the present day world is developing at a fast pace. There is a 

tremendous growth of knowledge in the field of Science and Technology.

The present day teachers have to keep themselves up-to-date with the expanding 

knowledge. The inservice teachers need periodic refresher courses to fulfill this objective. In 

order to improve the capabilities of the teachers in content and pedagogy, the Navodaya 

Vidyalaya Samiti arranges inservice training of teachers at various levels in the form of 

orientation programmes and refresher courses.

The present programme was oriented toward the Post Graduate Teachers (PGTs) in 

Physics. It was held at the Regional Institute of Education. Mysore from 2nd to 22nd June 

2003 (21 days). The programme was planned and implemented by the Physics Section of the 

Department of Education in Science and Mathematics of the Institute. In addition to the 

Physics faculty, faculty members from the Department of Education also worked as resource 

persons. Guest lectures and popular talks were also arranged using the expertise of external 

resource persons of eminence.

The main objectives of the training programme was to

i) enrich the content competency of the teachers so that they can execute the revised 

curriculum with greater confidence,

ii) provide a first hand experience in setting up, performing and interpreting the results of 

certain laboratory experiments and projects,

iii) make the teachers aware of recent thrust areas in the field of education so as to 

improve their professional competence, and

iv) make them familiar with certain skills and strategies required for effective teaching in 

the present day classrooms.

I'he programme consisted of two lecture sessions (P/2 hours each) per day in the 

morning and a laboratory session (2 hours) in the afternoon followed by discussion/seminar 

(1 hour).

The laboratory and discussion session was attended by all the Physics faculty.



The topics on which lecture sessions were conducted were decided after an interactive 

session with the participants. Broadly the topics covered were from the following areas :

Mechanics
Waves and Oscillations 
Electromagnetism 
Current electricity 
Electronics 
Digital Electronics 
Communication Systems 
Solid State Physics 
Nuclear Physics

The level of discussion was kept higher than the requirement at the plus two stage. 

During the laboratory sessions, the participants were encouraged to set up the experiments, 

suggest innovative investigatory projects and implement them wherever possible. The 

laboratory session was followed by presentation and discussion.

As a prelude to the laboratory sessions, two interactive discussions were presented on: 

(i) Problem solving approach to teaching of Physics and ii) Errors and significant figures.

The participants were able to get “hands-on” experience in computers and the use of 

multimedia. In addition to the content coverage lecture/discussion sessions were provided in 

the following professional areas.

a) Value Education
b) Evaluation and objective based Assessment
c) Creativity in teaching and learning
d) Needs and Problems of adolescents
e) Managerial skills for teachers
f) Skills of improving pupil participation
g) Motivation and positive attitude

In all, a variety of experiences were provided to the participants in order to enhance 

content enrichment and professional competence. It is hoped that the programme has 

sufficiently motivated the teachers.

(R Narayanan)
A cademic Coordinator
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I

Motion in a Plane

As we shall see la: 
a plane. Classic example 
Sun/Earth and the motion

CHAPTER 1 
MOTION IN A PLANE

he motion of a particle subjected to a central force field is confined to 
e the motions of planets and satellites in the gravitational field of the 
iectrons in an atom under the coulomb force of the (charged) nucleus.

To study motion i >lane, it is convenient to employ plane polar coordinates (r, 0) defined 
by x = r cos 0; y = r sin ig.l).

Fi°. 1: Plane Polar Coordinat<

We define unit vectors f and 0 in the direction of 
increasing r and 0 respectively, f and 0 are functions of 
0 and are related to £ and $ by

f = £ cos 0 + y sin 0 
0 = -£ sin 0 + cos 0

Taking derivatives with respect to 0,

(1)

= ~x sin0 + y cos 0 = e

— - -x cos0 - y sin0 = -r (2)

The position vect • is given in terms of polar coordinates by 
r = r f (0) (3)

We may describe 1 motion of a particle in polar coordinates by specifying r(t) and 0(t), thus 
determining the position tor r(t).

The velocity vector 

dr d
dt dt

(r r)v



Motion in a Plane

dr „ dr dQ— r + r ---- ----
dt dQ dt

= r r + r00 
(using equation 2)

(4)

This means that the radial and transverse components of the velocity vector are:

= r , = r 0

The acceleration vector

(5)

. dr dQ dQ dQ□ = * = + ™ - r-ee + rge + rg.
dt dQ dt dQ dt

= (r - r0")r + (r0 + 2/0) 0 (6)
(using 2)

Thus, the radial and transverse components of the acceleration vector are:

a ='r - rQ2

aQ = r0 + 2/0 (7)

If r is a constant, the motion is circular and ar = r 02 = -fig / r which is the familiar centripetal 
acceleration.

Momentum and Energy

The linear momentum of a particle is defined as p = mv

Newton’s second law in vector form is

(8)

2.



Motion in a Plane

*P = F
dt

The change in momentum between times t, and t2 is 

P2 " Pi = f Ydt

This is known as the impulse of the force.

In terms of Cartesian components,

- r-----  = m —= F
dt dt

Multiplying by 0x on both sides, 

rfft
zzift —- = F ft 

x dt

(9)

(10)

di.e., — 
dt

d_
dt

-zzift2 = F ft2 J

Similarly, — 
dt

-znft2] = F ft
and —

f i )
= F&

dt 2 ) 2 2

(ft2 + ft2 + ft?) = F ft + F ft + F ft\ x y */ X X y y 2 2

= F. v

dT -•i.e. — = F . v 
dt

(11)

where T is the kinetic energy of the body.

Now, — (v2) = —(v . v)= 2v . — 
dt dt dt

v dv 1 </(v2) dr . v = m — . v = — m ——- = —
dt 2 dt dt

Multiplying (11) by dt and integrating, 

J dT = J F . v dt

—mv
2

3



! f

r2 - r, = , f . v t/r

Motion in a Plane

(12)
f

Since v dt = dr

T - T 1 2 1 1
= /f. dr (13)

is the work done in going from point 1 (r,) to point 2 (r2).

The integral is to be taken along the path followed by the particle from point 1 to point 2.

Angular Momentum

The angular momentum of the particle of mass m about O is

(17)and F = rFf + Of0
Fig.2. &0 and 0,

,/t • ‘'
From (14), ----  = 2znrr0 + znr 26

dt

From (16), — = — (mr2fr)=rFe=N (18)
dt dt

N is the torque exerted by the force F about the point O.

r’ 6. -From (18), Z2 - £] - m , z ^2 rn Tj 0! = J r Fq dt

4



Motion in a Plane

Fig.3 Angular Momentum

In vector language,

L = r x p
= m(rxv) (19)

( L is perpendicular to both r and p).

Now, — = — [r x Wv] 
dt dt

d , dr , .= r x — (/nv) + — x (wv)
dt dt

= r x — (znv) + v x (njv) 
dt

- r x m
rfv'

dt
since v x v = 0

\ /

= r x F

Thus, — = r x f = N , the torque vector. 
dt

L2 - Lj = | N dt (20)

Potential Energy

If the force F on a particle is a function of its position r = (x,y,z), then the work done by the
ri

force when the particle moves from r, to r2 is given by f F(r) . dr.

We define potential energy V (r) = V (x,y,z) as the work done by the force on the particle



Motion in a Plane

(21)

when it moves from r to some standard point rs.

V (r) = - F(r) . dr

Such a definition implies that Y is a function only of (x.y.z) whereas the integral on the risht 
hand side depends on the path of integration.

Let F = F (x. v. z)

The change in V when the particle moves from r to r - dr is given by

c/v = -F . dr (22)

Recall that a u - dr . Yu where u is a scalar function and Yu is the gradient of u (grad u).

Hence, we mav write F = -Y V (= - srad Y) (23)

trom which r o V 
6 x

F = - 6 V 
6 v

r - 0 >
o r

Now. V * V = 0

Y x V F = curl (grad V ) = 0 (24)

i.e. V x f = curl F = 0 
[using (23)].

(25)

Thus, curl F = 0 is a necessary condition to be satisfied by F (x. y. z) before a potential function can 
be defined.

Now. if we consider a closed path c in space, the work done by the force F (r) when the 
particle travels around the path is

F .dr = J J n . curt F ds 

s
(By Stokes theorem)

= 0 since curl F = 0

(26)

, £



Motion in a Plane

Thus,
c

(27)

—”” t2
/ This means that the work done in gong from r, to f is

ZZ independent of the path.

zz
i.e. 1 F . Jr + ( F . dr = 0 

c, c,1 2

where c, and Cj.are two arbitrary paths as indicated in the
figure.

Work done is independent of path

Thus, curl F = 0 is both necessary and sufficient condition for the existence of a potential function 
V (r) when the force is a function of position r alone.

ri r. ri
We can write J F . dr = j* F . dr + j* F . dr

ri ri

= V (r,) - V (r2)
r2

Recall that T2 - T} = j* F . dr 

r\

Hence, T, + V( r,) = T2 + V ( r2) (28)

i.e., the total energy E = T + V = constant.

Conservative Force

A force which is a function of position alone and whose curl vanishes is said to be a 
conservative force.

Central Force

A force which is directed always towards or away from a fixed centre and whose magnitude 
is a function only of the distance from the centre is called a central force.



Motion in a Plane

Examples of a central force are gravitational and coulomb forces (both inverse square central 
forces) and the force (proportional to displacement) responsible for single harmonic motion.

In spherical coordinate, s F = f F(r) with cartesian components

F, = - F (r) 
r

F = F (r) Ft = - F (r)
r r

r = yjx2 + y2 + z2

We can show that

CurlF
6F,'

4- v
6.F,' 'sf. -^1

6?,
* y

k 6z 6.J ’ A
6z y

[Hint: Show that ------- = ——- , etc.)
6 x 6 y

This means, a central force is a conservative force.

Motion under a Central Force

Consider two interacting particles (such as the Sun and a planet or the nucleus and an 
electron in an atom). We regard one of them to be practically at rest with respect to the other. Since 
the force is central, F (r) = F F(r)

Torque N = rxF = (rx F) F(r) = 0

i.e. L = constant.

, = N = 0
dt

i.e. L = m(rxv) = constant.

Therefore, both r and v must always lie in a fixed plane perpendicular to L. In other words, the 
motion is always planar.

Since the force is radial only, Fe = 0 from (15) and (16)

•<§

«
«
fl

«



Motion in a Plane

mr - mrtf = F(r) (29)

mrQ + 2znr6 = 0 (30)

These are the equations of motion for the particle. Since the force is conservative,

1 1 \2T + V = — mr2 + — mr2Q + v(r) = E, a constant. 
2 2 (31)

( — mr2 - linear KE ; — mr202 = /(■?- rotational KE) 
2 2

L ( = /co) = mr2Q is also a constant.

Equation (29) can be written as

mr ~ ------ = F(r)
3mr

or mr - F(r) + - (32)
mr

This is exactly the form of an equation of motion in one dimension for a particle 
subjected
to the actual force F(r) plus a fictitious ' centrifugal force' of magnitude 

£ 2
------ ( ~ mw>2r - mv2/r).
mr3

Inverse Square Central Force

1

for which the potential function

r

F(r) = -f F(r) dr = — {rs =
J roo

For gravitational force,
K = -Gm,m2

cl



Motion in a Plane

(Note: V is negative for an attractive force. At r = ~, V = 0)

For the coulomb force, K = q, q,
(The force is attractive or repulsive).

From (32) we can write,

(33)

where the second term on the RFIS is 
the centrifugal potential.

K > 0 — Repulsive potential 
K = 0 — No force (straight line path) 
K < 0 — Attractive potential.

Fig.5 Effective Potential

For E = — ------ the particle
2 L2

moves in a circle of radius

ro — (K < 0). 
Km ‘

Fig .6 Possible paths of particlesubjected 
to central force

fc



Motion in a Plane

For an attractive force (K < 0), the path can be an ellipse, parabola or hyperbola (the circle is a 
special case of the ellipse) depending on whether E < 0, E = 0 or E > 0. Examples are 
planetary/satellite orbits, projectile paths and some cometary orbits.

For a repulsive force (K > 0), we must have E> 0 and the orbit can only be a hyperbola 
(example: paths of charged particles scattered by a nucleus).

Kepler’s II Law

L = mr2Q = constant.

The area swept by the radius vector in time dt is ds = — r2 d 0 
; 2 
_ 1 r2Q _ L

dt 2 2m

a constant, i.e. the radius vector sweeps out equal areas in equal intervals of time. This is Kepler’s 
second law. This explains why a comet gains speed as it approaches the sun and loses speed as it 
moves away in its orbit.

Fig.8 Illustration of Kepler’s II Law

Earth Satellites

Artificial earth satellites are of recent origin (from 1957). However, the physical concept 
involved is traceable to an idea proposed more than 350 years ago by Newton himself. The idea is 
illustrated in Fig. No. 9. Observe that depending upon the tangential velocity of the object the path 
can be a parabola, a circle, an ellipse or a hyperbola. In the absence of any tangential velocity, the 
path is a straight line.



Motion in a Plane

Fig.9 Paths of panicle under earth’s gravitational force

12
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Angular Momentum

CHAPTER 2

ANGULAR MOMENTUM

A SPINNING TOP!

Almost everyone might have felt fascinated.in his childhood while playing with tops and 
asked an unanswered question, “what keeps the top standing?”. A top is all grace and beauty, 
spinning about its axis, and at the same time revolving gently about a vertical line, a behaviour often 
called precession. One may1 feel as if it is going to fall. But somehow it manages to stay upright, 
somehow it manages to defy gravity.

Can it be that gravity acts differently on a spinning or a moving object?

The force of gravity remains the same irrespective of the motion of the object.

Another puzzle is the bicycle. Even a good acrobat may not be able to balance a bicycle that 
is standing still. Obviously, a bicycle has a self-balancing capacity which comes into effect only 
when it is in motion.

Can it be due to some force from the air on the revolving wheels of the bicycle much in the 
same way a fast spinning cricket ball swings in a curved path due to a side thrust from the air?

Air has no role to play in the stable motion of the bicycle wheels. They will behave in the 
same manner even in vacuum. '

What then causes such strange behaviour of massive spinning objects? Yes, massive 
spinning objects. The catch lies there.

A heavy spinning object means large angular momentum. Every spinning object, a top, a 
bicycle, a spinning wheel, possess angular momentum. And angular, momentum gives stability to 
objects against wavering motion, as in the case of a bicycle, against being toppled by gravity as in 
the case of a top, against wobbling of its axis, as in the case of a rifle bullet or an artillery shell which 
are invariably given spin at the time of firing in order to give them directional stability.

What is this angular momentum and how does it influence the behaviour of spinning objects?

13



Angular Momentum

Although a full understanding of angular momentum may not be easy, it is still possible to 
frame a simplified picture of this concept and present a lucid explanation of the laws governing the 
behaviour of spinning objects by analogy with linear momentum. Linear momentum is usually more 
familiarly known by a shorter name momentum^

Let us therefore, briefly recall what we understand by momentum and how Newton’s second 
law of motion explains its changing behaviour with time. Momentum p is often defined as mass 
times velocity.

P = 771V

where m is the mass of the particle and v is its velocity. Now v is a vector and m is a scalar. When 
we take the product of a vector with a scalar, the resulting quantity is a vector whose direction is 
same as that of the original vector and whose magnitude is the product of the magnitudes of the 
vector and the scalar. Therefore, jf we write v to mean the magnitude of v, then the magnitude of 
p is //iv and the direction of p is the same as that of v. We, therefore, say that momentum and 
velocity are parallel vectors.

Now consider Newton’s second law of motion. It is customarily written in the form

= F
dt

That is, the rate of change of momentum dpldt, is equal to the 
external force F acting on the particle. We shall often find it 
convenient to rewrite the above equation in the following form

c/p = Fdt,

which means that the change dp in the momentum of a particle 
over a very small time period dt is equal to the product of the 
force F multiplied by the time interval dt.

A force acting over a small time interval is called an 
impulse. An impulse is a sort of kick. When you kick a

football, you apply an impulse away from you.

In the same way the quantity Fdt is an impulse, a very tiny impulse, given to the particle 
within the tiny time interval dt.

Continual application of a force can be looked upon as a train of such tiny impulse, or tiny



Angular Momentum

6m/sec. Its momentum is Vi x 6 = 3 units.

kicks, each impulse, or kick corresponding to a tiny 
time interval dt.

What Newton’s second law tells us is that 
each tiny impulse X?dt changes the momentum by 
the vector dp which equals the impulse F dt.

That means, if we consider an appreciable 
time span T, the tiny impulses 'F dt’s over the tiny 
intervals 'dt’s spread over the time T add up to an 
appreciable change in the momentum vector.

Consider a projectile of mass ‘A kg moving 
in a parabola due to the action of gravity. At a 
certain point A it has a velocity v of magnitude

After a tiny time interval, say 1/10 the of a 
second, it moves to a point B where its velocity 
is 6.6 m/sec and momentum is 3.3 units. The 
velocity and momentum are shown as v7 and p .

Question: What is the change in the momentum of 
the particle in the time interval dt? To this 
question, one may be tempted to suggest an 
obvious answer “0.3 units”, an answer which is 
quite wTong.

To obtain the answer correctly first look at the two momentum vectors p and p' simultaneously and 
compare them by redrawing these vectors from the same origin O.

’7-

1^



Angular Momentum

You know that vectors are added by the parallelogram rule or 
the triangle rule. According to this rule, the difference between the 
vectors p and pz is the vector <?p whose magnitude is 0.5 units, and.no/ 
0.3 units, and whose direction is downward.

In other words, if you add to the original vector p of magnitude 
3 another vector dp of magnitude 0.5, as in the present case, you get the 
vector p whose magnitude is 3.3, which is less than the magnitude 3.5, 
you would have obtained had you added the magnitudes algebraically.

This is an important peculiarity of vector 
addition.

According to Newton’s 
second law this change dp in 
momentum accruing over the time 
interval dl is equal to the impulse F dl 
imparted to the particle by the external 
force.

Since dp is 0.5 units downward, and dt is 1/10 sec, the 
equation
r/p = Vdi implies that the gravitational force on the projectile 

must be 5 newtons. We know that this is true if we take the acceleration due to gravity to be 
approximately lOm/sec2.

Consider another example. The moon is moving in nearly a circular orbit due to the force 
of gravity directed towards the earth. Why doesn't the moon fall into the earth?

Again the answer can be provided by considering the change of the momentum vector due 
to a train of impulses directed toward the earth. Suppose E is the location of the earth, and A/„ the 
location of the moon at some instant t and p0 is its momentum at that instant.

16
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Angular Momentum

Because of the momentum p0 the moon 
moves to the point M, in the interval dt.- But 
when at M, its momentum is no longer p , but 
has changed to p, due to the impulse Ydt which 
directed towards the earth contributes a 
momentum dp in the same direction. The 
direction of p, differs from that of p0 by the an 
angle d9, so that the direction of motion has 
been deflected by the angle t/#in going from Mo

to M,

The moon moves from M, to AA in another 
interval dt after which its momentum changes to p: 
due to another impulse directed towards the earth, 
deflecting the motion by another small angle dfr

4

In this way, the moon gets continually 
deflected by small angles d0s due to a train of small 
impulses, each impulse directed towards the earth.

J7
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Angular Momentum

circle.
As a result the moon moves in a

The moon has always been 
feeling an urge to fall into the earth. In 
fact she has been continually
accelerating towards this cherished centre through millennia. But she has been incapacitated from 
reaching this goal because of her own momentum, much in the same way a running bull is 
incapacitated from stopping instantly but is carried away by its own momentum. If the moon didn't 
have an initial momentum she would have simply dropped onto earth like an apple a long time ago. 
Because of her momentum, she appears to be defying gravity.

It will be seen that there is a complete analogy between the motion of the moon, or any 
artificial satellite, and the motion of a top. The moon or any satellite is carried away in its circular 
or elliptical orbit because of its momentum. Even though it is always trying to fall on earth due to 
the pull of gravity, it never succeeds. This is happening, as we have seen, because every tiny 
impulse contributed by the gravity force is added perpendicularly to the existing momentum of the 
satellite according to the triangle rule of vector addition.

Exactly in the same way, the top is carried away in a beautiful precessional motion, its axis 
gliding along the surface of a cone. The top would have gladly fallen on the ground if it didn’t have 
spin. A spinning top, on the other hand, has an angular momentum, which prevents it from falling. 
Like King Tantalus of Greek mythology who is kept chin deep in water but never allowed to drink
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it, the top is thirsting to fall but not allowed to do so by its own angular momentum.

This similarity between the satellite motion and the top motion is due to a parallelism • 
between the law of linear momentum (which is same as Newton’s second law of motion), and the 
law of angular momentum. This latter law is written as :

d L—i = N 
dt

where L represents the angular momentum of any object, which may.be solid, liquid or gas, and N 
is the torque of all external forces. Both L and N are measured with respect to the centre of mass 
of the object. Without going into finer points, we shall identify the centre of mass of any terrestrial 
object, to be abbreviated as CM, to be the same as the centre of gravity.

In order to absorb the meaning of the above equation, we need a few remarks. Newton's 
second law of motion, as you know, is applicable to point particles. It does not automatically apply

1^



Angular Momentum

to an extended body. However, if we imagine the extended body to be made up of a very large 
number, say K, of tiny parts, each part being approximated as a point, then Newton’s law applies to 
each tiny part. The force on any one them, say A, is the external force fe and the force of interaction 
fj from all other parts B, C,....composing this body. However, according to Newton’s third law of 
motion, the force the part A exerts on another part B, is equal and opposite to the force that B exerts 
on A, so that all the forces of interaction within the body pair out into equal and opposite forces. 
Applying Newton’s second law to each component part and then adding up the effects over the 
whole body, it can be shown that the
gross motion of the extended object 
neatly separates out into two modes 
of motion. They are :
a) The linear motion of (he C\f, 
governed by the equation dUdt = F 
where F is the vector sum of all the 
external forces acting on the object.

The above equation is 
equivalent to the following more 
familiar form :

Ma = F

revolving about the CM, which is now imagined to be a point fixed in space.
Before trying to illustrate the above equation, let us have a cursory understanding of

angular momentum. A full understanding of this rather complex concept requires a lengthy
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discussion. Therefore, we shall consider 
only the simplest case, namely a rigid body 
which has an axis of symmetry and which is 
revolving about this symmetry axis with an 
angular speed of co radians per second. For 
this special case, the angular velocity vector 
co and the angular momentum vector L are 
parallel.

The direction of the angular velocity 
vector is given by the right hand thumb rule 
(to be referred to as RHR). According to this

rule, the direction of the angular velocity is along 
the axis about which the body is turning, its sense 
being such that if you curl the right hand fingers in 
the direction of turning then the thumb will give 
the direction of the co vector.

In this simple case, i.e. when a rigid body is 
turning about an axis XX which is also an axis of 
symmetry, the angular momentum of the body is 
given as

L =

where /„ is the moment of inertia of the body about 
the axis XXpassing through the CM. Note that this 
parallelship between L and co does not hold always. 
As in the above case, it holds when the axis is an axis 
of symmetry'. Even when the rigid body does not 
have an axis of symmetry, there always exist at least 
three axes, perpendicular to one another, such that L 
will be parallel to co, only when the body turns about 
any one of them. When this parallelship between L 
and co holds, we call the axis of revolution a principal 
axis. Every axis of symmetry is a principal axis.

The torque N of an external force F about the 
CM is also a vector and is also given by the RHR.
Let C represent the CM and let F be a force acting

through the point P which is at a distance r from C. The perpendicular distance of the line of the 
force F from C is r sinO, where #is the angle between r and F.
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Magnitude of N is 
Fr sd/i 9

Direction of N is 
perpendicular to F 
and given by the 
right hand rule

direction / 
of N / 5 rotation 

/ induced

The torque vector is then perpendicular the plane

& r

defined by the vectors r and F, having a 
magnitude

N = Fr sin 6, its sense being such that if you 
curl the right hand fingers from r to F, then 
the thumb points in the direction of N.

We shall now explain the motion of 
a top with the help of the law of angular 
momentum as just stated. For our purpose, 
we shall find it convenient to rewrite this 
law in the form of the following differential

d L = N dt

which by analogy with linear momentum, 
says that the change in the angular 
momentum over time dt equals the angular 
impulse N dt imparted by the external forces 
over this time.

Now consider a spinning wheel. It is 
revolving about an axis of symmetry with an

t
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angular velocity ©. Therefore, its angular 
momentum is L = /co, where / is the 
momentum of inertia about this axis.

Let this wheel have the angular 
momentum Lo at some instant The 
direction of the vector Lo therefore also 
represents the direction of the axis at

Let there be a torque vector N acting 
on the body over a small time interval dt so 
that an angular impulse N dt is added to the 
original.angular momentum Lo. Then the 
angular momentum of the-body after this 
interval dt is the vector L„ which is obtained 
by adding to the original angular momentum 
Lo the small angular impulse dL = N dt 
imparted over the interval dt. Since the new 
angular momentum vector L, has a different 
direction than Lo, and since the axis is 

following the direction of the angular momentum, the visible effect is that the direction of the 
axis has been deflected in time dt.
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The strange behaviour of the top can now be easily explained in the light of the above 
mechanics. When the top is spinning (and also precessing) its angular momentum is 
approximately along the axis of the top (there is an extra component of angular momentum from 
the precessional motion, which we are ignoring for convenience). The top is experiencing two 
forces. The gravity force and the ground reaction force. Of these two, the gravity force mg is 
passing through the CM and therefore, does not produce any torque. The ground reaction R is 
mostly a vertical force but may also include a horizontal component if the ground is not smooth. 
This force R causes a torque N which is a horizontal vector perpendicular to the plane defined by 
the axis of the top and the reaction R. The resulting angular impulse Ndt over every small 
interval of time dt will then deflect the angular momentum vector perpendicular to itself. As a 
consequence, the angular momentum vector, and along with it, the axis of the top, will 
continuously precess along the surface of a cone.

Note that this is analogous to the way the gravitational impulse deflected the linear 
momentum of a satellite, sending it along a circular orbit. We have improvised a number of 
bicycle wheel devices to bring home to the learner the meaning, in fact the “feel” itself, of what 
we understand by angular momentum. Hold these wheels by hand, try to twist them, turn them, 
cuddle them while they are spinning. It will be an enlightening experience, an experience that 
can never come from any amount of book reading. For a while, you will disbelieve your eyes 
when you observe the wheel turning sideways in response to your efforts to twist it downwards. 
Then all of a sudden an enlightenment will dawn, and you will visualise the law of angular 
momentum before your eyes, and such strange phenomena like the motion of a spinning top will 
appear as natural as the fall of an apple. Only then you will have established your faith in the 
physics you have just learnt.
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Wave Motion
CHAPTER 3 

WAVE MOTION

Wave Motion
Particle and wave are two major concepts in classical physics. When we wish to study the motion of 

material bodies, we often make use of the concepts of a particle. It suggests a tiny concentration of matter 
capable of transporting momentum and energy. A wave, on the other hand, suggests a broad distribution of 
energy, filling the space through which it passes. A wave transmits energy from one place to another without 
the actual movement of material particles between those places.

Suppose you intend to get in touch with a friend at a distant place. You can do it, either by sending a 
letter or by using the telephone. When you send a letter, a material object (the letter) moves from one place to 
another carrying the information. In the second case, a wave carries this information from you to the friend. 
There is no movement of any material object. When you make a telephone call, a sound wave carries your 
message from your vocal cords to the telephone; at the telephone system it is converted to an electromagnetic 
wave, which may pass through a copper wire or optical fibre (or may even move through space via a 
communication satellite). At the receiving end, your friend’s telephone converts the electromagnetic wave into 
an audible wave (sound wave) and delivers the information to his ear. Thus the information is transported 
without the transport of any material medium.

Though we have talked about the electromagnetic waves above, the subject matter at present will be of 
a general nature on waves, especially waves in material media or elastic media.

Waves in General
A flag fluttering in breeze, ripple waves in water, sound waves in air and other media and seismic waves 

are some of the examples of mechanical waves. Mechanical waves are governed by Newton’s laws, and they 
need a mechanical medium for propagation. Electromagnetic waves, on the other hand, are of a different nature 
and do not need any medium to pass through. All electromagnetic waves, irrespective of their wavelength, 
travel through vacuum with the same speed c, given by

c =299, 792, 458 m/s
Under special conditions, we come across another category of waves - matter waves - which are governed by 
the laws of quantum mechanics. An example is an energetic beam of electrons exhibiting wave characteristics 
under certain conditions.

Mechanical Waves
Many of the aspects of wave motion can be understood by considering the sinusoidal waves in a long 

stretched string. We assume that jhe string is infinitely long so that there is no effect of an echo due to 
reflection. Wave motion can be studied either by monitoring the waveform (shape of the wave)as it moves 
along the string, say from left to right, or we can conceitrate on a specified element of the string and observe 
its motion. The waves in the string are transverse in nature since the displacement of any element is in the y 
direction perpendicular to the direction of travel of the wave which is the x direction.

/
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the disturbance travels along

In contrast to this, consider the motion of a sound wave, set up in a long air-filled pipe by using an oscillating 
piston. In this case, the displacements of small elements of air are back and forth and hence parallel to the 
direction of propagation of the wave. Such wave motions are termed longitudinal. Sound waves are always 
longitudinal in nature.

* sa elemgmi

Fig. 2 The to and fro motion of piston causes a to and fro motion of the element of 
mass in the parallel direction.

Transverse waves in a string

Consider a long string stretched by a tension T. Let a small portion of the string be given a sudden 
lateral displacement. Two thing happen now. The displaced part of the string will tend to return to the original 
position i.e. restoring forces will act on the string. Secondly, the displaced portion of the string will exert lateral 
forces tending to displace adjac nt parts of the string. This results in a pulse travelling out in each directions 
from the original undisplayed part.

£r»
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Fig. 3 A pulse travels along the string in both directions from the source

The speed with which a pulse travels along the string is characteristic of the condition of the string.

What are the conditions for a wave pulse (or a wave) to travel through the string? Or in other words, 
why an elastic medium, such as a string, when disturbed vertically, produces a pulse travelling laterally along 
the medium? These reasons can be listed as below. 1. There must be forces acting along the string which 
causes the displacement of the medium (string) as the pulse passes through. 2. The string must have elasticity, 
i.e. it does not tear apart under the stress created by the passing wave; at the same time, it should not be too rigid 
to yield to a pulse. 3. The string must have inertia so that when it reaches the equilibrium position, it 
continues to move and go beyond the equilibrium position. In figure 4, we have shown the forces acting on the 
cord corresponding to various stages. The forgoing reasons indicate that such forces must be acting so that the 
string is stretched and contracted to keep the pulse moving along. The segment of the string nearer the source 
passes its energy to the string segment adjacent to it by doing work on it (stretching the segment, for example). 
Once it has given up this energy, the crest formed by the wave pulse collapses and the string attempts to come 
to its original position, but due to its inertia it overshoots the equilibrium position creating a downward crest 
which is then passed on to the next segment of the string. - • • '
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Fig. 4 Forces acting on a section of the string 
Inset Shows the vector addition of Fx and F, to get F neE

The figure illustrates the forces acting on the segments. When the string segment AB is pulled upward 
forces Fj and F, (restoring forces) counterbalance it such that the upward motion of the string is stopped. The 
net downward force, Foet, on the segment acts to accelerate it downward according to Newton’s second law of 
motion. In the segment CD the sum of the forces F3 and F4 cancel out and no net force acts on this element 
and no acceleration at that point. The upward net force on EF can also be explained similarly.

To show that energy is transmitted along the string

Consider the forces acting at any point on the string. For example, F5 is the force acting at point E on 
the segment EF. The vertical component of this force is F5sin 0 which is acting upward and hence pulls a 
particle at point E upward with a velocity V = s/t. Let the particle'move a distance s = Vt. This means that an
amount of w'ork W = Fs = (F5 sinO) (Vt) is done on the point E by the adjacent segment of the string. This work 
is done by each particle in the string on the adjacent particle. In this manner, the string passes along the energy 
transmitted to it by the wave.

To derive an expression for the speed of the pulse in terms of the tension T and the characteristics of 
the string (medium).

Let us consider the forces acting on a small section of the pulse.

rA0 = length of the arc of the string AB

3
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Fig. 5 rA9 = length of the arc of the string AB

Since we are interested in the relative speed of the pulse with respect to the string, we imagine that the string 
is moving over the top portion of a stationary hump (which has the shape of a pulse) with the relative speed V. 
We consider the top portion of the string as an arc of a circle of radius r such that the length of the segment AB 
= r A0. From figure, we see that the net downward force on this segment is

F
net

= F

Since F, = F2 = T (the tension in the cord, 
A_0F = 2 T Sinnet

2 T a e Since Sin ts e a e for small A0.
\ 2

The centripetal acceleration in the segment AB is a = — 
r

Let p be the mass per unit length of the string. Then, p

(1)
u2and hence the force F = ma = m —.
r

— , since 1 = r A0, m = pr A0.

1>6
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F = p r A
r

( 2 )

Since these two forces must be equal, we have,

f = rA0=(irA0 — 
r

or, u2 (3)

Each pulse will travel along the string at constant speed which depends only on the tension T and the mass per 
unit length of the string. The assumption that A0 is small means that the result holds good only for small 
transverse pulses (but the pulse may be of any shape).

Example

One end of the string is fastened to a stop and the other end hangs over a pulley with a 2.0 kg mass 
attached. What is the speed of the transverse wave in the string?
T = Mg = (2.0 kg) (9.8 m/s:) = 19.6 N

g = ” = 3 ■ 0 X 1 °'3 ** = 7 . 5 X 1 0-

I 4 . 0 /n m

U =

1 9 . 6 kg — 
s2

7.5 X 1 O'4 — 
m

2.6 X 1 04 — =1 6 0 m s ''

jg

•Q
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Travelling Waves
Consider a long string stretched in the x-direction. A transverse pulse generated at one end at t=0 is 

travelling along the string. Let the shape of the string at x at t=0 be represented by y =f(x).

y — f(x), t=0
If we neglect the internal losses, such a wave would travel along the string without any change in shape. If V 

is the magnitude of the wave velocity the wave travels a distance Vt in time t. Therefore, the equation of the 
curve at time t is given by

y = f(x-Vt), t=t (4)

This expression ensures that the waveform at t=t at x=Vt is the same as the waveform at x=0 at t=0. Equation 
(4) therefore gives the general equation representing a wave of any shape travelling to the right. If the wave 
were travelling to the left, we could represent it as y= f(x+Vt).

Let us now consider a particular part of the wave (phase) as time goes on. For this, we can look at a 
particular value of y, say the top portion. This means, we are looking at how x changes with t as x-Vt remains

at some particular value. For this, x should increase as t increases so that x-Vt remains constant. To find the 
velocity of a particular phase of the wave, we can use the condition,

x-Vt = const.
Differentiating w.r.to time t, dx/dt = V
V is called the phase velocity of the wave.

The wave equation can also be interpreted further. For a particular value of time t. the equation gives y as a 
function of x. This gives the actual shape of the pulse. The same result holds good for longitudinal waves also. 
An example for longitudinal wave is a long tube containing gas through which a pressure change is passing 
through. (See Fig.2)
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Let us now consider a particular waveform (which is also the simplest and the most important one). We 
represent this waveform at time t=0 by the relation,

Fig. 7

A is called the amplitude of the wave. It corresponds to the maximum displacement/ The value of the 
displacement y is the same at x as it is at x + X , x + 2 X etc. This distance X is called the wavelength of the 
wave train . It represents the distance between two adjacent points in the wave having the same phase. Let us 
assume that the wave is travelling to the right with a phase velocity V. In time t, the wave would have travelled 

a distance Vt. Hence the equation of the wave at time t is given by
2 7t

y = A S i n —— ( x - U f) (5)
X

The time required for the wave to travel a distance of one wavelength X is called the period T.
X =ut.

Using this, we get

, n . 2 71,y = A Sin -----  ( x - in)
A.
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= A Sin 2 K x
X

V

X

From this equation, we see that at any given time t, y has the same value at x + X , x + 2 X etc. as it has at x

= A Sin 2 71
x ( 6 )
X T

Also any given position y has the same value at t+T, t+2T etc. as it has at t.

Let us now reduce eqn.(6) into other usable forms. We define two quantities wave number k and angular
frequency co, using the relations,

, 2 it , 2 71
k = ------- and co = -----

X T
In terms of these quantities, a sine wave travelling to the right is represented by

y =A sin (kx - cot) ' (7)

Similarly, a wave travelling to the left is given by 

y =A sin (kx + cot)

Using the relation X = VT, Substituting for X and T we get

In our forgoing treatment we have assumed that the displacement v=0 at x=0 at t=0. But in practice, this need 
not be true. To take into account this, we write the general equation of a travelling wave as

y = A sin (kx - cot - <E>) where O is called the phase constant.

Sometimes, we may be interested in the displacement at a particular point, say, x= 7i/k . This is obtained by 
cutting x= 7i/k in eqn.(7).

We get y = A sin (it - cot - <X>)
= A sin (tot + <X>) (9)

This represents a simple harmonic motion. Thus any particular element of the string undergoes simple harmonic 
motion about its equilibrium position when a wave train travels along the string.

A
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CHAPTER 4

TRANSMISSION OF ENERGY

In all travelling waves, energy travels through the medium in the direction in which the 
wave travels. Each particle of the medium has energy of vibration, and passes energy on to 
succeeding particles.
Consider a portion of a string at some position x at time t.

Fig.8

F is the tension acting on the string at position x. The transverse component of this force
g

is F - -F —— 6 x. The minus sign is due to the fact that this force is exerted bv the
trans § Y *

ft
element to the left of x on the element to the right of x. Since is negative, Fwns is positive 

6 x ft
and is alone the direction of increasing y. The transverse velocity of the particle at x is —— 

6 t

and it may be negative or positive. Since power is given by the product of force and velocity, 
the power expended by the force at x, or the energy passing through the position x per unit time 
in the positive direction is

P =
6 t

(10)

Assuming sinusoidal wave, v = A sin (kx-wt) for a wave propagating in the positive x -direction.
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Assuming sinusoidal wave, y = A sin (kx-wt) for a wave propagating in the positive x -direction. 
The magnitude of the slope at x is

e
—— = k A Cos ( k x - co r), t = constant, and the transverse force is,
6 x

= - F k A Cos ( k x - 6) /) - (11)

The transverse velocity of the particle at x is ,

u = —- = - bi A Cos ( k X - G) 0 . (x = constant), (12)
6 t

Power transmitted through x is

P = (transverse force) (transverse velocity) (P = F . u)

= [-F kA cos (kx - cot)] [-coA cos (kx-wt)]

=A2 kco F Cos2 (kx - cot) (13)

This equation shows that the power or rate of flow of energy is not constant. (The power 
input itself oscillates). The energy passing through the string is stored in each element of the 
string as a combination of kinetic energy of motion and the potential energy of deformation. The 
situation is similar to that obtained in an alternating current circuit, consisting of an inductance 
L and a capacitor C. As the power input oscillates, the energy is stored in the inductor and the 
capacitor alternately. In both cases, loss of energy occurs. In the string, it is due to internal 
friction and viscous effects; in the circuit, it is due to the resistive elements in the circuit. The 
power input to the string is found by taking the average over one period of motion. The average
power delivered 

t*T

where T is the periodJP = - I P d ( 
T

I
I

= */2 A2 ko>F;

A k bi F Cos' ( k x - w t) d t

the average of Cos2 over a period reduces to ’/:.

Using k = —, P
v V

Where w = 27ty
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= 2 Jt1 A2 YJ £ 
u

(14)

We find that the average power does not depend on x or t. In the case of a string, the speed u

is related to F and as u =

P = 2 7t2 A 2 y2 p u

Thus the rate of transfer of energy depends on the square of the wave amplitude and the square 
of the frequency. This fact holds good for all types of waves.

Principle of Superposition

Standing Waves (Stationary Waves)

If two sinusoidal waves of same amplitude and frequency travel in opposite directions 
through a medium, the two waves will be superposed in such a manner that stationary waves or 
standing waves are produced. Consider two such waves represented by

y, = A sin (kx - cot) and 
y2 = A sin (kx + ot)

The resultant wave is given (by the principle of super-position)
y = y i + y 2 = A [ Sin (kx - ot) + Sin (kx + ot) ]

C + D D - C Sin C + Sin D = 2 Sin ------- — Cos ---------
2 2 ./ J

Y = 2A Sin kx Cos ot (15)

This equation represents a standing wave. A particle at any point x executes simple 
harmonic motion as time goes on and all particles vibrate with the same frequency. Whereas 
in a travelling wave each particle of the string vibrates with the same amplitude, in a standing 
wave, the amplitude is not the same for different particles but varies with the location x of the 
particle. From eqn. 15, we see that the amplitude is given by 2A sin kx which itself is a 
sinusoidal function of position. The amplitude has a maximum value of 2A at positions where

, 7t 3 7t 5 7t . 
k x = — , ------  , ----- , etc.

2 2 2

. k 3 71 5 71
2 k ’ 2 k ’ 2 k

Cr



Transmission of Energy

Since k - , this leads to x = — , —— , etc.
A 4 4 4

These points are called the antinodes and the distance between two consecutive antinodes 
is equal to A Z2, one-half wavelength. At kx = k, 27t, 3 k, etc, we find the amplitude to be zero 
i.e. at x = A /2, A, 3A/2 etc. The points of zero amplitude are called nodes and nodes are also

separated by one half wavelength. Fig.9 illustrates the nodes and antinodes in a standing wave 
pattern.

What happens if the amplitudes are different ?

We have seen that P - 2 k2 A 2 y2 g u (rate of transfer of energy).

antmode

Fig.9

Do standing waves transport energy ?

Within a stationary wave, there is no flow of energy through the medium. Since the 
standing waves are produced by combining two waves of equal amplitude and frequency in 
opposite directions, energy transfer in one direction by one wave is equal to the energy transfer 
by the other wave in the opposite direction. The energy alternates between vibrational kinetic 
energy and elastic potential energy and cannot be transmitted through the nodes. We can also 
regard the standing wave pattern as an oscillation of the string as a whole, each particle 
oscillating with simple harmonic motion of angular frequency co and an amplitude that depends 
on its location. We can imagine a vibrating string as a system of coupled oscillators where each 
part of the string has inertia and elasticity. Hence the vibrating string can be thought of as a 
collection of coupled oscillators.

What is the comparison with a spring mass system? A spring mass system has only one natural 
frequency of vibration whereas the vibrating string has a large number of natural frequencies.

Can we recall the standing wave pattern as a wave motion ? Yes - we can describe it as the 
superposition of two travelling waves, travelling in opposite directions.
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I—F

u

U :<

£
f t

Fig.10

Figure 10 shows how the energy associated with the oscillating string shifts back and forth 
between kinetic energy of motion K and potential energy of deformation U during one cycle. 
A similar description can be given for the vibrating spring mass system.

a - all pot. E string momentarily at rest.
arrows - velocities of the string particles at the positions shown
c - string not displaced - but the particles have their maximum speed, energy is all kinetic.

The cycle is completed when the initial condition a is reached.
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CHAPTER

RESONANCE

Whenever a body capable of oscillating is acted upon by a periodically varying force having 
a frequency equal to one of the natural frequencies of oscillations of the body, the body is set into 
vibration with a relatively large amplitude. This phenomenon is called “resonance” and the body 
is said to “resonate” with the applied impulses. The phenomenon of resonance can be understood 
by analysing the forced oscillations. Consider an ideal mass-spring system which has a natural

k
frequency of oscillation given by o = 2 it Y = , — , where co is the angular frequency, k 

\ m

the force constant or the spring constant of the system and m is the mass attached, to the spring. If 
there is friction represented by a frictional force bu (where u is the speed), the natural frequency of 

the spring-mass system is given by

k b 1 2

= 2 7t Y = — -
N m I 2 m]

What happens if the system is subjected to an oscillatory external force? The resulting oscillations 
are called forced oscillations. These forced oscillations have the frequency of the external force and 
not the natural, frequency of the body. But the response of the body depends on the relation between 
the forced and natural frequency. If the external force is such that it supplies a succession of small 
impulses at the proper frequency, the system can be set into oscillations of large amplitude. A child 
when swinging pumps at proper intervals and builds up a large amplitude. The problem of forced 
oscillation is useful in acoustic systems, alternating current circuits, atorryc physics and also in 
mechanics.

Let us consider the equation of motion of a forced oscillator. We assume that the external 
driving force is given by F = Fo cos co t and let x be the displacement. The equation is given by

d2 x + k_x_ 

d t2 m
(26)c o s CO t

m

We may assume F and x to be complex quantities for the purpose of mathematical analysis i.e., both 
x and F have a real part as well as an imaginary part. In the end, when the solving process is 
complete, we just take the real part of the solution. This approach using complex numbers makes 
the mathematical analysis very simple. For example, we may write x = x r+j x, and F = Fr + j F,. 
We may substitute for x and F and separate out the real and imaginary parts (two complex numbers 
are equal only when their real and imaginary parts are separately equal).
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Let us now try to solve eqn. (26) by writing it as

d2 x kx F , u,------ + — = —
d t2 ™ m

(27)

where F is a complex number. The solution is expected to yield x also as a complex number. 
When the equation is applied to the case of a forced oscillator, F eywis the driving force having 
some amplitude, phase and frequency, the frequency being that of the applied force. Let us assume 
that our solution x is also a complex quantity x = x eJ(M. We know when an exponential function 
is differentiated, we can simply write it as the function multiplied by the simple exponent,

i.e. A ( e^') = j o

Or — (x e' “ ') = x j G) e' w ‘ 
d (

For a second derivative we multiply the right side again by jo i.e. we get

— ( x* e/w') = -x co2 e'u'since j2 =-l.
dt2
Our equation becomes

-x w2 eJ*' + k x eJWI = — eJWI 
m m

. F I m or, x = ---------
k— - CD 
m

yfc 2Put — = wo where O)0 is the natural frequency of oscillation 
m

F
x - ---------------------

"» ( O* - G)2 )
(28)
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Since m ( cd02 - cd2 ) is a real number, the phase angles of F and x are the same. If cd2 > cd02 , the 
phase angles are 180° apart. (When o02 > cd2, cd02 - co2, is +ve .-. phase same).

We get what we want about resonance from equation (28), which is the solution of forced 
oscillation. The magnitude of x increases enormously when co is nearly equal to co0 and this 
condition is known as resonance (At resonance we have co = co0 and x goes to infinity). That is , we 
get a strong response when the driving force is applied at the right frequency. For example, if we 
have an oscillating pendulum and we give a gentle push each time it comes to one side, we can build 
up a large amplitude of oscillation. This is what we see normally when a child playing in a swing 
pumps at proper intervals and builds up a large amplitude. Such forced oscillations are useful in 
acoustic systems, alternating current circuits, atomic physics and also in mechanics.

Let us now consider a more practical case of a forced oscillator. Our equation (28) tells us 
that if the frequency cd were exactly equal to cd0 , we would have an infinite response. But in 
practice no such infinite response occurs because other things like friction or damping limits the 
response. In our earlier analysis, we had ignored this parameter. Now we add a term to equation 
(27) to take account of the friction.

What must be the form of this frictional term depends on the problem at hand. However, 
in many circumstances, the frictional force is proportional to the speed of the moving object. An 
example is the frictional force or viscous force experienced by an object moving slowly in oil or 
thick liquid. There is no force when the body is not moving, but the faster it moves, the faster the 
oil has to go past the object and the greater will be the resistance. So we can assume that the 
resistance term or frictional force term is proportional to the velocity :

d xFf = -c ——. Why negative ? It is a frictional force. For convenience in mathematical 

analysis, we write the constant c as m times y. Therefore, our equation of motion is,

d x d x . _m ------  + c ----- + k x = F
d t2 d t

(29)

Using c = y m and co02 = k/m or k = cd02 m, we get 

d2 x

d f

d x 2+ y m ----- + CDo m x = F
d t

or, d2 x 

d t2
(30)d x 

d t
2 F(jiX= —
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This equation is in a convenient form for solving.

A very small value of y corresponds to very small amount of friction; a large y amounts 
to considerable friction. To solve this equation, we can use the complex number method. We write 
F as the real part of F eJ™ and x as the real part of x e)<M. Substituting these into our equation, 
we find that

[ ( j w) 2 x + y ( j co) x + u0 x] eyw
f *\ 

F_ (31)

Dividing both sides hy elwt,

F 1x = — --------------------------
m CO* - CO2 + j Y W

(32)

Rewriting --------- ------------------------- as R
[ m (o‘ - co2 + j y w) ]

we have R = --------------- ---------------- and x = F R (33)
m (co* - bi2 + ;' y w )

Since the factor R is complex, we may write it as p eJ0. The significance of this can be brought out 
as follows. Let F = F eyA. Therefore, the actual force Fo

"f = F

= F eJ{Mo

= F eJ^ ~

is the real part of Fo e^ ejwt i.e. Fo cos (cot + A). Similarly from (33) we get.

x = F R = F eJ& o eJ ® = o F pt (O' O

Since the displacement x is the real part of x eiwt, it is given by the real part of 

F R eJtM = F eJ* p ejQ eJ<Mo •

«
«
«
«
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i.e. x is the real part of p Fo eJ ( 0 * A 5

Since p and Fo are real this is given by

x = p F o Cos (cor + A + 0) (34)

Equation (34) can now be interpreted as follows. The amplitude of the response is the magnitude 
of the force F multiplied by a certain factor p. It also tells us that x is not oscillating in phase with 
the force which has the phase A. The phase of x is further shifted by an amount 0. Thus p and 0 
can be interpreted to represent the size of the response and the phase of the response.

To get a physical idea of p :
To square a complex number, we multiply it by its complex conjugate.

m (G)2 -gj2 + ;' y w)

R2 = R R ' = p2 =
m 2 (g>2 -or + y Y " w2 ~ j Y <*>)

P2 =
zn2 - [ ( G)2 - G>2 / + Y2 U2 1

(35)

Also, — = —— = — e yQ = m ( co2 - or + j y gj) 
pe/0 P «

— (c os 0 - j s i n 0) = m ( CD* - CD2 ) + j m y (O

From this we find, 1 / p cos 0 = m (cd0* - cd -)

1 • QsinO = myw 
P

and hence, tan 0 = -------Lff—
cd2 - G)2

(36)

A3
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This indicates that 0 is negative i.e., the displacement x lags behind the force F by an amount 0. 
Eqn. (35) can be represented graphically by plotting p? against frequency to. (See Fig. 15 a).

pr which is proportional to the square of the amplitude is also proportional to the energy. 
For small values of y, the frictional force constant, the response tends to infinity when to equals tn0.

But due to the presence of the term --------
of phase shift 0 against frequency. Y*

, the response remains finite. Fig. 15b shows a plot

It can be shown that the width of the resonance curve at half minimum is given by Ato = y for small 
values of y. Thus the response is sharper and sharper when the frictional forces are made smaller 
and smaller.
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CHAPTER

DIFFRACTION

D.l. What is diffraction ?

Place a source of light on one side of a metal sheet with a hole pierced in it. If a opaque 
screen is kept on the other side, the area in front of the hole gets illuminated. If the hole is made 
smaller the area of illumination also becomes smaller. What happens if the hole is made very small? 
Surprisingly the area of illumination instead of becoming still smaller, starts getting bigger. Of 
course the intensity will be very small and so it is better observed in a dark room. This phenomenon 
which is contrary to expectation is due to a phenomenon called diffraction. When a beam of light 
passes through a narrow opening it spreads out to a certain extent into the region of geometrical 
shadow and this is due to diffraction. Light suffers deviation from its straight path while passing 
through narrow openings and while passing close to edges of objects. Some light bends into the 
geometrical shadow and its intensity there falls of rapidly. If the wavelength of light is smaller than 
the width of the obstacle of the opening, then the deviation is small. But if the wavelength is 
comparable, then the bending is appreciable. Diffraction also occurs when light goes over sharp 
edges of big objects.

If one observes the diffraction pattern formed by a narrow slit kept in front of a 
monochromatic light, dark and bright bands will be seen in the geometrical shadow. Unlike 
interference bands these bands are of unequal width.

Newton tried to explain diffraction on the basis of attraction and repulsive forces exerted by 
the edges on the corpuscles of light. Dr. Young tried to explain it on the basis of Huvgen’s theory 
as interference between incident light waves and light waves reflected at grating incidence. But they 
could not explain why the bands are not of equal width. Later Fresnel gave the correct explanation 
on the basis that diffraction is due to interference of secondary wavelets originating from various 
points of the wavefront which is allowed to pass through. These wavelets will have varying phase 
and amplitude and interference of these wavelets gives rise to diffraction bands.

Diffraction phenomena are divided into two categories.
1. Fresnel diffraction in which either the source or the screen or both are at finite distance from 

the aperture.
2. Fraunhotter diffraction, in which the source of light and the screen are effectively at infinite 

distance from the aperture.

D.2 Fresnel Diffraction
Fresnel made the following assumptions while explaining the diffraction phenomenon.

1. The wave front can be divided into large number of small zones called half-period zones.
The net effect is combined effect of all these zones.
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2. The intensity of the pattern is proportional to the amplitude of the disturbance at the opening.

3. The effect of any particular zone at a point is inversely proportional to the distance of the 
point from the zone.

4. The effect at a point will depend on the obliquity of the point. The obliquity factor is defined 
as (1+ cos e) where © is the angle the point makes with the forward direction (See Fig.l).

Incidentally the dependence on obliquity factor explains why the intensity is zero behind the wave 
front where © = 180°.

Fresnel’s explanation of propagation of light through an aperture

Fig. 2 Fresnel's 
Half Period Zones

4
4
4
4
4
4
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Let AB CD be a spherical wave front travelling in the forward direction and P an external 
point at a distance b from the wave front. Let the wavelength of light be A. and OP be perpendicular 
to the wavefront. Every point in this wave front can be thought as an origin of secondary wavelets. 
The secondary wavelets coming from ABCD produce the diffraction pattern on the screen. In order 
to find the resultant effect at P, we divide ABCD into zones, as follows. Around the point O 
construct series of circles on the wavefront which are at a distance b + X/2, b+ 2X/2, b+3X/2 .... 
from P.

The area of the first zone will be approximately equal to ITr ,2 = FlbA,. The area of the second 
zone will be equal to IIr22 - ITr,2 , which will also be equal to IlbX. Observe that area of all the 
zones will be approximately equal to IlbA. and the radius of the nth zone will be equal to JzjZ>A.

By Huygen’s principle every point on the wavefront will be sending secondary wavelets in 
the same phase. But since their distance from P is different, they will reach P with different phases. 
Since nth zone is on an average distance A/2 father from (n-l)the zone from P, the successive zones 
will produce resultants at P which differ by 11. This means that successive zones differ by half a 
period and that is why these zones are called half period zones.

If we represent by An the amplitude of the light from the nth zone, the successive values of 
An will have alternating signs because of their phase changing by II. The resultant amplitude A of 
the whole wave can be written as

A = A, - A2 +A3 - A4...... (-1)"'1 An
The magnitude of the successive trains decreases slowly because (a) the amplitude decreases 
inversely with the average distance from P and (b) increasing obliquity.

The sum of the series can be evaluated as follows. Supposing n to be odd, then
/ , / , , \J. A,1 - J + -1 + 1
J 2 2 > 2 J

Since the amplitudes of any two adjacent zones are very nearly equal. We can write,

(odd n)

It can be easily verified that if n is even then
’2‘ 2

(even n)

4^
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If n is large enough then, An « A, and A - A,/2

But ifn is small, A will have different values as follows. If the geometry in such that there is only 
one zone, then A = A,.
If there are only two zones, then A - 0.

yf . A.
If there are three zones, then A - A, - A2 + A3 - - + .

This suggests why the intensity of a point P on the axis passes through maxima and minima as the 
screen is slowly moved away from the aperture. *

Of course, it is possible to get the same effect by holding the screen in the same position and 
altering the size of the aperture.

Example 1: Consider the diffraction produced by a small circular aperture. Discuss the intensity of 
the diffraction pattern produced at a point P away from the axis.
Hint: Draw altitude PM where M is a point on the sheet having the aperture. Draw half period zones 
around M. Some zones will pass through the aperture. Resultant effect of these zones gives the 
intensity.

Example 2 : A circular aperture 1.2mm diameter is illuminated by monochromatic waves. A screen 
is steadily moved away from the aperture. When the screen is 30 cm. from the aperture, the centre 
of the patch becomes dark for the first time. Calculate the wavelength of light.
Hint: There will be only the first two zones in the aperture. Answer is 6000 A.

Example 3 : Consider a spherical wave front emitted from a point source of light and incident on 
a small opaque disc. P is any point on the principal axis on the opposite side. Explain why the 
diffraction pattern always consists of a central bright spot.
Hint: First few half period zones are cut off by the disc. Resiiltant of the remaining zones is never 
zero.

Example 4 : Discuss the diffraction pattern obtained when a thin wire is kept parallel to the slit kept 
in front of a source of monochromatic light.
Hint: Consider half-period zones of a cylindrical wave front, both above and below the obstacle. 
Diffraction bands are seen on both the sides.

Diffraction pattern due to cylindrical wire or straight edge etc. are obtained considering 
cylindrical wave fronts. The wave front is divided into zones and sub zones.. The resultant 
amplitude is obtained by adding the effect due to all the sub zones. The resultant of the amplitudes

4%
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of zones and sub zones of wave fronts obtained vectorially gives Comus Spiral. Its mathematical 
description gives Fresnel’s integrals.

D.3 Fraunhofer Diffractions

Single Slit : Consider the diffraction pattern formed when light is incident on a single slit. In 
Fraunhoffer diffraction since both the source and the screen are effectively at infinite distance the 
light wave fronts will be plane and since the screen is finite and small, the obliquity factor and so 
the amplitude for all the zones will be the same. Consider the following geometrical arrangement 
(Fig-3).

M

AB is a slit of width b spherical wave front XY is incident on a converging lens L, The emerging 
plane wave front passes through the slit. Each point on this wave front acts as source of light. The 
diffracted beam is converged by the lens L, and a pattern is formed on the screen MN.

Secondary waves travelling along the principal axis meet at P on the screen. They travel 
equal distances AQP and BTP. Secondary waves travelling at angle 0 will meet at P’. Let the 
incident wave front be divided into large number of strips. The magnitude of amplitude of vibrations 
for all the zones will be the same but not their directions. The path difference between rays from A 
and B is bsin 0 and the corresponding phase difference will be 2a = 2k/A. b sin 0 where A. is the 
wavelength of light. The resultant amplitude can be obtained by vector polygon method. Each strip 
contributes magnitude (a) to the resultant amplitude (Fig.4). The phase difference between 
successive strips is small.
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Fig.4 The resultant amplitude

If the number of strips is very 
large, then the polygon sides will form 
an arc OM = 2ra = ma.

The resultant amplitude is given by 
OM = 2r Sina

= A Sina
a

Sin a

Where ma = Ao and a = izbSinO
A

The corresponding intensity will be given by I = Ao
cr

The intensity distribution is given in Fig.5. The maxima and minima positions are as 
follows:

2 Sin ‘ a

60
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Central Maxima: At point P on the screen where 0 = 0, a = 0.

Secondary maxima : Its direction is given by Sina = 1 , = V & $in = 2 ” 1 rc.

Minima : Its direction is given by Sina = 0 or a = 71 Sm= n R n * 0.

It is easily verified that intensity of first secondary maxima is about 5% of that of the central 
maxima.

Example 5 : Calculate the ratio of the intensity of the third maxima to the intensity of the central 
maxima.

Example 6: Discuss the Fraunhotter diffraction at a circular aperture and show that the radius of the 
central maxima is equal to fX/d where d is the diameter of the aperture, X is the wavelength and f is 
the focal length of the lens used to converge the diffracted rays.
Hint: Proceed as for single slit The position of the first minima is given by dsin 0 = X and if x is 
the radius, then sin 0 =• 0 = x/f.

Example 7: Discuss Fraunhofer diffraction pattern at a double slit.
Hint: Diffraction pattern is due to two phenomena i) interference of waves coming from 
corresponding points of two slits and ii) diffraction of secondary waves coming out of each slit.

t
b
4

Fig. 6
Double slit 
diffraction
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Due to interference, maxima is obtained where dsin0 = nA and minima when

. n 2 n + 1 ,d s i n 0 = -----------  A.
2

Due to diffraction, b sin 0 = nA give minima, n * 0 and b s i n 0 
maxima.

A gives

The two may be combined to get the resultant intensity as / = 4 2 ——- cos2 T where
’ 0 p

g _ TC b Sin 0 y _ K d Sin 0
P A A '

Interestingly some angles where interference maxima are expected, minima is observed and 
this is because these positions correspond to diffraction minima also. These are commonly known 
as missing orders.

D4. Plane Diffraction Grating

It consists of very large number of narrow slits side by side. The common grating used in 
the class has about 6000 lines per centimetre. When wavefront is incident on the grating light is 
transmitted through the slits and is obstructed by the opaque portions. The diffraction pattern is due 
to both diffraction and interference phenomenon. The sharpness of the band increases and tends to 
become a line when number of slits is increased.

In the arrangement to obtain Fraunhofer diffractipn, replace the single slit by a diffraction 
grating. A plane wave is incident on the grating. AB is the slit and BC the opaque portion of width 
b and a respectively.

&
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Fig.7 Diffraction grating

The screen is kept at the focal plane of the collecting lens. The point P where all the 
secondary waves reenforce gives the position of central bright maximum.

Next consider secondary waves travelling at an angle 0 with the incident direction. Rotate 
the lens till its axis is parallel to the direction of secondary waves.

The secondary waves meet at P, on the screen. A and C, B and D are corresponding points. 
The intensity at P will depend on the path difference between the secondary waves coming from 
corresponding points.

Path difference = AC sin 0 
= (a+b) Sin 0

The intensity will be maximum if p.d. is integral multiple of X. So position of maxima is 
given by dsin 0 = nX Where d = a+b, n = 0,1,2,....
n is called the order of the diffraction pattern and d is called the grating space or the grating element.

S'
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Fig.8 Formation of maxima

Example 8: If N is the total number of lines in the given grating surface show that there are N-l 
minima between any two principal maxima.
Hint: Minima is obtained when all secondary waves from top half of the grating cancel the effect of 
those from lower half. Then the path difference between waves from extreme positions of the 
grating will be X. This suggests that path difference for waves from A and C should be A./N where 
N is the total number of grating element. Similarly, minima will be obtained when path difference 
i) 2A./N, 3A./N..... (N-l)/N X

Additional Reading
1. A textbook of Optics - Subramanyam and Brijlal
2. Fundamentals of Optics - Jenkins and White.
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CHAPTER

. POLARISATION

Light is electromagnetic wave. The electric vector E the magnetic vector B and the direction 
of propagation are mutually perpendicular to one another. Both E and B vectors vary sinusoidally 
in identical fashion. So it is sufficient to consider any one of them to describe optical phenomenon. 
Customarily E vector is considered.

Ordinarily a beam of light travelling in z-direction consists of millions of light waves. The 
electric vector of these waves vibrate in arbitrary directions in XY plane. Such a light is said to be 
unpolarised. However, if the electric vector of all the waves vibrate in one direction only, say Y 
direction, then the beam is said to be polarised in the XZ plane. In the diagram, it is polarised in a 
plane normal to the plane of the paper. The vibrations are represented by double headed segments 
in the YZ plane.

On the other hand, if 
the vibration are in X- 
direction only, they are 
represented by dots and the 
light is said to be polarised 
in YZ plane. There is no 
vibrations in the plane of 
polarisation.

■>
Z

Fig 1 Vibrations in the plane of the paper (I) and normal to the plane of the 
paper (.)

Analytical Treatment

A mathematical analysis of the vibrations of the E vector leads to further classification of the 
polarised light.

5b
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Consider a beam of light propagating in the z-direction. The E-vector of different waves will 
be vibrating in the XY plane in all possible orientations. These vectors can be resolved 
intocomponents along X and Y. Their resultant can be written as

EX = Ex = Ax cos wt 
and XY = Ey = Ay cos (wt + 6)

where Ax and Ay are the amplitude of the resultant components along X and Y directions. Consider 
the following cases.
1. If Ax = Ay and 6 is tt/2, then Ex = Ax cos cot. Ey = Ax sin cot
So, Ex2+Ey2 = Ax2

This represents circularly polarised light. The tip of the resultant vector will describe a circle 
as light propagates. In this case, if the resultant vectors are projected on a screen normal to direction 
of propagation the tips will describe a circle.

E1 E2
2. If Ax * Ay and 6 is 7t/2, then, — + —= 1

A2 A2
* y

This represents elliptically polarised light, the tips of the resultant vector will describe an ellipse as 
the wave propagates.

3. If Ax * Ay and 6 is n7t then Ex = ± Ax / Ay Ey
4. If there is no definite phase relation between Ax and Ay, then the light is unpolarised.

This represents plane polarised light. The tips of the resultant vectors will describe a straight line.

Polarisation by Reflection

When unpolarised light falls on a glass plate, part of it is reflected and part of it is 
transmitted. Malus observed in 1808 that the reflected light is partially polarised. The degree of 
polarisation depends on the angle of incidence. The reflected beam is plane polarised when the 
incident angle is 57°.

Later in 1812, Brewster observed when the polarisation by reflection is maximum, then the 
reflected beam and the refracted beam are at right angles.

G G
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Fig.3 Polarisation by a pile of glass 
Plates

Fig.2 Brewster's Law

By Snell Law p = Sin 57° and now Z57° + Zr = 90° 
Sin r

So we get p = Sin 57° = tan 57° 
Cos 57°

So the tangent of the polarising angle gives the refractive index of the material.

The refracted beam is also partially polarised and this polarisation can be increased by using 
large number of glass plates kept in parallel (Fig.3).

Example 1 : When plane polarised light falls on a quartz crystal, it is broken up into two beams of 
light whose E vectors are at right angles to one another. These beams then propagate through the 
crystal and interfere. If the refractive indices for them are 1.55 and 1.54, what should be the 
thickness of the crystal for the outcoming beam to be 1. Plane polarised, 2. Circularly polarised. 
Assume that their amplitude of vibrations are equal.

3. If in the above problem amplitude of vibrations are unequal, what changes do you expect? 
Hint: To be plane polarised or circularly polarised, phase difference should be ti or rc/2 or the path 
difference should be X/q or X/4 respectively. Optical path difference = p,t - p2t.
So, t (p, - p2) = X/2 or X/4 respectively.

5?
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Example 2 : Prove that when light falls on a plane parallel glass plate at its polarising angle, the 
refractive beam falls on the second face of the plate also at the polarising angle.

Law of Malus
Consider a beam of plane polarised light 

coming out of a polariser. Let the angle between 
this incident beam and the plane of transmission of 
the analyser be 0. The intensity of the light 
transmitted by the analyser varies as cos20, (Fig.4).

Fig.4 Malus law

Let OP be the plane of incident light of amplitude R. The amplitude can be resolved along 
the plane of the analyser OA and at right angles to it OB. The component along OA is transmitted 
by the analyser and that along OB is blocked. So, the amplitude of light passing through A,=Rcos0 
or I, = A,2 = R2 cos20 = locos20. Malus law states I, = IoCos20.

Example 3: What is the angle between the analyser and polariser if the intensity of transmitted light 
is 25% of that of the incident light?

Polarisation by scattering

When sunlight falls on water molecules, dust particles, etc. the electric vector of the light acts 
on the positive and negative charges of these molecules. As a result, the positive and negative 
charges deviate along opposite direction and dipoles are formed. The electric vector changes 
sinusoidally and so the dipole moment also oscillates accordingly. So the dipole oscillates with the 
frequency of the electromagnetic waves. This effect is more in the direction of the E vector and less 
in other directions. So the intensity of emitted light will be more along one direction or the light is 
polarised.

Optical Activity
Consider a beam of light incident on a polariser. When the polariser and the analyser are 

crossed no light emerges out of the analyser. But if a sugar solution is kept between the analyser and 
the polariser, some light emerges out of the analyser. Sugar solution rotates the plane of 
polarisation. The amount of rotation depends upon the length and concentration of the sugar 
solution.
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Fresnell Explanation of Rotation

A linearly polarised light can be considered as a resultant of two circularly polarised 
vibrations rotating in opposite directions.

If the two rotations travel with same velocity, then there is no optical rotation.

If the clockwise component travels faster then the rotation of the plane of polarisation is to 
the right and the optical material is called right handed or dextro rotatory. If the anticlockwise 
component travels faster, then the optical material is left handed or laevo rotatory. Quartz crystals 
are dextro rotatory whereas sugar solution is laevo rotatory. Calcite does not produce optical 
rotation. The amount of rotation of the plane of polarisation in sugar solution depends on (1) 
wavelength, (2) concentration of the solution, (3) length of the solution and (4) temperature.

Analytical Treatment

Consider the optical rotation in quartz crystal. The incident plane polarised light is broken 
up into two circularly polarised light.

The clockwise circularly polarised vibration has components
x, = a cos (wt + 6)
y, „ a sin (wt + 6)
The anticlockwise circularly polarised vibration has components 
x2 = -a cos wt 
y, = a sin wt

The resultant displacement is given by 
X = x, + x2 = a cos (wl + 6) - a cos wt 
= 2a sin 6/2 sin (wt + 6/2)

and Y = y, + y2 = a sin (wl + 6) + a sin wl 
= 2a cos 6/2 sin (wl + 6/2)

Both X and Y have same phase = (wl + 6/q). They are at right angles and their amplitudes are 
different. So their resultant is plane polarised and it makes an angle 6/2 with the original direction.

In the above analysis of 6 is zero, then the resultant vibration will be given by X=0 and Y= 
2 a sin wl and is the resultant polarised beam is not rotated.
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Example: Using a polarimeter tube, 30cm long and containing sugar solution, the plane of the 
polarisation was rotated by 12°. If specific rotation of sugar solution is 60°, estimate the strength of 
the sugar solution.

S = 100 by definition
J.C

or _L = ${.= 60x30 
C 100 10x12

or C = 0.067 g/cc
Some crystals are optically active, some are not. It is found that crystal whose lattice is same as its 
mirror image is not optically active. E.g. cubic crystal. Crystal w’hose lattice is not the same as its 
mirror image is optically active e.g. rhombic crystal.

£6
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CHAPTER

LASER

LASER is a short form for Light Amplification by Stimulated Emission of Radiation. It is 
a very special source of light having the following characteristics.

1. Highly directional: Electromagnetic waves propagate along a particular direction. The 
spread of the beam, even after travelling large distances, is extremely small.

2. Highly intense : The brightness of a given source of light is the power emitted per unit area 
of the surface per unit solid angle. An ordinary light emits light in all directions whereas laser is 
highly directional which makes it highly intense.

3. Highly monochromatic: Only electromagnetic waves of a particular frequency gets 
amplified and emitted. There is no spread in the specified frequency. If the wavelength is specified 
as 6000A it remains the same always. It will not be 6001 A or 5999 A.

4. Highly Coherent: It is coherent in space and coherent in time. Spatially coherent means that 
at any time light has some phase everywhere across the wavefront. Time coherence, implies that 
phase of all the waves even after they have traveled for a time t is the same.

Production of Laser
Two fundamental processes namely absorption and emission are involved in the production 

of laser as detailed below.

Absorption
Consider atoms and molecules having energy levels E, and B • If they are irradiated by 

electromagnetic waves of energy E2 - E,, then they absorb the incident energy and get excited to 
higher level E2. The excited states are unstable and so these molecules will return to ground state 
by emitting radiation of frequency (E2 - E,)/h. This emission may be spontaneous or stimulated.

Emission
In spontaneous emission, the excited atoms return to the ground state in about 10 xs. The 

emitted radiation will not have correlation either in phase or in direction. In stimulated emission, 
the photon of energy (E2 - E,) is incident on excited molecules. All the excited molecules will then 
return to its lower state by emitting frequency (E2 - E,)Ti. The direction and phase of the emitted 
radiation will be same as that of incident radiation.

In normal conditions, number of molecules in lower energy level will be more than those in 
the upper level i.e. population of lower level is more than that in the upper level. So when external 
radiation falls on the molecules, the molecules in the ground level will get excited to higher level

6 I
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and molecules in the upper level will return to the ground level. So under normal conditions number 
of molecules going to upper level will be more than those returning to lower level. Initially 
absorption predominates emission and this will continue till the processes of absorption and emission 
compensate each other. So if the intensity of emitted radiation has to be more than the number of 
molecules in upper level should be more or there should be population inversion. So, in order to 
produce laser, it is essential to produce population inversion in the sample. Of course, it is also 
essential that the external radiation interacts with the sample. When radiation of frequency (E; - 
E,)/h falls on the molecules whose population is inverted, then the molecules emit radiation of same 
frequency. The intensity of this radiation is then increased manyfold by multiple reflections. In 
what follows a brief description of the working of a solid-state laser i.e. ruby laser and that of a gas- 
laser i.e. He-Ne is given.

Ruby Laser

Ruby consists of aluminium oxide in which a few of aluminium atoms are replaced by 
chromium atoms. The normal aluminium oxide is a colourless material. Substitution of chromium 
makes it red.

When ruby is irradiated by external radiation Cr gets excited to state E, from ground state 
G.

Cr gives some of its excitations energy to do A1 by thermal transfer and all of them come to 
slightly lower level E;. This state E: is a meta stable state of Cr. So Cr can stay in this state for 

longer time interval (10‘5 s). In this 
interval more and more Cr ions will

z

By irradiation

come to E; and thus population 
inversion is achieved.
E, Al + Cr only Cr is excited.
E: Cr loses energy to A! and
comes to lower state E; (meta stable
state)
Deep red radiation (E? - G )

Deep red radiation

G Al + Cr in ground state

Fig.l Energy level in ruby crystal



Laser

From E2, Cr gives out deep red radiation. Normally this radiation is spontaneous and not 
coherent. To make it more intense and coherent an external radiation of the same frequency is 
applied and the excited atoms are stimulated to give out intense and coherent radiation. Its working 
is briefly illustrated below.

Consider a ruby crystal cylindrical in shape (R) exposed to neon flash lamp and kept between 
a pair of parallel reflecting mirrors. The excited Cr atoms give up excess energy by spontaneous 
emission. The radiation is emitted in all directions and some of them will be normal to the reflecting 
mirrors. These later photons start the laser action.

Fig.2 Working of a Ruby Laser

These photons travelling normal to the mirrors get reflected repeatedly at M, and M and 
increase their number. The reflected light acts as a stimulant and successive reflections add to the 
intensity in a particular direction. The intensity of light emitted in other directions will be small or 
negligible. One of the mirrors is partially silvered which enables the light to come out in the form 
of laser beam.

In actual practice, mirrors are replaced by the polished ends of the rub} rod. These polished 
ends are coated with reflecting material.

Gas Lasers

It is essential that the gas molecules absorb external radiation and get their population 
inverted. Since the absorption band of gas molecules is narrow as compared to that of solids, it is 
more difficult to develop gas lasers than solid state lasers. Since the chances of absorption of 
external radiation is less, it is essential that the exciting radiation be very intense.

£3
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In a typical helium-neon laser, the sample consists of 90% He and 10% Ne. The external 
radiation from RF discharge, raises He from ground level Eo to excitation level E,. The excited state 
will have He both in singlet state and triplet state. The singlet state electrons readily come down to 
ground state which is also a singlet state. But the triplet state electrons are forbidden to come down 
to singlet states. These triplet state He exchange energy by collision with the ground state Ne atoms.

It so happens,
He*+Ne —♦ Ne* + He 
that excitation level of Ne is 
very close to excitation level of 
He. Because triplet state of He 
is a metastable state, the 
population of excited Ne goes 
on increasing. Besides, this 
excited state E,, Ne has lower 
excited states E;, E3, etc. By 
applying external radiation of 
frequency (E, - E3)/h, laser 
is produced.

Fig.3 Energy levels of He - Ne mixture

In this case, the energy is provided by 
RF discharge and He acts only as an 
intermediary agent.
The construction of He+Ne laser is 
briefly described in Fig.4.

Fig.4 He-Ne Laser
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Electrodes A, and A2 are used to excite He. Electrode A3 is used to stimulate excited Ne to produce 
laser. R, and R2 are polished and silver plated. R2 is partially silvered which allows laser beam to 
come out.

Laser Applications

1. Scientific tool
It provides highly monochromatic and intense beam of light for use in research and 

technology. Raman spectra which needed many hours of exposure previously can now be obtained 
in few minutes using laser beam as incident light.

Raman effect experiments can also be used to provide laser beams of slightly different 
frequency than that of incident laser beam.

2. Hollowgraphy
In hollowgraphy where one observes three dimensional images, it is necessary that the light 

used to obtain the image and the light used to observe the image should have exactly same frequency 
and are coherent and intense. These conditions are met if lasers are used as light sources.

3. Calibration
Since the wavelength and frequency are very well defined it is used in defining the standard 

of length.

4. Biology
Individual cells can be destroyed by using lasers and the effect of these cells in the biological 

system can be easily studied.

5. Medicine
Laser is of great help in surgical operations. Operation can be done w ithout piercing the 

body by surgical instruments and this solves the problem of sterilisation and infection. Laser beam 
can be used both for cutting and for destroying the human tissues, tumors, etc.

6. Communication
The laser beams are v ery intense and have practically no dispersion. This facilitates RADAR 

communication. They are also increasingly used in fibre optics communications.

7. Industrial use
Lasers can make holes in metal blocks in few seconds. It is. therefore, very useful in 

industrial cutting. Lasers can be focussed to very small region and this helps in point welding in 
electronic circuits.
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CHAPTER 

GAUSS’S LAW

Charles Hugustin Coulomb (1736-1806) measured electrical attractions and repulsions quantitatively 
and deduced a law known as ‘Coulomb’s Law’. Two charges q, and q2 separated by a distance ‘r’ found 
to exert a force resulting a twist in suspended torsion balance. The force of repulsion was found to be 
proportional to the product of two charges and inversely proportional to the square of the distance between 
them. This force acts along the line joining the two charges. It is interesting to note that the charge q, sets 
up an electric field in the space around itself and this electric field acts on the charge q2 and the charge q2 
experiences a force. Thus the electric field acts as an intermediary role in the forces between charges. If 
the charge q, suddenly moves it will create a field disturbance which will be immediately communicated 
to the charge q2. We will see later when we deal with electromagnetic waves that such electric disturbances 
will move at the speed of light.

In this chapter we will discuss electric field around a point charge and electric potential and apply 
the knowledge to capacitors and dielectrics. The electric field is generally represented by imaginary lines 
of force. The line of force and electric field vector E are such that (i) the tangent drawn to the line of force 
at any point gives the Direction of E at that point and (ii) the lines of force are drawn such that number of 
lines per unit cross sectional area perpendicular to the lines is proportional to the Magnitude of E. When 
the lines are close to each other, E is large and when they are apart E is small.

Karl Friedreich Gauss (1777-1855) a German scientist and mathematician made a number of 
scientific contributions to experimental and theoretical physics. His well known contribution is known as 
‘Gauss’s Law’ which is a statement of an important property of electrostatic fields.

1. Consider a field E of a single isolated point charge q. This charge is surrounded by a hypothetical 
closed surface of arbitrary shape. The field intensity E at every point on the surface is directed radically 
outward from the point charge and its magnitude is

E = k ( 1 )

over a small area ds of the surface. This area is so small it will have the same field in magnitude and 
direction. The component normal to the surface can be written as

E„ = E cos 0

Where 0 is the angle between vector E and the outward normal to the surface.

E ds - E c o s 0 ds = kq dsc o

7

This (ds cos 0 ) is the projection of the area ds at right angle to *r’ and the quotient (ds cos 0 / r ) equals to 
the solid angle do subtended at the charge q by the area ds. Refer fig. (1).

Gt
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Fig.1 Electric field surrounded by a closed surface 

En ds = kq do .(3)

Integrate both sides over the entire closed surface.

J) En ds = kq $)d 0=4 71 kq ( 4 )

The left hand side of this equation formed by multiplying the normal component of E at the surface by an 
element area of the surface and is called the SURFACE INTEGRAL OF E OVER THE SURFACE. THE 
EQUATION POINTS OUT THE SURFACE INTEGRAL IS PROPORTIONAL TO THE ENCLOSED 
CHARGEq REGARDLESS OF THE SHAPE AND SIZE OF THE SURFACE OR THE LOCATION OF THE 
CHARGE. If the point charge is negative the direction of E is inward and the angle would be greater than 
90° and its cosine will be negative.

(2) If the charge is distributed inside a closed surface then it could be subdivided in imagination, into
point charges q,, q, and q3......etc. and the equation could be written for each point charge and sum up over
all charges. The sum of the integral becomes the surface integral of the resultant field and the charge 
become Sq the algebraic sum of all charges inside the closed surface.

j^En ds = 4 7t k L q (4)

THE SURFACE INTEGRAL OF THE COMPONENT OF E OVER ANY CLOSED SURFACE IN AN 
ELECTROSTA TIC FIELD IS EQUAL TO 4 TTk T! M§ THE NET CHARGE INSIDE THE SURFACE. 

in J>En ds = 4 7t k £ q the constant k when expressed in terms of permitivity constant e0 is given by

47ik = 1/ €0 and the value of eo = 8.8541878 x 10 ' C ■ N 'm - » 9 x 10 C 2 N ’m'2
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The above equation can be rewritten as
^E„ ds = q/e„ ......................................... .(5)

The surface integral of E over a closed surface is called ELECTRIC FLUX $ e.

4>e = ds = q/e0..................................... (6)

THEREFORE THE ELECTRIC FLUX LINKED WITH A CLOSED SURFACE IS PROPORTIONAL 
TO THE CHARGE ENCLOSED BY THE CLOSED SURFACE.

e0J>I?d.F=q is called the GAUSS’S LAW.

This law is one of the fundamental equations in electromagnetic theory and we will see more of it 
when we deal with Maxwell’s equations.

3) Consider a case of two equal and opposite point charges as shown in fig (2). The dashed lines 
represent the intersections with the plane of the figure of the hypothetical closed Gaussian surfaces. The 
flux <I>E is positive where the positive charge is enclosed by a closed surfac, S It is negative when 
negative charge is enclosed by the Gaussian surface S2.

What would be the value of flux <X> E at enclosed surfaces S3 and S4 ?
Give reasons for your answers.

Fig.2 Electric flux in the case of two equal and opposite charges

6^
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Fig. 3 Flux in the case of a non uniform electric field

4) Now consider a case of non uniform electric field as given fig (3). Let the enclosed surface be 
divided into a large number of element squares AS as shown in this figure. These element squares are small 
enough to be considered as plane surfaces. Such element areas may be considered as vectors whose 
magnitude will be AS and the directions are taken as outward drawm normal to the surfaces as shown in fig 
(3b).

At even' square element, one can construct an electric field E. Since the square is very small at all 
points on the square, E may be considered as constant.

The vectors A S and E that characterize each square make an angle with each other. Refer fig (3b). 
We have selected three such areas and magnified them. Note that when the angle 0 >90° , E points in and 
when 0 = 90° it is parallel to the surface and when 0 < 90° the field E points out.

In the above case one can write a semiquantitative definition of electric flux as
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’ <)> E * 2 E.A S..........................(7)

which instructs to add the scalar quantities of E.AJS for all element areas into which the surface has been 
divided. For all purpose the surfaces where 0 is less than 90° it is positive and E is outward. If E is 
everywhere inward, 0 will be more than 90° , then E .A S is negative and flux 4>e for the surface will also 
be negative.

The exact definition of flux is given by the differential limit of the equation.

<t> E b ZE.AS= lIeIaScos© .................. (7a)

Replace the sum over the surfaces by an integral over the entire surface.

4>e = f E.A S.................................... (8)

The surface integral suggests that the surface is considered as divided into very' large number of 
infinitesimal elements of area ds and the scalar quantity of E.dS is to be evaluated for each element and the 
sum is to be taken for entire surface. The surface integral also shows that it is a closed surface.

The S.I. unit of electric flux is

l<W=
\

newton * (meter)' 
coulomb

£oule x meter
coulomb

5) Consider a case of spherically symmetric charge distribution as shown in fig (4). Let R be the radius 
of spherical distribution of charge and p the charge density which is the charge per unit volume (Cm'!).

Fig.4 A spherically symmetric charge distribution

This charge density depends only on the distance of the point from the centre. Let us find an expression 
for E for points (i) outside and (ii) inside the charge distribution.

^0



Gauss’s Law

(i) Draw a Gaussian surface at a distance ‘r’ which is greater than R. From the equation (4) one can write 

6o J) E . dS = Go E 4<tr2 = q

E=-
4 TC 6

/ \ 
£ ( 9 )

where q is the total charge. Thus for points outside the charge, distribution of spherically symmetric, the 
electric field E has a value that would have if the charge q is concentrated at its centre. (Compare this result 
with that of spherically symmetric distribution of mass and gravitational force at points outside it).

(ii) Now draw a Gaussian surface at a distance ‘r’ which is less than R the radius of spherically 
symmetric charge distribution. From the Gauss’s law.

e.J E. = e. ( 4 Tt r2 ) = ?l (10)

Here q’ is the part of the charges contained within the sphere of radius r. 
Therefore

E
J

4 It £o

( 10 a )

Note that the part of the charges outside the radius r do not contribute to the electric field E. 
(Compare this result with that of Gravitational field. Note that this result agrees well with that of spherical 
shell of matter which exerts no gravitational force on the body inside it).

A special case may be considered here where the distribution of charges inside the spherically 
symmetric charge is uniform. The charge density p will be constant throughout the charge distribution of 
radius R. It will be zero outside R.

/ _ ( 4 / 3 ) Tt r3 f r V
q = q---------------------- a I — I

~ ( 4 / 3 ) Tt R 3

The expression for E = ------------
4 it eo

What is the value of E at the centre of the

4 r 
n 3

(12)

spherically symmetric charge distribution ?
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6. Let us look into a case of an insulated charged conductor of any shape as shown in the fig. (5). It 
can be proved that any excess of charge placed on the insulated conductor resides on its entire surface. Draw 
a Gaussian surface very close to the inner side of the conductor.

Any excess of charge on the conductor will set up electric field inside the conductor. This field acts 
as charge carrier of the conductor and cause their movements. That means they set up inner electric currents. 
This will redistribute the charges in such a way that the electric fields will be automatically reduced in 
magnitude and eventually becomes zero. The internal currents also stops and the electrostatic conditions 
prevail. This redistribution of excess charges will take place in negligible time. At electrostatic equilibrium 
E is zero everywhere inside the conductor. Since the Gaussian.surface is drawn just inside the conductor 
the excess of charges will also be zero at the Gaussian surface. Hence the electric flux on the Gaussian 
surface will also be zero. Therefore Gauss’s law predicts that there will be no net charge inside a Gaussian 
surface. If the excess charge is not inside the Gaussian surface then it is logical to conclude that the excess 
of charges must be at the outer surface of the conductor. '

If a charged metal ball is lowered with a silk thread inside an ‘insulated’ metal can, it will induce 
opposite charges on the metal can both inside and outside it. But when the charged body touches the 
insulated metal can the charge on the ball will immediately spread over the outer surface of the insulated 
metal can. There will be no charges on the inner side of the insulated metal can.

7. The Coulomb’s law could be deduced from the Gauss’s law. Consider an isolated point charge q. 
From symmetric condition the lines of force will be radial and uniformly distributed. The field E must be 
normal to a Gaussian surface drawn at a distance T’ from the point charge. Hence the E and ds at any point 
on the Gaussian surface are directed radically outward. The angle between them will be zero and E.ds 
becomes Eds.

E ds = q (13)
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On this sphere E is constant and the above equation can be rewritten as

e0 E <f> ds = q 
e0 E(47ir) = q

1
( \ 

<7
47te \ °)

1 ]
4zeJ Id

If a test charge q0 is brought to the Gaussian surface, the above electric field will act on the charge 
q0 and its magnitude will be

F = Eq0
which is precisely Coulomb s Law.

(8) Draw necessary Gaussian surfaces for the following cases and determine the electric field E

(i) An infinite line charges with linear charge density A. find E at a distance r from it.
(ii) An infinite sheet of charges on a non conducting sheet with surface charge density o . Find E at a 

distance r from it.
Will the electric field change if the non conducting sheet is changed to a Conductor ? Find its 
value.

(iii) Two infinite plane parallel sheets having surface charge densities o, and o: are considered. 
Refer fig (6). What would be the electric fields in the space I. II and III ?

Fig.6 Field due to two infinite plane parallel sheets of charge density ( a: >
a2 > 0) Only a section of finite part is shown.

9. When two plane parallel plates are given equal and opposite charges the field between and around 
them is shown in fig (7). While most of the charges accumulates at the opposing faces of the - 
plates - the field is essentially uniform in space between them - there will be spreading or

^3
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‘Fringing’ of field at the edges of the plates. When the plates are made larger and distance between 
them is diminished the fringing effect is reduced and can be neglected entirely. This field between 
the plates is uniform and the charges are distributed uniformly over the opposing surfaces.

If the resulting fields at the two surfaces of the plats are E, and E2, find the resultant field E at the 
space (i) to the left of the first plate (ii) in between the plates and (iii) to the right of the second 
plate.

Fig.7 Electric field between oppositely charged parallel plates

EVALUATION

1. If the Gaussian surface encloses a dipole, what would be the electric flux <f)E for this surface?

2. An early model atom is considered to have a positive charged point nucleus of charge Ze 
surrounded by a uniform density of negative charges up to a radius R. The atom as a whole is 
neutral. Discuss the electric field at a distance ’r’ from the nucleus, r > R.

3. In the Rutherford or nuclear atom model the positive charge,of the atom is concentrated in a small
region (the nucleus) at the centre of the atom. For gold it is of about 6.9 x 10 'l5 m. What is the 
electric field at the nuclear surface ? Neglect the effect associated with the atomic electrons. Z for 
gold is 79. . .

4. A non conducting sphere of radius ‘a' is placed at the centre of a spherical shell of inner radius 'b‘ 
and outer radius ‘c’. A charge of +Q is distributed uniformly through the inner sphere and the

charge density is p Cm'3. The outer shell carries -Q charges. Find Er (i) within the sphere 
r<a. (ii) between the sphere and shell (iii) inside the shell b < r < c and (iv) outside the shell.

5. Charge is distributed uniformly throughout an infinitely long cylinder of radius R (i) show that E

at a distance ‘r’ from the cvlinder axis is given bv E = when p is the charse density when 
2eo

r < R.' (ii) what do you expect as the result if r > R ?
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CHAPTER

ELECTRIC POTENTIAL

We have seen that Electric Field is a VECTOR quantity. At a point its magnitude and direction can 
be shown with help of lines of force. One can visualize its nature and its variations in space in quantitative 
way. The electric field around a charged body can be described not only by electric field vectors but also 
by another scalar quantity known as POTENTIAL. In a static condition the potential contains just as much 
information as the Electric Field. Consider a test charge q0 being moved in a static field due to a point 
charge q. Draw lines of force around the charge. The lines of force will be radial. Suppose the test charge 
q0 is moved along a radial path I from A to B. (See fig. 8). As the lines of force also indicate the direction 
of electric field, E will be acting along the radial direction. A force of E qowill be acting on the test charge 
due to the field. This force is towards the charge q0. In order to move the charge q, from A to B one has 
to do work against the electric field. Let the external agent do the work. In order to keep equilibrium this 
force must be equal and opposite to E q0 Let us represent the potential at B as VB and that at A is VA. The 
difference between the two potentials is

VB- VA =(WAB)/q0 (1)

Fig.8 A test charge qj is moved from A 
to B in the field of charge q along I &

II paths

1

In order to define the POTENTIAL we select a condition that VA becomes zero. That will happen only when 
the point A is far away from the charged body. That means at infinity distance. Dropping suffix B, one 
can write the potential at a point as

V=(W)/q0 (2)

POTENTIAL AT A POINT IN AN ELECTRIC FIELD IS THE WORK TO BE DONE BY AN EXTERNAL 
AGENT BY BRINGING A UNIT TEST CHARGE FROM INFINITY TO THE POINT IN QUESTION.

The unit of potential is joule coulomb'1, generally called volt (V).
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Instead of following the radial path I now consider any arbitrary path II (see fig 8). It can be broken 
up into a large number of radial and arc segments. When these segments are small, it can be made arbitrary 
close to the actual path. It can be shown that no work will be done along the ‘arc’ as the force F and 
displacement di are right angles to each other. Which means work is done only along radial segments. The 
sum of work done on the radial segments will be same as the work done in the previous radial path I. Since 
the second path is arbitrary, it is clear that work done is the same for all paths connecting A and B.

What happens when VA = VB ?

No work is required to move a test charge from A to B. Such surfaces are called EQUIPOTENTIAL 
surfaces. If a test charge is moved from one equipotential to another, work to be done by the external agent 
will not be zero. But it will be the same for DIFFERENT PATHS between those two equipotential surfaces.

From the symmetry, the equipotential surfaces 
for a spherical charge are a FAMILY OF CONCENTRIC 
SPHERES. And for a uniform field they are a FAMILY 
OF PLANES A T RIGHT ANGLES TO FIELD. In such 
cases the equipotential surfaces are at right angles to the 
lines of force and thus to electric field E. If they are not 
at right angles to each other then there will be a 
component lying on the surface and work has to be 

E done.

Fig.9 A test charge q0 is moved from A to B in a uniform electric field E

NO WORK WILL BE DONE BETWEEN TWO POINTS ON THE SURFACE IF THE SURFACE 
IS EQUIP OTENTUL AND E MUST BE AT RIGHT ANGLES TO THE EQUIPOTENTIAL SURFACE.

1) Consider a case where the two points A and B are in a uniform electric field E. Let A and B are at 
a distance d in the field direction. The force acting on a test charge q0 in the field is

*4
F = q0E along the direction of E.

In order to move the test charge q0 from A to B one must counter act the above force by an external agent. 
Tnis force must be equal but in the opposite direction.

If the displacement is di, the work done WAB by the external agent is the work contributed for all 
infinitesimal segments into which the path is divided.
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(. 3 )
B

A

(3a)

If point A is at infinity VA will be zero and potential at B is

V

In the above case

(4)

This gives a new relation between the electric field and the potential difference between two points in the 
uniform field.

2. Now consider a non uniform electric field. Let the path in which the test charge q0 is moved by a 
curved path as shown in the figure 10. The force acting on the test charge is E q0. To keep the test charge 
q0 without acceleration, the external agent must apply equal force but in the opposite direction. F = - E q0 
. Therefore the work done by the agent in moving the test charge q0 from A to B is

B B

/e . rff ( 5 )

A A
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Fig. 10 A test charge q0 is moved from A to B in a nonuniform electric field

Such an integral is called line integral. If the point A is at infinity the potential V at B is

0

Calculate the potential difference 
between A and B when the test 
charge q0 is taken along the path A 
to C and C to B is shown in the 
figure (11). The electric field E is 
uniform.

Fig. 11 A test charge q0 is moved along 
the path ACB in a uniform field E

4S
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3. Consider a case of an isolated + point charge q. Let A, B and q lie on the same straight line. Assume 
that a test charge q0 is moved along the radial path without acceleration. In the fig. 12 E points to right and 
the direction of dl is to the left. Therefore.

E. d 1 = E cos 180°dl = - E. di (7)

We are moving the test charge in a direction which reduces r where r is the measurement from q 
which is the origin.

dl = - dr E. dl = E dr

substituting in........... 5

= -IE . d\ = - IE dr

Fig. 12 A test charge q0 is moved by external agent from A to B in the field set by as isolated charge q

Knowing the value of electric field at the site
( \

E = 1 ¥
4 z e k o /

we obtain   <7 - 1 <7 1 1
4 it e J r' 4 TC € r. r to

rA
o 1 3

( 8 )



Electric Potential

choosing reference point A to be at infinity the potential at B will be

V =
4 it e

( 9 )

THIS SHOWS THAT EQUIUPOTENTIAL SURFACES FOR AN ISOLATED POINT CHARGE ARE 
SPHERES, CONCENTRIC WITH THE POINT CHARGE.

Will the above relation hold good for external points to spherically symmetric charge distribution? 
Answer to this question is considered in the following problem.

What is the electric potential at the surface of a gold nucleus ? The radius of the nucleus is 6.6 x 
10'15 m and atomic numbers of gold Z = 79. •

Assume the nucleus to be spherically symmetrical and behaves electrically for an external points as 
ifitisa point charge.

4) When there are group of charges, the potential is found out by calculating potential Vn due to each 
charge as if other charges are not present and then adding the quantities algebraically.

1
4 it e

o

If the charge distribution is continuous rather than being a collection of points, the summation is 
replaced by an integral.

V = / = ---- -— I — where dq is the differential
J 4 t: e J ro

element of charge distribution.

POTENTIAL ENERGY

In an electrostatic condition the charges q, and q, are separated by a distance r. • If the separation 
distance is increased the external agent has to do work and it will be positive if the charges are of opposite 
sign and negative otherwise. THE ENERGY REPRESENTED BY THIS WORK CAN BE THOUGHT OF 
AS STORED ENERGY CALLED ELECTRICAL POTENTIAL ENERGY.

WE DEFINE THE ELECTRICAL POTENTIAL ENERGY OF A SYSTEM OF CHARGES AS THE 
WORK TO BE DONE TO ASSEMBLE THE SYSTEM OF CHARGES BY BRINGING THEM FROM AN 
INFINITE DISTANCE.

Let us imagine q, is removed to infinity. The electrical potential caused by q, at the original site
of q; is

4 it e

2T
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If <k is moved from infinity to its original position, work required by definition of electrical potential 
1 ?iis W = V q^,. Combining the above two equations we get U = 

energy of the system. 4 it e
which is the potential

energy?
Two protons in a nucleus of U238 are 6.6 x 1015 m apart. What is their mutual electric potential

If a system contains three charged q, q, and qj separated by distances r,2 ,rI3, and r23 then the total 
energy of the configuration is the sum of the energies of each pair of particles.

U = U12+ U13 + U23
It is considered that at infinity distance the potential is zero. A positive potential energy corresponds 

repulsive electric forces and a negative potential energy to attractive electrical forces. In the case of nucleus 
protons are held together by attraction and a non electrical forces, otherwise they would have moved apart. 
This force is called NUCLEAR FORCE.

Calculate the potential energy of the 
configuration of 3 charges as shown in the 
fig- 13.

Fig. 13 The charges are held fixed by an external force
I

6) Consider an insulated conductor. We have seen earlier while dealing Gauss's Law that any excess 
of charge q placed on that conductor will move to its outer surface. We will discuss potential at different 
points of a charged conductor and also the electric field.

Consider two points A & B on the conductor. If they are not at the same potential, the charge carriers 
in the conductor near the lower potential would tend to move toward the higher potential. In a steady state 
there is no movement of charges and all points, both on the surface and inside it, must have the same 
potential. Since the surface of the conductor has static charge it will be an equipotential surface. The vector 
E for points on the surface must be at right angles to the surface. When excess charge is placed on the 
conductor it will spread over the surface on the conductor until E equals to zero for all points inside it. The

SI
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same statement can be stated as the excess charge will move until all points of the conductor - both outer 
surface points and interior points are brought to the same potential. For V to be constant E has to be zero

jVeverywhere inside the conductor E. = —.
1 dl

Fig. 14 The potential fa) and electric field (b) for points near a conducting spherical shell of radius 1.0m and carrving 
a charge of 1.0 x 10"4 C

When we plot V against distance r for a charged conducting sphere, we obtain a graph as in the fig. 14a. 
Inside the conductor the potential is constant and as the point under consideration is away* from the outer 
surface of the conductor it decreases as V « 1/r.

When we plot a graph for variation of electric field E for various positions, we obtain a graph as in fig. 14b. 
E is zero inside the conductor and is maximum for a point on the conductor. It decreases rapidly as the 
distance r increases. '

It should be noted that the charge density tends to be high on isolated conducting surfaces whose 
radii of curvature are small and conversely. At sharp points, the charge desntiy is relatively high and 
similarly on the plane regions of the conductor it is relatively low.

7. The electric field E at points immediately above a charged surface is proportional to the charge 
density So it will reach very high value near the sharp points. One can see glow discharges from sharp 
points during thunderstorms. Lightning rod acts in this way to neutralize charged clouds and thus prevent 
lightning strokes.
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Suppose two sphere R and r having different radii are charged and connected by a very long fine 
wire. The charges on them are Q and q respectively. Let V be the potential of the entire assembly. Find 
ratio of their surface charge densities o, and o2 where o, corresponds to the first sphere and o2 
for the later sphere.

Which sphere has larger total charge and which has the greater change density? Refer fig.( 15).

Fig. 15 Charged spheres of different radii connected by a wire

We have studied the properties of electric fields in an electrostatic condition. The Gauss’s law holds 
good and work done by carrying a test charge from one point to other is independent of the path. The 
concept of potential and equipotential surfaces are also well explained. We will discuss briefly the 
behaviour of conducting bodies in an electrostatic field. The very word ’static’ means nothing changes with 
time. That means, there is no movement of charges and no current either in the interior or on the surface 
of the conductor. But a conductor has large number of free electrons. If there is any field in the interior 
of the conductor, the charges must move (a current flows) and the ’static’ condition will be destroyed. 
Similarly, if there is any surface current, there must have a component of electric field tangential to the

4
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e/2
2.0 x Iff6 C -6

2.0x10 C

+q - d/2 d/2 +3

Fig. 16 Two charges 2.0 x 10"4 C are fixed in space at a distance of 2.0 cm apart

surface. So the static condition forbids the presence of any electric field in the interior of the conductor 
and also no tangential component of field over the outer surface of the conductor. The field can have only 
normal component on the outer surface of the conductor. E is normal to the outer surface of the conductor.

EVALUATION

1. If V equals a constant value throughout a given region of space, what can you say about E in that
region?

2. In the case of an isolated positive point charge q, is it necessary to assume that A, B and q lie on a
B

straight line in order to prove V = - J E . d\ is true ? (Refer Fig. 12)

oo

3. Do electrons tend to go to regions of high potential or low potential ? Give reason. ”

4. An infinite charged sheet has a surface charged density' o = 1.0 x 10'7 Cm'2. How far apart are
the equipotential surfaces whose potentials differ by 5.0V ?

5. Two charges q = +2.0 x 10'6 C are fixed in space a distance d = 2.0 cm apart as in the figure (16).
i) What is the electrical potential at point C ?
ii) You bring a third charge q = 2.0 x 10-6 C very slowly move from infinity to C. How much work

must you do?
iii) What is the potential energy U of the configuration when the third charge is in place?

6. What is the charge desntiy o on the surface of a conducting sphere of radius 0.15m whose potential 
is 200V ?

7. Two metal spheres are 3.0 cm in radius and carry charges +1.0 x 1 O’8 C and -3.0 x 10'8 C
respectively, assumed to be uniformly distributed. If their centres are 2.0 m apart, calculate i) the 
potential of the point half way between their centres and ii) the potential of each sphere.



Amplifiers

CHAPTER

AMPLIFIERS

Introduction

Very often, we have to amplify a small voltage signal from a transducer, such as a 
phonograph pick up, to a level which is suitable for the operation of another one, such as a 
loudspeaker. The arrangement is called an amplifier. We shall first study a 'black-box’ 
representation of an amplifier. Then we shall proceed to discuss transistor as an amplifier and how 
the performance of the amplifier could be improved by providing negative 'feed back’.

Black-box representation of an amplifier

Fig.3.1 Black box representation of an amplifier

The above figure gives a black box representation of an amplifier. Input and output are 
alternating in nature at some fixed or variable frequency. The input is a low level voltage such as 
that obtained from a phonograph cartridge, or a tape-head (or a transducer such as a thermo couple, 
pressure gauge, etc).

The output is an enlarged version of the input and may be fed to a loudspeaker as in an audio 
amplifier. The amplifier has at least one active device, such as a transistor and may have a common 
connection E between input (I, E) and output. (O, E) terminals.

In order to magnify the output, an amplifier needs a source of energy - a dry battery as in 
portable ones or a dc source resulting from a rectifier and filter combination. The active device 
basically converts the energy from the dc source into energy at the output of the amplifier that is 
proportional to the input signal. The ac input signal merely serves as a means of controlling the dc 
to ac conversion in the active device. This is usually accomplished with comparatively little input 
signal power.
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The efficiency of conversion
n = ac-Signal Dower delivered to the load

dc input power

The maximum value of efficiency is in the range of 25% to 90%, depending upon the way in which 
the load is coupled to the active device (series fed, transformer coupled, push-pull etc) and the class 
of operation of the amplifier (class A, AB, B and C).

Transistor - as an amplifier

Fig.2 Transistor as an amplifier common base PNP

A small change in voltage between E and B produces a relatively large emitter current change 
AIE. A fraction a of this current change is collected and passed through a load cqnnected in 
series with the collector supply voltage Vcc

(

\

a

The chance in voltage across RL is
AVl = + (Ale )R.l =<xAIeRl (1)

This could also be many times the change in input voltage AV,, i.e. AVL = A AV, (2)

where , A the voltage amplification.

From (1) and (2)
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A

Now, AVj _ re A VE where is the dynamic resistance of 
the emitter junction

r

AV. = AI_r i e e 
vf

The value of rt
0.026 Q; a«l

F

t .

1

-*> B

Let R L = 3000 Q, r e = 40 Q. Then, A = 75

The above consideration gives physical explanation of why the transistor acts as an amplifier. 
The current in the low-resistance input circuit is transferred to the high-resistance output circuit. 
The word 'transistor’ has originated as a contraction of 'transfer resistor

Transistor provides power gain as well as voltage or current gain.

Graphical explanation
The amplification action can well be explained by considering the input (IE - V^) and output 

(Ic = characteristics. The fig 3 gives the common-base input characteristics of a PNP transistor. 
At an operating point Q, if the input voltage varies as a function of time as shown in (b), the emitter 
current varies as shown in (c).
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To find the 
effect of 
this on the 
output, we 
have to 
consider 
the output 
characteri 
sties which 
is shown 
in fig.4.

Fig. 4 Load-line on output character 
amdif ier

istic
;tions

and graphical explanation of
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Next, draw the load-line AB on the graph. For this, apply KirchhofFs voltage law to the 
output circuit.

.■ Vcb ■ Ic R-l + Vcc= 0 j j
Rearrange Ic = - _ Kca + — Vcc

This straight line cuts V axis at V cc because when Ic = 0, V CB = Vcc and it cuts the Ic axis 
at V cc/ R L because when V CB = 0, I c = V cc/ R L

If the input circuit current IE is varied as a function of time, about the operating point Q 
(Vcbq’ Icq> I <0) as shown in fig 4b, the corresponding variation in Ic and VCB are shown in fig. 4c 
and fig. 4d. On comparing fig.4(d) with fig.3(b), the output (collector) voltage is in phase with the 
input (emitter) voltage. This is described as phase inverse^ As VBE goes positive, IE goes positive, 
Ic goes negative resulting in VCB going positive.

The circuit for common base NPN transistor is given in fig.5.
The input and output characteristics for a NPN transistor will of course have the same genral 

appearance as those shown for a PNP in figures 3 and 4. Note that VEB is negative, IE is negative 
and VCB and Ic are positive.

Fig.5 Transistor as an amplifier (common base NPN)

Similar explanation is possible for common emitter and common collector amplifiers. It 
should be noted that the output voltage suffers phase inversion in also common emitter configuration 
and not in common collector configuration, for which input characteristics are as in Fig.6( b) and 
output in 6(c). When VBC goes negative, IB goes negative. IE goes positive and VEC negative. No 
phase reversal.
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Fig.6 a) Common- 
collector amplifier 

(NPN)

X
b) Input characteristics of 

the same •

• u
qt>
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Coupling of amplifier to source and load

The coupling is generally done using capacitors C, and Co. The capacitor C, blocks dc from 
going to the source and similarly Co blocks dc from going to load RL

DC source

Fig.7 Coupling of an amplifier

51



Characteristics of a good amplifier 
An amplifier should have

i) high input impedance R, and low output impedance Ro (Refer fig.7)
ii) high fidelity, least distortion (different types) and constant gain over a wide range of

frequencies, etc.

Comparison of characteristics of the three configurations and uses

Characteristics Common base Common emitter Common collector or
emitter follower

Output resistance Ro Highest
1-2 MQ

Moderate
50 kQ

Lowest
100 Q- 1 kQ

Input resistance R, Lowest 20-50 Q Moderate 1-2 kQ Highest 150 kQ - 600kQ

Current gain A[ Low ~ 1(<1)
0.85 to 0.995

Large
20-200

Large
20-200

Voltage gain A„ Hig ~ A V(CE) High Low <1 (0.99)

Power gain AP Moderate Large Small

Phase Change No 180° No

Uses i) For impedance 
matching - to match a 
very low impedance- 
source to drive a high 
impedence load.

Popular because of 
high voltage, current 
and power gains.

i) As a buffer amplifier 
between a high 
impedance source and a 
low impedance load

ii) As a non inverting 
amplifier with a voltage 
gain >1
iii) as a constant current 
source (e.g. in sweep 
circuit to charge a 
capacitor).

ii) Level shifter in direct 
coupled circuits.

Stages in cascading 
of am pi i her

Input - when a transducer 
requires near short circuit 
operations.

Intermediate Input: When a transducer 
requires near open-circuit 
operation.
Output: to derive a low 
impedance load 
(especially capacitive)
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Feedback in amplifier

The amplifier performance can be improved by providing proper feedback (i.e. combining 
a portion of the output signal with the external input signal). The concept of feedback can be 
understood from the block diagram given below.

Fig.8 Block diagram of an amplifier with feedback

l||
-W

v-

Input to the amplifier X, = Xd, the difference signal (Xs - Xf). The gain of the basic amplifier 

X X
A = —- = -----------, where X. - B.VX> X, - X f r 0

The gain of the amplifier with feedback

A =^. - = A{x~xf>
f x. . x, x,

^3
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Ik Ycvw^-wv^ (
Af(l + |3 A) = A

, w. - p-u 
xs

z.

' 1 + P A
(- PA) is called the loop gain :

Case 1: If | a,- I < IAI, the feedback is called negative or degenerative. The voltage feedback 
causes signal reduction because it is out of phase with the external signal, yielding a lower output. 
Note 11 + pA I > 1 i.e. the loop gain is negative.

Case 2 : If I Af I > I AI the feedback is termed positive, or regenerative. The phase of the 
voltage feedback is such as to increase the output, yielding a greater output. Note Il + p.A I < 1 
i.e. the loop gain is positive.

Advantages of negative feedback
The negative feedback, though reduces the overall gain, has the following advantages:

i) The gain is stabilized against variations of'parameters’ of the active device (due to aging, 
temperature, replacement, etc.)

ii) The input resistance is increased and output resistance is reduced (for some circuits).
iii) The frequency response can be significantly improved (wide band width).
iv) The distortions are reduced.
v) The noise is suppressed.
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CHAPTER

OSCILLATORS

Introduction

An oscillator is a device that generates a periodic ac output signal of desired frequency, 
without requiring any form of input signal. Oscillation can be described as a form of instability 
caused by feedback that regenerates or reinforces a signal that would otherwise die out due to 
energy loses. In order for the feedback to be regenerative, it must satisfy certain amplitude and 
phase relations.

Block diagram discussion

Fig.l An amplifier with transfer gain A and feedback network 0, not
yet connected to form a closed loop

The fig. 1 shows an amplifier, a feedback network, and an input mixing circuit not yet 
connected to form a closed loop. The output signal of the amplifier Xo = AX,* is due to the input X, 
applied directly to the amplifier input terminal. The feedback voltage X,-= P = A0 X,. This is 
simply inverted in the mixing circuit. The output of the mixing circuit Xf' = - Xf= - A(3 Xj

x‘ X.
The loop gain = — = - — = -p.-t ,

«

Supposing that Xf' is identically equal to externally applied input signal X , the amplifier is 
not in a position to distinguish the source of the input signal applied to it. Therefore, if external 
source were removed and if terminal 2 were connected to terminal 1, the amplifier would continue 
to provide the same output Xo as before. The condition that Xf' = X, means that - A{5 = 1 or the loop 
gain must equal unity. This statement has two implications :
i) IAP I = 1 and
ii) the phase of -Ap is zero. The loop gain phase shift is zero (or, an integral multiple of 2ft)
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These conditions are called the Barkhausen criteria. The reactive elements in the amplifier 
and/or feedback circuits cause the gain magnitude and phase shift to change with frequency. In 
general, there is only one frequency at which the gain magnitude is unity and at which, 
simultaneously, the total phase shift is equivalent to zero. The designing an oscillator means 
selecting reactive components and incorporating them into circuitry so that the conditions are 
satisfied at a predetermined frequency.

Refer to the feedback formula A= -------------
f 1 + PJ

For if -P A = 1, thus Af — ~. This may be interpreted to mean that there exists an output voltage even 
in the absence of an externally applied signal voltage. -

An oscillator must have an amplifier to supply energy (from the dc supply) to replenish 
resistive losses and thus sustain oscillation.

Practical considerations

Refer to fig. 1. If I PA I = 1, the removal of external generator will result in a cessation of 
oscillations. (Fig.2a)

(b)

|AP| = 1

(c)

Fig. 2 Gain magnitude and amplitude of oscillation

If I AP I > I, the amplitude of oscillations will continue to increase, fig.2-b (limited by the onset 
of non-linearity of operation in the active devices associated with the amplifier).

If I AP I =1, then, with the feedback signal connected to the input terminal, the removal 
of the external generator will make no difference. The amplitude of oscillation is a steady one as in 
fig.2-c.
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In practice, an oscillator in which the loop gain is exactly unity is an abstraction, completely 
unrealizable. The value of loop the magnitude of gain I AP I is made somewhat larger (about 5%) 
than unity in order to ensure that, with incidental variations in active device and circuit parameters, 

I PA I shall not fall below unity. After the output voltage reaches a desired level, the value of I Ap I 
decreases to unity and the output amplitude remains constant.

How does the oscillation start?

When the circuit is switched on every resistor in the circuit generates noise voltages due to 
the random motion of electrons in it. The noise signal is a complex signal, which can be viewed as 
made up of sinusoidal signals of frequencies over 10.i;Hz. These signals are very' small in amplitude. 
All are amplified and appear at the output terminals. A part of the amplified noise output passes 
through the feedback circuit. The Barkhaussen criteria are satisfied for only the predetermined 
frequency w'hich goes for amplification again. With the magnitude of loop gain I Ap 1 slightly 
greater than unity, the oscillations build up at this frequency. When suitable level is reached, Up I 
decreases to unity and a steady output is obtained.

Feedback circuits
Some of the commonly used feedback circuits for oscillators are given below.

i) RC network - low frequency

ii) RC network - Phase lead-lag network 
as in Wein-bridge oscillator - a very good 
one for audio frequency operation.
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1
21ZRC

Hz

A = 3, P = 1/3

/ =

Amplitude stability is maintained by having a pair of components : resistance-sensistor / tungsten 
lamp (positive temperature coefficient or thermistor (negative temperature coefficient)-- resistance 
forming one arm of the wheatstone bridge network, the other arm being the phase lead-lag 
components.

iii) LC network - for high frequency applications upto 500 MHz - generally tuned/resonant 
network
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Desired characteristics of an oscillator
i) amplitude stability
ii) frequency stability - a measure of its ability to maintain as nearly a fixed frequency as^g 

possible over as long a time interval as possible. A measure of frequency stability is —
df•0

The larger the value of — the more stable is the oscillator frequency (0 is the phase of
df

voltage with respect to current.
perfect sinusoidal waveform - especially for audio frequency operations.iii)

1(9 0

«

«



CHAPTER

SOLID STATE PHYSICS

Solid State Physics is a study of the physical 

properties of solids like electrical conductivity, 

dielectric properties, elastic properties, thermal 

properties, magnetic properties. It deals with properties
i

common to a large number of compounds and the quantitative 

relation between the properties and the underlying 

structure.

It is sometimes also termed as 'Condensed Matter 

Physics'.

Solids

Amorphous

Order limited 
to few molecular

distances

Classified -> Size of 
ordered regions

“TV
Single
crystal

Made up of grains 
which are highly 
ordered crystalline 
regions of irregular 
size and orientation

Has long- 
range 
order

Many important properties of materials depend on the 

structure of crystals and the electron states • within

crystals - Band theory.

Aim of Crystal Physics
The aim of Crystal Physics is the interpretation of 

the macroscopic properties in terms of the microscopic 

particles of which the solid is composed.

iOl



Science of Crystallography

It is the study of geometric form and other physical 

properties of crystalline solids by using X-rays, electron

beams, neutron beams, etc.

Lattice Points and Space Lattice

Crystal Structure: Atomic arrangement in a crystal is called 

crystal structure. In a perfect crystal, there is a regular 

arrangement of atoms (periodic) in 3-dim.

Periodicity may be different in different

directions .

Location of atoms are specified by points called 

Lattice points. Totality of such points forms a crystal 

lattice or space lattice.

If all the atoms at the lattice points are 

identical, the lattice is called Bravais lattice.

3-dim space lattice is a finite array of points in 

3-dim, in which every point has an identical environment as 

any other point in the array.

Consider a 2-d array of’ points. The environment 

about any two points is the same.

to2-
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-> ->
a , b are the fundamental translation vectors.

Choose some origin and join it to two points A and B 

by vectors r^ and r2. If the difference T of the two vectors 
"r^ and r^2 satisfi-es the following relation

-> ->
T = n^a + n2b

where n^ and n2 are integers, then the array of points is a 

2-d lattice.

For a 3-d lattice

-> -> -> ->
T = n-^a + n2b + n^c

Crystal lattice refers to the geometry of a set of 

points in space whereas crystal structure refers • to the 

actual ordering of its constituent ions, atoms and molecules 

in the space.

The Basis and Crystal Structure

Crystal structure is got by associating every 

lattice point with a unit assembly called Basis.



A basis is an assembly of atoms or molecules 

identical in composition orientation and arrangement. All 

lattice points are connected by a translation.

Lattice + Basis = Crystal Structure

Unit Cells and Lattice parameters

In every crystal some fundamental grouping of 

particles (atoms) is repeated. Such a fundamental repeat 

entity is called a unit cell. This smallest unit repeated in 

3-d gives rise to the crystal and constitutes the building 

block. Unit cells for most crystals are parallelepipeds or 

cubes having three sets of faces which are parallel.

A unit cell is chosen to represent the symmetry of 

the crystal structure, wherein all the atom positions in the 

crystal may be generated by translations of the unit cell 

integral distances along each of its edges.



More than a single unit cell may be chosen for 

particular crystal structure. However, we generally use the 

unit cell having the highest geometrical symmetry.

A space lattice is a regular distribution of points 

in space, in such a manner that every point has identical 

surroundings. The lattice is made up of a repetition of unit 

cells, and a unit cell is completely described by the three 

vectors a, b, c when.the length of the vectors and the 

angles between them ( p ,X ) are specified.

Lattice parameters of a unit cell

Taking any lattice point as the origin, all other 

points on the lattice can be obtained by a repeated 

operation of the lattice vector a, b, c. The lattice vectors 

and the interfacial angles are called the lattice parameters 

of a unit cell. Hence if we know the values of these 

intercepts and the interfacial angles, we can easily 

determine the form and the actual size of the unit cell.

\0S~



The vectors a, b, c may or may not be equal. Same is 

true of angles ft, They may or may not be right angles. 

The above conditions determine the seven crystal systems. If 

the atoms are at the corners only the seven crystal systems 

yield seven types of lattices. More space lattices can be 

constructed by placing atoms at the body centres of unit 

cells or at the centres of faces giving the body-centred and

face-centred lattices. Bravais showed that the total number

of different space lattice types (obeying the condition that 

every point has identical surroundings) is only fourteen. 

Hence the term "Braivais Lattice".

Unit Cell vs. Primitive Cell

Primitive Cell: It is a geometrical shape which, when 

repeatedly placed indefinitely in three dimensions will fill 

all space and is equivalent of one lattice point.

Primitive cell contains only one lattice point at

the corners of the unit cell.

Unit cells may be primitive cells but all primitive

cells need not be unit cells.

Crystal systems

There are thirty-two classes of crystal systems 

based on geometrical considerations (i.e. symmetry and 

internal structure). But, it is a common practice to divide 

all the crystal systems into seven groups or basic systems

U'(?



which are distinguished from one another 

between the three axes and intercepts of

them. They are

- Cubic (Isometric)

- Tetragonal

- Orthorhombic

- Monoclinic

- Triclinic

- Trigonal (rhombohedral)

- Hexagonal

The seven crystal 

given in the table.

systems

by the angles 

the faces along

Minerals -> galena,

garnet,

zircon, rutile

barite

gypsum 
plagioclase 

calateguartz 

graphite, molybdenite

and their properties are

SI . 
No.

Crystal system Unit 'cell parameters Examples

1 Triclinic a^b/c ;<Z.=j?=/ = 90° K 2 C r O 0 -yCuSO^ $H20

2 Monoclinic a^b^c ; cG=^90°/Y CaS04 2H2O 
(Gypsum)
FeSO^ Na2SO4

3 Orthorhombic 
(rhombic)

a^b^c ; =90° KNO3, BaSO4

4 Tetragonal asb^c ; <=£=r=90° TiO • SnO? 
NiSO4

5 Cubic a=b=c ;<^=p=Y=w° Au, Cu, NaCl

6 Hexagonal a=b^c;<<=)3=9 0o ,Y=120° SiO2, Zn, Mg

7 Rhombohedral 
(Trigonal)

a=b=c As, Sb, Bi, 
Calcite

(0^



A crystalline substance can be looked upon as a 

closely packed aggregate of atoms or ions which are usually 

assembled to have a spherical shape. It has been observed 

that structure of many crystals can be profitably understood 

in terms of the packing of spheres in space.

Every one is familiar with 

bananas, a pile of oranges, close 

pomegranate fruit,k a raft of soap 

(Figs . 1-4) .

a bunch of grapes or 

packing of seeds in a

bubbles and a beehive

In all these cases we observe that one piece is 

surrounded by six other identical units on one surface

which are in close contact with it. This is how nature fills 

the space to the maximum extent wherever it is possible. 

Similarly it is possible to keep six marbles (or ping pong 

balls) in contact with only one ball in a single layer 

(Fig. 5). A second similar layer can be superimposed on this 

layer in such a way that each sphere is in contact with 

three spheres of the adjacent layer as shown (Fig. 5). A 

third layer can be added now in two ways. In one way it is 

possible to keep the spheres directly above the first layer 

as in Fig. 6a. The other way is to keep the spheres over the 

holes in the first layer not occupied by the second layer 

(7a). The first arrangement is called hexagonal close 

packing (HCP) and the second is known as (CCP) cubic close 

packing.



FIG.3-S0AP BUBBLES

,w$*
FIG. 4 - BEEHIVE

PACKING ARRANGEMENT
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FIG 5

FIG-7 FCC

FIG 6 HCP FIG-9 BCC
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Let us designate the layers as A, B and C, we 

observe that in HCP, the sequence of layers will be 

repeated. We observe that in HCP, the sequence of layers 

will be repeated in terms of AB, AB, AB,... or BC, BC, BC or 

AC, AC, AC ... In the case of CCP the sequence will be ABC, 

A3C, ABC, ... Thus the structure repeats itself after two 

layers in HCP and after three layers in CCP.

We can count 12 spheres in contact with one sphere 

in both the packing arrangements (6b, 7b). In one plane one 

sphere is surrounded by six other spheres in HCP with three 

other spheres on both sides in a triangular way. In the case 

of CCP the lower triangle is rotated through an angle of 

60°. The number of immediate neighbours which a' sphere can 

have is represented by the coordination number: 12 for HCP 

and CCP. Some important crystal, structure terms are defined

below:

Coordination number (N): Number of equidistant 

nearest neighbours that an atom has in the given structure. 

Greater the coordination number the more closely packed up

the structure.

Nearest neighbour distance (2r): The distance 

between the centres of two nearest neighbouring atoms is 

called nearest neighbour distance. It will be 2r if r is the

radius of the atom.

U 0



Atomic radius (r): Atomic radius 'r' is defined as 

half the distance between nearest neighbours in a crystal of 

pure element.

Atomic packing factor: The fraction of the space 

occupied by atoms in a unit cell is called atomic packing 

factor (APF); or simply packing factor, i.e. it is the ratio 

of the volume of the atoms occupying the unit cell to the 

volume of the unit cell relating to that structure.

Cubic (simple) structure

Coordination no. = 6

No. of atoms/unit cell = 1

Nearest neighbour distance 2r = a

Lattice parameter a = 2r

No. of lattice points = 1
3

Volume of all atoms v = 1 x 4/3TTr 
3 3Volume of unit cell V = a = (2r)

Packing fraction (atomic)

Volume of atoms v

Volume of unit cell V

3 a3 3 8r3 6
52%



BCC

Coordination no. 8; 2r = a /j7"/2 

Lattice constant a = 4r//3

.lumber of atoms/unit cell = 2

7 = Volume of atoms’ in unit cell = 2
*5Volume of un_t cell V = a

APF = 68% eg. metallic crystals

Similarly for a face centred cubic.

x (4/3)Tr3

IV

i
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FCC We car. calculate the APF.

A,' / X 2.y- clJz.

}‘c, Co, Zn, Ti, Se have HCP structure. Most of the

remaininc cne-third of the metals do

U3



CHAPTER

SUPERCONDUCTIVITY

Superconductors, materials that offer no resistance to the flow of 

electricity, are one of the last great frontiers of scientific discovery. 

Super-conductivity has been observed in certain metals, alloys and 

ceramics. Not only have the limits of superconductivity not yet been

reached, but also the theories that are usfed to explain superconductor

behaviour seem to be constantly under review. The exotic phenomenon 

of superconductivity was first observed in mercury by the Dutch 

Physicist Kammerlingh Onnes of University of Leiden in the year 191 1. 

When he cooled it to the temperature of liquid helium, 4 degrees 

Kelvin, its resistance suddenly disappeared. The Kelvin scale of

temperature represents the “absolute” scale of temperature. The sudden 

transition to a state of no resistance was not confined to the pure 

metal but occurred even if the mercury was quite impure. The new state 

at which the electrical properties became quite unlike those previously

known he called the “superconducting state”.

Transition Temperature

The temperature at which a superconductor loses resistance is 

called its superconducting transition temperature or critical temperature

Tc. This is different for different materials and is a characteristic of

the given material or compound. In general the transition temperature

"V



Ts.vr\percxtixYC dcpcn 4cz\ce. cf Ytsc's'tavnc.e 
cjl a yoiw^I ' G.v\cl cDV'CiuAfrVu^ -

is not very sensitive to small amounts of impurities, but the 

superconductivity of a few metals such as iridium, molybdenum, which 

in the pure states have very low transition temperatures, may be 

destroyed by the presence of minute quantities of magnetic impurities.

Such elements hence exhibit superconductivity only if they are pure.

Substances with regular lattice can only become superconductors.

Imperfections in the lattice can render superconductivity impossible for

substances with imperfect lattice have a finite resistance even at very

low temperatures close to absolute zero. Ferromagnetics are not

superconductors.

Critical field and Current Density

Superconductivity will disappear if the temperature of the 

specimen is raised above its transition temperature or if a sufficiently 

strong magnetic field or current density is made to flow through the

«
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superconductor. The applied field necessary to restore the normal 

resistivity is called the critical field Bc. Furthermore, superconductivity 

vanishes if the current flowing through the specimen exceeds a certain

limit called the critical current Ic. Both Bc and Ic depend on temperature

and on each other. Experimentally it is found that the critical magnetic 

field, at zero current depends on temperature as follows.

' , _ f 7- V 1
I Tc

where Bo is the critical field at 0°K. Thus the field has its maximum 

value Bo at T = 0°K.

C v i*t i Ca I Field.
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The critical field Bc also depends on the material. We find that 

these materials are superconductors only forvalues of T and B below 

their respective curves and are normal conductors for values of T and B

above these curves.

Magnetic Properties

The magnetic properties of superconductors are as remarkable as

their electrical properties. The ideal magnetic behaviour of 
/

superconductors falls into two classes. Type I and type II. Below the

critical temperature and for B < Bc the material is perfectly diamagnetic 

i.e. the field does not penetrate the superconductor. This behaviour

illustrated in the figure below is called the Meissner Effect.
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As can be seen from the figure that when the specimen becomes 

superconducting the field is concentrated at the sides of the specimen,
I

but not at the top or bottom. When this happens the specimen must 

exist as a mixture of the normal and superconducting states called the 

intermediate state. Consequently such specimens are either super­

conducting (if B < Bc) or normal if B > Bc.
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Type II superconductors behave differently. For applied fields 

Bcl (called the lower critical field), the material is diamagnetic,
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field is completely excluded, At Bc the field begins to penetrate the 

specimen and the penetration increases until BC2 (called the upper 

critical field). At this field the magnetization vanishes and the 

specimen becomes normal. The magnetization of a type II 

superconductor vanishes gradually as the field is increased, rather than 

suddenly as in type I superconductors. Type I superconductors are also 

called Soft Superconductors, while type II are called hard

superconductors.

Penetration Depth and thin films

The applied field does not suddenly drop to zero at the surface of 

a Type I superconductor, rather it decays exponentially. As a 

consequence, the field is fairly large over a distance from the surface. 

The penetration depth, X, ranges from 300 to 5000 A depending on the

material.
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In the above figure is depicted the penetration of the magnetic 

field into a bulk specimen and into a thin film whose thickness is less 

than the penetration depth. In ordinary specimens whose dimensions

are much larger than 5000 A, the major fraction of the volume is not

penetrated by the field.

Persistent Currents

If a superconductor is in the form of a ring a current can be

induced in it by electromagnetic induction. The resistivity of a 

superconductor can be measured by observing'the induced current as a

function of time. If the material is in the normal state, the current

damps out quickly because of the resistance of the ring. But if the ring

has zero resistance, the current once set up, flows indefinitely without

decrease in value. In a typical experiment, a lead ring could carry an

induced current of several hundred amperes for over a year without any 

change. Such currents are called “persistent currents’. Physicists 

found that the upper limit for the resistivity of a superconducting lead 

ring was about 10‘25 fim. The fact that this is about 10'17 as large as
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the value at room temperature does indeed justify taking p = 0 for the

superconducting state.

Thermal Properties

Thermal properties such as specific heat capacity and thermal 

conductivity of a substance change abruptly, when it passes over into 

the superconducting state.
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According to the thermodynamic theory of superconductivity, the

superconducting and normal states are two phases of a substance, each 

being converted into the other at definite values of the state variables 

the temperature T and the magnetic field intensity B. The conversion of 

a superconductor to the normal state by the action of a magnetic field

i.e. at T < Tc is a first order phase transition. The same convention in

the absence of a magnetic field is a seond order phase transition.

Causes of Superconductivity

Though a number of a theories were proposed, the first widely-accepted 

theoretical understanding of superconductivity was advanced in 1957 by 

Ameican physicists John Bardeen, Leon Cooper and John Schreeffer. 

Their themes of superconductivity became known as BCS theory which 

fetched them a Nobel Prize in 1972. They used the idea advanced by



Cooper (1956) that pairs of electrons could condense into a lower 

energy phase provided that there was some attraction, however weak, 

between them. Accordingly, they were able to show that such an 

attraction does exist between electron pairs due to electron-phonon 

interactions. Phonon is a quantum of acoustic energy. According to the 

BCS theory the electrons responsible for superconductivity are coupled 

together in pairs called Cooper pairs. Thes^ electrons have opposite 

spins and equal and opposite momenta. The attractive force between the 

electrons of a pair extends over a relatively long distance of the order 

of 10'4 cm, called the distance of correlation.

The binding energy, 2A, between the two electrons is temperature 

dependent and becomes zero if the temperature approaches Tc. At 

absolute zero, all electrons are paired. For Tc > T > 0 some electrons 

are paired and others are excited. For T > Tc there are no electron 

pairs. The excited electrons behave normally in every respect. The 

paired electrons are responsible for superconductivity. Since there are 

electron pairs for T < Tc, the material is a superconductor for T < Tc.

The mathematically complex BCS theory was successful in 

explaining superconductivity at temperatures close to absolute zero for 

elements and simple alloys. However, at higher temperatures and with 

different superconductor systems, the BCS theory has subsequently 

become inadequate to fully explain how superconductivity is occurring.

Another significant theoretical advancement came in 1962 when 

Brian D Josephson, a graduate student at Cambridge University.

predicted that electrical current would flow between two



superconducting materials - even when they are separated by a non­

superconductor or insulator. His prediction was later confirmed and 

won him a share of the 1973 Nobel Prize in Physics. This tunneling 

phenomenon is today known as the “Josephson Effect”.

High Temperature Superconductors

The year 1986 saw a breakthrough in the discovery made in the

field of superconductivity. Alex Miller and Georg Bednorz, create'd a

brittle ceramic compound that superconducted at the highest

temperature then known 30K. What made this discovery remarkable 

was that ceramics are normally insulators. They don’t conduct

electricity well at all.

Researchers had not therefore considered them as possible high 

temperature superconductor candidates. The Lauthanum Bariem, Copper 

and Oxygen compound that Miller and Bordnoiz synthesised, b-ehaved in 

a way which was not yet understood. Tiny amount of this 

superconducting copper oxide were fdund to be actually super­

conducting at 58K, due to a small amount of lead having been added as 

a calibration standard-making the discovery more noteworthy. Muller

and Berdnoz’s discovery led to a lot of activity in the field of

superconductivity. In an attempt to cook up ceramics of every 

imaginable combination leading to higher and higher Tcs by substituting

Yttrium for Lanthanum an incredible 92 Tc was achieved today referred

to as YBCO. This temperature is warmer than liquid nitrogen

temperature which is a commonly available coolant. Additional

milestones have been achieved eversince by using exotic and often toxic



elements in the base perovskite ceramic. The latest world record Tc of 

138 K is held by a molecule of Mercury, Thallium, Barium, Calcium, 

Copper and Oxygen, created in 1995. Under extreme pressure its Tc can 

be coaxed up even higher - approximately 25 to 30 degrees more at

300,000 atmospheres.

Though a lot of advancements in superconductor Tcs have been 

achieved in recent years, other discoveries of equal importance have

been made. Researchers in 1997 discovered that at a temperature very

near absolute zero an alloy of gold and indium was both a

' superconductor and a natural magnet. Conventional wisdom held that a

material with such properties could not exist! Recent years have also 

seen the discovery of the first high-temp superconductor that does NOT 

contain any copper and the discovery of the first plastic

superconductor'.

Fullerenes also called buckyballs exist on a molecular level when

60 carbon atoms join in a closed sphere. When doped with more alkali 

metals the fullerene becomes a “fulleride” and will often superconduct.

Fullerenes like ceramic superconductors are a fairly recent discovery.

They are technically a part of the larger family of organic conductors.

Organic conductor family includes : molecular salts, polymers and pure

carbon systems. The molecular salts within this family are large organic

molecules that exhibit superconductive properties at very low

temperatures. They are also therefore referred to as molecular 

superconductors. About 50 organic superconductors have been found 

with Tcs ranging from 0.4 K to 12 K (at ambient pressure). Since these
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Tcs are in the range of type I superconductors, engineers have yet to 

find a practical application for them. Their unusual properties have

made them the focus of intense research. These properties include giant

magneto resistance, rapid oscillations, quantum hall effect. Organic

superconductors are composed of an electron donor (the planar organic

molecule) and an electron acceptor (a non-organic anion). A few

examples of organic superconductors are: •

(TMTSF)2 C1O4
[Tetramethyltetra seleniafulvene + acceptor]

(BETS)2GaCl4
[boro(ethylenedioxy)tetrathiaful vene + acceptor]

‘Borocarbides’ are another system of superconductors, which also

contain ferromagnetic transition metals like iron cobalt or nickel 

disprove the fact that they cannot form superconductors. Boron and 

Carbon act as mitigator to his unwritten rule. In addition, when

combined with elements that have unusual magnetic properties (like
t

Holmium) some borocarbides exhibit. What is known as ‘re-entrant’

behaviour? Below Tc where they should remain superconductive, there 

is a discordant temperature at which they briefly retreat toa ‘normal’

non-superconductive state. Most borocarbides contain a rare earth

element. A few of the unique compounds are listed below.

Compound Tc

YPd2B2C 23K

YNi2B2C 15.5K

HoNi2B2C 7.5K
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Other superconductors are Ruthenates and only one polymer 

Polythiophene which has been successfully waxed into the super­

conducting state. Such startling discoveries are forcing scientists to 

continually re-examine longstanding theories on superconductivity and 

to consider heretofore-unimagined combination of elements.

Uses of Superconductors

Magnetic excitation is an application where superconductors

perform extremely well. Transport vehicles such as trains can be made

to ‘float’ on strong superconducting magnets, virtually eliminating 

friction between the train and its tracks. Conventional magnets waste 

much of the electrical energy and are also physically much larger than 

the superconducting magnets. Use of MAGLEV vehicles however has 

not caught up in spite of the technology having been proven. The 

world’s only MAGLEV train to be used commercially was in 

Birmingham, England which of course closed down in 1997 after 11

years of operation.

Superconductors perform a life caring function in the field of 

biomagnetism Magnetic Resonance Imaging (MRI). By impinging a

strong superconductor - derived magnetic field into the body, hydrogen

atoms that exist in the body’s water and fat molecules are forced to

accept energy from the magnetic field. They then release this energy at

a frequency that can be detected and displayed by a computer.

SQUID (Superconducting Quantum Interference Device) is used 

in magneto-encelography. SQUID’s are capable of sensing a change in 

magnetic field upto 100 billion times weaker than the force that moves



the needle on a compass. With this technology, the body can be probed 

to certain depths without the need for the strong magnetic fields

associated with MRIs.

Electric generators with superconducting wire are far more 

efficient that conventional generators wound with copper wire. Their 

efficiency is 99% and their size is half that of the conventional ones so

that they are lucrative ventures for power utilities.

An idealised application for supercoductors is to employ them in

the transmission of commercial power to cities. However, due to the 

high cost and impracticality of cooling miles of superconducting wire to 

cryogenic temperatures, this has only happened with short test runs. 

Most recently this month, workers pulled out nine cables from 

underground conducts at a Detroit Power Station, to be replaced by the 

first higher temperature superconductor cables in a working power grid.

In the electronic industry, ultra high performance filters are now

being built. Since superconducting wire has near zero resistance, even

at high frequencies, many more filter stages can be employed to achieve

a desired frequency response. This translates into an ability to pass

desired frequencies and block undesirable frequencies in applications

such as cellular telephone systems.

Superconductors have also found widespread applications in the

military. HTSC SQUIDS are being used by the US Navy to detect mines

and submarines. Significantly smaller motors are being built for NAVY

ships using superconducting wire and tape.



Among emerging technologies ultrasensitive, ultrafast super­

conducting light detectors are being adapted to telescope due to their

ability to detect a single photon of light. Superconductors may even 

play a role in Internet communications soon. Internet data traffic is

doubling every 100 days and superconductor technology is being called

upon to meet this super need.

Assuming a linear growth rate it is expected that the world wide

market for superconductor products is to be nearly doubled between

year 2010 and 2020. Should new superconductors with higher transition

temperatures be discovered, growth and development in this exciting

field would explode virtually overnight.
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III. Significant figures

Every physical quantity must have a unit, to tell what was counted, an order of 

magnitude and a statement about its reliability, which for the present we can indicate 

in a rough way by writing only the correct number of significant figures. The digits 

that are certain and one more are called significant figures. For example, in the 

statement that the length of the textbook is 27.5 cm, the digits 2 and 7 are certain 

and there is uncertainty of 0.1 cm in digit 5 because conventionally a length ranging 

from 27.45 to 27.5 is written as 27.5. The reading is known only to the nearest tenth 

of a centimeter. It has three significant figures. The error implied in this is 1 part in

275, i.e. —x 100 = 0.4%.
27.5
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The speed of light in vacuum is 2.99792458 x 108 ms'1. There are nine significant 

figures. The greater the number of significant figures the greater is the accuracy of 

our measurements. In our calculations speed of light can be taken as 3.00 x 108 

ms 1 (to three significant figures).

Scientific notation power- of - 10 notation

A measured quantity is written in the form m x 10n where 1 < m < 10, and n is 

an integer, positive or negative. All digits in *m’ are significant.

For example, a measured quantity 0.00780 m is indicated as 7.8 x 10'3 m (two 

significant figures) if the measurer is certain of digit 7 and as 7.80 x 10'3 m (three 

significant figures) if he is certain of digit 8.

Propagation of uncertainty through arithmetic operation

The uncertainty in derived quantities is fixed by uncertainties in the 

measurements that are to be combined. Results are not improved by carrying out



simple arithmetic operations to many figures. “No chain is stronger than its weakest 

link". We have an analogous situation with regard to measurements and their use in 

calculations. How to detect the weakest link and to judge how weak it is?

Addition and subtraction

An example : 36.34m + 0.0386 m + 4.133 m. On examination of these 

numbers, we find that 36.34 m is known only to the nearest one-hundredth of a 

metre, the other two numbers are known respectively to the nearest one-ten 

thousandth and one-thousandth of a metre. Therefore the weakest link is the first 

number, its accuracy is 0.01m. Therefore, it is enough if we know the sum to one- 

hundredth of a metre. Hence, we follow this step : round off the other numbers to 

one-hundredth’s place and add.

The sum = (36.34 + 0.04 + 4.13) m = 40.51 m

The same rule is to be followed in case of subtraction. Note that the 

subtraction reduces the number of significant figures.
•* •

Multiplication and Division

In this case, the answer will have same significant figures as the factor having 

the least significant figures.

(1) For example, density =------------3335g------------
15.42 c/z/x 5.53 cm* 2.1cm

Here the weakest link is 2.7 cm. The factor 2.7 has the least significant figure 

of two. So the density is expressed to two significant figures.

33 33.4
The step adopted is, density = ------------- 5------- - =-----

15.4x5.53x 2.7czzz3 230

= 0.1452 
- 0.15 g cm'3

(2) Multiplication involving constants such as 2, 1/4 , etc.

Area of a surface is 2.30 x 10'2 m2. What is twice its area?

It is 2 x 2.30 x 10 2 m2 (three, significant figures and not one, since 

numbers like 2,1/4 etc. have unlimited accuracy).
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(3) Multiplication involving constants like 71, G, etc.

The diameter of a wire is 0.57 mm. What is its area of cross-section ?

The formula A =------- is preferred to A = 7tr2 (why?).
4

Further n = 3.14159265.

The measured quantity has two significant figures. Express 7i to 3 significant 

figures, i.e. one more - to take care of rounding off errors.

, 3.14 x (0.57 x 10'3)! ,
A =--------------------------- m~.

4

= 0.255 x 10'6m2 

= 2.6xl0'7m2

Note: These rules are not rigid ones. There are many examples which do not 

conform exactly.

Advantages

1. It provides an easy introduction to the existence of uncertainty in 

measurements.

2. It helps to avoid misleading number^ and unnecessary calculations when 

measured quantities are subjected to arithmetic operations.

Disadvantages

1. Significant figures furnish only a rough estimate of uncertainty or accuracy.

2. There is no single rule for all the four operations.

3. Significant figure omit reference to the accumulation of uncertainty as data are 

combined.

For example, the implied error in the final value of density referred to earlier i.e.

x 100 = 7% , whereas, the implied errors in /, b, h and m are 0.1%, 0.2%, 4% and
0.15

0.03% respectively. The error indicated in the final answer is on the higher side: the 

accumulated error (maximum possible error) in this measurement having,

(0.1 + 0.2 + 4 + 0.03)% « 4.3%.



IV. Quantities to be measured with greater accuracy in an experiment

When measured quantities are substituted in a formula in order to calculate a 

desired physical quantity, the individual errors influence the uncertainty/ error in the 

final result. For example, in the simple pendulum experiment, to determine ‘g’, the 

acceleration due to gravity, the two measurements made are the length ‘1’ and the 

period ‘T’. In this, which one of them is to be measured to a greater accuracy? 

Should we use a vernier calipers to determine the radius of the bob? The length 1' 

from the point of suspension to the surface of the bob is measured using a metre scale 

to an accuracy of one millimeter. By measuring the diameter to an accuracy of 1/10 

of a millimeter (the usual L.C. of the vernier caliper) and adding half that value to 1' , 

will not improve the accuracy. (Refer: - addition - significant figures). Therefore, it 

is enough to read the main scale of the vernier.

The other quantity T, occurs as squared in the formula for ‘g’. If one commits 

an error of x% in T, its contribution to the error in g is 2x%.

[Note: The error in ‘T’ is reduced by measuring time ‘t’ for a large number of

oscillations say 20. If one is using a stop-clock (L.C. = Is) and t = 40s then 
1

40 ± 1 ‘
T - --------- = (2.00 ± 0.05) S. The period is measured to an accuracv ot 0.05 S.

20

Error is x 100 = 2.5%. Its contribution to the error in 2 is 5.0%]. The error in
2.00

T is 0--— x 100 =0.1% where 100.0 is the length of the pendulum set-up. Hence, 
100.0

the period ‘T’ has to be measured with greater accuracy].

In general, those quantities which have higher powers (exponents) in a 

formula are to be measured with greater care because their contribution to the error in 

the final result is (power (or exponent) x error in the quantity).

In the experiment to measure the resistivity of a wire, the quantity to be 

measured with less error is the diameter of the wire, rather than the length of the wire.



The resistance unplugged can be considered as a constant for expressing the final 

result in terms of significant figures.

In the determination of viscosity of a liquid by the Poiseuille’s method, the

quantity which is to be measured with greater care is the radius of the capillar)' tube 

because it appears in the formula as (radius)4.

Should we use the physical balance for weighing by the method of oscillation 

in the following cases ?

(i) Calorimetry - determination of specific heat

(ii) Calorimetry - determination of latent heat of steam/ice.

(iii) Faraday’s law - determination of e.c.e. of copper, 
of electrolysis

Error - Its effect on procedure of an experiment

Suppose that we are to determine ‘g’ using a simple pendulum. One can set 

up a pendulum of a given length T and measure the period T by, the usual method.

Substitute these values in the formula g = 4/r and calculate ‘g’. The value of

‘g’ so obtained may be higher or lower because of the errors that crept in. How can 

one proceed to get a better result - errors being ironed out? The procedure should 

influence the value of ‘g’ on both sides. That means many sets of readings are to be

taken and the average is to be found out. The formula tells us that is a constant.

So, one can set up pendulum of different lengths and measure the corresponding

periods in the usual way. Calculate in each case and substitute its mean value in

the formula to determine g'. That is g = 4/r '

/The relation — = constant suggests that the graph of T2 on x-axis and ‘1’ on

y-axis is a straight line. Its slope gives the value of and hence g = 4ti" (slope).



The value of g determined this way is a better value as the best-fit line drawn further 

4^2
“irons” out the errors. Note that the formula for g =------- if ‘1’ is plotted on x-axis

slope

and T2 on y-axis (I - T2 graph).

Thus, the attempt to reduce the errors, determines the procedure that is 

adopted (many sets of readings, graphical analysis and the average of the relation 

between the variable quantities in the formula). Also note that we do not calculate ‘g’ 

in each set and then take the average.

Some aspects to be kept in mind while collecting and recording data

1. The values selected for independent variable must be convenient ones for (i)

) plotting, and (ii) calculation. For example, in simple pendulum experiment,

let the lengths be a whole number like 1 = 60.0 cm and not as 60.2 cm.

2. Among the values of the independent variables, let there be the values which 

are multiples of initial value (some times 1.25, 1.50,... etc. of the initial

J value), e.g. 1 = 90.0 cm, 120.0cm etc. This enables to find out the

proportionality: when one quantity is doubled is the other doubled?

, 3. While tabulating, let the independent variables be arranged in an order
i

(increasing/ decreasing). This enables the experimenter to see the 

proportionality.

4. Let the number of trials be at least five (in case of graphical analysis).

5. Let the unit be written only on top of the tabular column.

6. Let the measured quantities be entered to the required number of decimal 

places, in accordance with the least count. E.g. 1 = 60.0 cm and not 60 cm 

when the least count is 0.1 cm^.

7. While establishing relations, the physical quantities can be measured in any 

convenient and arbitrary unit and not necessarily in S.I. units. E.g. (1) When a 

body moves with uniform velocity, unit for time can be in terms of distance, 

(2) range of the projectile can be a measure of the speed and hence momentum 

(if masses of objects are the same).

8. Train the students to record the measured values in ink in the tabular column. 

If wrong, let them cancel it with a neat single stroke.
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V. Data analysis - Graphical method

The data tabulated can be analysed by arithmetic and graphical methods. The 

latter is a convenient one because

(i) the comprehension of the relation is easy and quick, and

(ii) the graph drawn properly makes the uncertainties to affect on either side - 

thus ‘ironing’ out the errors. The value calculated, thus, is a better one.

Mathematically, a graph is a curve or other lin£ representing relation of the 

elements in a equation or function (y = mx, y = mx + c, y = ax2, y = ax + bx2 etc).

In data analysis, it is a line or diagram showing how one quantity depends on 

or changes with another. The following are the features of importance :

(i) the nature

(ii) the intercept

(iii) the area under the curve, and

(iv) the slope

1. Plotting a graph : Choice of quantities to be plotted on x and y-axes

We need not follow strictly the connectivity - independent variable on x-axis 

and dependent variable on y-axis. Let Vis take them in such a way that we get 

useful quantities in less number of steps. For example, if we plot the 

displacement on y-axis and time on x-axis, the slope gives the mean speed. If 

the quantities are interchanged, the reciprocal of the slope gives the mean 

speed. In this case, an additional step is involved which could be avoided.

Marking of x- and y-axes

Let x- and y-axes are marked on the edges of the ruled portion itself.

2.



3. Selection of scale

The graph plotted must cover as large a portion of the graph sheet as possible.
)

This is done by taking as large a scale as possible. However, while selecting 

the scale, convenience has to be looked into. For this, let the scale be 

1 cm = 1,2, 5,10, 20, 50, 100....etc. units

= 0.1, 0.2, 0.5.........

= 0.01, 0.02, 0.05,..... and so on.

For marking the graduations express the values in scientific notation: m x 10n 

where 1 < m < 10.

4. Choice of the origin

(i) When we are interested in the nature of the relationship among the two

quantities the origin has to be (zero, zero). For example, in the simple

pendulum experiment, suppose we plot the graph between 1 and T, taking the

values over which the measurements are made, the plotted points appear to be

on a straight line. We may draw a wrong conclusion that T is directly 
*

I proportional to 1.
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Exact relation is obtained when we plot the graph with (0,0) as origin. The 

graph appears to be a straight line. However, if you extrapolate the graph, 

you find the graph cutting time axis at a finite point, corresponding to a 

pendulum of zero length. This is absurd, which means our assumption that 

1 - T graph is a straight line is wrong. If the students are to determine the 

relation, you can instruct them to modify one of the quantities and draw graphs 

such as 1 - T2, ~T etc. Let them try 1 - T2 since squaring is easier than

taking the square root. [In case, you are interested in -T graph, then the 

independent variable can be assigned values 49.0, 64.0, 81.0, 100.0 and 121.0 

cm]. This graph is a straight line, passing through the origin. Hence T2 oc 1, 

or T cc yfl .

Similar cases will be observed in the following experiments.

(a) oscillations of a liquid column

(b) oscillations of a spring-mass system.

In this case, T - M graph will not pass through the origin. There will be an 

intercept on M-axis, which represents the corrections for the oscillating mass 

due to the mass of the spring. This value is about one-third the mass of the 

spring.

(ii) If one is interested in the value of the slope alone, then it is enough to
«

accommodate the range of values measured in each of the axes, taking as large 

a scale as possible, but a convenient one.

(iii) Suppose that the quantity is measured using a precision instrument, say a 

traveling microscope of least count 0.001 cm and if the least count (value of 

one division in the axis) of the axis on which they are represented is 0.01 cm, 

then round off the measured values to 1/100th place (i.e. multiples of L.C on 

the axis) and plot.

5. Drawing a line or curve

Draw a small circle around the plotted points. In case of a straight line, draw- 

using a transparent scale, a best-fit line, which contains as many points as 

possible on the line, and the other points being scattered equally on either side.

If (0,0) is a point (as in the simple pendulum experiment), the best-fit line 

must be drawn from it. In the case of a curve, just do not join the successive
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points by a curve, but draw a ‘free-hand’ smooth curve again with as many 

points as possible on the curve and the rest equally scattered on either side of 

it. A flexible stick or a tongue cleaner can be used. /

6. Drawing inference

From the graph, first tell how the line is and then state the relation.

(i) A straight line passing through the origin--“there is a direct proportionality 

between the elements of the graph i.e. y oc x.

[Theoretically if the graph is to pass through the origin and with the 

experimental data, it does not exactly pass through the origin, then give an 

account for the discrepancy].

(ii) We prefer linear graph. When two quantities measured indicate inverse 

relationship, then plot one quantity against the reciprocal of the other. For

example, in Boyle’s law, P =

hyperbola.

graph. Note P-V graph is a rectangular

(iii) If the graph is a linear one, but has an intercept, then measure the intercept and 

indicate what does that represent. For example, in the temperature coefficient

of resistance, the intercept on resistance axis gives the resistance of the wire 

at 0° C.

Rt= (Rca)t + Ro

Slope = a Ro

IAI
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slope 
a =------------

Rn

slope
a =--------------------

intercept

7. Determining the slope of the graph

While determining the slope, don’t select the plotted points for the triangle to 

be drawn. Instead, go along the graph and identify the two points on the 

graph, as far apart as possible where the graph passes through the intersection

ft

ft

•
The slope has to be calculated as the ratio of the values which the lines BC 

and AC represent and NOT of their geometrical lengths. Record the values of 

BC and AC in terms of appropriate significant numbers, taking L.C on the 

axis into account. Identify what quantity does the slope represent. ,

BC _
tan 3 = slope =

AC

8. Drawing a tangent to a curve at a given point



Consider the temperature - time curve in the experiment: Newton’s law of 

cooling. We wish to find the rate of cooling at a given temperature tr. One 

method is to draw a tangent to the curve and determine its slope. (This gives 

the instantaneous rate of cooling). Place a plane mirror strip MM’ across the 

curve corresponding to the given point P. Rotate the mirror about this point, 

till the portion of the curve in front of the mirror and its image through the 

mirror appears continuous. Trace the mirror surface line MM’. Draw a 

normal to it at that point or at any point on an extended line MM’. (This 

avoids the crowding of line MM’ normal and triangles drawn to determine the 

slope for them). Determine the slope, as usual.

Instantaneous velocity at a given instant can be measured by the- same method 

on displacement - time graph.

4
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I. C.LOGIC GATES

AIM: To construct NAND ,NDR ,NCT, AND, DR and EX-OR logic gates and *study 
----- their characteristics.

INTRODUCTION: The building blocks of modern digital computers are the 
------------------------------ logic circuits. Logic circuits are designed using logic

gates, the OR, AND and NOT arc railed the basic gates. The NAND aind 
NOR gates are called universal gates because the basic gates can be 
realised from them. Hence we can realise the action of all the gates 
using NAND or NOR logic gates. ICs 7400 and 7402 are comercially avai­
lable digital ICs with four 2-input NAND gates A four 2-input NCR gates 
res pe c t i ve ly . These two ICs are available as 14-pin dua I-in—1 in*=» 
packages.

EXPERIMENTAL PROCEDURE: A) USE OF NAND LOGIC IC.

NAND logic: Th^» circuit shown in fig
------------------------- gate are A and B.The

input conditions as shownvarluo s 
is completed 
AND J o g i c:

Truth Table
OR logic:

NOT logic :

NOR logic:

EX-OR logic

The circuit shown in 
the gate is observed 
2 is completed.
The circuit shown in 
gate is observed and 
The circuit shown in 
gate is recorded and 
The circuit shown in 
gate is observed and 

The cirruit shown in

) n

f ig 
for

1 is asembled. The two inputs to 
output of the gate is observed for 
the Truth Table 1 and the table

,2 is as s embl ed. The output n-f 
various input conditions and the

fig.3 is assembled.The output r*f the 
the Truth T-able 3 is completed, 

asspmbled.
Table 4 is 
as sembled.
Table 5 is 

as semblcd

fig. 4 is 
the Truth 
fig. 5 i s 
the Truth 
fig. A is

The output 
comp Ieted. 
The output 
compIeted. 

The output

of the

of the

nf the
logic gate is recorded and the Truth Table A is rem pi er.ed.

FU USE OF NOR LOGIC JC:

Circuit connections are made for NOR logic (fig.7),AND logic (fiq.S),
OR logic ( fig.9),NOT logic ( fig.10),NAND logic (fig.11) and EX-OR logic 
(fig.12) in that order. For each gate the output is recorded anti the 
corresponding Truth Table is enmpIeted.

CSignal binary *1* to a gate means connecting the input terminal to Vcc 
or +ve terminal of the DC sourco.Signal 'O’ means connecting the gate 
terminal to GND or -ve terminal of the DC source. The output of the 
gate is recorded with the help of the LED.If the LED lights up the out­
put is ’1’. If it rpmains OFF the output is ’O’.For all the circuits 
to function, pin 14 of the IC is connected to +5 V and pin 7 to GND of 
the DC source.3

Fi g. 1 Truth Table 1

7400—NAND LOGIC.

A
6

y>—^^"3-

! Input Level Output Level i
TT, '■: A ! S

: o : o
: o : 1
: 1 : o
: 1 ; 1
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Pi 9. 2

740Q-AND logic

a -L---------- \3 1,---------s=CZ>—q_Z>
6

Fig. 3

?400— OR logic

Truth Tit, Ip 2

! Input Lrvel
? a : a

! Output 
•A.B

Level

: o : □
: o : t

.’1 ; □
: 1 : 1

11

11
11

rruth T.ao 1 p 3

Input LevpJ 
.’A : B

Output 
: a +

Level
B

0 : O
o : 1
■1 : o

5~
Fig.4 Trti t h Ta o 1

740Q-N0T logi
Input LevpJ 

A
AA. "V/>

Hu tput I.e vf 1

A

F i g . .5

7400-NQR 1ooir

’ruth To o 1 p

I
Output I e v r 1

is 4r

JP—-C
Input Level 

A : a

iA -r _S ,Z 11 o : o :
□ i o : 1 :

1 : o :
lo 11 i : 1

5

Fig .6

7400-EX-QR logic

Truth Ta o i e 6

$
a + e>j

L—

rO°-~Li

Input level 
A B

Output l.pvpl 
A © F

Fig .7

10

y-

740P.—NQR logic

A
, 6

8
Truth table 7

i Input Level ! Output Level
; A b ; lA*<V

: o.
: o
: 1
: 1

0
1
0
1
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Fig.A

740F-AND logic

Truth Table A

74OZ- OR logic

Input level I Output Level 
A J B A . B

Truth Table 9

Input Level 
A I B

Output Level 5 
A + B

A

6

Fig. 10

7402—NOT logic

-h=5 o:/

Fig.11

rO
1
0
1

Truth fable 10

Input Level 
A '

Out pu t Level

A

Truth table 11

In put level 
A ! B

Output Level

A»6

Truth Table 12

Inf
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LOGIC- GATES USING SEMICONDUCTOR DEVICES

Aim :

To design and study the characteristics of logic gates using 
semiconductor devices.

Apparatus :

A few diodes (3Y 127), a few transistors (AC 127), a few resis­
tors, LEDs, a 5v dc power supply.

Theory :

Logic gates are fundamental building blocks of a digital comput­
ers. A computers ability to solve a problem depends on its abili­

ty to make decisions as it progresses through the steps in the 
problem. Circuits that make decisions are called logic circuits. 
These decisions are of Yes, No variety, that is of the two-state 
types logic circuits can be in one of two positions- - ON ar OEr , 
HIGH or LOW. Information and logical conditions are represented 
by a dc level on a signal line. Logic circuits analyse a combi­
nation of line levels at their input and produce a desired output 
when the input combination is correct for that particular cir­
cuit. Some of the Logic circuits are OR, AND, NOT, NAND and NOR. 
These can be designed using semiconductor devices. The function­
ing and the output of a logic gate is given by the Truth table.

Experimental Procedure :

The following electrical connections are made one after another 
and the output is noted for the various input conditions for each 
logic. The truth table is then drawn. Signal input is represented 
in binary form. Signal input A is binary 1 when A is connected to 
+5V of the dc source. A is binary 0 when it is connected to GND 
(-ve of dc source). The output is binary 1 when the LED lights up 
and it is binary 0, when LED does not light* up.

Truth Table 1
□R Logic :

Input
i

In put
dc 1 e ve 1 Bi nar•y level

A B A B

GND GND • 0 0

GND 5V 0 ‘ 1

3V GND 1 0

5V 5V 1 1

Output
Binary

level 
(A + B)

I

i
i
i
I
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+ 5v

loo -H-

6 —W— V\

0*7 IZ/I

Truth Table 2

Input
Level

Output :
level T

(A . 3) :A 3

0 0

0 1

1 0 _ ♦>

‘ 1 1

NOT Logic :

12.0 0 rL. 

-^wvW^-

4-5v

41-TL

Ac 187

Truth Table 3

I In pu t Output

: a A

: o

: 1

4- 5v

(X7

Tru t h Ta b1e 4

In put
Level

1

Output
level

A
1
: 3
1

( A * 3 )

0
1
: o
1

0
1
: 1
1

1
1
: o
1

1
1
: 1

SE3.TXT
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HALF ADDER AND FULL ADDER CIRCUITS.

A Iff- To design half and full adder circuits and study their 
-----characteristjcs .

INTRODUCTION: a digital computer contains circuits which can perforr 
— arithmetic operations like addition ,subtract:on,mu 1 11

ication and division.The basic operationas 
as zriul tipli cation is repeated addition and 
ction. Even subtraction can be achieved iv

are addition and subtrac 
division is repeated sue 
using adders. Hence the

computer can be built using adders only for arithmetic operations.
The simplest binary adder is the half adder capable of

adding two bits at a time providing a sum output ana a carry output 
necessary. A half adder can be ’realised using NAND logic or alterna 
using the combinational logic of EX-OR and AND gates. The half adde
.wo inputs and two outputs.

The full adder has 3 incuts an'
add three binary digits at a time. The simoies. 
adder circuit is two use two half adders and an

two outputs. It is use-.
way to connect 
OR gate.

a f u

EaPERIME.NTAL PROCEDURE •* The circuit shown in fig. 1 is assembled. Fo;
various input conditions shown in the Truth 

the output is recorded.The Truth Table ( 1 ) is completed. The circui 
shown in fig.i is now assembled ano the above procedure is repeated 
TAe full adder circuit shewn in fig.E is assembled. For
input conditions shown m Truth Table (Z) the output is
table is completed, ihe results are verified by actual binary aoditic 

Cm or 5 or C 0 means connecting the co r r es po n d i n a pin to GND

the differer 
recorded anc

-ve
pm

t,
or u u means 

minal of the DC source. 
*57 or +ve terminal of

. h e
• o r 5 o r C
• e sour ce - E

p i n
'means connec’.ino the

Fig.1

u. suq

CAK^y

1
Truth Table 1

sun

CA
>-•

Truth Table 1

I Input Leve 1 Output Level Input Leve i Output Level’
.* A B •’ Sum ; Carry! A ! 9 Sum .'Carrv .*•• : (a * b) : (a.3) : « • (A + B) ! (A. 3) i

: o 0 : o : o 1 • »4 • •
: o 1 •’ : - ; : o : 1 • 9 1« 1 » 1
: 1 0 : * 1 r o • £9 1• 1 f
: 1 1 : 1 ; 1 • • I •

• • 9 ' •
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StJH

.’ Input' Level Output level
: a & c Sum Carry i

; o 0 0
; o 0 1
: o 1 0
.' 0 1 1
: -1 0 0
j 1 0 •1
: i ■1 0
: 1 1 1

IL> 13 till lo 3
I t I 1 « | |

(L 13 ii ii io 3 8 l£, 13 (2 II 10 , 2

J H M ».

iM
I 1 3 4 5 6 7

>
Tc 74oe 

(AND)

fPlN li+ To 

f o R A LL

np\ n°i
l l i~*~n I a
I Z 34 5 lo -I

JC 7452
(or;

+ SV
1

“pH e h&o\J £

>

P IN/ 

ItA J

d ft & a ii I a
i 13 45 t7 

TC 74 86 
• (6x-o*;

7 To G\ M D
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i

parallel adder and subtractor

atm :

To construct, and u<C parallel adder, half subtractor and full
5 u P t r a c t n i .

APPARATUS :

Trainer board with IC-7486, Adder Subtractor trainer board, 5U dc 
P o w or supply, LED indicator .

PARALLEL ADDER

digital computers. In parallel 
to be added are applied to trie 
adders are faster. 7483 1C is a 

parallel adder IC. Two four bit
time with the 7483 1C.

Parallel adders, are employed in 
addition all the binary words 
inputs simultaneously. Parallel 
commercially available 4—bit 
binary words can be added at a

Experimental Procedure £

The circuit shown in fig.1 is rigged up. The inputs for circuit 
shown in fig.1 are two binary words A4, A3. A3, A1 and 34, B3, 
BZ. B1. Different input words are fed and the outputs recorded in 
table I and the truth table is completed.

cypTRACTORS :

The rul’es of binary subtraction are 0-0 = 0, 1-0 = 1, 0-1 =■ -1 
and 1—1 = 0- We refer 0—1 — — 1 as being a difference 1 and a 
bo r row of 1.

HALF SUBTRACTOR :

HALF SUBTRACTOR subtracts two binary bits according to the binary 
subtraction rules and produces a borrow & a difference. A Half 
subtractor can be constructed using EX-QR, NOT and AND gates as 
shown in fig.2. The circuit is assembled and for various input 
conditions the output is recorded and the truth table-2 is 
completed.

FULL SUBTRACTOR :

A fuEl subtractor can be constructed using ’two half subtractors. 
The circuit as shown in fig.3 is rigged up. For various input 
conditions the output is recorded and the truth table—3 is 
completed.

t

I

f

I

t
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TnM e 1

Tr. INPUTS
I

- OUTPUTS
• •—— —— ———

No . A A A A __ D B B B C s. £ £ £
-T 2 2 1 4 3 2 1 0

«■ 
1 1 1

3 -nC 1

•1

2

3

111 
<f -

7 -

5

6

7

a

Ta b 1 e — 2 Ta b 1 p — 2

A 3 : Difference Bor row

0 C I

i o1 I :

: I 0 •*

11 1 :

G>

Q0a*.oi->

A

i
C
O
 1 l

3
in

Di f f erence

__  -— -

Bo r r ow

0 0 0

: o 0 I

! 0 1' 0

0 1

I 0 o

I 0 I

I I o

1 1 J

TE14.T
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ADOLESCENCE

Need and Importance

The term adolescence comes from the Latin word adolescere, meaning 

“to grow” or “to grow to maturity”. People of the earlier civilizations considered 

the child became an adult when capable of reproduction. Today the term 

adolescence has a broader meaning. It includes mental, emotional and 

social maturity along with physical maturity.

Psychologically, adolescence is the age when the individual becomes 

integrated into the adult society. This integration into adult society has many 

affective aspects, more or less linked with puberty. It also includes profound 

intellectual changes.

The Adolescent Years

It is customary to regard adolescence as beginning when children 

become sexually mature and ending when they reach the age of legal 

matunty. Research studies have revealed that changes in the individual are 

more rapid in the earlier year of adolescence than the latter. The period 

adolescence may be divided into two - early (12 - 15 years) and late (16-20 

years).

Adolescence is an important period

The penod of adolescence is important due to both immediate effects 

and long term effects. The immediate effects are the onset of puberty and 

accompanying rapid physiological and mental developments. These give rise 

to long term effects, like the need for necessary mental adjustments and the 

need for establishing new attitudes, values and interests, thereby entering 

adulthood normally.

1



Adolescence is a transition period

It is a passage from one stage of development to another. It means 

that what has happened before will leave its mark on what happens now and 

in the future. Whiie moving from chiidhood to adulthood, they must “put away 

childish things". There is confusion about the roles the individual is expected 

to play. He/She is neither a child nor an adult.

Adolescence is a problem age

In chiidhood most of their needs and problems are taken care of by 

parents and teachers, as a result many adolescents are inexperienced in 

coping with problems alone. Secondly, because adolescents want to feel 

independent they demand the ngnt of coping with their own problems, 

rebuffing attempts on the part of parents and teachers to help them. Very 

often, they are unable to solve prociems not due to individual incapacity but 

because all their energies are engaged in battling the rapid physiological and 

mental changes that are problematic.

Adolescence is a time of search for identity

Throughout late childhood, known as the “gang age", they conform to 

group standards. Gradually in early adolescence, they crave for identity and 

are no longer satisfied to be like their peers in every respect, as they were 

earlier. One of the ways they try to establish themselves as individuals in late 

adolescence is by using status symbols in the form of owning a vehicle, 

clothes and other readily observable material possessions. They hope, in this 

way, to attract attention to themselves and to be recognized as individuals 

whiie, at the same time, maintaining their identity with the peer group.

Adolescence is a dreaded age
Many popular beliefs and popular stereotypes have definite evaluative 

connotations and, unfortunately, many of them are negative. The beliefs of 

adults that teenagers are sloppy, unreliable individuals, inclined towards 

destructiveness and anti-social behaviour influence the self-concepts and

2



attitudes of adolescents towards themselves. This makes their transition 

difficult as they are unable to seek help from parents or teachers as all adults 

have poor opinion about them.

Adolescence is the threshold of Adulthood
As adolescents approach legal maturity, they are anxious to shed the 

stereotype of teenagers and to create the impression that they are near 

adults. Dressing and acting like adults, they discover, are not always enough. 

So, they begin to concentrate on behaviour that is associated with adult status 

- smoking, drinking, using drugs and engaging in sex, for example. They 

believe that this behaviour will create the image they desire.

DEVELOPMENTAL TASKS OF ADOLESCENCE
Havighurst’s Developmental Tasks :

Adolescence

• Achieving new and more mature relations with age-mates of both 

sexes.

• Achieving a masculine or feminine social role

• Accepting one's physique and using one’s body effectively.

• Desiring, accepting and achieving socially responsible behaviour.

• Achieving emotional independence from parents and other adults.

All these tasks are prepanng them for adulthood.

PHYSICAL CHANGES

Few adolescents expenence body - cathexis or satisfaction with their 

bodies. However, they do expenence more dissatisfaction with some part of 

their bodies than with other parts. This failure to experience body - cathexis is 

one of the causes of unfavourable self-concept and lack of self-esteem during 

adolescence.
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Concerns about Physical Changes

• Awareness of social reactions to different body builds, especially of 

the endomorphic type leading to obesity.

• Menstruation, in the case of girls. Physical discomfort, cramps, 

weight gain, mood swings, depression, etc.

• Menstruation as "the curse” for girls; as boys do not experience any 

such form of physical discomfort, it colours of the attitude of girls 

and encourages them to behave as if they are martyrs.

• Acne and other skin eruptions, marring their chances for physical 

attractiveness.

• Physical attractiveness and its role in social relationships with their 

peer group and the opposite sex.

Emotionality during Adolescence
Traditionally, adolescence has been thought of as a penod of “storm 

and stress” - a time of heightened emotional tension resulting from the 

physical and glandular changes that are taking place. Adolescent 

emotionality can be attributed mainly to the fact that boys and girls come 

under social pressures and face new conditions for which they received little 

or no preparation during childhood. Not all adolescents go through a penod of 

exaggerated storm and stress, but most do so due to the necessity of making 

adjustments to new patterns of behaviour and to new social expectations. For 

example, problems related to romancing, worry of the future as their schooling 

comes to an end.

Emotional Patterns in Adolescence
During early adolescence they are often irritable, excited and explode 

easily but as they grow into later adolescence instead of having temper 

tantrums they express anger by sulking and refusing to speak.

4



Emotional Maturity
Indications of emotionality are that boys and girls

• do not ‘blow up’ emotionally in the presence of others but wait for a 

convenient time and place to let off emotional steam in a socially 

acceptable manner.

• assess a situation critically before reacting to it in an emotionally 

unthinking manner.

• are stable in their emotional responses and do not swing from one 

mood to another.

SOCIAL CHANGES DURING ADOLESCENCE
Social Adjustments

One of the most difficult developmental tasks of adolescence relates to 

social adjustments. These adjustments must be made to members of the 

opposite sex in a relationship that never existed before and to adults outside 

the family and school environments.

Increased peer-group influence

Since adolescents spend most of their time outside the home with the 

peer group, it is understandable that peers have a greater influence on their 

attitudes, speech, interests, appearance and behaviour than the family has. 

The peer group is their real world, providing them a stage upon which to try 

out themselves. The peer group offers them a world in which he may 

socialize in a climate where the values are not set by adults but by others of 

his own age. As adolescence progresses peer group influences give place to 

close, personal friendships.

New values in selection of friends
Adolescents want as friends those whose interests and values are 

similar to theirs, who understand them and make them feel secure, and in 

whom they can confide problems and discuss matters they feel they cannot 

share with parents or teachers.
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Interest in the opposite sex becomes increasingly stronger as 

adolescence progresses.

SOME ADOLESCENT INTERESTS 

Recreational Interests

• Relaxing
• Games and sports
• Travelling
• Hobbies
• Dancing
• Reading
• Movies
• Radio and Records
• Television
• Daydreaming

Social Interests

• Parties
• Drinking
• Drugs
• Conversation
• Helping others
• World affairs
• Criticism and reform

Personal interests

• Interest in appearance
• Interest in clothes
• Interest in achievements
• Interest in independence
• Interest in money

Educational Interests
Typically, young adolescents complain about school in general and 

about restrictions, homework, required courses, food in the hostel, the way 

the school is run and their teachers. The attitudes of older adolescents 

towards education are greatly influenced by their vocational interests.
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Factors influencing adolescent attitudes towards education

• Peer attitudes - whether they are college oriented or work oriented.

• Parental attitudes - whether parents consider education a stepping 

stone to upward social mobility or only a necessity because it is 

required by law.

• Grades, which indicate academic success or failure.

• The relevance or practical value of various courses.

• Attitudes towards teachers, administrators, and academic and 

disciplinary policies, success in extra-cumcular activities.

• Degree of social acceptance among classmates.

Why do adolescents dislike school ?

Adolescents dislike school when

• parents have unrealistically high aspirations for their academic, 

social or athletic achievements.

• They find little acceptance among their classmates.

• They mature early and are conspicuously large among classmates.

Vocational Interests

Boys and girls as adolescents are fascinated by the world of work. As 

early adolescents they are fanciful about their vocation, but as they near 

adulthood they become more realistic and focused. They are eager to earn 

money and believe that this is the final scene to the play of attaining 

independence. This is the ‘exploratory stage' and are on the look out for 

vocational information.

Sex Interest and Sex Behaviour
The first developmental task relating to sex adolescents must master is 

forming new and more mature relationships with members of the opposite 

sex. Now that they are sexually mature, new interest begins to develop when 

sexual maturation is complete, is romantic in nature and is accompanied by a 

strong desire to win the approval of members of the opposite sex. Because of
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their growing interest in sex, adolescent boys and girls seek more and more 

information about it. Few adolescents feel they can learn all they want to 

know about sex from their parents. Consequently they take advantage of 

whatever sources of information are available to them - discussion with 

friends, sex books, experimentation through masturbation, petting or 

intercourse.

Changing social trends in sexual behaviour

• Broader outlook of parents
• Co-educational institutions
• Role of school counselors
• Importance of providing sex education for adolescents
• Easy availability of information on sex through media

FAMILY RELATIONSHIPS DURING ADOLESCENCE

Deterioration in the relationship between parents and adolescents is 

usually due to fault on both sides. The so-called ‘generation-gap' between 

adolescents and their parents is partly the result of radical changes in values 

and standards that occur due to a rapidly changing culture and better 

educational and social opportunities available to the younger generation. 

Thus it is more a ‘cultural gap’ rather than ‘generation-gap’ as differences are 

not entirely due to chronological age differences.

Common causes of family friction during adolescence

• Standards of Behaviour
• Methods of discipline
• Relationships with siblings
• Feeling victimized
• Hypercritical attitudes
• Family size
• Immature behaviour
• Rebellion against relatives
• “Latchkey problems’
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ADOLESCENT PERSONALITY

Conditions influencing the Adolescent’s Self-Concept

• Age of maturing
• Appearance
• Sex appropriateness
• Names and nicknames
• Family relationships
• Peers
• Creativity
• Level of aspiration

HAZARDS OF ADOLESCENCE
Physical hazards

• Mortality
• Suicide
• Physical defects

Psychological hazards

• Poor foundations
• Late maturing
• Prolonged illness
• Role change
• Prolonged dependency
• Social discrimination
• Sexual rejection
• Family relationship

Common danger signals of Adolescent maladjustments

• Irresponsibility - shown in neglect of studies in favour of fun and 

social approval.

• Overly aggressive - cocksure attitude

• Feeling of insecurity - which cause the adolescent to conform to 

group standards in a slavishly conventional manner.

• Feeling of martyrdom

• Excessive daydreaming

• Regression to earlier levels of behaviour
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• Use of defense mechanisms such as rationalization, projection, 

fantasizing and displacement.

INTELLECTUAL DEVELOPMENT IN ADOLESCENCE

• Transition from concrete operational thought to formal operations - 

hypothesizing, analytical thought process, inductive thought 

process, accommodate new expenences, concept mapping.

• More abstract, liberal and knowledgeable

• Trying to understand purpose, need, meaning, able to think 

abstractly decline in authoritarian views, increase in political 

knowledge.

• Engaged in establishing a personal value system - emulate 

behaviour, modeling, critical about contradictory values.

ROLE OF THE TEACHER AND EDUCATIONAL INSTITUTION IN THE 

DEVELOPMENT OF ADOLESCENTS 

As a teacher

• aid in the adolescent’s search for identity

• provide for sufficient career information and vocational guidance

• be patient with the mood swings of adolescents

• try to be friendly with them as one of them to gain popularity

• be trustworthy to win their confidence

• provide a positive picture of the world of work.

• make them feel that everyone has gone through this penod 

including yourself

• do not label them

• provide for a counsellor who is easily approachable

• be more appreciative of their uniqueness

• provide for courses that will help them know about their physical 

seif

• provide for sex education
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do not be authoritative unnecessarily, democratic ways of approach 

are more appreciated.

help students make short-term goals if they are underachievers.

recognize their worth and respect them.

do not make gender differences in your class transaction.

be patient with disruptive behaviour

dialogue is appreciated to come to concensus

allow boys and girls to interact in the class

offer guidance to students who find it difficult to get along with 

others.

help them accept their physical body and use it effectively

guide them in achieving correct sex-roles

help them to become emotionally independent

provide positive and realistic views of marriage and family life

develop skills and concepts necessary for civic competence in order

to become prospective voters

channelise their energies in achieving satisfaction (cathexis) in

extra curricular activities and service programs.

teach them to develop skills for problem solving.

help them to develop positive attitudes in life.

help them abstain from eve-teasing and gender-abuse.

motivate them to raise their level of aspiration

aid in developing their interests, talents and hobbies

educate them about hazardous status symbols like rash driving,

pre-marital sex, drugs, alcohol and smoking.

counsel to improve family relations of the adolescent

help them to make a realistic assessment of their strengths and

weaknesses

help to develop a positive self-esteem

be a good role-model yourself.
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SIGNIFICANCE OF VALUE EDUCATION

The problem of value education of the young Is assuming Increasing 

prominence In educational discussions during recent times. Parents, teachers 

and society at large have been concerned about values and value education 

of children. National policy on Education (NPE) 1986 and revised NPE 1992 

has given all importance to the promotion of Value Education in Schools. 

Education is expected to play a major role in promoting national development 

in all its ramifications. At the same time, it should bring harmonious 

development of all the faculties towards adequate preparation for life. The 

present situation in India demands a system of education, which, apart from 

strengthening national unity, must strengthen social solidarity through 

meaningful and constructive value education.

The worldwide resurgence of interest In value education has been 

explained as the natural response of the modem industrialized societies to the 

serious erosion of moral values in all aspects of life and the crisis of values

experienced in modem times.

it is now commonplace to say that sweeping political, economic and 

social changes have overtaken human civilization during the past few 

centuries and these have been largely responsible for the predicament of 

modern man. The factors such as personal greed, meanness, selfishness, 

indifference to others’ interests and laziness also have brought about large- 

scaie corruption in almost all spheres of life - personal and pubiic, economic 

and political, moral and religious. We can achieve a better moral standard in 

our democratic way of national life if we become more industrialized and thus 

overcome mass poverty and the general feeling of insecurity which gives rise 

to greed.
i
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We are witnessing a tremendous value crisis throughout the world 

today. A lackadaisical attitude towards value and its institutions is ubiquitous 

everywhere around the globe. As the vitality of human belief In values Is 

dying out in every land, the younger generation has started to pooh-pooh the 

unique religious epics of antiquity and religious institutions, giving room for 

corrosion of godliness and erosion of spiritual and moral values. As a result, 

the mind of man has been laciniated and divided into small fractions and 

fragments which makes the value content of human life a diminishing factor In 

modem times.

The reappearance of barbaric qualities of selfishness, clashes and 

conflagration and other destructive forces which are burning the society, give 

clear indication of the degenerating process of human society. Now. there is 

an urgent need for a great effort to revive and reform the values of human life 

and to rejuvenate the foundation of the new civilization.

Concerted efforts and continuous dependence on good books and 

institutions will give students sterling and inspiring qualities of concentration, 

infinite love, justice, honesty, purity, selfishness, wisdom, faithfulness, 

humility, forgiveness, mercy, trustworthiness, respect for others, obedience, 

sincerity and a host of other virtues which are sine qua non to build the 

equipment of life. This should be the central theme of value education. 

Whatever be the cause of the present value crisis, there is no gain - saying 

the fact that the weakening of moral values in our social life is creating serious 

social and ethical conflicts. It is this changing context - the declining moral 

standards in personal nnP pHPli? life Q|| ||je npe ||pp.<J; /tftiSMIl

ideological commitment to the values of democracy, socialism, secularism 

and modernization on the other - that constituted the driving force behind the 

recommendations stressing the importance of value education in educational 

institutions.
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While there is general dissatisfaction with the fall In moral standards of 

both young and the old and disenchantment with the disregard to moral 

values witnessed in personal and public life, there has been no concerted 

attempt on the part of the society to address itself squarely to the problem of 

value education. Unfortunately, education is becoming day by day more or 

less materialistic and the value traditions are being slowly given up. A 

modern Indian is being educated mainly with the bread and butter aim of 

education; as a result most of our graduates run after money, power and 

comforts, without caring for any type of value.

The degeneration In the present day life, the demoralization of public 

and private life, the utter disregard for values, etc. are all traceable due to the 

fact that moral, religious and spiritual education has not been given due place 

in our educational system.

The Education Commission of 1964-65 says that "a serious defect in 

the school curriculum is the absence of provision for education in social, 

moral and spiritual values'. In the life of the majority of Indians, religion is a 

great motivating force and is intimately bound up with the formation of 

character and the inculcation of ethical values.

A national system of education that is related to life, needs and 

inspiration of the people cannot afford to ignore this purposeful force. Value 

crisis of the present day life is baffling the minds of educators and the 

educands as well. The effect of the value crisis on present day life is 

witnessed in the following :

• The democratic ideology that has been accepted by our country is yet to 

be actualized in the form of social and economic democracy as to realize 

democratic values guaranteed by the Constitution of India.

3
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• The individual is becoming a prey to the contradictory values and Is 

being converted as a consequence into an extreme radical, a 

reactionary, a skeptic or cynic.

• The present Indian educational system is reflecting more or less 

borrowed Ideologies and philosophies and the national values are 

relegated to the back.

• The teacher-educators and teachers are not being clearly oriented to 

the national values and ideas, ideal and ideologies that they have to 

inculcate in the students. Hence, they are not in a position to play their 

role as value educators.

• The student community Is drowned in neck-deep poverty, ignorance 

and unhealthy surroundings. Hence, they are not in a position to 

comprehend the real values of our contemporary India.

• Our curriculum does not reflect human values and the value system, 

hence our schools and colleges have become examination centers and 

not value centers.

The problem with value education, it appears, is that while everybody is 

convinced of its importance, it Is not clear as to what it precisely means and 

what it involves. In our educational reconstnictlon, the problem of an 

integrated perspective on values is pivotal, for its solution alone can provide 

organic unity for ail the multifarious activities of a school or college curriculum 

programme. An Integrated education can provide for Integrated growth of 

personality and Integrated education Is not possible without Integration of 

values.

In value education, as In any other areas of education, what Is asked of 

the teacher is a total commitment to the development of rational autonomy in 

both thought and action.

It should be noted that the most important aspect of value education 

consists not in unwilling adherence to a set of rules and regulations but In the
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building and strengthening of positive sentiments for people and Ideals. Value 

education should prepare individuals for participation in social life and 

acceptance of social rules. What is more important in value education is that 

schools should provide a healthy climate fcr sharing responsibilities, 

community life and relationships.

The new National Curriculum Framework for School Education (NCFCE) 

prepared by NCERT gives uppermost importance to Value Education in 

schools. NCERT has been contributing richly to the area of Value Education 

by way of organizing inservice education courses for key level persons, 

preparation of instructional materials, etc. The RIE, Mysore under the 

Coordinatorship of Dr Prahallada has brought out a 883 page material titled 

TREASURE TROVE OF VALUES which consists of Anecdotes, Fables,

Stories, Legends, Biographies and Folk Tales related to values which will be 

of great use at primary stage.

Also, 115 page Package on Value Education has been brought out by 

RIEM consisting of importance of Value Education, approaches to Value 

Education, Lesson Planning in Value Education. The package will be useful 

for the teachers for the inculcation of values at primary school stage.

Regional Nodal Centre on Value Education at RIEM

The NCERT, New Delhi has been identified by the MHRD (Department 

of Education). Government of India as the nodal center for strengthening 

value education in the country at school level. Subsequently, a National 

Resource Centre for Value Education (NRCVE) has been set up in order to 

plan and implement programmes on value oriented education. NCERT, New 

Delhi has launched a National Programme for Strengthening Value Education. 

This programme has been visualized as a national level initiative to sensitize 

parents, teachers, teacher educators, educational administrators, policy 

makers, community agencies etc. about the need for promotion, of value
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oriented education. The focus of the programme is on generating awareness, 

material development, teachers training, development of school programmes, 

promotion of research and Innovations in the area of education of human 

values and development of a framewbrk of value education for the school 

system.

In this context, a Regional Nodal Centre (RNC) has been set up at the 

RIE, Mysore from September 2002 which will be responsible for linkages 

networking, monitoring and follow up etc. at the State, District and grassroot 

level for implementation of value education programmes. The Centre will take 

up the responsibility of organizing National Consultation and Regional 

Workshop on Value Education with focus on strategies of awareness 

generation, material development and teacher's training. The RNC comprises 

of representatives drawn from SCERTs, lASEs, CTEs, DIETs, NGOs, School 

Boards, Bureau of Textbooks and eminent professionals/educatlonists from 

the southern states.

Dr N N Prahallada 
Reader in Education 
Regional Institute of 
Education (NCERT) 
Mysore 570 006
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CHAPTER 28
EVALUATION

C. GURUMURTHY

All our educational' programmes emerge out of aims and objectives

set out in the curriculum. The learning experiences provided to the pupils

are directed towards realising these objectives. The teacher wishes to bring

about a change in behaviour in the pupil in a desired direction. If after the

instruction the student exhibits such changes in behaviour, then the

objective is said to be realised.

A casual observation by the teacher in the normal setting of a school

may not help him to judge whether the objective are realised or not. A

systematic procedure in a controlled environment is necessary to arrive at

the above judgement. Hence objective based evaluation forms an integral

part of instruction. The results of evaluation is made use of to improve

teacher’s own instruction and thereby pupil’s learning.

Thus evaluation, teaching and learning are interdependent on each

other.

Teaching Learning



What is Evaluation ?

Before arriving at an acceptable definition of evaluation let us

examine the meaning of the terms ‘value’ and ‘valuation’. By value we

mean, price, worthiness, procures, estimation, set of principles, habits, 

customs, character, etc. Valuation, means estimating the performance of the

learner in certain situations and marking on the basis of predetermined set

standards.

Evaluation could then be defined as valuation plus judging the 

worthiness of learning outcomes. It involves a systematic process and

identification of objectives in advance.

Purposes and Functions

Evaluation can be made use of for varied purposes.

• to adapt instruction to the differing needs of individuals.

• to identify the hardspots of a pupil in a given subject and suggest

suitable remedies.

• for selection like within the school for higher education and outside by

the employer.

• to offer personal guidance for scholastic career, placement, soiv 

immediate problems of pupils, etc.

In short we can say that it is important for diagnosis, prediction,

selection, grading and offering guidance.
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Categories

The various categories of evaluation are

• prrpose - specific category

• m&de - specific category

• process - specific category

Evaluation is usually done through tests and examinations. An 

objective based test contains various types of test items. What then is an

item ?

An item is referred to as a learning activity presented in the form of a

specification of a task to the tester.

Featires of an item

An item

• is based on a learning content/Iearning activity

• presents the learner with a task

• expects a response from a learner

• expects the response to undergo process of evaluation

Mechanics of an item

(i) The task that an item specifies should in the process of learner-response

to it. demand and reflect only those specific aspects or skills or bits of

learning that are being listed.

(ii) Itshould specify precisely

• what the learner is to do



• the conditions under which it is to be done and

• to what level (standard to be accomplished)

(iii) The medium used to present the task specification should be such that 

there may not be any gap in its communication to the tester.

Items can be of different categories and formats.

Item categories

Category 1

(i) supply type

(ii) open-ended

(iii) subjective items

Category 2

(i) selection type

(ii) closed end

(iii) objective type

Item formats

Selection type

1. Constant alternative

True-False

Yes-No

Agree-Disagree

Right-Wrong

Modified True, False



Agree/Disagree/Don’t know o «~3

A1 ways/Never/Something

2. Multiple choice

Simple selection type

Multiple selection type

Reason-Assertion type/Multiple facet type

Sequencing type/Rearrangement type

Matching type

Linked type

Negative multiple choice type

Analogy type

Complex multiple choice type

3. Supply type

Simple questions

Completion type

Short-answer type

Long-answer type

Problem-solving questions

Standardisation of a test

It is important to standardise a list before using it. A number of steps 

involved in the process. They are

i. Preparation of a blue print
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ii. Test construction

iii. Pilot study

iv. Item analysis

Preparation of a biue print is necessary in order to decide the extent 

of the content to be tested, the objectives on which the test will be based 

and the type of items. It helps the teacher decide the weightage to be given 

to each of these aspects (refer sample biue print). Keeping the blue-print in

view the test is later constructed.

During the pilot study the test can be administered to a selected 

population of students. Item analysis may be done and suitably modified

before standardising the same.

Item Analysis

Item analysis refers to the process or examining students response to 

each test item. We use the facilitative value and discriminative index while 

deciding about whether the items are to be retained, modified or rejected.

(a) Facilitative Value

This indicates the difficulty level of each item and is given by

R
fv = — x ;oo 

V

R = Total number of right responses in both the groups.

\ = Total number of students in both the groups.

Note: Both the groups mean High Ability Group (HAG) and Low Ability

Group (LAG).



Discriminative Index

This indicates the extent to which the question discriminates a higher

scorer from a low scorer in the same test.

N(HAG) - N(LAG)
DI =................................

n

N(HAG) = Total number of right responses in (HAG)

N(LAG) = Total number of right responses in (LAG)

n = Total number of students in either group (HAG)/(LAG)

Interpretation

After determining the facilitative value and discriminative index, they 

can be used to draw up a table which indicates the range of scores, what it 

implies and what should be done with the item as shown below.

Facilitative Value
From To What it means What is to be done with the item

0 25 The item is too difficult Modify the item

25 75 The item is within the 
suitable range of facility

Retain the item

75 100 The item is too easy Reject the item

Discriminative Value
From To What it means What is to be done with the item

-1.00 +0.20 HAG is not doing better 
than LAG

Modify

+0.20 +0.80 Item is satisfactory Retain

+0.80 + 1.00 Item is very good Retain



The standardised test item performs its function effectively and the 

standardised test discriminates between good and poor learners. 1: aiso 

helps a teacher to choose a suitable technique of teaching for the classroom

teaching-learning, depending on the learners abilities. Further facilitative

value provides a basis for comparison and can also help in defining and 

maintaining standards in schools. The discriminative indices help identify 

topics to be addressed to all learners and topics to which learners of lower 

ability are to be registered.



Strategies for Increasing Positive Student Behaviours

Guidelines for Effective Praise
One of the most powerful strategies is providing praise for appropriate behavior. The planning 

of how and when to use praise rests with the teacher.

1. Define the appropriate behaviour while giving praise.
Praise should be specific for the positive behaviour that the student displays. This means any 
comments about behaviour should focus on what .the student did right. The praise should 
include exactly what part of the students behaviour is acceptable.

Situation: The teacher would like to see seatwork done quietly.
Example: "That is great that you did your seat work so quietly today."
Non-example: "You didn't disturb o±ers today."

2. Praise should be given immediately.
The sooner an approving comment is made about appropriate behaviour, the more likely the 
student will repeat the desired behaviour.

3. The statements used as praise should vary.
Individual statements that one uses should be varied. When students hear the same praise 
statement used over and over, it looses its value for the student.

4. Praise should not be given continuously or without reason.
If praise is given too frequently or without stating what the student is doing that is "good", ±en 
praise looses its value to the student.

I
5. Be sincere with your praise.
Students will notice if you do not mean what you say. Nonverbal cues like facial expressions 
and posture will alert the students that your praise is not sincere. The praise will not be 
effective if the student perceives that it is not sincere. Smiles communicate that the praise 
given is genuine.

6. Be consistent when praising the target.
It is important to be consistent with the behaviours that you praise. Students learn more 
quickly when they are always praised for desirable behaviours. Consistency between teachers 
is important in order to avoid confusion about behavioural expectations.

7. Praise should be developmentally appropriate.

Statements to younger or developmentally delayed students should be in language that is at 
their level so they clearly understand what behaviour is seen as appropriate. However, if older 
students perceive they are being "talked down to", it is likely that the praise will be discounted.
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Why Praise Works
1. Praise is readily available as reinforcement for positive behaviours.
2. Praise can be administered immediately after the desired behaviour.
3. Praise can be used over and over again if praise statements are varied.
4. Praise may be used in combination with other strategies to increase behaviours.
5. Praise can be tailored to a variety of behaviours by being specific about the activitv
6. Praise works if the relationship between the student and the person <”’”•/., me praise is a 

positive relationship.

Why Punish-* does Not Work
o ^-uishment is a less effacttve me:’- j of deaijng with unacceptable student behavior. 

Punishment gives anen’-.» to ffc wTong behavior. When the teacher gives attention to 
inappropriate behaviours, ^-.quentlv the behavior increases. The student may repeat the 
behavior just to get attention. For some students, attention of any kind is desirable.

o Punishment can damage the student's relationship with the teacher. If a student is punished 
for behaviour that is unacceptable, he or she may become uncooperative at other times. 
The student may not try or w'ork for the teacher when requested to do so.

o A student's self-esteem can suffer if the oniy attention from teachers is in the form of 
punishment The negative feelings that come from only experiencing punishment can 
result in an attitude that he or she can do nothing right. With the use of punishment, there 
is not an opportunity for the student to be recognized for the behavior that is acceptable.

o Punishment can discourage both unacceptable and acceptable behaviors. If a student is 
frequently met with negative responses for behaviour, the student may decrease both 
positive and negative behaviors. If positive behaviors decrease, the student will not have 
the opportunity to learn or practice acceptable behaviours. Punishment does not encourage 
a student to take social risks.

Non Verbal Social Approval used to Increase Positive Behaviors
Praise is one form of social approval., Other social means of communicating that the 

behavior is appropriate may include nods, smiles or a "thumbs up" sign. Where developmentaily 
appropriate, a pat on the back or a "high five" can be used to signal the student that their behavior 
is appropriate. Just as with praise, these other forms of social approval should be given as soon as 
possible after the positive behavior is observed.

Rules and Instructions as a Means of Increasing Positive Behaviors
Rules and instructions can help the student increase positive behaviors in a number of ways.

1. Rules and instructions can provide a guideline for what behaviours are appropriate.
Students may not know what is expected of them. Learning what positive behaviours are 
can help speed up the identification of acceptable behaviours.

2. Giving clearly stated instructions or having rules displayed enhances communication about 
expected behaviour.

3. Rules and instructions can be used effectively with praise or other strategies to increase 
positive behaviours.

4. Restating the mles or instructions just prior to an activity will remind or cue the student 
about the behaviour that is expected.
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Example: It is ±e first day of school and you have playground duty for 5th and 6th graders. You 
and the teachers arrange a time to meet with the students in their classrooms to go over the school 
rules on playground behavior.

Modeling
For some students an explanation of desirable behaviors is not enough. Demonstration is another 
way of making expectations clear.
Example: The students you are working with become unacceptably loud. You start talking to them 
in a very low voice. This would demonstrate to them what voice level you want them to use.

Build a Positive Relationship with the Student
Working to establish a relationship with students is an important strategy in effective behavior 
management. Investing time to get to know students is a good first step in establishing a positive 
relationship with them. A positive relationship sets the groundwork for all the other strategies. 
Students are more likely to listen and respond to rules, requests and reinforcement if they know 
their interactions with the teacher will be positive. Ways to be positive include:

1. Demonstrating to students their importance (i.e., by learning their names, actively listening 
to them, remembering things said by them.)

2. Praising continuation of appropriate behaviours.
3. Showing interest in helping students.
4. Explaining the reasons for having rules.
5. Encouraging students to participate in activities.

Students respond better to adults who take a personal interest in them. Personal knowledge of each 
student is one way to strengthen and improve these relationships. It.provides the opportunity to 
model interpersonal behaviors.

Please Remember

• Behaviour Management should be viewed as an opportunity for teaching and not as an 
opportunity for punishment

• Consider the impact on the student's best interests.
• Avoid embarrassing students.
• Suggestions should be in the form of constructive criticism.
• Constructive criticism should occur in private.
• Never engage in a power struggle. Strive for win/win.
• Thank students when they are trying to improve.
• Do not touch a student who is upset
• Keep other teachers/ the H.M. informed.
• Documentation should be objective and free of emotion.

Encouraging Participation
> Integrate Discussion Into Your Teaching
> Respond to Student Questions
> Help Students Prepare for Discussion
1. Explain the purpose of discussion
2. Create an appropriate physical setting for discussion



3. Identify discussion questions/issues in advance
4. Use an assignment as a basis for discussion
5. Begin with common experiences
6. Divide the class into smaller groups
7. Prompt discussion through the use of key phrases
8. Try brainstorming techniques

> Sustain and Focus Discussion
1. Encourage heated debates
2. Intercede if the discussion breaks down
3.. Keep notes during discussion
4. Assign students responsibility for summarizing major points

> Get and Use Feedback
1. Increase your eye contact with students
2. Ask students if they understand what you are saying
3. Call on students to paraphrase or to summarize
4. Begin your lesson with a series of questions
5. Ask questions during teaching
3. Give students problems to solve during class time 

Reserve the last 10 minutes of class for questions
3 Give frequent assignments
< Give frequent quizzes
0. Ask students to define, associate or appiy concepts
1. Periodically borrow students' lecture notes
2. Encourage students to form study groups

ssroom Management Techniques

ned Ignoring
.‘times the most effective way to deal with student misbehaviour is to ignore it.

n to Ignore Behavior:
When the inappropriate behaviour is unintentional or not likely to reoccur.

2. When the goal of misbehaviour is to gain teacher attention.
. When you want a behaviour to decrease.

Do not intervene when there is nothing you can do.

?n to Intervene:
. When there is physical danger or harm to you, o±ers or the child.

2. When a student disrupts the classroom.
3. When there are violations of classroom rules or school policy. 

When there is interference with learning.
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5. When the inappropriate behaviour will spread to other students.

Providing Cues to Students
An important aspect of behaviour management is developing ways to communicate with students 
that provide reminders that support your expectations. It's simply a way to let the student know 
that you want their attention, or you’re aware of the behaviour, and that you want it changed. 
These cues can also be used to reinforce positive behaviour patterns as well (i.e., reminders to 
continue the quality of interaction during an activity). These techniques may be non-verbal, 
including eye contact, physical gestures (i.e., raising your hand in silence), tapping or snapping of 
your fingers, coughing or clearing your throat, facial expressions (i.e., smile), or body postures 
(i.e., tilting vour head). One caution, avoid doing things,that may embarrass students.

Proximity Control
A fancy term, but you've probably used the technique quite frequently. You're aware how effective 
it is to stand near a student who is experiencing difficulty'. Simply moving around the classroom 
can assist students in staying on task because of your "proximity" to them. This works well 
because ±e students know you're aware of what’s going on, and allows the classroom teacher to 
continue without interrupting the lesson or the flow of the activity. As a caution, it’s important not 
to reinforce the inappropriate behaviour or call attention to ±e student.

Ways to Increase Student Motivation
Motivation is a key to academic success for most students. There are a number of ways to increase 
the motivational level of students.

1. Relate the material to their life experience/s, in other words, make it relevant to them 
personally, thereby stimulating their interest.

2. Demonstrate an active interest in that child.
3. Demonstrate an active interest in the child's work or the activity.
4. Use lots of praise both verbally and nonverbally.

The Use of Humor
We’re ail aware of how a light, funny or amusing comment or statement can often decrease 
tension, or frustration and afterward allows everyone to feel a bit more comfortable.

Of all ±e techniques discussed here, humor can be the most prone to misuse and is not 
easy to master, especially if it's directed toward a particular child or group of children. We've ail 
heard the expression "laugh with, not at children". Even the practice of laughing at one's own 
actions can sometimes be troublesome, particularly if it’s negatively directed. Don't use sarcasm 
and don't belittle students. Be careful, because what you think is funny may not be funny to the 
student involved.
Humor can also be used constructively to decrease levels of anxiety and thereby increase students' 
academic perform.

Helping Students Through Tough Spots
All students eventually will come across a certain task, assignment or situation ±at causes 

them difficulty’. Many will request assistance from teachers, staff or peers when appropriate. 
Others will simply stop working all together and not know what to do next. At ±ese times, trouble



can occur. We need to get them back on track. You can be most helpful in getting the student back 
on task by:

1. Doing (or solving) the problem with the student.
2. Reviewing the directions.
3. Providing another example or demonstrating.
4. Supplying them the correct answer as a model.

Appeal to Student Values
Often you can appeal to students' values when intervening in problem situations. Their desire 

is to be liked by others, to do the right thing, to be treated with respect, etc. You might:
•

1. Appeal to the relationship between yourself and the student.
2. Appeal to the natural consequences of a specific behaviour, (i.e., ”1 know you're frustrated, 

but if you break your pencil, then you'll have to replace it with your own money.")
3. Appeal to a student's need to be liked, (i.e., "Your friends may be disappointed with you if 

you continue to boss them around and interrupt them when they're speaking.")
4. Appeal to the student's self-respect, (i.e., "I know you’ll be very upset with yourself by 

doing this.")

Removal of Nuisance Items
It is difficult for teachers to compete with certain objects, either found at school or brought 

from home (i.e., rubber bands, combs, etc.). Often times in order to gain students' undivided 
attention, you may be required to deal with these types of competing items. Often, however, the 
removal of such belongings will only lead to further conflict. One way to avoid such conflict is to 
simply state the choices:

1. You can ei±er put it away immediately; or
2. I will put it away until the end of the day.

However, by taking a strong interest in the object and then politely asking to see and handle it. 
Once it is in vour possession, you have the option of returning it, with a firm request that it 
disappear for the rest of the school day, week or year, or to keep it, with a promise to return it at 
the end of the day and/or week. This technique is most effective if you have established a 
relationship with the student.

Materials adapted from: Baldwin J.D. and Baldwinn J.I. (1986). Behavior principals in everyday life ( 2nd Edition),
Engle Wood Clifts, New Jersey: Prenrice Hall, and Marrin. G. and Pear. J. (1992). Behavior Modification: What it is 
and how to do it Engle Wood Clifts, New Jersey: Prentice Hall.

«
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EXPERIMENT NO. 1

COLLISION IN ONE-DIMENSION

Set up Draw the diagram and label the parts

Adjustments

i) Adjust the height of the set screw so that its tip is at the same level as the ramp and 

also aiong the same line as the groove on the ramp.

ii) Adjust the distance between the edge of the ramp and centre of the set screw to be 

1.5D where D is the diameter of any hard sphere.

Observation

Keep the target sphere T on the set screw. Place the bullet sphere B at a suitable

location (25cm) of the ramp with the help of a small scale held vertically. Release the

bullet B.



Record your Obsei /ation

Answer the following question:

1. What is momentum (represent by p ) ?

2. What type of physical quantity it is ?

3. What physical quantities are to be measured to calculate momentum ?

4. What are transferred to sphere T by sphere B during the collision. What happens to 

the bullet sphere after collision?

5. What is the initial momentum of sphere 3. sphere T and of the system before collision?

6. What is the final momentum of sphere B. sphere T of the system after collision?

How do you measure the momentum of sphere B. before collision and sphere T 

after collision ? Stop watch is not given.

What observed and measurable physical quantity can be considered as a measure

of momentum? (Hint: Horizontally projected body).

What is range R basically a measure of ?

What other quantity it can represent assuming masses of spheres B .and T as

same. Similarly, what does R" represent?

Measurement

Place a carbon paper with carbon side up and place over it a tracing paper. Fix

them to the drawing board.



Step 1

Release the bullet sphere B from a suitable position (25cm) on the ramp. Note the

position where target sphere exists the tracing paper. Release the sphere from the same

point several times and note the distribution of points on the tracing paper.

To what degree is the velocity of the target sphere, after collision always same ?

v'

Step 2

Bring down the set screw so that when sphere B is released from the same point as 

in step I moves down with out hitting the set screw.

Get the trace for several releases.

To what degree is the initial velocity always the same?

Mark the point "O” corresponding to the tip of the piumb line.

Draw momentum vectors OT and OB. Compare them.

Calculate R'B and R'T. Compare them.



Step 3

Repeat, by reloading the bullet sphere from two other positions 

Step 4

Tabulate your measurements

Conclusions:

i) Momentum

ii) Kinetic Energy

Step 5

Discussion:

1. Offer explanation for discrepancies, if any

2. Sources of error and Methods to eliminate/minimize

Reference: PSSC Text. Lab guide and Teacher’s guide.



EXPERIMENT NO. 2

GALILEO’S EXPERIMENT

Set up: Keep the grooved track (about 2.5m long) on a horizontal surface. Place the given

smooth bail on it. Lift one end of the track till the ball slides off. Lift a little bit up and 

fix. (Give reason for this initial adjustment). xMake sure that the track does not sag under 

its own weight. Provide suitable supports to ensure that the track is straight and inclined

to the horizontal.

Step 1: Observation

Release the given smooth polished steel ball about 1cm in diameter from one end

marked as starting point. Watch its motion (Judge the pitch of the sound)> what do you

guess about the speed of the ball with respect to (a) time of travel and (b) distance
f

travelled ? What type of motion is it ? Write down your guesses.

Step II: Guesses

Step III: How is acceleration defined ? Can we use this definition for our investigation?

Give reason. A more convenient relation is needed. It could be worked out

mathematically. Assuming the motion to be of uniform acceleration, we can derive the



equation connecting distance travelled with time [your zuess (a) above in steo 1], What is 

that expression ? Suppose we set the initial velocity to be zero, then

1 S a
S = — at' or — = — = constant.

2 r 2

Here, we have a definition for a uniformlly accelerated motion, more suitable for practical 

work. Distance-square of time graph is a straight line. Is this definition more convenient 

for practical investigation ? Why?

Step IV : Experimentation

a) Designing and Collection of Data

From the starting point, mark off distance S = 1.00mm. 1.25m. 1.50m. 1.75m.

2.00m and 2.50m (Mark your own tabulation). Measure the time as average of best three

readings, out of about five! taken to travel each distance. Tabulate.

b) Analysis of Data Collected and Drawing Conclusion:

Draw S-t' graph and conclude. What dees the slope of the graph indicate? What is

the acceleration for this inclination ?

Step V: Further Questions and Investigation:

i) Draw S-t graph. What does this indicate?

ii) State the relation between speed and distance travelled in [year guess (b) in Step 1 ] the 
case of a uniformly accelerated motion. W’hy is speed as a function of distance 
travelled not suitable for investigation?

iii) List funher investigations that one can undertake with this set up?

iv) Considering the forces acting on the sphere, calculate the acceleration ?

Ref: Project Physics Harvard.



ExoerLxencs

EXPERIMENT 3 
Diffraction due to single slit

Aim : To study the profile of a dl faction pattern using single slit and laser beam.

Materials Required: Ke-Ne laser source, single silt unveiling microscope, measuring tape, drawing 
board, drawing paper, pins, graph sheen

Method of Approach

undergoes dirzrachon at a single slit of width 'd\ the angle of 
In this experiment we determine the wavelength X using 'his

When light of wavelength X 
dimnction 0 is given by dsir.0 = ad­
equation.

Keep he drawing board on which a graph sheet is fixed 5 m away bom the He-Ne source. 
Place a siit which is wide open at a convenient distance bom the source. Align ail he three taking 

care to see hat you do not directly see the laser beam with your naked eye. Adjust he slit width 
until a good difibaction partem is obtained on he drawing board. Trace he profile (partem ) on he 
graph sheet.

0

0



central max mimina sec. max
Measure the distance between the 
drawing board and the slit D. Mark 
the centres of the central maxima 
and the other maxima on the graph 
sheet. Measure the distance x, 
between centrai maxima and first 
minima on either side of the partem.

From this we can calculate a. To measure ‘d’ ±e siit width use a travelling microscope. Repeat this 
for 2nd and 3rd orders if possible and calculate a in each case.

Studv what happens to the pattern if'd’ is varied. Tabulate your readings.

SI No d n X X

1 d. 1 X,

x2

2 d2 1 X,

2 X2

Try' repeating the experiment for di-rerent values of D while keeping siit width 'd’ a constant.

Questions What should be the order of the wavelength as compared to the siit width so that 0 is 
measurable. In what way do interference and diffraction bands differ?

Further study Find out whai happens to the diffraction partem when the number is two or 
muitipie in number.



Experixencs

EXPERIMENT NO :4 
OSCILLATIONS OF A LIQUID COLUMN

Aim (a) Determination of'g’ by study of the oscillations of a liquid column

Materials Required Long U tube diam. 2 cm, scaie. stop watch, scale, adhesive tape

Method of Approach
The acceleration due to gravity’ g’ is determined by considering the simple harmonic motion of a 

liquid column. Using the equation

where L is the total length of the water column 
in the tube and g is the acceleration due to gravity.

A known length of the liquid column is taken in the tube as indicated in the figure above. 
Depress the water ievel in one side by blowing air so that the column oscillates. Measure the time 
for ten osciilanons of the column a number of times. Repeat the experiment with different lengths 
of the liquid column by changing L in steps of 20 eras at least Tabulate as shown below.

SI.No Length of water 
column L

7L No. Of 
oscillations 1

Time Time
period2 3

-

Plot a graph of T vs 7L and calculate 'g’.
5

i
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Aim (b) Study of damped oscillations

Materials Required Same as above

For one vaiue of L of the liquid column, note the maximum displacement of the water level 
on either side of the equilibrium position for four or rive successive oscillations.
Plot a graph of maximum displacement vs time period T.

Questions
Does the maximum displacement remain the same?
What is the locus of the successive amplitudes on one side?
If the maximum displacement is different in the successive osciiiaticn. why is it so ? 
Give some exampies of other systems which e.xhibit this behaviour.



Experiments

EXPERIMENT NOm 
NEWTON’S H LAW

Aim Study of the relationship between acceleration *a* and unbalanced force 'F’ for a constant 
mass.

Materials Required Two dynamic carts, pulleys, scale pan. thread, weight box, stop watch.

S - 1 rn_______ l

Method of Approach

For a body of mass m moving with a constant acceleration under the action of a constant
force F

S = '/i ar if u = 0
s being the distance travelled in time L

The apparatus is arranged as shown in the diagram. The cart is nrst loaded with weights (say 
about lOOg). Give a gentie push to the can and observe the motion. Transfer a few small weights 
from the canto the scale pan such that the motion of the can is uniform (as judged by your sight). 
Transfer 20 gm weight from the can to the scaie pan and note the time required by the can to travel 
1m. Repeat the experiment for the same force (weight of me pan - weight in the pan). Find the 
average time t and calculate a using in Repeat the experiment for different values of F.

Mass of can =
Mass on can =
Mass of the scale pan + mass in the scale pan = m, 
Mass of the system =

5

I



51.No F = m,g Time taken to cover 1 m Average(t) a = 2s't~
1 • 7 3

•

Questions
What does m. measure ?
Plot a graph of Si vs a What do you infer?
When the cart was moving with uniform speed was there no torce acting on the system? If your 
answer is yes, give reasons.
Draw the free body diagram of (I) cam (2) scaie pan (with weights in it) for the following
(ai constant velocity, (b) constant acceleration
How will you frnd out the mass of an unknown object using this set up?



EXPERIMENT NO. 6

ANALYSIS OF MOTION BY TICKER TAPE TIMER

1. To analyse the motion of a body what information do we need ?

2. Tape-Timer is a device used to mark the positions of a body at equal intervals of dme.

3. Fasten a tape to a moving body, your hand or an acceleration can and pass the tape 

through the tape guide (under carbon paper - if white tape is used) so that the tape

moves under the vibrator.

4. Examine the separation between the successive dots what can you say about the

motion of your hand/the moving body ?

5. Estimate the number of dots and select a convenient time interval such that you have

about ten observations (unit of time = say 10/15/20, etc. dots).

6. Use a stick-tape and fix the tape you have drawn on the table. Choose an origin and

mark off units of time, as 1. 2, 3, etc.

7. Measure the distances of each mark from the chosen origin (i.e. position) and

tabulate.

Position So Si Si S3 etc.

0 2 3 etc.

Time t Position Average velocity Average acceleration
(unit of time) S cm Sn - Sn-i cm/unit of time cm/(unit of time)"

0 So = 0 S,-So = V,= V2 - V, = a, =

1 s,= Si-S, = v2 = V3 - V2 = a2 =

2 s2 = S3 - Si = V3 =

3 s3 =



Analysis 1

Draw the s-t graph and conclude.

Analysis 2

What does the distance between the successive marlcs (S, - So), (S-» -Si), etc. 

represent ? What other physical quantity does this represent ? Whai is its unit ?

Analysis 3

What is instantaneous velocity ? How is it defined on a s-t graph ? Determine its

values for any five instants of time and draw the v-t graph. Infer.

Analysis 4

Using the v-t graph draw the a-t graph and infer. (Define a,ns, - t graph. How is it 

defined on the V,nst -1 graph).

Further Investigation

(i) Given v-t graph, how do you obtain (a-t) and (s-t) graphs ?

(ii) Given a-t graph, how do you obtain (v-t) and (s-t) graphs ?



Experiments

EXPERIMENT NO. 7 
BREWSTER’S LAW •

Aim Detemtination of ±e refractive index of the material of the prism by measuring Brewster's 
angle.
Materials Required Poiarisers. spectrometer, prism, reading lens, reading lamp.

Method of Approach
Make ail the initial adjustments in the spectrometer. Mount the araivser on the telescope and 

rotate it to oiser/e the variation in intensity. Remove the anaivser. Adjust the telescope to receive 
reflected rays mom the surface of the prism (mounted on the prism table’: incident at an angle 50° as 
in the i-d carve experiment. Fix ±e telescope. Mount the prism and rotate it to get the reflected 
image at the cross wires.

Mount the anaivser on the telescope and rotate it. Observe the variation in intensity. Mount 
the poiariseron. the collimator. Rotate the analyser anti observe the position of minimum intensity. 
Note the angle of incidence 03 for the minimum intensity positions. Calculate m from

/x = tan 03.



experiments

EXPERIMENT NO. <3 
1NDCCED EMF

Aim To study die emf induced as a function of the velocity of die maanet.
.Materials Required E.M. kit (Rajasthan university), Multimeter.

, 50 cm

Method of Approach

The exceriment is based on Faraday’s law of e.m. induction. The induced e.m.;. is given by 

- d 9e = -------- •'
d t

The acparatus is set ud as shown in the circuit diagram. The magnet is placed on the circular arc and 
allowed to oscillate through the coii by releasing it through different angles. The emf is measured 
for these various angles. Check if e a 0,. This is done for a given setring of the masses on the arm. 
The time period can be varied by changing the positions of the masses. For constant 9 measure the 
induced emf for different sertmgs of the mass. Check if e ex 1/T.
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EXPERIMENT NO 9 
ENERGY GAP OF A SEMICONDUCTOR

.Aim Determination of the energy gap of 2 semiconductor.
Materials Required Diode, thermometer, resistance lkQ (0.A79), ammeter (0-100 uA), voltmeter 
(0-50V), oii bath. DC (0-20 V) or (0-50 V) source.

Method of Approach
Connect the circuit as shown below.

Find out the resistance of the diode at various temperatures.

Draw a suitable graph and determine the energy' gap of me diode.



EXPERIMENT NO. i0 
LCR-SERIES RESONANCE

Aim Study of the frequency response characteristics of a series resonant circuit.
a') Resonant frequency (£,) of ±e circuit.
b) Quality factor (Q) of the circuit.
c) Inducnance (L) of the coil in the circuit.
o') Varianoos of phase difference with frequency.

Materials Required AC source, inductance 20mH. capacitance box. resistance box. I00Q-2000Q 
CRO (doublebeam).

Method of Approach
Connect the circuit 

response study can be made
as shown. Choose an appropriate vaiue of C such uhat the frequency 
around a resonant frequency in a pamcuiar range of the .A? source with

a large spread of frequencies.

Questions
How will you study the phase difference using a double beam?



Experiment: Logic Gates

Objective: To verify the truth-table of AND, OR and NOT gates using Boolean logic.

Apparatus: Logic gate set up, connecting leads

Procedure : i) AND gate

--------------- T------------ -  "

i

e- j f,3 i
I

r—'—*
6

4-5 V

Connect the circuit as in Fig 1.

a) Connect the input terminals A and B to the “Set logic input switches”. The 

terminal marked +5 is connected to the +5V (Hi) terminal of the regulated 

power supply.

b) The terminal Y is connected to the terminal marked '+ in the DVM(digital volt 

meter) and its negative is connected to the 0 V of the regulated power supply .

c) Give various possible inputs for A and B and find the corresponding outputs in 

the DVM and verify the following truth table.

A B Y=AB

0 0 0 4

1 1 1
1

ii) OR gate: Connect the circuit as in Fig. 2.

a) A and B are connected to the “set logic input terminals'.

b) Connect the terminal marked 0 V to + 0 V of DVM and the Y terminal to of 

DVM.



c) Verify the truth table.

111
Fi'q *2- VcAie •

iii) NOT gate

Connect the circuit as in Fig 3. Connect the input terminal to either A or B of the 

“set logic input switches” connect the ‘+5 V’ marked terminal to +5 V of the regulated 

power supply ‘O’ V terminal of power supply is connected to terminal of DVM.

Verify the truth table.

Input output

A B

0 1

1 0

<5
*

s

V »q 3J

Further scope: Combination of gates such as NAND, NOR can be realized.

Note:

1. 1 in the table implies voltage greater than 3.2 V and 0 implies voltage less 

than 0.8 V at the output terminals as indicated by DVM.

2. Set logic input switches provide 5 V when in state 1 or high state and 0 V 

when in 0 or low state.

3. Circuit is completed only when the Other terminal is connected to ground. 

In the case of set logic input switches the other terminal is grounded within 

the circuit board itself.

2.



Experiment: Variation of light intensity with distance

Objective: To investigate the variation of intensity of light with distance using an 

LDR (Light Dependent Resistor).

Apparatus: LDR, Source of light (15 W electric bulb) milliammeter, battery

eliminator, meter scale, convex lens etc.

Part (i): To study the variation of intensity of light with distance.

Procedure: Connect the circuit as in Fig.(1). Keeping the light source at a distance 

of about 1.50 m measure the current in the milliammeter. Move the source toward 

LDR and measure the current for different distances say 1.40 m , 1.30 m etc. 

Represent the observation in a graph by plotting the current versus distance. 

Interpret the graph. What modified graDh is to be plotted to get a straight line ? P’ot 

and infer the result.

Further investigations; Use light of different intensity or use filters to see the effect 

of wavelength. Investigate whether the intensity depends on the angle of incidence 

of light on LDR.

Part_(ii): Place a convex lens in between the LDR and the source such that the 

LDR is at the focal length of the lens. Vary the position of the lens and see the 

variation in current. Interpret your result ? Can you use this to determine the focal 

length of a double convex lens ?

J



Solar Cells

Crystalline silicon with deliberately added impurities is an essential ingredient of 

a silicon PV Cell.

In a p-n junction the free electrons in N side see free holes on the P side and 

hence rush to fill them in but only near the junction in the process the charge 

neutrality is disrupted. This forms a barrier to other electrons on the N side to 

cross to the P side. In equilibrium we have an electric field separating the two sides 

(Fig.1 a). Thus a PV Cell has p and n type silicon in contact, between which an 

electric field is set.

The electnc field makes the junction to act as a diode, in which electrons can 

move only in one direction.

When light ‘HITS’ the solar cell, each photon with sufficient energy frees one 

electron (and results in a free hole as well). If the freed electron or the hole happens to 

wander into the range of electric field of the diode, the field will send the electron to N 

side and the hoie to P side. This causes a disruption of electncal neutrality. If we 

provide an external current path electrons would flow through this path to P side to 

unite with hole there which the electnc field had created (Fig. 1 b).

The flow of electrons provide current and the junc;;on eiectric field causes a 

voltage. With both current and voltage we get power.
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It may be useful to note that only about 15% of sunlight’s energy is useful for 

Solar Cell. This is because light photons have a wide range of energy, some of them 

do not have enough energy to form an electron hole pair. Still other photons may have 

too much energy than that required, then also the extra energy is lost (unless photon 

has twice the required energy to create one more electron hole pair). This speaks of the 

quantisation of energy in nature, eg. if the energy of photon is 1.5 times that is needed 

for the formation of electron-hole pair, 0.5 part of the energy goes waste as heat. These 

two effects alone cause loss of about 70% of radiation energy incident on the cell.

Optimal band gap for Solar Cell

If we choose a material with a low band gap we can make use of more incident 

photons. But what we get in the form of extra current, we loose by having a small 

Voltage. Balancing these two effects a band gap of 1.4 eV has been found suitable for 

a cell made from a single material.

Other requirements:

1. The incident photons have to reach the junction hence one side of the junction 

should be left open as window. The other side is covered with a metal (acting as 

anode) for good conduction. Sometimes a transparent window of conducting 

material is provided over the upper n type silicon which acts as the cathode of 

the cell.

2. Silicon being very shiny material the photons that are reflected away by it cannot 

be used by the cell. Hence an anti-reflective coating is applied to the window of 

the cell.

Finally, the cell is protected by a glass cover plate. In one unit 36 such Cells are 

connected in series and parallel combinations and mounted over sturdy frame to 

achieve satisfactory levels of voltage and current.
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Fig.2. Basic structure of Silicon PV Cell

These days other materials such as GaAs, CulnSe2 , CdTe and amorphous 

Silicon are being used in PV Cells. Now even two different kinds of materials (high 

band gap on the window side and low band gap on the base side) are being tried. Such 

cells are more efficient and have been identified as multijunction Cells.

The Solar Cells that you see on Calculators and Satellites are photovoltaic (PV) 

cells also known as modules.

calculators etc.

On a bright sunny day we receive about 1000 W of energy per square meter.

We venture into collecting most of it to power our homes. If it could be done we will 

have “Solar revolution’’. However, it is limited today to power electrical systems on 

satellites and frequently for emergency road signs, remote tracks, on buoys and in

< 
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Identification of Transistor terminals

Transistor is a device made from two p-n junctions connected so that we have 
either p-n - n-p => d n p or n-p + p-n => non configuraticn. Still it cannot be got 
from ?jyo p-n oiode connected in the above manner. This is essentially because the 
intermediate ooped semiconductor (aiso cailed base) is very thin and lightly ocped. 
Also, base sn.ouid net draw any current when in circuit (ideally;.

When t'orward biased, however, both p-n junctions aiiow flow of current very 
easily i.e.. the forward bias resistance between emitter and base and between 
collector ano case is usually very smail.

The base is common to both these junctions. Hence if transistor terminals are 
to be icentneo with a multimeter (in Ohm meter mode) base terminal is that which 
shows low resistance when tested with other two termina.s separately. But in 
opposite poianty the p-n junctions get reverse biased hence resistance should be 
very large oerween case ano any of the two remaining terminals. Fig.1 illustrates 
this pent.

Current cr 
U rtUtu Lou? 
vcutilcxn c-2

Fig.1
When unction s in t'orward bias moce ana fixed -*-ve terminal of multimeter 

(MM i Ohmmeter mode) is connected to the base then the transistor is non. But 
if in forward o:as mcoe flxec terminal is -ve connected to case of multimeter, then 
the transistor son p. (See Fig.2). The common terminal is oentifled as base.
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If transistor is OK the resistance between emitter and collector is ideally 
infinite The resistance between collector and emitter ishowever. ideally zero when 
emitter base junction is forward biased (transistor is said to be in the state of 
concuction). (See Fig.3)
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Theoretically emitter is neaviiy cooed than the collector yet construction wise 
emitter-base fcnwarc resistance is a few Ohms larger than the oase-coilectcr forward 
resistance. Sy measuring the resistance of the ?.vo o-n junctions of transistor 
seoarateiv. we can de.ntifv wnicn sncuid be collector and wnicn should be emitter. 
(Fig.4)
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Usuailv manufacturers orovice a dot or seme mark near the collector terminal, 
for ease in identification.
Note: It is the construction which inhibits collector ceina used as emitter and vice-
versa.
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21 day Training Programme in Physics for 
the PGTs of Navodaya Vidyalayas 

2.6.2003- 22.6.2003

Provisional Time Table

Date/Day 9.00 am - 11.30 am - 2.00 pm - 4.15 pm -
11.00 am 1.00 pm 4.00 pm 5.30pm

2.6.03 Registration
&

Inauguration

Identification of Lab work-
pianning
RN+MNB

Discussion on Lab
Monday difficult areas work NRN

3.6.03 Pretest Problem solving Lab work Discussion/seminar
Tuesday approach-PRR PRL+RN SSR
4.6-03 MNB Errors & significant Lab work Discussion/seminar

Wednesday figures PRR PRL+RN NRN
5.6.03

PRR NRN Lab work Discussion/seminar
Thursday PRL+RN SSR

!
6.6.03
Friday MNB KV Lab work 

NRN+RN

Discussion/seminar
SSR

i

7.6.03
MNB PRR Lab work I Discussion/seminar

Saturday SSR+PRL ! RN
8 6 03 I D ■ ♦UV

Sunday---------------------- --------------------------- Project Work-

9.6.03 I . .9.6.03
Monday

i
NRN MNB Lab work 

MNB+PRL
Discussion/seminar

RN

10.6.03
Tuesday SSRI NRN Lab work 

RN+MNB
Discussion/seminar

PRL
11.6.03

Wednesday MAC SSR Lab work 
SSR+RN

Discussion/seminar
MNB

12.6.03
Thursday

COMPUTER LAB- 
SSR+PRL+MNB

Lab work 
RN+PRL

Discussion/seminar
SSR

13.6.03
Friday CG MAC

Lab work 
MNB+MMS

Discussion/seminar
MMS+PRL

14.6.03 
| Saturday CRN CG

Lab work 
MNB+RN

Discussion/seminar 
Library work

15.6.03
Sunday

------------------ Project Work-----------

16.6.03
Monday CRN VDB

Lab work 
MMS+SSR

Discussion/seminar
MNB

17.6.03
Tuesday NNP MAC

Lab work 
NRN+MMS

Discussion/seminar
SSR

18.6.03
Wednesday

NNP VDB
Lab work 

NRN+MNB
Discussion/seminar

MMS
19.6.03

Thursday
Popular Talk LIBRARY

Lab work 
PRL+MMS

Discussion/seminar
RN

20.6.03
Friday CRN KV Popular Talk

21.6.03
Saturday

CRN CRN I
----------- Library Work------------

_ ‘ ' Post Test Discussion Feedback Valedictory session
Sunaav i ! it



PRR P.Ramachandra Rao

MAC M.A.Chandrasekhar

C.G. C.Gurumurthy

CRN C.R.Natraraj

KV Kalpana Venugopal

NNP N.N. Prahallada

Popular Talk (1) Evolution of Stars

(2) Management Skills

SSR S.S.Ragnavan

PRL P.R.Laiitha

MNB - M.N.Bapat

NRN - N.R.Nagaraja Rao

VDB V.D.Bhat

MMS M.M. Sahajwani

Prof. G.T. Narayana Rao

Prof. K. Shamanna •

R.Narayanan 
(Academic Co-ordinator)
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