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PREFACE

The 21-day training programme in Physics for the PGTs of
Navodaya Vidyalaya Samiti, New Delhi was held in the Physics Section
(DESM) of Regional Institute of Education, Mysore from 2rd to 22nd
June 2003.

The programme was arranged at the request of NVS, New Delhi.
The main objective of the programme was to enrich the content level of

the teachers as per the revised curriculum.

The present volume contains a detailed report as well as the
enrichment material provided to the teachers. Every effort has been
made to make the material as explanatory as possible so that the

teachers could find it useful in the classroom transactions.

The enrichment material on Communication Technology has

been provided to the participants in the form of a CD.

I am glad to place on record the enthusiasm shown by the

participating teachers in all the sessions and we thank them for the

same.

My thanks are due to the authorities of Navodaya Vidyalya
Samiti, New Delhi for having provided the funds for the programme

and also for deputing the teachers for the course.

[ am also grateful to Prof J S Rajput, Director, NCERT for having

selected this Institute as one of the venues for this programme.



I express my heartfelt thanks to Prof G Ravindra, Principal, RIE,

Mysore for extending cooperation for the conduct of the programme.

[ wish to sincerely thank all the resource persons and guest
lecturers who have actually contributed and shared their experiences

with the participants.

My thanks are due to my colleagues in the Physics Department
for their active participation and valuable guidance during the

planning and implementation of the programme.

[ wish to place on record the cooperation extended by my
colleagues in other sections and departments during the conduct of

the programme.

Lastly, I express my thanks to the administrative staff of the
Institute and to the laboratory staff of the Physics Section who have

spared no efforts in making the programme a grand success.

(R Narayanan)
Academic Coordinator



ABOUT THE TRAINING PROGRAMME

Knowledge in the present day world is developing at a fast pace. There is a

tremendous growth of knowledge in the field of Science and Technology.

The present day teachers have to keep themselves up-to-date with the expanding
knowledge. The inservice teachers need periodic refresher courses to fulfill this objective. In
order to improve the capabilities of the teachers in content and pedagogy, the Navodaya
Vidyalaya Samiti arranges inservice training of teachers at various levels in the form of

orientation programmes and refresher courses.

The present programme was oriented toward the Post Graduate Teachers (PGTs) in
Physics. It was held at the Regional Institute of Education, Mysore from 2nd to 22nd June
2003 (21 days). The programme was planned and implemented by the Physics Section of the
Department of Education in Science and Mathematics of the Institute. In addition to the
Physics faculty, faculty members from the Department of Education also worked as resource
persons. Guest lectures and popular talks were also arranged using the expertise of external

resource persons of eminence.

The main objectives of the training programme was to

i) enrich the content competency of the teachers so that they can execute the revised
curriculum with greater confidence,

i) provide a first hand experience in setting up, performing and interpreting the results of
certain laboratory experiments and projects,

i) make the teachers aware of recent thrust areas in the field of education so as to
improve their professional competence, and

iv) make them familiar with certain skills and strategies required for effective teaching in

the present day classrooms.

The programme consisted of two lecture sessions (1% hours each) per day in the
morning and a laboratory session (2 hours) in the afternoon followed by discussion/seminar

(1 hour).

The laboratory and discussion session was attended by all the Physics faculty.



The topics on which lecture sessions were conducted were decided after an interactive

session with the participants. Broadly the topics covered were from the following areas :

Mechanics

Waves and Oscillations
Electromagnetism
Current electricity
Electronics

Digital Electronics
Communication Systems
Solid State Physics
Nuclear Physics

The level of discussion was kept higher than the requirement at the plus two stage.

During the laboratory sessions, the participants were encouraged to set up the experiments,

suggest innovative investigatory projects and implement them wherever possible. The

laboratory session was followed by presentation and discussion.

As a prelude to the laboratory sessions, two interactive discussions were presented on:

(i) Problem solving approach to teaching of Physics and ii) Errors and significant figures.

The participants were able to get “hands-on™ experience in computers and the use of

multimedia. In addition to the content coverage lecture/discussion sessions were provided in

the following professional areas.

a)
b)
c)
d)
¢)
f)

g)

Value Education

Evaluation and objective based Assessment
Creativity in teaching and learning

Needs and Problems of adolescents
Managerial skills for teachers

Skills of improving pupil participation
Motivation and positive attitude

In all, a variety of experiences were provided to the participants in order to enhance

content enrichment and professional competence.

sufficiently motivated the teachers.

It is hoped that the programme has

(R Narayanan)
Academic Coordinator
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Motion in a Plane

CHAPTER 1
MOTION IN A PLANE

he motion of a particle subjected to a central force field is confined to
> the motions of planets and satellites in the gravitational field of the
lectrons in an atom under the coulomb force of the (charged) nucleus.

lane, it is convenient to employ plane polar coordinates (r, 6) defined

-

We define unit vectors £ and 0 in the direction of
increasing r and 0 respectively. % and 0 are functions of
0 and are related to ® and ¢ by

£ = RcosB+¢sin0
0 =-Xsin@+¢cosH (1)

- ‘Taking derivatives with respect to 0,

;—= -% sin® + y cosB = 0
= -% cos® - y sin@ = -7 (2)

-is given in terms of polar coordinates by

3)

motion of a particle in polar coordinates by specifying r(t) and 6(t), thus
tor r(t).



Motion in a Plane

+ —

dt df dr

_dr dr db
==

=r ¢ + r00 (4)

(using equation 2)

This means that the radial and transverse components of the velocity vector are:

. =ty BgERg 5)

r

The acceleration vector

518 B g g 9D o 88 5lBD) 2020

dt db dr df dt
= - 0+ (r.e' +2r0) 0 (6)
(using 2)

Thus, the radial and transverse components of the acceleration vector are:

@, =T = 0’

ag = r0 + 270 7
If ris a constant, the motion is circularand a_ = r 0> = -0} / r which s the familiar centripetal
acceleration.
Momentum and Energy

The linear momentum of a particle is defined as p = mv (8)

Newton’s second law in vector form is



Motion in a Plane

ap . (9)
dt
The change in momentum between times t, and t, is
4
P, “ P, * der (10)

J

f
This is known as the impulse of the force.

In terms of Cartesian components,

dp'=mﬁ‘?3=Fx

dt dt
Multiplying by ¥ on both sides,
dv
mﬁx = o ﬁz
dt

smmmw,i[lmﬁﬂ = F. md.i(lma? - F0
de\2 7 A de \ 2~ 2

AL pfoz 020 |=F 0, +F 0 «F
dt 2 y : x x y Yy 2 12
=F.v
dT =
1e. — =F . v 11
" (11)

where T is the kinetic energy of the body.

Now, i(v2)=——(v'.‘ = 5%, ¥
dt dt dt

L Lt
dr 2 dt dr
Multiplying (11) by dt and integrating,

[dT=[F.vdt



Motion in a Plane

h

[
“ T, Ty = [ Fovar (12)
Since v dt = dr
T,-T,=[F. ar (13)
is the work done in going from point I (r,) to point 2 (r,).
The integral is to be taken along the path followed by the particle from point 1 to point 2.

Angular Momentum

The angular momentum of the particle of mass m about O is

L:rmﬁe=mr26 (14)
6 T i
\/ F. =ma.~= mr. - mr@ (15)
Fy = may = mro + 2mr0 (16)
and F = ¢F, + OFy (17)

Fig2. 0pand ©,

From (14), 9% = 2mri® + mr20
dt

From(16), % -4 20y =rF, =N (8
dt dt

N is the rorque exerted by the force F about the point O.
[

From(18), L, - L, = m r} 0, - m rl 0] :fr Fg dt

LT



Motion in a Plane

In vector language,

L=rxp
=m(rxv) (19)

(L is perpendicular to both r and p).

Fig.3  Angular Momentum

Now, L. . [r x mv]
dt dt
:rxi(mv)+£x(mv)
dt dt
=rx—d—(mv)+v><(mv)
dt '
, e
dv .
=rxim — since v xv =0
&
=r x F
dL
Thus, 7 = r x F = N, the torque vector.
!
t,
[
Lz_Ll“J'Nd’ (20)
Il

Potential Energy

If the force F on a particle is a function of its position r = (x,y,z), then the work done by the

%]

force when the particle moves from r, to r, isgivenby [ F(r) . dr.

r
1

We define potential energy V (r) =V (X,y,z) as the work done by the force on the particle

5



Motion in a Plane

when it moves from r to some standard point r,.

r

Vo(r) = —f F(r) . dr 1)

r
i

Such a definition implies that V' is a function only of (x.3.z) whereas the integral on the right
hand side depends on the path of integration.
Let F=F (x.v. 2
The change in V when the particle moves from rto r —dris given by
4% = =B 8T (22

Recall that 4 « = 4r . Vu where u is a scalar function and Vu is the gradient of u (grad u).

Hence.wemavwrite F = -V ¥ (=-grad V) o (25)
A A% e oV oV = 9 ¥
from wnich £ = ———, P S . W E T

' 0 x ' O v ) (0 )4

Now. V x ¥V =0
VxVV =culigradV)=0 (24)

ie. VxF =culF=0 (25)
[using (23)].

Thus. curl F =0 is a necessary condition to be satisfied by F (x. v, z) before a potential function can
te defined.

Now, if we consider a closed path ¢ in space. the work done by the force F (r) when the
particle travels around the path is

[
fF:dr=jjrﬁ.cz(rles (26)
(By Stokes theorem)
=0 sincecurl F=0



Motion in a Plane

(27)

This means that the work done in gong from r, to r is
independent of the path.

i.e.fF.dr+(F.dr=O

v
& (>

where ¢, and c, are two arbitrary paths as indicated in the
figure.

Fig.4  Work done is independent of path

Thus, curl F = 0 is both necessary and sufficient condition for the existence of a potential function
V (r) when the force is a function of position r alone.

14}
H

Ly

We can write jF.dr=fF.dr+fF.a’r

n 1

£
Recall that By o gy 1= f F .dr
4}

Hence, T, + V(r)=T,+V (r,)

r
]

=V (r) - V()

(28)

i.e., the total energy E =T + V = constant.

Conservative Force

A force which is a function of position alone and whose curl vanishes is said to be a

conservative force.

Central Force

A force which is directed always towards or away from a fixed centre and whose magnitude
is a function only of the distance from the centre is called a central force.

:?_



Motion in a Plane

Examples of a central force are gravitational and coulomb forces (both inverse square central
forces) and the force (proportional to displacement) responsible for single harmonic motion.

In spherical coordinate, s F = £ F(r)  with cartesian components

F o= 208 @
id

F,=LF@ F.=2F @
r ¥

ro=yfx? + p? o+ 22

We can show that

F Fl F (SF.  SF
CurlF = 2 —-—'6y—6.—-—"+}7(sp._.__‘~§,._’ + % ._._(S‘—é...__’] =0
Ox oy , - SOz Ox \ Oy Oz |
. O F §F
[Hint: Show that —2% = =, etc.)
O x Oy

This means, a central force is a conservative force.
Motion under a Central Force

Consider two interacting particles (such as the Sun and a planet or the nucleus and an
electron in an atom). We regard one of them to be practically at rest with respect to the other. Since
the force is central, F (r) = ¢ F(r)

Torque N=rxF=(rx #)F(r)=0

i.e. L = constant.

ﬂ:Nzo
dt

ite. L= m(rxv) =constant.

Therefore, both r and v must always lie in a fixed plane perpendicular to L. In other words, the
motion is always planar.

Since the force is radial only, Fg =0 from (15) and (16)

A



Motion in a Plane
m¥ - mr®* = F(r) (29)
mrb + 2mr0 = 0 (30)

These are the equations of motion for the particle. Since the force is conservative,

o = I

T +V =—mf2+ — mr?0® + v(r) = E. a constant.
2

Lt
2

(31)
( —;— mr? - linear KE ; % mr2®® = Iw?- rotational KE)

3

L (= Iw) = mr*0 isalso a constant.
Equation (29) can be written as
L 2

mr3

"
mr -

= F(r)

~

or mr = F(r) +

(32)

This is exactly the form of an equation of motion in one dimension for a particle
subjected
to the actual force F(r) plus a fictitious ‘centrifugal force’ of magnitude
2
- ( = mw? = mvir).
"1"3

Inverse Square Central Force

F = & r
r2

for which the potential function

Vir) = —f F(r) dr = i

! r

For gravitational force,
K=-Gmm,




Motion in a Plane

(Note: V is negative for an attractive force. Atr=e, V =0)

For the coulomb force, K =q, q,
(The force is attractive or repulsive).

From (32) we can write,

- 78 (33)
V¢/7 (rH=—+
r 2mr?
l where the second term on the RHS is
the centrifugal potential.
\ \
\ \\ K > 0 --- Repulsive potential
_ \K>3 K =0 --- No force (straight line path)
L e T K <0 --- Attractive potential.
ke e

Fig.5 Effective Potential

-2
FofB= = = B0 g, particle

2 12

moves in a circle of radius

o

12
r = - - (K<0).
Km -

L]
Centre of Force
K<0

Fig .6  Possible paths of particlesubjected
to central force

(C




Motion in a Plane

For an attractive force (K < (), the path can be an ellipse, parabola or hyperbola (the circle is a
special case of the ellipse) depending on whether E < 0, E =0 or E > 0. Examples are
planetary/satellite orbits, projectile paths and some cometary orbits.

For a repulsive force (K > (), we must have E> 0 and the orbit can only be a hyperbola
(example: paths of charged particles scattered by a nucleus).

Kepler’s Il Law

L = mr?0Q = constant.

The area swept by the radius vector in time dtis ds = L,2z0
3 2
. QD 1 [ 1
a2 2m Fig7 ds = —r%d 0
2

aconstant, i.e. the radius vector sweeps out equal areas in equal intervals of time. This is Kepler’s
second law. This explains why a comet gains speed as it approaches the sun and loses speed as it
moves away in its orbit.

Fig.8 Illustration of Kepler’s Il Law

Earth Satellites

Artificial earth satellites are of recent origin (from 1957). However, the physical concept
involved is traceable to an idea proposed more than 350 years ago by Newton himself. The idea is
illustrated in Fig. No. 9. Observe that depending upon the tangential velocity of the object the path
can be a parabola, a circle, an ellipse or a hyperbola. In the absence of any tangential velocity, the

path is a straight line.

I



Fig.9 Paths of particle under earth’s gravitational force

Motion in a Plane



Angular Momentum

CHAPTER 2

ANGULAR MOMENTUM

A SPINNING TOP!

Almost everyone might have felt fascinated.in his childhood while playing with tops and
asked an unanswered question, “what keeps the top standing?”. A top is all grace and beauty,
spinning about its axis, and at the same time revolving gently about a vertical line, a behaviour often
called precession. One may feel as if it is going to fall. But somehow it manages to stay upright,
somehow it manages to defy gravity. -

Can it be that gravity acts differently on a spinning or a moving object?
The force of gravity remains the same irrespective of the motion of the object.

Another puzzle is the bicycle. Even a good acrobat may not be able to balance a bicycle that
is standing still. Obviously, a bicycle has a self-balancing capacity which comes into effect only
when it is in motion.

Can it be due to some force from the air on the revolving wheels of the bicycle much in the
same way a fast spinning cricket ball swings in a curved path due to a side thrust from the air?

Air has no role to play in the stable motion of the bicycle wheels. They will behave in the
same manner even in vacuum. ‘

What then causes such strange behaviour of massive spinning objects? Yes, massive
spinning objects. The catch lies there.

A heavy spinning object means large angular momentum. Every spinning object, a top, a
bicycle, a spinning wheel, possess angular momentum. And angular momentum gives stability to
objects against wavering motion, as in the case of a bicycle, against being toppled by gravity as in
the case of a top, against wobbling of its axis, as in the case of a rifle bullet or an artiltery shell which
are invariably given spin at the time of firing in order to give them directional stability.

What is this angular momentum and how does it influence the behaviour of spinning objects?



Angular Momentum

Although a full understanding of angular momentum may not be easy, it is still possible to
frame a simplified picture of this concept and present a lucid explanation of the laws governing the
behaviour of spinning objects by analogy with linear momentum. Linear momentum is usually more
familiarly known by a shorter name momentum,

Let us therefore, briefly recall what we understand by momentum and how Newton’s second
law of motion explains its changing behaviour with time. Momentum p is often defined as mass
times velocity.

p=myv

where m is the mass of the particle and v is its velocity. Now v is a vector and m is a scalar. When
we take the product of a vector with a scalar, the resulting quantity is a vector whose direction is
same as that of the original vector and whose magnitude is the product of the magnitudes of the
vector and the scalar. Therefore, {f we write v to mean the magnitude of v, then the magnitude of
p is mv and the direction of p is the same as that of v. We, therefore, say that momentum and
velocity are parallel vectors.

Now consider Newton’s second law of motion. It is customarily written in the form

dp
dr

= K

That is, the rate of change of momentum dp/d!, is equal to the
external force F acting on the particle. We shall often find it
convenient to rewrite the above equation in the following form

-

dp =Fdt,

which means that the change dp in the momentum of a particle
over a very small time period 4t is equal to the product of the
BMPULSE force F multiplied by the time interval dr.

A force acting over a small time interval is called an
impulse. An impulse is a sort of kick. When you kick a
football, you apply an impulse away from you. '

In the same way the quantity Fdr is an impulse, a very tiny impulse, given to the particle
within the tiny time interval dt.

Continual application of a force can be looked upon as a train of such tiny impulse, or tiny

L4




Fig 3.4

6m/sec. Its momentum is %2 x 6 = 3 units.

Fig 3.5

Angular Momentum

kicks, each impulse, or kick corresponding to a tiny
time interval dt.

What Newton’s second law tells us is that
each tiny impulse Fdt changes the momentum by
the vector dp which equals the impulse F 4.

That means, if we consider an appreciable
time span T, the tiny impulses 'F df’s over the tiny
intervals 'dt’s spread over the time 7' add up to an
appreciable change in the momentum vector.

Consider a projectile of mass /2 kg moving
in a parabola due to the action of gravity. At a
certain point A it has a velocity v of magnitude

After a tiny time interval, say 1/10 the of a
second, it moves to a point B where its velocity
is 6.6 m/sec and momentum is 3.3 units. The
velocity and momentum are shown as v/ and p'.

Question: What is the change in the momentum of
the particle in the time interval dt? To this
question, one may be tempted to suggest an
obvious answer “0.3 units”, an answer which is
quite wrong.

To obtain the answer correctly first look at the two momentum vectors p and p’ simultaneously and
compare them by redrawing these vectors from the same origin O.



Angular Momentum

You know that vectors are added by the parallelogram rule or
the triangle rule. According to this rule, the difference between the
vectors p and p' is the vector dp whose magnitude is 0.5 units, and_not
0.3 units, and whose direction is downward.

3 another vector dp of magnitude 0.5, as in the present case, you get the
vector p’ whose magnitude is 3.3, which is less than the magnitude 3.5,
you would have obtained had you added the magnitudes algebraically.

p
In other words, if you add to the original vector p of magnitude 3.3 A
lo.s
p 7/
This is an important peculiarity of vector

addition.
= ‘L o ‘L According to Newton’s
dp Fdt second law this change dp in
= 110 F momentum accruing over the time 5
interval dr is equal to the impulse F ar '547 = .547 ————

imparted to the particle by the external dp F dt

force. ) = 1!1 0F F
Since dp is 0.5 units downward, and dt is 1/10 sec, the

equation

dp = Fdr implies that the gravitational force on the projectile
must be 5 newtons. We know that this is true if we take the acceleration due to gravity to be
approximately 10m/sec’.

Consider another example. The moon is moving in nearly a circular orbit due to the force
of gravity directed towards the earth. Why doesn’t the moon fall into the earth?

Again the answer can be provided by considering the change of the momentum vector due
to a train of impulses directed toward the earth. Suppose E is the location of the earth, and M, the
location of the moon at some instant ¢ and p, is its momentum at that instant.

16


and.no/

Because of the momentum p, the moon
moves to the point M, in the interval dr.. But
when at M, its momentum is no longer p , but
has changed to p, due to the impulse Fdr which
directed towards the earth contributes a
momentum dp in the same direction. The
direction of p, differs from that of p, by the an
angle d6, so that the direction of motion has
been deflected by the angle dfin going from M,

Iy

Angular Momentum

dg -

to M,

The moon moves from M, to M, in another

interval at after which its momentum changes to p,
due to another impulse directed towards the earth,
deflecting the motion by another small angle d6.

In this way, the moon gets continually

deflected by small angles dBs due to a train of small
impulses, each impulse directed towards the earth.




Angular Momentum

Direction of
Acceleration

Direction of
Maotion

As a result the moon moves in a
circle.

The moon has always been
feeling an urge to fall into the earth. In
fact she has ©been continually
accelerating towards this cherished centre through millennia. But she has been incapacitated from
reaching this goal because of her own momentum, much in the same way a running bull is
incapacitated from stopping instantly but is carried away by its own momentum. If the moon didn’t
have an initial momentum she would have simply dropped onto earth like an apple a long time ago.
Because of her momentum, she appears to be defying gravity.

It will be seen that there is a complete analogy between the motion of the moon, or any
artificial satellite, and the motion of a top. The moon or any satellite is carried away in its circular
or elliptical orbit because of its momentum. Even though it is always trying to fall on earth due to
the pull of gravity, it never succeeds. This is happening, as we have seen, because every tiny
impulse contributed by the gravity force is added perpendicularly to the existing momentum of the
satellite according to the triangle rule of vector addition.

Exactly in the same way, the top is carried away in a beautiful precessional motion, its axis
gliding along the surface of a cone. The top would have gladly fallen on the ground if it didn’t have
spin. A spinning top, on the other hand, has an angular momentum, which prevents it from falling.
Like King Tantalus of Greek mythology who is kept chin deep in water but never allowed to drink

3'd



Angular Momentum
it, the top is thirsting to fall but not allowed to do so by its own angular momentum.

This similarity between the satellite motion and the top motion is due to a parallelism -
between the law of linear momentum (which is same as Newton’s second law of motion), and the
law of angular momentum. This latter law is written as :

.d_IizN
dt

angular
original impulse
angular momentum I

deflected
angular momentum

where L represents the angular momentum of any object, which may be solid, liquid or gas, and N
is the torque of all external forces. Both L and N are measured with respect to the centre of mass
of the object. Without going into finer points, we shall identify the centre of mass of any terrestrial
object, to be abbreviated as CM, to be the same as the centre of gravity.

In order to absorb the meaning of the above equation, we need a few remarks. Newton's
second law of motion, as you know, is applicable to point particles. It does not automatically apply

19
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to an extended body. However, if we imagine the extended body to be made up of a very large
number, say K, of tiny parts, each part being approximated as a point, then Newton's law applies to
each tiny part. The force on any one them, say 4, is the extemal force f, and the force of interaction
f, from all other parts B, C,....composing this body. However, according to Newton's third law of
motion, the force the part 4 exerts on another part B, is equal and opposite to the force that B exerts
on 4, so that all the forces of interaction within the body pair out into equal and opposite forces.
Applying Newton’s second law to each component part and then adding up the effects over the
whole body, it can be shown that the

gross motion of the extended object
neatly separates out into two modes
of motion. They are :
a) The linear motion of the CM.
governed by the equation dL/dt = F
where F is the vector sum of all the
external forces acting on the object.
The above equation is
equivalent to the following more
familiar form :

Ma =F
where M is the total mass of the object and a SxaE
; : i : ; of . i
is the linear acceleration of its CM. In this rotation

mode of motion, the extended body is
imagined to be concentrated into a mass point
at the CM.

b) The rotational motion about the CM.
governed by the law of angular momentum:

L
dt

=N

where L is the angular momentum about the

CM and N is the torque of all external forces about the CM.
In this mode of motion, the extended body is imagined to be
revolving about the CM, which is now imagined to be a point fixed in space.

Before trying to illustrate the above equation, let us have a cursory understanding of
angular momentum. A full understanding of this rather complex concept requires a lengthy

it
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rule, the direction of the angular velocity is along
the axis about which the body is turning, its sense
being such that if you curl the right hand fingers in
the direction of turning then the thumb will give
the direction of the ® vector.

In this simple case, i.e. when a rigid body is
turning about an axis XX which is also an axis of
symmetry, the angular momentum of the body is
given as

Angular Momentum

discussion. Therefore, we shall consider

‘only the simplest case, namely a rigid body

which has an axis of symmetry and which is
revolving about this symmetry axis with an
angular speed of o radians per second. For
this special case, the angular velocity vector
o and the angular momentum vector L are
parallel.

The direction of the angular velocity
vector is given by the right hand thumb rule
(to be referred to as RHR). According to this

where I is the moment of inertia of the body about
the axis XX passing through the CM. Note that this
parallelship between L and w does not hold always.

As in the above case, it holds when the axis is an axis
of symmetry. Even when the rigid body does not
have an axis of symmetry, there always exist at least
three axes, perpendicular to one another, such that L
will be parallel to o, only when the body turns about
any one of them. When this parallelship between L
and o holds, we call the axis of revolution a principal
axis. Every axis of symmetry is a principal axis.

The torque N of an external force F about the

CM is also a vector and is also given by the RHR.

Let C represent the CM and let F be a force acting

through the point P which is at a distance » from C. The perpendicular distance of the line of the
force F from C is r sin6, where fis the angle between r and F.
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The torque vector is then perpendicular the plane

Symmetry
axis

N = Fr sin@, its sense being such that if you
curl the right hand fingers from r to F, then
the thumb points in the direction of N.

We shall now explain the motion of
a top with the help of the law of angular
momentum as just stated. For our purpose,
we shall find it convenient to rewrite this
law in the form of the following differential

dL = Ndt

which by analogy with linear momentum,
says that the change in the angular
momentum over time dt equals the angular
impulse N dr imparted by the external forces
over this time.

Now consider a spinning wheel. It s
revolving about an axis of symmetry with an



Ndt

Angular Momentum

angular velocity o. Therefore, its angular
momentum is L = Jo, where [ is the
momentum of inertia about this axis.

Let this wheel have the angular
momentum L, at some instant ¢/, The
direction of the vector L, therefore also
represents the direction of the axis at 7,

Let there be a torque vector N acting
on the body over a small time interval dt so
that an angular impulse N 4t is added to the
original angular momentum L,. Then the
angular momentum of the-body after this
interval dt is the vector L,, which is obtained
by adding to the original angular momentum
L, the small angular impulse dL = N d
imparted over the interval dr. Since the new
angular momentum vector L, has a different
direction than L, and since the axis is

following the direction of the angular momentum, the visible effect is that the direction of the

axis has been deflected in time d.

original
angular momentum N 7t

deflected
~ angular momentum
o)




Angular Momentum

The strange behaviour of the top can now be easily explained in the light of the above
mechanics. When the top is spinning (and also precessing) its angular momentum is
approximately along the axis of the top (there is an extra component of angular momentum from
the precessional motion, which we are ignoring for convenience). The top is experiencing two
forces. The gravity force and the ground reaction force. Of these two, the gravity force mg is
passing through the CM and therefore, does not produce any torque. The ground reaction R is
mostly a vertical force but may also include a horizontal component if the ground is not smooth.
This force R causes a torque N which is a horizontal vector perpendicular to the plane defined by
the axis of the top and the reaction R. The resulting angular impulse Ndf over every small
interval of time dt will then deflect the angular momentum vector perpendicular to itself. Asa
consequence, the angular momentum vector, and along with it, the axis of the top, will

continuously precess along the surface of a cone.

Note that this is analogous to the way the gravitational impulse deflected the linear
momentum of a satellite, sending it along a circular orbit. We have improvised a number of
bicycle wheel devices to bring home to the learner the meaning, in fact the “feel” itself, of what
we understand by angular momentum. Hold these wheels by hand, try to twist them, turn them,
cuddle them while they are spinning. It will be an enlightening experience, an experience that
can never come from any amount of book reading. For a while, you will disbelieve your eyes
when you observe the wheel turning sideways in response to your efforts to twist it downwards.
Then all of a sudden an enlightenment will dawn, and you will visualise the law of angular
momentum before your eyes, and such strange phenomena like the motion of a spinning top will
appear as natural as the fall of an apple. Only then you will have establlshed your faith in the

physics you have just leamnt.
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Wave Motion
CHAPTER 3
WAVE MOTION

Wave Motion

Particle and wave are two major concepts in classical physics. When we wish to study the motion of
material bodies, we often make use of the concepts of a particle. It suggests a tiny concentration of matter
capable of transporting momentum and energy. A wave, on the other hand, suggests a broad distribution of
energy, filling the space through which it passes. A wave transmits energy from one place to another without
the actual movement of material particles between those places.

Suppose you intend to get in touch with a friend at a distant place. You can do it, either by sending a
letter or by using the telephone. When you send a letter, a material object (the letter) moves from one place to
another carrying the information. In the second case, a wave carries this information from you to the friend.
There is no movement of any material object. When you make a telephone call, a sound wave carries your
message from your vocal cords to the telephone; at the telephone system it is converted to an electromagnetic
wave, which may pass through a copper wire or optical fibre (or may even move through space via a
communication satellite). At the receiving end, your friend’s telephone converts the electromagnetic wave into
an audible wave (sound wave) and delivers the information to his ear. Thus the information is transported
without the transport of any material medium.

Though we have talked about the electromagnetic waves above, the subject matter at present will be of
a general nature on waves, especially waves in material media or elastic media.

Waves in General

A flag fluttering in breeze, ripple waves in water, sound waves in air and other media and seismic waves
are some of the examples of mechanical waves. Mechanical waves are governed by Newton’s laws, and they
need a mechanical medium for propagation. Electromagnetic waves, on the other hand, are of a different nature
and do not need any medium to pass through. All electromagnetic waves, irrespective of their wavelength,

travel through vacuum with the same speed ¢, given by
¢ =299, 792, 458 m/s
Under special conditions. we come across another category of waves - matter waves - which are governed by

the laws of quantum mechanics. An example is an energetic beam of electrons exhibiting wave characteristics
under certain conditions.

Mechanical Waves

Many of the aspects of wave motion can be understood by considering the sinusoidal waves in a long
stretched string. We assume that the string is infinitely long so that there is no effect of an echo due to
reflection. Wave motion can be studied either by monitoring the waveform (shape of the wave)as it moves
along the string, say from left to right, or we can concestrate on a specified element of the string and observe
its motion. The waves in the string are transverse in nature since the displacement of any element is in the y
direction perpendicular to the direction of travel of the wave which is the x direction.
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Fig.1 A typical element of the string moves up and down as
the disturbance travels along

In contrast to this, consider the motion of a sound wave, set up in a long air-filled pipe by using an oscillating
piston. In this case, the displacements of small elements of air are back and forth and hence parallel to the
direction of propagation of the wave. Such wave motions are termed longitudinal. Sound waves are always
longitudinal in nature.
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Fig.2 The to and fro motion of piston causes a to and fro motion of the element of

mass in the parallel direction.

Transverse waves in a sfring

Consider a long string siretched by a tension T. Let a small portion of the string be given a sudden
lateral displacement. Two thing« happen now. The displaced part of the string will tend to return to the original
position i.e. restoring forces will act on the string. Secondly, the displaced portion of the string will exert lateral
forces tending to displace adjaccnt parts of the string. This results in a pulse travelling out in each directions
from the original undisplayed part.
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Fig. 3 A pulse travels along the string in both directions from the source

The speed with which a pulse travels along the string is characteristic of the condition of the string.

What are the conditions for a wave pulse (or a wave) to travel through the string? Or in other words,
why an elastic medium, such as a string, when disturbed vertically, produces a pulse travelling laterally along
the medium?  These reasons can be listed as below. 1. There must be forces acting along the string which
causes the displacement of the medium (string) as the pulse passes through. - 2. The string must have elasticity,
i.e. it does not tear apart under the stress created by the passing wave; at the same time, it should not be too rigid
to yield to a pulse. 3. The string must have inertia so that when it reaches the equilibrium position, it
continues to move and go beyond the equilibrium position. In figure 4, we have shown the forces acting on the
cord corresponding to various stages. The forgoing reasons indicate that such forces must be acting so that the
string is stretched and contracted to keep the pulse moving along. The segment of the string nearer the source
passes its energy to the string segment adjacent to it by doing work on it (stretching the segment, for example).
Once it has given up this energy, the crest formed by the wave pulse collapses and the string attempts to come
to its original position, but due to its inertia it overshoots the equilibrium posmon creating a downward crest

which is then passed on to the next segment of the string.

Y
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Fig. 4 Forces acting on a section of the string
Inset Shows the vectcr addition of F, and F, to get F .

The figure illustrates the forces acting on the segments. When the string segment AB is pulled upward
forces F, and F, (restoring forces) counterbalance it such that the upward motion of the string is stopped. The
net downward force, F_,, , on the segment acts to accelerate it downward according to Newton's second law of
motion. In the segment CD the sum of the forces F; and F, cancel out and no net force acts on this element
and no acceleration at that point. The upward net force on EF can also be explained similarly.

To show that energy is transmitted along the string

Consider the forces acting at any point on the string. For example, F is the force acting at point E on
the segment EF. The vertical component of this force is F¢sin 6 which is acting upward and hence pulls a
particle at point E upward with a velocity V = s/t. Let the particlesmove a distance s = Vt. This means that an

amount of work W = Fs = (F, sin@) (V1) is done on the point E by the adjacent segment of the string. This work
is done by each particle in the string on the adjacent particle. In this manner, the string passes along the energy
transmitted to it by the wave.

To derive an expression for the speed of the pulse in terms of the tension T and the characteristics of
the string (medium).

Let us consider the forces acting on a small section of the pulse.

rAD = length of the arc of the string AB
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Fig.s5 rA6 = length of the arc of the string AB

Since we are interested in the relative speed of the pulse with respect to the string, we imagine that the string

is moving over the top portion of a stationary hump (which has the shape of a pulse) with the relative speed V.
We consider the top portion of the string as an arc of a circle of radius r such that the length of the segment AB

=r AB. From figure, we see that the net downward force on this segment is

F =F Sin(Ae)+F~ Sin<A8>
net 1 ) 2 2

Since F, =F, =T (the tension in the cord,

F _=2TSin (—A~QJ

net A

&

0 for small AB.

= 27T [AGJ Since Sin LAS]

2 2

“

F.x=TADO (N

2

The centripetal acceleration in the segment AB is a = Y and hence the force F=ma=m .
/al

]

"
Let u be the mass per unit length of the string. Then, u = %, sincel =r AB, m = ur AB.
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Since these two forces must be equal, we have,

&)

2 T T
or,v* = — or v ==
p B

Each pulse will travel along the string at constant speed which depends only on the tension T and the mass per
unit length of the string. The assumption that AB is small means that the result holds good only for small

transverse pulses (but the pulse may be of any shape).

Example
One end of the string is fastened to a stop and the other end hangs over a pulley with a 2.0 kg mass

attached. What is the speed of the transverse wave in the string?

T=Mg=(2.0kg) (9.8 m/s’)=19.6 N
-3
P SR D S R S B Lk
l 4 .0m m
— 19 Gkg—: -
U=\jz: = = 261Y10‘m =1 60ms’
kg s?

20
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Travelling Waves

Consider a long string stretched in the x-direction. A transverse pulse generated at one end at t=0 is
travelling along the string. Let the shape of the string at x at t=0 be represented by y =f(x).

y =f(x), 1t=0
If we neglect the internal losses, such a wave would travel along the string without any change in shape. If V
is the magnitude of the wave velocity the wave travels a distance Vt in time t. Therefore, the equation of the

curve at time t is given by

y = f(x-v1), t=t 4)
v
> §
i . “ vt >
/| \ -
// [ | t=0 t=
/'/ ‘ |
/ ‘ \ P4 \\\
Fig. 6

This expression ensures that the waveform at t=t at x=Vt is the same as the waveform at x=0 at t=0. Equation
(4) therefore gives the general equation representing a wave of any shape travelling to the right. [f the wave

were travelling to the left, we could represent it as y= f(x+Vt).

Let us now consider a particular part of the wave (phase) as time goes on. For this, we can look at a
particular value of v, say the top portion. This means, we are looking at how x changes with t as x-Vt remains

at some particular value. For this, x should increase as t increases so that x-Vt remains constant. To find the
velocity of a particular phase of the wave, we can use the condition,
X-Vt = const.
Differentiating w.r.to time t, dx/dt=V
V is called the phase velocity of the wave.

The wave equation can also be interpreted further. For a particular value of time t, the equation gives y as a
function of x. This gives the actual shape of the pulse. The same result holds good for longitudinal waves also.
An example for longitudinal wave is a long tube containing gas through which a pressure change is passing
through. (See Fig.2)
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Let us now consider a particular waveform (which is also the simplest and the most important one). We
represent this waveform at time t=0 by the relation,

T x
=Asin
g A
The shape of this curve is shown.
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A is called the amplitude of the wave. It corresponds to the maximum displacement: The value of the

displacement y is the same at x as itisat x + A, x + 2 A etc. This distance A is called the wavelength of the
wave train . It represents the distance between two adjacent points in the wave having the same phase. Let us

assume that the wave is travelling to the right with a phase velocity V. Intime t, the wave would have travelled

adistance Vt. Hence the equation of the wave at time t is given by
2 e
y=48Sin — (x -vi S
A
The time required for the wave to travel a distance of one wavelength A is called the period T.
: A =Utl.

Using this, we get

%Y
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From this equation, we see that at any given time t, y has the same value at x + A,x+2hetc. asithasatx.

=4 Sin 21{[

>

=ASin21t(i—-;—] (6)

Also any given position y has the same value at t+T, t+2T etc. as it has at t.

Let us now reduce eqn.(6) into other usable forms. We define two quantities wave number k and angular

frequency w, using the relations,
k = _Z_Tt and w = 2_7‘:
A /iy
In terms of these quantities, a sine wave travelling to the right is represented by
y =A sin (kx - wt) (D
Similarly, a wave travelling to the left is given by
y =A sin (kx + wt)

Using the relation A = VT, Substituting for A and T we get

L,:i:(“‘)(LJ:E (8)
T k 2 e k

In our forgoing treatment we have assumed that the displacement y=0 at x=0 at t=0. But in practice. this need
not be true. To take into account this, we write the general equation of a travelling wave as

v = Assin (kx - wt - @) where O is called the phase constant.

Sometimes, we may be interested in the displacement at a particular point, say, x= w/k . This is obtained by
cutting x= 7/k in eqn.(7).
We gety =Asin(7-wt- D)

= Asin(ot+ ) )
This represents a simple harmonic motion. Thus any particular element of the string undergoes simple harmonic

motion about its equilibrium position when a wave train travels along the string.



Transmission of Energy

CHAPTER 4
TRANSMISSION OF ENERGY

In all travelling waves, energy travels through the medium in the direction in which the
wave travels. Each particle of the medium has energy of vibration, and passes energy on to
succeeding particles.

Consider a portion of a string at some position X at time t.

wr W
FeS LN

Fig.8 ]

F is the tension acting on the string at position X. The transverse component of this force

. Oy 9 e . . :
s F__ =%F — 8 x. The minus sign is due to the fact that this force is exerted by the
rang X d
e
element to the left of X on the element to the right of x. Since %—)i is negative, F_., is positive
0 x

and is along the direction of increasing y. The transverse velocity of the particle at x is By
t

and it may be negative or positive. Since power is given by the product of force and velocity.
the power expended by the force at x, or the energy passing through the position x per unit time
in the positive direction is

P‘=[.-F—y) (6_y) (10)

(o2}

Assuming sinusoidal wave, y = A sin (kx-wt) for a wave propagating in the positive x -direction.

34
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Transmission of Energy

Assuming sinusoidal wave, y = A sin (kx-wt) for a wave propagating in the positive x -direction.

= The magnitude of the slope at x is

;y =kACos (kx - wi), t = constant, and the transverse force is,
X
=~FkACos (kx-w1ip) (1)
The transverse velocity of the particle atx is,
u:%ﬁ:-m,t Cos (kx -wi) »  (x = constant), (12)
t
= Power transmitted through x is
P = (transverse force) (transverse velocity) (P=F.v)
= [-F kA cos (kx - wt)] [-wA cos (kx-wt)]
(13)

=Akw F Cos® (kx - wt)

This equation shows that the power or rate of flow of energy is not constant. (The power
input itself oscillates). The energy passing through the string is stored in each element of the
string as a combination of kinetic energy of motion and the potential energy of deformation. The
situation is similar to that obtained in an alternating current circuit, consisting of an inductance
L and a capacitor C. As the power input oscillates, the energy is stored in the inductor and the
capacitor alternately. In both cases, loss of energy occurs. In the string, it is due to internal
friction and viscous effects; in the circuit. it is due to the resistive elements in the circuit. The
power input to the string is found by taking the average over one period of motion. The average
power delivered

T

where T is the period

F=l Pdt
r |
t+T
=lT fA’kaCos:(kx-mr)d:
1]
=Y ATkwF; the average of Cos® over a period reduces to Y.
Using k = o e 4 A?* w? £, Where w =27y
v 2 v
2 35
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=21:2A2y2% (14)

We find that the average power does not depend on x or t. In the case of a string, the speed v

is relatedto Fand uas v = (i)
H

P=27 4y pv

Thus the rate of transfer of energy depends on the square of the wave amplitude and the square
of the frequency. This fact holds good for all types of waves.

Principle of Superposition

Standing Waves (Stationary Waves)

If two sinusoidal waves of same amplitude and frequency travel in opposite directions
through a medium, the two waves will be superposed in such a manner that stationary waves or
standing waves are produced. Consider two such waves represented by

y, = A sin (kx - wt) and

y, = A sin (kx + wt)

The resultant wave is given (by the principle of super-position) .
y=y,+v,=A[Sin(kx- wt)+ Sin (kx +wt) ]

D = C
2

SinC+SinD=2SinC DCos

Y = 2A Sin kx Cos wt (15)

This equation represents a standing wave. A particle at any point x executes simple
harmonic motion as time goes on and all particles vibrate with the same frequency. Whereas
in a travelling wave each particle of the string vibrates with the same amplitude, in a standing
wave, the amplitude is not the same for different particles but varies with the location x of the
particle. From egn.15, we see that the amplitude is given by 2A sin kx which itself is a
sinusoidal function of position. The amplitude has a maximum value of 2A at positions where
T 3®w ST
-, —, —,etc.

2 2

kx =

[ 8]

i 14 3w 5T
le. x & — | — |, —
25kt 2k 2 e

@ ?d’

g
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, thisleadsto x = i g ﬁ . E—-& etc.
4 4 4
These points are called the antinodes and the distance between two consecutive antinodes
is equal to A /2, one-half wavelength. Atkx ==, 2, 37, etc, we find the amplitude to be zero
ie.atx= A/2, A, 3A2etc. The points of zero amplitude are called nodes and nodes are also

Since k = .

separated by one half wavelength. Fig.9 illustrates the nodes and antinodes in a standing wave
pattern.

What happens if the amplitudes are different ?

We have seenthat P = 2 @ 42 y? p v (rate of transfer of energy).

Fig.9

Do standing waves transport energy ?

Within a stationary wave, there is no flow of energy through the medium. Since the
standing waves are produced by combining two waves of equal amplitude and frequency in
opposite directions, energy transfer in one direction by one wave is equal to the energy transfer
by the other wave in the opposite direction. The energy alternates between vibrational kinetic
energy and elastic potential energy and cannot be transmitted through the nodes. We can also
regard the standing wave pattern as an oscillation of the string as a whole, each particle
oscillating with simple harmonic motion of angular frequency w and an amplitude that depends
on its location. We can imagine a vibrating string as a system of coupled oscillators where each
part of the string has inertia and elasticity. Hence the vibrating string can be thought of as a
collection of coupled oscillators.

What is the comparison with a spring mass system? A spring mass system has only one natural
frequency of vibration whereas the vibrating string has a large number of natural frequencies.

Can we recall the standing wave pattern as a wave motion ? Yes - we can describe it as the
superposition of two travelling waves, travelling in opposite directions.
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Fig.10
Figure 10 shows how the energy associated with the oscillating string shifts back and forth
between kinetic energy of motion K and potential energy of deformation U during one cycle.

A similar description can be given for the vibrating spring mass system.

a - all pot. E string momentarily at rest.
arrows —~ velocities of the string particles at the positions shown
¢ ~ string not displaced - but the particles have their maximum speed, energy is all kinetic.

The cycle is completed when the initial condition a is reached.

3&



Resonance

CHAPTER
RESONANCE

Whenever a body capable of oscillating is acted upon by a periodically varying force having
a frequency equal to one of the natural frequencies of oscillations of the body, the body is set into
vibration with a relatively large amplitude. This phenomenon is called “resonance” and the body
is said to “resonate” with the applied impulses. The phenomenon of resonance can be understood
by analysing the forced oscillations. Consider an ideal mass-spring system which has a natural

frequency of oscillation givenby @ =2 m y = ,\J i , Where w is the angular frequency, k
m

the force constant or the spring constant of the system and m is the mass attached to the spring. If
there is friction represented by a frictional force bu (where v is the speed), the natural frequency of

the spring-mass system is given by

What happens if the system is subjected to an oscillatory external force? The resulting oscillations
are called forced oscillations. These forced oscillations have the frequency of the external force and
not the natural, frequency of the body. But the response of the body depends on the relation between
the forced and natural frequency. If the external force is such that it supplies a succession of small
impulses at the proper frequency, the system can be set into oscillations of large amplitude. A child
when swinging pumps at proper intervals and builds up a large amplitude. The problem of forced
oscillation is useful in acoustic systems, alternating current circuits, atomic physics and also in
mechanics.

Let us consider the equation of motion of a forced oscillator. We assume that the external
driving force is given by F =F, cos w t and let x be the displacement. The equation is given by

d2 Fa i
x+kx F 2.6

We may assume F and x to be complex quantities for the purpose of mathematical analysis i.e., both
x and F have a real part as well as an imaginary part. In the end, when the solving process is
complete, we just take the real part of the solution. This approach using complex numbers makes
the mathematical analysis very simple. For example, we may writex=x,+j x;, and F=F, +jF.
We may substitute for x and F and separate out the real and imaginary parts (two complex numbers
are equal only when their real and imaginary parts are separately equal).

3
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Let us now try to solve eqn. (26) by writing it as

d? x kx

f) ===, =)

dt? m

fwe

e (20

ENEOR

where F e/ is a complex number. The solution is expected to yield x also as a complex number.
When the equation is applied to the case of a forced oscillator, F e/“is the driving force having
some amplitude, phase and frequency, the frequency being that of the applied force. Let us assume
that our solution x is also a complex quantity x = # ¢/“*. We know when an exponential function
is differentiated, we can simply write it as the function multiplied by the simple exponent,

frés i(e’“") =j w e
dt
d A fWHN _ & . Jwe
Or — (e ) =Xjwe
dt

For a second derivative we multiply the right side again by jw i.e. we get

2
Z_ (2% = -# ! e/ “'sincej=-1.
dr

= Our equation becomes

2 k F‘
or, [-w + —| % =— "
m m
. o B koo . -y
or, ¥ = ) Put —= w, where w, is the natural frequency of oscillation
B8 m
m

N CED
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Since m ( w,? - w?) is a real number, the phase angles of F and x are the same. If ’ >w? ,the
phase angles are 180° apart. (When w,’> w?, ®,? - w? is +ve . phase same).

We get what we want about resonance from equation (28), which is the solution of forced
oscillation. The magnitude of x increases enormously when w is nearly equal to w, and this
condition is known as resonance (At resonance we have w = w, and x goes to infinity). Thatis, we
get a strong response when the driving force is applied at the right frequency. For example, if we
have an oscillating pendulum and we give a gentle push each time it comes to one side, we can build
up a large amplitude of oscillation. This is what we see normally when a child playing in a swing
pumps at proper intervals and builds up a large amplitude. Such forced oscillations are useful in
acoustic systems, alternating current circuits, atomic phylsics and also in mechanics.

Let us now consider a more practical case of a forced oscillator. Our equation (28) tells us
that if the frequency w were exactly equal to w,, we would have an infinite response. But in
practice no such infinite response occurs because other things like friction or damping limits the
response. In our earlier analysis, we had ignored this parameter. Now we add a term to equation
(27) to take account of the friction.

What must be the form of this frictional term depends on the problem at hand. However,
in many circumstances, the frictional force is proportional to the speed of the moving object. An
example is the frictional force or viscous force experienced by an object moving slowly in oil or
thick liquid. There is no force when the body is not moving, but the faster it moves, the faster the
oil has to go past the object and the greater will be the resistance. So we can assume that the
resistance term or frictional force term is proportional to the velocity :

F,= -« 2% Why negative ? It is a frictional force. For convenience in mathematical

/ dit

analysis, we write the constant ¢ as m times y. Therefore, our equation of motion is,

2
et LB - (29)
d? d:

Usingc=ymand w,’=k/mork= w?m, we get

dx 2
+rYm — +@ mx =F
d[z dt

dZ
fayiiigie- L (30)
m
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Resonance
This equation is in a convenient form for solving.

A very small value of y corresponds to very small amount of friction; a large y amounts
to considerable friction. To solve this equation, we can use the complex number method. We write
F asthe real part of F ¢/ and x as the real part of % e/“. Substituting these into our equation,
we find that

[ Gap*Ewyifa® o ef‘“"=(f- al* (31)
\m!
Dividing both sides hy e ™,
gul - 1 ¢ a2

B =G Ff W

Rewriting - : as R
[m (0, - +jyw]

we have R = : and ¥ = F R (33)

m@ -w iy w)

Since the factor R is complex, we may write it as p ¢ %, The significance of this can be brought out
as follows. Let F = F_ e/, Therefore, the actual force F

[1.7=1~:e’“"

=F, e/t o/

Jlwe = 4) ‘
Fij@ ;

is the real part of F e e ie. F, cos(wt+ A). Similarly from (33) we get,

1}

£=FR=F epe®=pF (8D

Since the displacement x is the real part of x e™, it is given by the real part of

FRe=F, e/d p /8 o/

}1'2._



Resonance
i.e.xisthereal partof p F, e/ (%" 4) /o,

Since p and F, are real this is given by

x = p.F _Gos @i+ A %16 ) (34)

Equation (34) can now be interpreted as follows. The amplitude of the response is the magnitude
of the force F multiplied by a certain factor p. It also tells us that x is not oscillating in phase with
the force which has the phase A. The phase of x is further shifted by an amount 8. Thus p and 6
can be interpreted to represent the size of the response and the phase of the response.

To get a physical idea of p :

To square a complex number, we multiply it by its complex conjugate.

R=pef = :

mW - W+ Yy w

2 _ 1

mz(w:—w3+ij) (w:—u)z-ij)

ot - l (35)

cm (Wm0 )y
R pele p )

1 (cosB -/ sinb)=m(w -w)+;myw

From thiswe find, 1 / pcos@=m(w, -w?)

—lsine = myw

andhence, tan 0 = O (36)

2 2
w, -
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Resonance
This indicates that B is negative i.e., the displacement x lags behind the force F by an amount 6.
Eqn. (35) can be represented graphically by plotting p? against frequency w. (See Fig. 15 a).

[ which is proportional to the square of the amplitude is also proportional to the energy.
For small values of y, the frictional force constant, the response tends to infinity when w equals w,.

, the response remains finite. Fig. 15b shows a plot

But due to the presence of the term .
of phase shift 6 against frequency. Y° w?
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It can be shown that the width of the resonance curve at half minimum is given by Aw = y for small
values of y. Thus the response is sharper and sharper when the frictional forces are made smaller

and smaller.
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Diffraction

CHAPTER
DIFFRACTION

D.1. Whatis diffraction?

Place a source of light on one side of a metal sheet with a hole pierced in it. If a opaque
screen is kept on the other side, the area in front of the hole gets illuminated. If the hole is made
smaller the area of illumination also becomes smaller. What happens if the hole is made very small?
Surprisingly the area of illumination instead of becoming still smaller, starts getting bigger. Of
course the intensity will be very small and so it is better observed in a dark room. This phenomenon
which is contrary to expectation is due to a phenomenon ¢alled diffraction. When a beam of light
passes through a narrow opening it spreads out to a certain extent into the region of geometrical
shadow and this is due to diffraction. Light suffers deviation from its straight path while passing
through narrow openings and while passing close to edges of objects. Some light bends into the
geometrical shadow and its intensity there falls of rapidly. If the wavelength of light is smaller than
the width of the obstacle of the opening, then the deviation is small. But if the wavelength is
comparable, then the bending is appreciable. Diffraction also occurs when light goes over sharp

edges of big objects.

If one observes the diffraction pattern formed by a narrow slit kept in front of a
monochromatic light, dark and bright bands will be seen in the geometrical shadow. Unlike
interference bands these bands are of unequal width.

Newton tried to explain diffraction on the basis of attraction and repulsive forces exerted by
the edges on the corpuscles of light. Dr.Young tried to explain it on the basis of Huygen’s theory
as interference between incident light waves and light waves reflected at grating incidence. But they
could not explain why the bands are not of equal width. Later Fresnel gave the correct explanation
on the basis that diffraction is due to interference of secondary wavelets originating from various
points of the wavefront which is allowed to pass through. These wavelets will have varying phase
and amplitude and interference of these wavelets gives rise to diffraction bands.

Diffraction phenomena are divided into two categories.

1. Fresnel diffraction in which either the source or the screen or both are at finite distance from
the aperture.
2. Fraunhotter diffraction, in which the source of light and the screen are effectively at infinite

distance from the aperture.

D.2 Fresnel Diffraction
Fresnel made the following assumptions while explaining the diffraction phenomenon.

1 The wave front can be divided into large number of small zones called half-period zones.
The net effect is combined effect of all these zones.
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2. The intensity of the pattern is proportional to the amplitude of the disturbance at the opening.

The effect of any particular zone at a point is inversely proportional to the distance of the
point from the zone.

(9%)

4. The effect at a point will depend on the obliquity of the point. The obliquity factor is defined
as (1+ cos e) where e is the angle the point makes with the forward direction (See Fig.1).

wave-front P

T

S.¢ A

source } opening

Screen

Fig.l Fresnel Diffraction
Incidentally the dependence on obliquity factor explains why the intensity is zero behind the wave
front where e = 180°. i

Fresnel’s explanation of propagation of light through an aperture

i

Fig.2 Fresnel'’'s
Half Period Zones
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Let ABCD be a spherical wave front travelling in the forward direction and P an external
point at a distance b from the wave front. Let the wavelength of light be A and OP be perpendicular
to the wavefront. Every point in this wave front can be thought as an origin of secondary wavelets.
The secondary wavelets coming from ABCD produce the diffraction pattern on the screen. In order
to find the resultant effect at P, we divide ABCD into zones, as follows. Around the point O
construct series of circles on the wavefront which are at a distance b + A/2, b+ 2A/2, b+34/2 ....

from P.

The area of the first zone will be approximately equal to IIr,> = I[IbA. The area of the second
zone will be equal to Ilr,? - IIr,? , which will also be equal to IIbA. Observe that area of all the
zones will be approximately equal to IIbA and the radius of the nth zone will be equal to )nbl.

By Huygen’s principle every point on the wavefront will be sending secondary wavelets in
the same phase. But since their distance from P is different, they will reach P with different phases.
Since nth zone is on an average distance A/2 father from (n-1)the zone from P, the successive zones
will produce resultants at P which differ by II. This means that successive zones differ by half a
period and that is why these zones are called half period zones.

If we represent by A, the amplitude of the light from the nth zone, the successive values of
A, will have alternating signs because of their phase changing by II.  The resultant amplitude A of
the whole wave can be written as

A=A - A, tA; -A....... (-~ A,
The magnitude of the successive trains decreases slowly because (a) the amplitude decreases
inversely with the average distance from P and (b) increasing obliquity.

-

The sum of the series can be evaluated as follows. Supposing n to be odd, then
A A A j A i A
A=_1+(_I—Az+_3_,_+[.—2—,{‘¢f—{ +* ..... + 2
2 2}

2 i

Since the amplitudes of any two adjacent zones are very nearly equal. We can write,

A, 4, ,
A= — + — (odd n)
2 2
! . SR 4, "
" [t can be easily verified thatif niseventhen 4 = — - —. (evenn)
=2 2
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If nis large enough then, A <<A,and A ~ A,/2

But if n is small, A will have different values as follows. If the geometry in such that there is only

one zone, then A=A,
If there are only two zones, then A = O.

A, A,
If there are three zones, then A « A, - A, , A, =_- + °,
2 2

This suggests why the intensity of a point P on the axis passes through maxima and minima as the
screen is slowly moved away from the aperture. ;

Of course, it is possible to get the same effect by holding the screen in the same position and
altering the size of the aperture.

Example 1: Consider the diffraction produced by a small circular aperture. Discuss the intensity of

the diffraction pattern produced at a point P away from the axis.
Hint: Draw altitude PM where M is a point on the sheet having the aperture. Draw half period zones
around M. Some zones will pass through the aperture. Resultant effect of these zones gives the

intensity.

Example 2 : A circular aperture 1.2mm diameter is illuminated by monochromatic waves. A screen
is steadily moved away from the aperture. When the screen is 30 cm. from the aperture, the centre
of the patch becomes dark for the first time. Calculate the wavelength of light.
Hint: There will be only the first two zones in the aperture. Answer is 6000 A.

Example 3 : Consider a spherical wave front emitted from a point source of light and incident on
a small opaque disc. P is any point on the principal axis on the opposite side. Explain why the

diffraction pattern always consists of a central bright spot.
Hint: First few half period zones are cut off by the disc. Resultant of the remaining zones is never

Z€ro.

Example 4 : Discuss the ditfraction pattern obtained when a thin wire is kept parallel to the slit kept

in front of a source of monochromatic light.
Hint: Consider half-period zones of a cylindrical wave front, both above and below the obstacle.

Diffraction bands are seen on both the sides.

Diffraction pattern due to cvlindrical wire or straight edge etc. are obtained considering
cvlindrical wave fronts. The wave front is divided into zones and sub zones. . The resultant
amplitude is obtained by adding the effect due to all the sub zones. The resultant of the amplitudes

4%
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of zones and sub zones of wave fronts obtained vectorially gives Cornus Spiral. Its mathematical
description gives Fresnel’s integrals.

D.3 Fraunhofer Diffractions

Single Slit : Consider the diffraction pattern formed when light is incident on a single slit. In
Fraunhoffer diffraction since both the source and the screen are effectively at infinite distance the
light wave fronts will be plane and since the screen is finite and small, the obliquity factor and so
the amplitude for all the zones will be the same. Consider the following geometrical arrangement

(Fig.3).

M

Fig.3 Fraunhoffer Diffraction

AB is a slit of width b spherical wave front XY is incident on a converging lens L, The emerging
plane wave front passes through the slit. Each point on this wave front acts as source of light. The
diffracted beam is converged by the lens L, and a pattern is formed on the screen MN.

Secondary waves travelling along the principal axis meet at P on the screen. They travel
equal distances AQP and BTP. Secondary waves travelling at angle © will meet at P’. Let the
incident wave front be divided into large number of strips. The magnitude of amplitude of vibrations
for all the zones will be the same but not their directions. The path difference between rays from A
and B is bsin © and the corresponding phase difference will be 2 = 27/A b sin 8 where A is the
wavelength of light. The resultant amplitude can be obtained by vector polygon method. Each strip
contributes magnitude (a) to the resultant amplitude (Fig.4). The phase difference between
successive strips is small.
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If the number of strips is very
large, then the polygon sides will form
an arc OM = 2ra = ma.

The resultant amplitude is given by
OM = 2r Sina.

5 Sin o
o
Fig.4 The resultant -amplitude
B 4 Sina
< o
Wherema=Ao and o = M
A
- Y . . : Sint «a

The corresponding intensity will be givenby 7 = 4, =

o

The intensity distribution is given in Fig.5. The maxima and minima positions are as
follows:

-3 -2r -1 7 27 3x
a

Fig.5 Intensity Variation

3
5o



Central Maxima: At point P on the screen where 0 =0, ¢ = 0.
TbSin® _2n+1

Secondary maxima : Its direction is given by Sina =1, =

A 2
Minima:ItsdirectiqnisgivenbySinu=Obr a = _1Li'm__9 =n@an=#0.

It is easily verified that intensity of first secondary maxima is about 5% of that of the central
maxima.

Example 5 : Calculate the ratio of the intensity of the third maxima to the intensity of the central
maxima.

Example 6: Discuss the Fraunhotter diffraction at a circular aperture and show that the radius of the
central maxima is equal to fA/d where d is the diameter of the aperture, A is the wavelength and fis
the focal length of the lens used to converge the diffracted rays.

Hint: Proceed as for single slit. The position of the first minima is given by dsin 8 = A and if x is

the radius, then sin 6 = 8 = x/f.

Example 7: Discuss Fraunhofer diffraction pattern at a double slit.
Hint: Diffraction pattern is due to two phenomena i) interference of waves coming from
corresponding points of two slits and ii) diffraction of secondary waves coming out of each slit.

Fig.6
Double slit
diffraction
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Due to interference, maxima is obtained where dsinf = nA and minima when

knme) 2B

2 4
Due to diffraction, b sin 0 = nA give minima,n#0and bsin © = ' 2—"—1] A gives
maxima. L 2

g.. 2
The two may be combined to get the resultant intensity as [ = 4 4 : Smﬁ p c o s* Twhere

ﬁznbsme ,r:ndSin@
A A ’

Interestingly some angles where interference maxima are expected, minima is observed and
this is because these positions correspond to diffraction minima also. These are commonly known

as missing orders.

D4. Plane Diffraction Grating

It consists of very large number of narrow slits side by side. The common grating used in
the class has about 6000 lines per centimetre. When wavefront is incident on the grating light is
transmitted through the slits and is obstructed by the opaque portions. The diffraction pattern is due
to both diffraction and interference phenomenon. The sharpness of the band increases and tends to
become a line when number of slits is increased.

In the arrangement to obtain Fraunhofer diffraction, replace the single slit by a diffraction
. grating. A plane wave is incident on the grating. AB is the slit and BC the opaque portion of width

b and a respectively.
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Grating

J Screen

— o=
ooOom >

Y Y Y v V¥

Y

e

Fig.7 Diffraction grating

The screen is kept at the focal plane of the collecting lens. The point P where all the
secondary waves reenforce gives the position of central bright maximum.

Next consider secondary waves travelling at an angle 8 with the incident direction. Rotate
the lens till its axis is parallel to the direction of secondary waves.

The secondary waves meet at P, on the s¢reen. A and C, B and D are corresponding points.
The intensity at P will depend on the path difference between the secondary waves coming from

corresponding points.
Path difference = AC sin 6
= (a+b) Sin O
The intensity will be maximum if p.d. is integral multiple of A. So position of maxima is

givenby dsin @ =nA Whered =a+b,n=0,1,2,....
n is called the order of the diffraction pattern and d is called the grating space or the grating element.
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Fig.8 Formation of maxima

Example 8: If N is the total number of lines in the given grating surface show that there are N-1
minima between any two principal maxima.

Hint: Minima is obtained when all secondary waves from top half of the grating cancel the effect of
those from lower half. Then the path difference between waves from extreme positions of the
grating will be A. This suggests that path difference for waves from A and C should be A/N where
N is the total number of grating element. Similarly, minima will be obtained when path difference

i) 2N, 3UN.....(N-1)NA

Additional Reading

1. A textbook of Optics - Subramanyam and Brijlal
2 Fundamentals of Optics - Jenkins and White.
4



Polarisation

CHAPTER
POLARISATION

Light is electromagnetic wave. The electric vector E the magnetic vector B and the direction
of propagation are mutually perpendicular to one another. Both E and B vectors vary sinusoidally
in identical fashion. So it is sufficient to consider any one of them to describe optical phenomenon.
Customarily E vector is considered.

Ordinarily a beam of light travelling in z-direction consists of millions of light waves. The
electric vector of these waves vibrate in arbitrary directions in XY plane. Such a light is said to be
unpolarised. However, if the electric vector of all the waves vibrate in one direction only, say Y
direction, then the beam is said to be polarised in the XZ plane. In the diagram, it is polarised in a
plane normal to the plane of the paper. The vibrations are represented by double headed segments
in the YZ plane.

On the other hand, if
the vibration are in X-
direction only, they are h g
represented by dots and the
light is said to be polarised
in YZ plane. There is no
vibrations in the plane of
polarisation.

v

)
L ]
L]

Fig 1 Vibrations in the plane of the paper (!) and normal to the plane of the
paper (.)
Analytical Treatment

A mathematical analysis of the vibrations of the E vector leads to further classification of the
polarised light.
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Consider a beam of light propagating in the z-direction. The E-vector of different waves will
be vibrating in the XY plane in all possible orientations. These vectors can be resolved
intocomponents along X and Y. Their resultant can be written as

EX=E, =A, coswt
and XY =E =A cos(wt+9)

where A, and Ay are the amplitude of the resultant components along X and Y directions. Consider
the following cases.

1. If A,c=Ayand dis n/2, thenE, = A, coswt. E,=A, sinwt

So; BEXTET=AZ

This represents circularly polarised light. The tip of the resultant vector will describe a circle
as light propagates. In this case, if the resultant vectors are projected on a screen normal to direction
of propagation the tips will describe a circle.

- B2

2. If A, # Ayand &isn/2,then, £ + XL =]
Ar  4?
x y

This represents elliptically polarised light , the tips of the resultant vector will describe an ellipse as
the wave propagates.

8l If A,# AyandbisnmthenE, =+ A,/ AyE,
4. If there is no definite phase relation between A, and A, , then the light is unpolarised.

This represents plane polarised light. The tips of the resultant vectors will describe a straight line.

Polarisation by Reflection

When unpolarised light falls on a glass plate, part of it is reflected and part of it is
transmitted. Malus observed in 1808 that the reflected light is partially polarised. The degree of
polarisation depends on the angle of incidence. The reflected beam is plane polarised when the
incident angle is 57°.

Later in 1812, Brewster observed when the polarisation by reflection is maximum, then the
reflected beam and the refracted beam are at right angles.
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H

0
57C

L ]

X
[ L ]
Y
L { ]
Fig.2 Brewster’s Law Fig.3 Polarisation by a pile of glass
Plates

By Snell Law p =Sin 57° and now /57° + /r = 90°
Sinr

So we get p=Sin 57°=tan 57°
Cos 57°

So the tangent of the polarising angle gives the refractive index of the material.

The refracted beam is also partially polarised and this polarisation can be increased by using
large number of glass plates kept in parallel (Fig.3).

Example 1 : When plane polarised light falls on a quartz crystal, it is broken up into two beams of
light whose E vectors are at right angles to one another. These beams then propagate through the
crystal and interfere. If the refractive indices for them are 1.55 and 1.54, what should be the
thickness of the crystal for the outcoming beam to be 1. Plane polarised, 2. Circularly polarised.
Assume that their amplitude of vibrations are equal.

3. If in the above problem amplitude of vibrations are unequal, what changes do you expect?
Hint: To be plane polarised or circularly polarised, phase difference should be m or 7/2 or the path
difference should be A/q or A/4 respectively. Optical path difference = 1t - p,t.

So, t (- H,)=A/20r A/4 respectively.



Polarisation

Example 2 : Prove that when light falls on a plane parallel glass plate at its polarising angle, the
refractive beam falls on the second face of the plate also at the polarising angle.

Law of Malus
Consider a beam of plane polarised light
coming out of a polariser. Let the angle between
this incident beam and the plane of transmission of
1 Plane of Polariser the analyser be 0. The intensity of the light
transmitted by the analyser varies as cos’0, (Fig.4).

A

0 Plane of analyser

Fig.4 Malus law

Let OP be the plane of incident light of amplitude R. The amplitude can be resolved along
the plane of the analyser OA and at right angles to it OB. The component along OA is transmitted
by the analyser and that along OB is blocked. So, the amplitude of light passing through A,=Rcos0
orl; = A7=R?cos’0 =1,cos’0. Malus law states I, = 1, Cos* 6.

Example 3: What is the angle between the analyser and polariser if the intensity of transmitted light
is 25% of that of the incident light? '

Polarisation by scattering

When sunlight falls on water molecules, dust particles, etc. the electric vector of the light acts
on the positive and negative charges of these molecules. As a result, the positive and negative
charges deviate along opposite direction and dipoles are formed. The electric vector changes
sinusoidally and so the dipole moment also oscillates accordingly. So the dipole oscillates with the
frequency of the electromagnetic waves. This effect is more in the direction of the E vector and less
in other directions. So the intensity of emitted light will be more along one direction or the light is
polarised.

Optical Activity

Consider a beam of light incident on a polariser. When the polariser and the analyser are
crossed no light emerges out of the analyser. But it a sugar solution is kept between the analyser and
the polariser, some light emerges out of the analyser. Sugar solution rotates the plane of
polarisation. The amount of rotation depends upon the length and concentration of the sugar
solution.
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Fresnell Explanation of Rotation

A linearly polarised light can be considered as a resultant of two circularly polarised
vibrations rotating in opposite directions.

If the two rotations travel with same velocity, then there is no optical rotation.

If the clockwise component travels faster then the rotation of the plane of polarisation is to
the right and the optical material is called right handed or dextro rotatory. If the anticlockwise
component travels faster, then the optical material is left handed or laevo rotatory. Quartz crystals
are dextro rotatory whereas sugar solution is laevo rotatory. Calcite does not produce optical
rotation. The amount of rotation of the plane of polarisation in sugar solution depends on (1)
wavelength, (2) concentration of the solution, (3) length of the solution and (4) temperature.

Analytical Treatment

Consider the optical rotation in quartz crystal. The incident plane polarised light is broken
up into two circularly polarised light.

The clockwise circularly polarised vibration has components

X, = a cos (wt + )

Y, asin(wt+d)

The anticlockwise circularly polarised vibration has components
X, = -acos wt

Y, =asin wt

The resultant displacement is given by
X =x,+x,=acos (wt+0)-acoswt
= 2a sin &/2 sin (wt + 6/2)

and Y =y, +y,=asin (wt+3) +asin wt
= 2a cos 6/2 sin (wt + &/2)

Both X and Y have same phase = (wt + &/q). They are at right angles and their amplitudes are
different. So their resultant is plane polarised and it makes an angle /2 with the original direction.

In the above analysis of & is zero, then the resultant vibration will be given by X=0 and Y=
2 a sin wt and is the resultant polarised beam is not rotated.
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Example: Using a polarimeter tube, 30cm long and containing sugar solution, the plane of the
polarisation was rotated by 12°. If specific rotation of sugar solution is 60°, estimate the strength of
the sugar solution.

S =11.OQ by definition
C

or_l= §£= 60x30

C 100 10x12

orC= 0.067 g/cc

Some crystals are optically active, some are not. It is found that crystal whose lattice is same as its
mirror image is not optically active. E.g. cubic crystal. Crystal whose lattice is not the same as its
mirror image is optically active e.g. rhombic crystal.
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CHAPTER
LASER

LASER is a short form for Light Amplification by Stimulated Emission of Radiation. Itis
a very special source of light having the following characteristics.

I. Highly directional: Electromagnetic waves propagate along a particular direction. The
spread of the beam, even after travelling large distances, is extremely small.

PA Highly intense : The brightness of a given source of light is the power emitted per unit area
of the surface per unit solid angle. An ordinary light emits light in all directions whereas laser is
highly directional which makes it highly intense.

3. Highly monochromatic: Only electromagnetic waves of a particular frequency gets
amplified and emitted. There is no spread in the specified frequency. If the wavelength is specified
as 6000A it remains the same always. It will not be 6001 A or 5999 A.

4. Highly Coherent: It is coherent in space and coherent in time. Spatially coherent means that
at any time light has some phase everywhere across the wavefront. Time coherence. implies that
phase of all the waves even after they have traveled for a time t is the same.

Production of Laser
Two fundamental processes namely absorption and emission are involved in the production
of laser as detailed below.

Absorption

Consider atoms and molecules having energy levels E, and E, . It they are irradiated by
electromagnetic waves of energy E, - E,, then they absorb the incident energy and get excited to
higher level E,. The excited states are unstable and so these molecules will return to ground state
by emitting radiation of frequency (E, - E,)/h. This emission may be spontaneous or stimulated.

Emission

In spontaneous emission, the excited atoms return to the ground state in about 10%s. The
emitted radiation will not have correlation either in phase or in direction. In stimulated emission.
the photon of energy (E, - E)) is incident on excited molecules. All the excited molecules will then
return to its lower state by emitting frequency (E, - E;)'h. The direction and phase of the emitted
radiation will be same as that of incident radiation.

In normal conditions, number of molecules in lower energy level will be more than those in

the upper level i.e. population of lower level is more than that in the upper level. So when external
radiation falls on the molecules. the molecules in the ground level will get excited to higher level
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and molecules in the upper level will return to the ground level. So under normal conditions number
of molecules going to upper level will be more than those returning to lower level. Initially
absorption predominates emission and this will continue till the processes of absorption and emission
compensate each other. So if the intensity of emitted radiation has to be more than the number of
molecules in upper level should be more or there should be population inversion. So, in order to
produce laser, it is essential to produce population inversion in the sample. Of course, it is also
essential that the external radiation interacts with the sample. When radiation of frequency  (E, -
E,)/h falls on the molecules whose population is inverted, then the molecules emit radiation of same
frequency. The intensity of this radiation is then increased manyfold by multiple reflections. In
what follows a brief description of the working of a solid-state laser i.e. ruby laser and that of a gas-
laser i.e. He-Ne is given.

Ruby Laser

Ruby consists of aluminium oxide in which a few of aluminium atoms are replaced by
chromium atoms. The normal aluminium oxide is a colourless material. Substitution of chromium
makes it red.

When ruby is irradiated by external radiation Cr gets excited to state E, from ground state

Cr gives some of its excitations energy to do Al by thermal transfer and all of them come to
slightly lower level E.. This state E. is a meta stable state of Cr. So Cr can stay in this state for
longer time interval (107 s). In this
interval more and more Cr ions will
come to E, and thus population
mversion is achieved.

E; Al + Cronly Cris excited.
By irradiation i Cr loses energy to Al and
comes to lower state E. (meta stable
state)

Deep red radiation (E, - G)

Deep red radiation

G Al+ Crin ground state

Fig.1 Energy level in ruby crystal
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From E,, Cr gives out deep red radiation. Normally this radiation is spontaneous and not
coherent. To make it more intense and coherent an external radiation of the same frequency is
applied and the excited atoms are stimulated to give out intense and coherent radiation. [ts working
is briefly illustrated below.

Consider a ruby crystal cylindrical in shape (R) exposed to neon flash lamp and kept between
a pair of parallel reflecting mirrors. The excited Cr atoms give up excess energy by spontaneous
emission. The radiation is emitted in all directions and some of them will be normal to the reflecting
mirrors. These later photons start the laser action.

—

]

External Source

AmmhiininunN.y
////////////}/////////// o

Fig.2 Working of a Ruby Laser

These photons travelling normal to the mirrors get retlected repeatedly at M, and M. and
increase their number. The reflected light acts as a stimulant and successive reflections add to the
intensity in a particular direction. The intensity of light emitted in other directions will be small or
negligible. One of the mirrors is partially stlvered which enables the light to come out in the form
of laser beam.

In actual practice. mirrors are replaced by the polished ends of the ruby rod. These polished
ends are coated with reflecting matenal.

Gas Lasers

It is essential that the gas molecules absorb external radiation and get their population
inverted. Since the absorption band of gas molecules is narrow as compared to that of solids. it is
more difficult to develop gas lasers than solid state lasers. Since the chances of absorption of
external radiation is less, it is essential that the exciting radiation be very intense.
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In a typical helium-neon laser, the sample consists of 90% He and 10% Ne. The external
radiation from RF discharge, raises He from ground level E_ to excitation level E,. The excited state
will have He both in singlet state and triplet state. The singlet state electrons readily come down to
ground state which is also a singlet state. But the triplet state electrons are forbidden to come down
to singlet states. These triplet state He exchange energy by collision with the ground state Ne atoms.

It so happens,

v 2s* Ag He* + Ne — Ne* + He
1 E Ne*  that excitation level of Ne is
: very close to excitation level of
| Ey He. Because triplet state of He
RF discharge ’ . is a metastable state, the
3 population of excited Ne goes
vis on increasing. Besides, this
| excited state E,, Ne has lower
! excited states E,, E;. etc. By
Eg ' applying external radiation of
He +Ne frequency (E, - E;)/h,  laser
1s produced.

Fig.3 Energy levels of He - Ne mixture
silvered partially silvered In this case, the energy is provided by
Ry Hy RF discharge and He acts only as an

intermediary agent.
The construction of HerNe laser is
> briefly described in Fig.4.
He + Ne Laser i
A Ay Ao
L RF Generator

Ly
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Electrodes A, and A, are used to excite He. Electrode A; is used to stimulate excited Ne to produce
laser. R, and R, are polished and silver plated. R, is partially silvered which allows laser beam to
come out.

Laser Applications

1. Scientific tool

It provides highly monochromatic and intense beam of light for use in research and
technology. Raman spectra which needed many hours of exposure previously can now be obtained
in few minutes using laser beam as incident light.

Raman effect experiments can also be used to provide laser beams of slightly different
frequency than that of incident laser beam.

2, Hollowgraphy

In hollowgraphy where one observes three dimensional images, it is necessary that the light
used to obtain the image and the light used to observe the image should have exactly same frequency
and are coherent and intense. These conditions are met if lasers are used as light sources.

3. Calibration
Since the wavelength and frequency are very well defined it is used in defining the standard
of length.

4. Biology
Individual cells can be destroyved by using lasers and the effect of these cells in the biological
system can be easily studied.

3. Medicine

Laser is of great help in surgical operations. Operation can be done without piercing the
body by surgical instruments and this solves the problem of sterilisation and infection. Laser beam
can be used both for cutting and for destroying the human tissues. tumors, etc.

6. Communication
The laser beams are very intense and have practically no dispersion. This facilitates RADAR
communication. They are also increasingly used in tibre optics communications.

7. Industrial use

Lasers can make holes in metal blocks in tew seconds. It is. therefore, very useful in
industrial cutting. Lasers can be focussed to very small region and this helps in point welding in
electronic circuits.



Gauss's Law
CHAPTER
GAUSS’S LAW

Charles Hugustin Coulomb (1736-1806) measured electrical attractions and repulsions quantitatively
and deduced a law known as ‘Coulomb’s Law’. Two charges q, and q, separated by a distance ‘r’ found
to exert a force resulting a twist in suspended torsion balance. The force of repulsion was found to be
proportional to the product of two charges and inversely proportional to the square of the distance between
them. This force acts along the line joining the two charges. It is interesting to note that the charge q, sets
up an electric field in the space around itself and this electric field acts on the charge q, and the charge q.
experiences a force. Thus the electric field acts as an intermediary role in the forces between charges. If
the charge q, suddenly moves it will create a field disturbance which will be immediately communicated
to the charge q, . We will see later when we deal with electromagnetic waves that such electric disturbances
will move at the speed of light.

In this chapter we will discuss electric field around a point charge and electric potential and apply
the knowledge to capacitors and dielectrics. The electric field is generally represented by imaginary lines
of force. The line of force and electric field vector E are such that (i) the tangent drawn to the line of force
at any point gives the Direction of E at that point and (ii) the lines of force are drawn such that number of
lines per unit cross sectional area perpendicular to the lines is proportional to the Magnitude of E. When
the lines are close to each other, E is large and when they are apart E is small.

Karl Friedreich Gauss (1777-1855) a German scientist and mathematician made a number of
scientific contributions to experimental and theoretical physics. His well known contribution is known as
‘Gauss's Law™ which is a statement of an important property of electrostatic fields.

1. Consider a field E of a single isolated point charge q. This charge is surrounded by a hypothetical
closed surface of arbitrary shape. The field intensity E at every point on the surface is directed radically
outward from the point charge and its magnitude is

E‘k[q‘) (1)
2

over a small area ds of the surface. This area is so small it will have the same field in magnitude and
direction. The component normal to the surface can be written as
E, =Ecos®

-n

Where 0 is the angle between vector E and the outward normal to the surface.
A

dscosBJ

2

r

Eﬂds‘»Ecoseds‘—kq[

This (ds cos 0 ) is the projection of the area ds at right angle to *r" and the quotient (ds cos 8 / r* ) equals to
the solid angle dw subtended at the charge q by the area ds. Refer fig. (1).
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1

lpuTWARD

| NORMALTC
THE SURFALE

Fig.1 Electric field surrounded by a closed surface
E, ds=kqdw .(3)

Integrate both sides over the entire closed surface.

$Eds=kgfdw =4 nk (4)

The left hand side of this equation formed by multiplying the normal component of E at the surface by an
element area of the surface and is called the SURFACE INTEGRAL OF E OVER THE SURFACE. THE
EQUATION POINTS OUT THE SURFACE INTEGRAL IS PROPORTIONAL TO THE ENCLOSED
CHARGE q REGARDLESS OF THE SHAPE AND SIZE OF THE SURFACE OR THE LOCATION OF THE
CHARGE. If the point charge is negative the direction of E is inward and the angle would be greater than
90° and its cosine will be negative.

(2) If the charge is distributed inside a closed surface then it could be subdivided in imagination, into
point charges q,,q,and q;....... etc. and the equation could be written for each point charge and sum up over
all charges. The sum of the integral becomes the surface integral of the resultant field and the charge
become Zq the algebraic sum of all charges inside the closed surface.

éEn ds=4mk Xq (4)

THE SURFACE INTEGRAL OF THE COMPONENT OF E OVER ANY CLOSED SURFACE IN AN
ELECTROSTATIC FIELD IS EQUAL TO 47k T1 Aﬁ THE NET CHARGE INSIDE THE SURFACE.

In §En ds=4 m k X qthe constant k when expressed in terms of permitivity constant € is given by

47k = 1/ €, and the value of €, = 8.8541878 x 10"*C*N'm?= 9x 10" C2N'm™
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The above equation can be rewritten as

§En d=iq [ & mommnspaaanE (5)
The surface integral of E over a closed surface is called ELECTRIC FLUX ¢ ¢
b = ﬁzn 45 = /€ qurrrrerereersseesersresee 6)

THEREFORE THE ELECTRIC FLUX LINKED WITH A CLOSED SURFACE IS PROPORTIONAL
TO THE CHARGE ENCLOSED BY THE CLOSED SURFACE.

€ j?E’. ds =q iscalled the GAUSS’S LAW.

This law is one of the fundamental equations in electromagnetic theory and we will see more of it
when we deal with Maxwell’s equations.

3) Consider a case of two equal and opposite point charges as shown in fig (2). The dashed lines
represent the intersections with the plane of the figure of the hypothetical closed Gaussian surfaces. The
flux & is positive where the positive charge is enclosed by a closed surfac, S It is negative when
negative charge is enclosed by the Gaussian surface S, .

What would be the value of flux @ ; at enclosed surfaces S; and S,?
Give reasons for your answers.

Fig.2 Electric flux in the case of two equal and opposite charges
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Fig.3 Flux in the case of a non uniform electric field

4) Now consider a case of non uniform electric field as given fig (3). Let the enclosed surface be

divided into a large number of element squares AS as shown in this figure. These element squares are small
enough to be considered as plane surfaces. Such element areas may be considered as vectors whose

magnitude will be AS and the directions are taken as outward drawn normal to the surfaces as shown in fig
(3b).

Atevery square element, one can construct an electric field E. Since the square is very small at all
points on the square, E may be considered as constant.

The vectors A S and E that characterize each square make an angle with each other. Refer fig (3b).
We have selected three such areas and magnified them. Note that when the angle 6 >90° | E points in and
when 6 =90° it is parallel to the surface and when 6 <90° the field E points out.

In the above case one can write a semiquantitative definition of electric flux as

6
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e 0 = ZEAS oo, (7)

which instructs to add the scalar quantities of E.A_S for all element areas into which the surface has been
divided. For all purpose the surfaces where 0 is less than 90° it is positive and E is outward. IfE is
everywhere inward, 6 will be more than 90° , then E .A S is negative and flux ¢ for the surface will also
be negative.

The exact definition of flux is given by the differential limit of the equation.

bg = SEAS= TEASCcos® v (7a)

PR 4 .. A — (8)

The surface integral suggests that the surface is considered as divided into very large number of
infinitesimal elements of area ds and the scalar quantity of E.dS is to be evaluated for each element and the
sum is to be taken for entire surface. The surface integral also shows that it is a closed surface.

The S.I. unit of electric flux is

\

‘b I = newton x (merer): ’ :1 ]'oule X meter
- coulomb Y coulomb
3) Consider a case of spherically symmetric charge distribution as shown in fig (4). Let R be the radius

of spherical distribution of charge and p the charge density which is the charge per unit volume (Cm?).

Fig.4 A spherically symmetric charge distribution

This charge density depends only on the distance of the point from the centre. Let us find an expression
for E for points (i) outside and (i) inside the charge distribution.
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(i) Draw a Gaussian surface at a distance ‘r’ which is greater than R. From the equation (4) one can write

enfE.dS=eoE4nrz=q

¥

E=—_ (-1-] (9)
4 TE 5 ]

~

where q is the total charge. Thus for points outside the charge. distribution of spherically symmetric, the
electric field E has a value that would have if the charge q is concentrated at its centre. (Compare this result
with that of spherically symmetric distribution of mass and gravitational force at points outside it).

(ii) Now draw a Gaussian surface at a distance ‘r’ which is less than R the radius of spherically
symmetric charge distribution. From the Gauss’s law.

€°§E.ds=€°(4nr2)=q' (10)

Here q’ is the part of the charges contained within the sphere of radius r.
Theretore
/
B . i (10 a)
4 Te 2

Note that the part of the charges outside the radius r do not contribute to the electric field E.
(Compare this result with that of Gravitational field. Note that this result agrees well with that of spherical
shell of matter which exerts no gravitational force on the body inside it).

A special case may be considered here where the distribution of charges inside the spherically
symmetric charge is uniform. The charge density p will be constant throughout the charge distribution of
radius R. It will be zero outside R.

=

k]
A = g CllSIET q{L
CIEALT . Il ¥ §
The expression for E = : e (12)
4 TE, \RJ

What is the value of E at the centre of the spherically symmetric charge distribution ?
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Lt F g

Fig.5 An insulated metallic conductor

6. Let us look into a case of an insulated charged conductor of any shape as shown in the fig. (3). It
can be proved that any excess of charge placed on the insulated conductor resides on its entire surface Draw
a Gaussian surface very close to the inner side of the conductor.

Any excess of charge on the conductor will set up electric field inside the conductor. This field acts
as charge carrier of the conductor and cause their movements. That means they set up inner electric currents.
This will redistribute the charges in such a way that the electric fields will be automatically reduced in
magnitude and eventually becomes zero. The intemnal currents also stops and the electrostatic conditions
prevail. This redistribution of excess charges will take place in negligible time. At electrostatic equilibrium
E is zero everywhere inside the conductor. Since the Gaussian surface is drawn just insidé the conductor
the excess of charges will also be zero at the Gaussian surface. Hence the electric flux on the Gaussian
surface will also be zero. Therefore Gauss’s law predicts that there will be no net charge inside a Gaussian
surface. If the excess charge is not inside the Gaussian surface then it is logical to conclude that the excess
of charges must be at the outer surface of the conductor. t

If a charged metal ball is lowered with a silk thread inside an ‘insulated’ metal can, it will induce
opposite charges on the metal can both inside and outside it. But when the charged body touches the
insulated metal can the charge on the ball will immediately spread over the outer surface of the insulated
metal can. There will be no charges on the inner side of the insulated metal can.

% The Coulomb’s law could be deduced from the Gauss’s law. Consider an isolated point charge q.
From symmetric condition the lines of force will be radial and uniformly distributed. The field E must be
normal to a Gaussian surface drawn at a distance ‘r’ from the point charge. Hence the E and ds at any point
on the Gaussian surface are directed radically outward. The angle between them will be zero and E.ds

becomes Eds.
e°§E.ds=ea§£ds=q (13)
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On this sphere E is constant and the above equation can be rewritten as

€, E¢ds =q
e, E@dnr)=q

E[_I_J [i] (14)
4Te r2

Ifa test charge q, is brought to the Gaussian surface, the above electric field will act on the charge
q, and its magnitude will be

{9q,) F=Eq, .
which is precisely Coulomb’s Law.

1
F = 3
4me, ,?

Ay

(8) Draw necessary Gaussian surfaces for the following cases and determine the electric field E
(i) An infinite line charges with linear charge density A, find E at a distance r from it.
(1)  An infinite sheet of charges on a non conducting sheet with surface charge density o. FindE at a

distance r from it.
Will the electric field change if the non conducting sheet is changed to a Conductor ? Find its

value.
(iif)  Two infinite plane parallel sheets having surface charge densities o, and 0. are considered.

Refer fig (6). What would be the electric fields in the space I. Il and 1r?

== —_
—_—
A Wi 2V, T ’
= | el 2, o, - ,1) P
el B Rl o 0
S €, S,
e,
]
Cogizemes Bp T g2 ke (Y
Fig.6 Field due to two infinite plane parallel sheets of charge density ( G, >

G, > 0).- Only a section cf finite part is shown.

9. When two plane parallel plates are given equal and opposite charges the field between and around
them isshown in fig (7). While most of the charges accumulates at the opposing faces of the -
plates - the  field is essentially uniform in space between them - there will be spreading or

e 4]
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‘Fringing’ of field at the edges of the plates. When the plates are made larger and distance between
them is diminished the fringing effect is reduced and can be neglected entirely. This field between
the plates is uniform and the charges are distributed uniformly over the opposing surfaces.

If the resulting fields at the two surfaces of the plats are E, and E,, find the resultant field E at the
space (1) to the left of the first plate (i) in between the plates and (iii) to the right of the second

plate.
T/P-\— | —
A ——  ——lT—q— P e e
‘ i-/—)\‘ T—— e
a—t —r—  —r— _—a— 4 - sl ¥
2 ' B E E T N
o '_.-l ) -—-) - = ’ ._’
< —> <t —_— —_—
A S - R G + a o SO .
<—f§+ > > R 4____+ i - 4 ‘
> + i > —_—
J i - O ,
q—" —_—r— —— i < 4 e = s
— t  ——— S
A— | —p—  — " _—q— L
3 + L
Fig.7 Electric field between cppositely charged parallel plates
EVALUATION
1. If the Gaussian surface encloses a dipole. what would be the electric flux ¢ for this surface?
2, An early model atom is considered to have a positive charged point nucleus of charde Ze

surrounded by a uniform density of negative charges up to a radius R. The atom as a whole is
neutral. Discuss the electric field at a distance °r* from the nucleus. r > R.

In the Rutherford or nuclear atom model the positive charge,of the atom is concentrated in a small

region (the nucleus) at the centre of the atom. For gold itis of about 6.9 x 10 " m. What is the
electric field at the nuclear surface ? Neglect the eftect associated with the atomic electrons. Z tor

gold is 79.

4. A non conducting sphere of radius *a’ is placed at the centre of a spherical shell of inner radius "b°
and outer radius “c’. A charge of +Q is distributed uniformly through the inner sphere and the

(¥

charge density is p Cm . The outer shell carries -Q charges. Find E, (i) within the sphere
r<a. (ii) between the sphere and shell (i11) inside the shellb <r<c¢ and (iv) outside the shell.

th

Charge is distributed uniformly throughout an infinitely long cylinder of radius R (i) show that E

at a distance ‘r’ from the cylinder axis is given by E = P’ \when p is the charge density when

2
o

r <R. (ii) what do you expect as the resultif r>R ?

Q-
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CHAPTER
ELECTRIC POTENTIAL

We have seen that Electric Field is a VECTOR quantity. At a point its magnitude and direction can
be shown with help of lines of force. One can visualize its nature and its variations in space in quantitative
way. The electric field around a charged body can be described not only by electric field vectors but also
by another scalar quantity known as POTENTIAL. In a static condition the potential contains just as much
information as the Electric Field. Consider a test charge q, being moved in a static field due to a point
charge q. Draw lines of force around the charge. The lines of force will be radial. Suppose the test charge
q,1s moved along a radial path I from A to B. (See fig. 8). As the lines of force also indicate the direction
of electric field, E will be acting along the radial direction. A force of E q,will be acting on the test charge
due to the field. This force is towards the charge q,. In order to move the charge q, from A to B one has
to do work against the electric field. Let the external agent do the work. In order to keep equilibrium this
force must be equal and opposite to E q, Let us represent the potential at B as Vg and that at A is V,. The

difference between the two potentials is

Vg- Vi =(Wap)/q, (1)

Fig.8 A test charge gy is moved from A
to B in the field of charge q along I &
II paths

In order to define the POTENTIAL we select a condition that V a becomes zero. That will happen only when
the point A is far away from the charged body. That means at infinity distance. Dropping suffix B, one

can write the potential at a point as
V=(W)/q, )

POTENTIAL AT A POINT IN AN ELECTRIC FIELD IS THE WORK TO BE DONE BY AN EXTERNAL

AGENT BY BRINGING A UNIT TEST CHARGE FROM INFINITY TO THE POINT IN QUESTION.
The unit of potential is joule coulomb’, generally called  volt (V).

F<
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Instead of following the radial path I now consider any arbitrary path II (see fig 8). It can be broken
up into a large number of radial and arc segments. When these segments are small, it can be made arbitrary
close to the actual path. It can be shown that no work will be done along the ‘arc’ as the force F and

displacement dl are right angles to each other. Which means work is done only along radial segments. The
sum of work done on the radial segments will be same as the work done in the previous radial path I. Since

the second path is arbitrary, it is clear that work done is the same for all paths connecting A and B.

What happens when V,= Vg ?

No work is required to move a test charge from A to B. Such surfaces are called EQUIPOTENTIAL
surfaces. If a test charge is moved from one equipotential to another, work to be done by the external agent
will not be zero. But it will be the same for DIFFERENT PATHS between those two equipotential surfaces.

From the symmetry, the equipotential surfaces
- for a spherical eharge arc a FAMILY OF CONCENTRIC
I ' SPHERES. And for a uniform field they are a FAMILY
)i OF PLANES AT RIGHT ANGLES TO FIELD. In such
A , cases the equipotential surfaces are at right angles to the
. +| C‘C lines of force and thus to electric field E. If they are not
at right angles to each other then there will be a
v v v v v v v component lying on the surface and work has to be
l qE £ done.
S I F. L
A

Fig.9 A testcharge q, is moved from A to B in a uniform electric field E

NO WORK WILL BE DONE BETWEEN TWO POINTS ON THE SURFACE [F THE SURFACE
IS EQUIPOTENTIAL AND E MUST BE AT RIGHT ANGLES TO THE EQUIPOTENTIAL SURFACE.

1) Consider a case where the two points A and B are in a uniform electric field E. Let A and B are at
a distance d in the field direction. The force acting on a test charge g, in the field is
; ,

F = g, E along the direction of E.

In order to move the test charge g, from A to B one must counter act the above force by an external agent.
This force must be equal but in the opposite direction.

If the displacement is dl, the work done W 5 by the external agent is the work contributed for all
infinitesimal segments into which the path is divided.

EL.
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B B
- =ff.df=-q, fﬁ.di (3)
A A

A

If point A is at infinity V, will be zero and potential at Bis ~ +

In the above case

V,-V,=—22=Ed 4)

This gives a new relation between the electric field and the potential difference between two points in the
uniform field.

2. Now consider a non uniform electric field. Let the path in which the test charge q,is moved by a
curved path as shown in the figure 10. The force acting on the test charge is E q,. To keep the test charge

q, without acceleration, the external agent must apply equal force but in the opposite direction. F = - E q,
. Therefore the work done by the agent in moving the test charge q,from A to B is

‘

B B
WAB=f§.d"=»qafE.di (5)
A A

=
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Fig.10 A test charge g, is moved from A to B in a nonuniform electric field

Such an integral is called line integral. If the point A is at infinity the potential V at B is
B8
V=- f E.d (6)

Calculate the potenual ditference
~ between A and B when the test
charge q, is taken along the path A
A to C and C to B is shown in the
figure (11). The electric field E is
uniform.

Fig.11 A test charge g, is moved along
the path ACB in a uniform field E

+5
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3 Consider a case of an isolated + point charge q. Let A, B and q lie on the same straight line. Assume
that a test charge q, is moved along the radial path without acceleration. In the fig. 12 E points to right and
the direction of dl is to the left. Therefore.

E.d1=Ecos 180°dl =-E.dl )

We are moving the test charge in a direction which reduces r where r is the measurement from q
which is the origin.
sodl=-dr s E.dl=Edr

substituting in ............ 5

Fig.12 A test charge q, is moved by external agent from A to B in the field set by as isolated charge q

Knowing the value of electric field at the site

(8)

Ty
we obtain Vo =¥, = - B j L/
7]
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choosing reference point A to be at infinity the potential at B will be

=y, 8 9
a3t

THIS SHOWS THAT EQUIUPOTENTIAL SURFACES FOR AN ISOLATED POINT CHARGE ARE
SPHERES, CONCENTRIC WITH THE POINT CHARGE.

Will the above relation hold good for external points to spherically symmetric charge distribution?

Answer to this question is considered in the following problem.
What is the electric potential at the surface of a gold nucleus ? The radius of the nucleus is 6.6 x

10""* m and atomic numbers of gold Z = 79. '
Assume the nucleus to be spherically symmetrical and behaves electrically for an external points as
if itis a point charge.

4) When there are group of charges, the potential is found out by calculating potential V due to each
charge as if other charges are not present and then adding the quantities algebraically.

T 2
V_ZV" 4 1€ gr’l

]

If the charge distribution is continuous rather than being a collection of points, the summation is
replaced by an integral.

v = fdv SUS. {ﬁ where dq is the differential
4we Jor
element of charge distribution.

POTENTIAL ENERGY

In an electrostatic condition the charges q, and g. are separated by a distance r. If the separation
distance is increased the external agent has to do work and it will be posiuve if the charges are of opposite
sign and negative otherwise. THE ENERGY REPRESENTED BY THIS WORK CAN BE THOUGHT OF
AS STORED ENERGY CALLED ELECTRICAL POTENTIAL ENERGY.

WE DEFINE THE ELECTRICAL POTENTIAL ENERGY OF 4 SYSTEM OF CHARGES AS THE
WORK TO BE DONE TO ASSEMBLE THE SYSTEM OF CHARGES BY BRINGING THEM FROM AN
INFINITE DISTANCE.

Let us imagine g, is removed to infinity. The electrical potential caused by q, at the original site
of g, is '
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If q, is moved from infinity to its original position, work required by definition of electrical potential
1 q9, 49,

4 e r
o

which is the potential

is W=V g,. Combining the above two equations we get U =
energy of the system.

Two protons in a nucleus of U*? are 6.6 x 10'* m apart. What is their mutual electric potential

energy?

12

If a system contains three charged q, q, and q; separated by distances r;,,1;;, and r,; then the total
energy of the configuration is the sum of the energies of each pair of particles.
U=U,+ U; + Uy
It is considered that at infinity distance the potential is zero. A positive potential energy corresponds
repulsive electric forces and a negative potential energy to attractive electrical forces. In the case of nucleus
protons are held together by attraction and a non electrical forces, otherwise they would have moved apart.
This force is called NUCLEAR FORCE.

M
/ \ Calculate the potential energy of the
/ \ configuration of 3 charges as shown in the
/ \ flg 13.

Fig.13 The charges are held fixed by an extemal force
‘

6) Consider an insulated conductor. We have seen earlier while dealing Gauss's Law that any excess
of charge q placed on that conductor will move 1o its outer surface. We will discuss potential at  different
points of a charged conductor and also the electric field.

Consider two points A & B on the conductor. If they are not at the same potential, the charge carriers
in the conductor near the lower potential would tend to move toward the higher potential. In a steady state
there is no movement of charges and all points, both on the surface and inside it, must have the same
potential. Since the surface of the conductor has static charge it will be an equipotential surface. The vector
E for points on the surface must be at right angles to the surface. When excess charge is placed on the
conductor it will spread over the surface on the conductor until E equals to zero for all points inside it. The
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same statement can be stated as the excess charge will move until all points of the conductor - both outer
surface points and interior points are brought to the same potential. For V to be constant E has to be zero

everywhere inside the conductor £, = —

/ .
|
12'_ g2l
v BL 1 gl
(kv) | c It (kVm ) - . 122
4. 4
(00 T =2 '3 3 00T 2 3 3
r{m) y (m)
(5)

(<) ’

Fig.14 The potential (2) and electric field (b) for points near a conducting spherical shell of radius 1.0m and carrying
acharge of 1.0 x 10*C

When we plot V against distance r for a charged conducting sphere, we obtain a graph as in the fig.14a.
Inside the conductor the potential is constant and as the point under consideration is away’ from the outer
surface of the conductor it decreases as V = 1/r.

When we plot a graph for variation of electric field E for various positions, we obtain a graph as in fig.14b.
E is zero inside the conductor and is maximum for a point on the conductor. [t decreases rapidly as the
distance r increases. A ‘
oL
2
[t should be noted that the charge density tends to be high on isolated conducting surfaces whose
radii of curvature are small and conversely. At sharp points, the charge desntiy is relatively high and

similarly on the plane regions of the conductor it is relatively low.

T The electric field E at points immediately above a charged surface is proportional to the charge
density  So it will reach very high value near the sharp points. One can see glow discharges from sharp
points during thunderstorms. Lightning rod acts in this way to neutralize charged clouds and thus prevent
lightning strokes.

g
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Suppose two sphers R and r having different radii are charged and connected by a very long fine
wire. The charges on them are Q and q respectively. Let V be the potential of the entire assembly. Find
ratio of their surface charge densities g, and o0, where 0, correspondsto the first sphereand o,

for the later sphere.
Which sphere has larger total charge and which has the greater change density? Refer fig.(15).

oA
A
~—

"

Fig.15 Charged spheres of different radii connected by a wire

We have studied the properties of electric fields in an electrostatic condition. The Gauss’s law holds
good and work done by carrying a test charge from one point to other is independent of the path. The
concept of potential and equipotential surfaces are also well explained. . We will discuss briefly the
behaviour of conducting bodies in an electrostatic field. The very word “static” means nothing changes with
time. That means, there is no movement of charges and no current either in the interior or on the surface
of the conductor. But a conductor has large number of free electrons. If there is any field in the interior
of the conductor, the charges must move (a current flows) and the “static’ condition will be destroyed.
Similarly, if there is any surface current, there must have a component of electric field tangential to the

23
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a2
_6
0

20210°¢C | 20x10 C

+o an ' 2 +g

Fig. 16 Two charges 2.0 x 10 C are fixed in space at a distance of 2.0 cm apart

surface. So the “static’ condition forbids the presence of any electric field in the interior of the conductor
and also no tangential component of field over the outer surface of the conductor. The field can have only
normal component on the outer surface of the conductor. E is normal to the outer surface of the conductor.

EVALUATION

1.

i)
i)

i)

If V equals a constant value throughout a given region of space, what can you say about E in that
region?

In the case of an isolated positive point charge q, is it necessary to assume that A, B and q lieon a
B

straight line in order to prove V' = - fE dl istrue ? (Refer Fig.12)

Do electrons tend to go to regions of high potential or low potential ? Give reason. *

An infinite charged sheet has a surface charged density o =1.0x 107 Cm2. How far apart are
the equipotential surfaces whose potentials differ by 5.0V ?

Two charges ¢ = +2.0 x 10 C are fixed in space a distance d = 2.0 cm apart as in the figure (16).

What is the electrical potential at point C ?
You bring a third charge q = 2.0 x 10* C very slowly move from infinity to C. How much work

must you do? :
What is the potential energy U of the configuration when the third charge is in place?

What is the charge desntiy o on the surface of a conducting sphere of radius 0.15m whose potential
is 200V ?

Two metal spheres are 3.0 cm in radius and carry charges +1.0 x 10 C and -3.0x 10 C
respectively, assumed to be uniformly distributed. If their centres are 2.0 m apart, calculate i) the
potential of the point half way between their centres and ii) the potential of each sphere.

3



Amplifiers

CHAPTER
AMPLIFIERS

Introduction

Very often, we have to amplify a small voltage signal from a transducer, such as a
phonograph pick up, to a level which is suitable for the operation of another one, such as a
loudspeaker. The arrangement is called an amplifier. We shall first study a ‘black-box’
representation of an amplifier. Then we shall proceed to discuss transistor as an amplifier and how
the performance of the amplifier could be improved by providing negative "feed back’.

Black-box representation of an amplifier

T DC Source
Input i Output
plo——o Amplifier —g—,
_QU_ 65 ﬁ Load
J E
BG83 Black box representation of an amplifier

The above figure gives a black box representation of an amplifier. Input and output are
alternating in nature at some fixed or variable frequency. The input is a low level voltage such as
that obtained from a phonograph cartridge, or a tape-head (or a transducer such as a thermo couple,
pressure gauge, etc). ’

The output is an enlarged version of the input and may be fed to a loudspeaker as in an audio
amplifier. The amplifier has at least one active device, such as a transistor and may have a common
connection E between input (I, E) and output . (O, E) terminals.

In order to magnify the output, an amplifier needs a source of energy - a dry battery as in
portable ones or a dc source resulting from a rectifier and filter combination. The active device
basically converts the energy from the dc source into energy at the output of the amplifier that is
proportional to the input signal. The ac input signal merely serves as a means of conrrolling the dc
to ac conversion in the active device. This is usually accomplished with comparatively little input
signal power.

RS



Amplifiers

The efficiency of conversion

N = wer delivered ad
dc input power

The maximum value of efficiency is in the range of 25% to 90%, depending upon the way in which

the load is coupled to the active device (series fed, transformer coupled, push-pull etc) and the class
of operation of the amplifier (class A, AB, B and C).

Transistor - as an amplifier

kg Jc
+I / C ‘ +

o X "
A o

2 B¢

+' +]|| -

!

Vee

rig.2 Transistor as an amplifier common base PNP

A small change in voltage between E and B produces a relatively large emitter current change
Al;. A fraction a of this current change is collected and passed through a load R cqnnected in
series with the collector supply voltage V.

The change in voltage across R, is
AV, =+ (Alc)R, =a AR, (D
This could also be many times the change in input voltage AV,. i.e. AV, = A AV, (2)

where , 4 = A~ the voltage amplification.

vV
Av,

From (1) and (2)



A=t o

vV
AV,

Now, AV,. r, AV; where g is the dynamic resistance of

the emitter junction

R
A =i —=
r'
The value of r, = RUCLL Q: axl

Let R, = 3000Q, r,=400Q. Then,A=75

Amplifiers

)
t Te
AVY.
1
l r
3 &.V: = Al
\Y%

The above consideration gives physical explanation of why the transistor acts as an amplifier.
The current in the low-resistance input circuit is transferred to the high-resistance output circuit.

The word "transistor’ has originated as a contraction of ‘transfer resistor "

Transistor provides power gain as well as voltage or current gain.

Graphical explanation

The amplification action can well be explained by considering the input (I - V) and output
(. = V) characteristics. The fig 3 gives the common-base input characteristics of a PNP transistor.
At an operating point Q, if the input voltage varies as a function of time as shown in (b), the emitter

current varies as shown in (c).

&%
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Fig.3 Ccmmon
base input
characterist
ic (PNP)

To find the
¢ effect of
this on the
output, we
have to
consider
the output
charactert
stics which
,1s shown
in fig.4.

.t

Fig.4

amplifier :tions

&€

Load-line on output characteristic and graphical explanation of
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Next, draw the load-line AB on the graph. For this, apply Kirchhoff’s voltage law to the
output circuit.

-V -IcR . Vee=0 : 1

Rearrange I, = Kom & R, V..
This straight line cuts V 3 axis at V ¢ because whenI. =0, V5 = V. and it cuts the [ . axis
at Vo o/ R because when V=0, [c= V /R

If the input circuit current I is varied as a function of time, about the operating point Q
(Vemo T I &) @s shown in fig 4b, the corresponding variation in I ¢ and V g are shown in fig. 4c
and fig. 4d. On comparing fig.4(d) with fig.3(b), the output (collector) voltage is in phase with the
input (emitter) voltage. This is described as phase inverse, As V gg goes positive, I ; goes positive,
I - goes negative resulting in Vg going positive.

The circuit for common base NPN transistor is given in fig.5.

The input and output characteristics for a NPN transistor will of course have the same genral
appearance as those shown for a PNP in figures 3 and 4. Note that Vg is negative, I; is negative
and Vg and [ are positive.

- = - C
' e = + . T +
| , [
i !
Yoy AVY; B . RL i
—| T /5‘ A/C
] ‘
| S . |
+ \ = (|1 ‘ =
—] I‘l
v
i
Fig.5 Transistor as an amplifier (common base NEN)

Similar explanation is possible for common emitter and common collector amplifiers. It
should be noted that the output voltage suffers phase inversion in also common emitter configuration
and not in common collector configuration, for which input characteristics are as in Fig.6( b) and
output in 6(c). When V. goes negative, Iy goes negative, Iz goes positive and V. negative. No
phase reversal.
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, Fig.6 a) Common-
t  collector amplifier
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Vee EC
(-ve)

b
i Vec

j (-ve)

c) Output characteristics

Coupling of amplifier to source and load
The coupling is generally done using capacitors C, and C,. The capacitor C, blocks dc trom

going to the source and similarly C,blocks dc from going to load R,

DC source
C CO
A . | |
% |1 /C ’ [
‘1
1 R
V,é\? R R,

Coupling of an amplifier

il



Characteristics of a good amplifier
An amplifier should have

i)  high input impedance R, and low output impedance R, (Refer fig.7)

ii) high fidelity, least distortion (different types) and constant gain over a wide range of
frequencies, etc.

Amplifiers

Comparison of characteristics of the three configurations and uses

Characteristics

Common base

Common emitter

Common collector or
emitter follower

Output resistance R,

Highest
1-2MQ

Moderate
50 kQ

Lowest
100Q- 1kQ

Input resistance R;

Lowest 20-50 Q

Moderate 1-2 kQ

Highest 150 kQ - 600kQ

matching - to matcha
very low impedance
source to drive a high
impedence load.

Current gain A, Low = 1(<1) Large Large
0.85t0 0.995 20-200 20-200
Voltage gain A, Hig = A v, High Low <1 (0.99)
Power gain A, Moderate Large Small
Phase Change No 180° No
Uses 1) For impedance Popular because of 1) As a buffer amplifier

high voltage, current
and power gains.

between a high
impedance source and a
low impedance load

it} As a non inverting
amplifier with a voltage
gain >1

111) as a constant current
source (e.g. in sweep
circuit to charge a
capacitor).

i1) Level shifter in direct
coupled circuits.

Stages in cascading
of amplitier

Input - when a transducer
requires near short circuit
operations.

Intermediate

Input: When a transducer
requires near open-circuit
operation.

Output: to derive a low
impedance load
(especially capacitive)

.
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Feedback in amplifier

The amplifier performance can be improved by providing proper feedback (i.e. combining
a portion of the output signal with the external input signal). The concept of feedback can be
understood from the block diagram given below.

, 1 m "
i) 3 A &

R
%L
Comparator 2

of mixer la Feedback
xf":: o network
< B
Fig.s8 Block diagram of an amplifier with feedback

Input to the amplifier X; = X, the difference signal (X - X;). The gain of the basic amplifier

7z X
A4 === *—, where X, = PX
X, X -X d ¢

The gain of the amplifier with feedback

=
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Pcpm‘%” ‘ TP
4 (Xr— B'(o
. = - RAAA
Q’LC\Y Yomgun g, i ety
A(1+BA)=A
A
A & ——
S B Y

(- BA) is called the loop gain :

Case 1: If |A;| < |Al, the feedback is called negative or degenerative. The voltage feedback
causes signal reduction because it is out of phase with the external signal, yielding a lower output.
Note 1 +BAl>1 je. the loop gain is negative.

Case2:If |A;| > |Al the feedback is termed positive, or regenerative. The phase of the
voltage feedback is such as to increase the output, yielding a greater output. Note 11 + fAl< 1
i.e. the loop gain is positive.

Advantages of negative feedback s
The negative feedback, though reduces the overall gain, has the following advantages:

1) The gain is stabilized against variations of “parameters’ of the active device (due to aging,
temperature, replacement, etc.)
i) The input resistance is increased and output resistance is reduced (for some circuits).

ii1) The frequency response can be significantly improved (wide band width).
iv)  The distortions are reduced.
V) The noise is suppressed.

qy



Oscillators

CHAPTER
OSCILLATORS

Introduction

An oscillator is a device that generates a periodic ac output signal of desired frequency,
without requiring any form of input signal. Oscillation can be described as a form of instability
caused by feedback that regenerates or reinforces a signal that would otherwise die out due to
energy loses. In order for the feedback to be regenerative, it must satisfy certain amplitude and

phase relations.

Block diagram discussion

N
1 X ALYy -ax
2 o~ I
Xn -Qa.
f
Inverter
or muxer S ﬁ
BX 5 X
Fig.1l An amplifier with transfer gain A and feedback network 8, not

yet connected to form a closed loop

The fig. 1 shows an amplifier, a feedback network, and an input mixing circuit not yet
connected to form a closed loop. The output signal of the amplifier X, = AXyis due to the input X,
applied directly to the amplifier input terminal. The feedback voltage X;=f X, = AB X,. Thisis

simply inverted in the mixing circuit. The output of the mixing circuit X! =- X;=-ABX, _
. 4 X,
The loop gain = = = - ;, = -B4

Supposing that X' is identically equal to externally applied input signal X , the amplifier is
not in a position to distinguish the source of the input signal applied to it. Therefore, if external
source were removed and if terminal 2 were connected to terminal I, the amplifier would continue
to provide the same output X, as before. The condition that X' = X, means that - A = 1 or the loop
gain must equal unity. This statement has two implications :

1) IABI=1 and
i1) the phase of -AP is zero. The loop gain phase shift is zero (or, an integral multiple of 27)

95



Oscillators

These conditions are called the Barkhausen criteria. The reactive elements in the amplifier
and/or feedback circuits cause the gain magnitude and phase shift to change with frequency. In
general, there is only one frequency at which the gain magnitude is unity and at which,
simultaneously, the total phase shift is equivalent to zero. The designing an oscillator means
selecting reactive components and incorporating them into circuitry so that the conditions are
satisfied at a predetermined frequency.

A
1+ P4
Forif-A =1, thus A; — . This may be interpreted to mean that there exists an output voltage even
in the absence of an externally applied signal voltage. -

Refer to the feedback formula A =

: An oscillator must have an amplifier to supply energy (from the dc supply) to replenish
resistive losses and thus sustain oscillation.

Practical considerations

Refer to fig.1. If | BA =1, the removal of external generator will result in a cessation of

oscillations. (Fig.2a)

o AAA,
e 2l By

ABI<1  IABI>1 IABI=
@ ®) ©

Fig.2 Gain magnitude and amplitude of oscillation

- If | AP I>1, the amplitude of oscillations will continue to increase, fig.2-b (limited by the onset

of non-linearity of operation in the active devices associated with the amplifier).

If | AP | =I, then, with the feedback signal connected to the input terminal, the removal
of the external generator will make no difference. The amplitude of oscillation is a steady one as in

fig.2-c.
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In practice, an oscillator in which the loop gain is exactly unity is an abstraction, completely
unrealizable. The value of loop the magnitude of gain | AP | is made somewhat larger (about 5%)
than unity in order to ensure that, with incidental variations in active device and circuit parameters,
IBA Ishall not fall below unity. After the output voltage reaches a desired level, the value of | A/
decreases to unity and the output amplitude remains constant.

How does the oscillation start?

When the circuit is switched on every resistor in the circuit generates noise voltages due to
the random motion of electrons in it. The noise signal is a complex signal, which can be viewed as
made up of sinusoidal signals of frequencies over 10/*Hz. These signals are very small in amplitude.
All are amplified and appear at the output terminals. A part of the amplified noise output passes
through the feedback circuit. The Barkhaussen critenia are satisfied for only the predetermined
frequency which goes for amplification again. With the magnitude of loop gain | AB| slightly
greater than unity, the oscillations build up at this frequency. When suitable level is reached, IAB |
decreases to unity and a steady output is obtained.

Feedback circuits
Some of the commonly used feedback circuits for oscillators are given below.

C C C i) RC network - low frequency
— |

Ve R{ R{ R{ \

O
A

|

i) RC network - Phase lead-lag network
as in Wein-bridge oscillator - a very good
one for audio frequency operation.
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i/3
B
f —» 1
o) = H.
s 27RC g
A=3, B=1/3
si p
J
Phas- o!
I 3 5i—b
[
|
_9007
!

Amplitude stability is maintained by having a pair of components : resistance-sensistor / tungsten
lamp (positive temperature coefficient or thermistor (negative temperature coefficient).- resistance
forming one arm of the wheatstone bridge network, the other arm being the phase lead-lag

components.

1i1) LC network - for high frequency applications upto 500 MHz - generally tuned/resonant
network ‘

Ll

a4

r_

N
At
O
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Oscillators

Desired characteristics of an oscillator

1) amplitude stability

i) frequency stability - a measure of its ability to maintain as nearly a fixed frequency as
possible over as long a time interval as possible. A measure of frequency stability is ;}—

The larger the value of ‘Z—e the more stable is the oscillator frequency (0 is the phase of

voltage with respect to current.
iiiy  perfect sinusoidal waveform - especially for audio frequency operations.
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CHAPTER

SOLID STATE PHYSICS

Solid State Physics is a study of the physical
properties of solids like electrical conductivity,
dielectric properties, elastic . properties, thermal
properties, magnetic properties. It deals with properties
common to a larée number of compounds and the quantitative
relation between the properties and the underlying

structure.

It is sometimes alsc termed as 'Condensed Matter

Physics'.
Solids
Classified -> Size of
ordered regions
‘E A s ‘l’
Amorpnhous Polycrystalline Single
crystal
i - ~ .
Order limited Made up of grains Has long-
to few molecular which are highly range
distances ordered crystalline order

regions of irregular
size and orientation

Many important properties of materials depend on the
structure of crystals and the electron states-. within

crystals - Band theory.

Aim of Crystal Physics
The aim of Crystal Physics is the interpretation of
the macroscopic properties in terms of the microscopic

particles of which the solid is composed.

\ol



Science of Crystallography
It is the study of geometric form and other physical
properties of crystalline solids by using X-rays, electron

beams, neutron beams, etc.

Lattice Points and Space Lattice
Crystal Structure: Atomic arrangement in a crystal is called

crystal structure. In a perfect crystal, there is a regular

arrangement of atoms (periodic) in 3-dim.

Periodicity may be different in different
directions.

Location of atoms are specified by points called
Lattice points. Totality of such points forms a crystal

-

lattice or space lattice.

If all the atoms at the ,lattice points are

identical, the lattice is called Bravais lattice.

3-dim space lattice is a finite array of points in
3-dim, in which every point has an identical environment as

any other point in the array.

Consider a 2-d array of points. The environment

about any two points is the same.



L.

- >
a , b are the fundamental translation vectors.

Choose some origin and join it to two points A and B

by vectors Iy and-?é. If the difference T of the two vectors

-?l and f} satisfies the following relation

= -> ->
T = nla + n2b

where ny ané n, are integers, then the array of points 1is a

2-d lattice.

For a 3-d lattice

-> -> -> ->
T = nja + n2b + n3c
Crystal lattice refers to the geometry of a set of
points in space whereas crystal structure refers- to the
actual ordering of its constituent ions, atoms and molecules

in the space.

The Basis and Crystal Structure

Crystal structure 1is got by associating every

lattice point with a unit assembly called Basis.

Loz



A basis 1is an assembly of atoms or molecules
identical in composition orientation and arrangement. All
lattice points are connected by a translation.

Lattice + Basis = Crystal Structure

e Os Qo

0

.
0, O, O. O,
’O QO. e Q:

Unit Cells and Lattice parameters

In every crystal some fundamental grouping oif
particles (atoms) is repeated. Such a fundamental repeat
entity is called a unit cell. This smallest unit repeated in
3-d gives rise to the crystal and constitutes the building
block. Unit cells for most crystals are parallelepipeds or

cubes having three sets of faces which are parallel.

A unit cell is chosen to represent the symmetry of
the crystal structure, wherein all the atom positions in the
crystal may be generated by translations of the unit cell

integral distances along each of its edges.

ok



More than a single wunit cell may be chosen for
o. particular crystal structure. However, we generally use the

unit cell having the highest geometrical symmetry.

A space lattice is a regqular distribution of points
in space, in such a manner that every point has identical
surroundings. The lattice is made up of a repetition of unit
cells, and a unit cell is completely described by the three

- =2 =
vectors a, b, ¢ when.the 1length of the vectors and the

angles between them (-, P ,Y’) are specified.

ﬂ/j ],b

Lattice parameters of a unit cell

Taking any lattice point as the origin, all other

points on the lattice can be obtained by a repeated
; . e :

operation of the lattice vector &, b, c. The lattice vectors

and the interfacial angles are called the lattice parameters

of a unit cell. Hence if we know the values of these

intercepts and the interfacial angles, we can easily

determine the form and the actual size of the unit cell.

(oS



The vectors Si'g,dglmay or may not be egqual. Same is
true of angles % B Y. They may or may not be right angles.
The above conditions determine the seven crystal systems. If
the atoms are at the corners only the seven crystal systems
yield seven types of lattices. More space lattices can be
constructed by placing atoms at the body centres of unit
cells or at the centres of faces giving the body-centred and
face-centred lattices. Bravais showed that the total number
of different space lattice types (obeying the condition that
every point has identical surroundings) is only fourteen.

Hence the term "Braivais Lattice".

Unit Cell vs. Primitive Cell
Primitive Cell: It is -a geometrical shape which, when
repeatedly placed indefinitely in three dimensions will fill

all space and is equivalent of one lattice point.

Primitive cell contains only one lattice point at
the corners of the unit cell.
Unit cells may be primitive cells but all primitive

cells need not be unit cells.

Crystal systems

There are thirty-two classes of <c¢rystal systems
based on geometrical considerations (i.e. symmetry and
internal structure). But, it is a common practice to divide

all the crystal systems into seven groups or basic systems

Vob



which are distinguished from one another by the angles

between the three axes and intercepts of the faces along

them. They are

- Cubic (Isometric) Minerals -> galena,

- Tetragonal garnet,

- Orthorhombic zircon, rutile

- Monoclinic ¢ barite

- MEl clinic gypsum
plagioclase

- Trigonal (rhombohedral) calateguartz

- Hexagonal graphite, molybdenite

The seven crystal systems and their properties are

given in the table.

S1. Crystal system
No.

Unit cell parameters

Examples

1 Triclind.c

2 Monoclinic

3 Orthorhombic
(rhombic)

4 Tetragonal

5 Cubic
6 Hexagonal

7 Rhombohedral
(Trigonal)

a#b%c;aL=ﬁ=V=90°

afbfc; o= 904y

agbgc; L2 = =90°
azbfc; £=F=r=90°

a=b=c;g\=ﬂ=7290°
a=bfc; 4 53=90°,Y=120°
a=b=c H 'L=B=J/#90°

K5Cr,50
2
casoi gﬁzo

CaSo 2H20
(Gypsum)
FeSO4 NaZSO4

KNO3, BaSO4

TiO,,” Sno,
Nis%4 -

Au, Cu, NacCl

SiOz, Zn, Mg
As, Sb, Bi,
Calcite




A crystalline substance can be looked upon as a
closely packed aggregate of atoms or ions which are usually
assembled to have a spherical shape. It has been observed
that structure of many crystals can be profitably understood

in terms of the packing of spheres in space.

Every one is familiar with a bunch of grapes or
bananas, a pile of oranges, close packing of seeds in a

pomegranate fruit,k a raft of soap bubbles and a beehive

(Figs. 1-4).

In 2all these cases we observe that one piece 1is
surrounded by six other identical wunits on one surface
which are in close contact with it. This is how nature fills
the space to the maximum extent wherever it is possible.
Similarly it is possible to keep six marbles (or ping pong
balls) in contact with only one ball in a single laver
(Fig. 5). A second similar layer can be superimposed on this
layer in such a way that each sphere 1is in «contact with
three spheres of the adjacent layer as shown (Fig. 5). A
third layer can be added now in two ways. In one way it 1is
possible to keep the spheres directly above the first 1laver
as in Fig. fa. The other way is to keep the spheres over'the
holes in the first layer not occupied by the second laver
(7a). The first arrangement is <called hexagonal close

packing (HCP) and the second is known as (CCP) cubic close

packing.

(1]
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FIG.1- GRAPES

FIG. 4- BEEHIVE

FIG.3-SOAP BUBBLES

PACKING ARRANGEMENT
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Let us designate the -‘layers as A, B and C, we
ooserve that in HCP, the sequence of layers will be
repeated. We observe that in HCP, the sequence of layers
will be repeated in terms of AB, AB, AB,... or BC, BC, BC or
2AC, AC, AC ... In the case of CCP the sequence will be ABC,
23C, ABC, ... Thus the structure repeats 1itself after two

layers in HCP and after three layers in CCP.
A

We can count 12 spheres in contact with one sphere
in both the packing arrangements (6b, 7b). In one plane one
sphere is surrounded by six other spheres in HCP with three
cther spheres on both sides in a triangular way. In the case
cf CCP the lower triangle is rotated through an angle of
€0°. The number of immediate neighbours which & sphere can
have is representec by the coordination number: 12 for HCP
and CCP. Some important crystal, structure terms are defined

telow:

Coordination number (N): Number of equidistant
nearest neighbours that an atom has in the given structure.
Creater the coordination number the more closely packed up

the structure.

Nearest neighbour distance (2r): The distance
tetween the centres of two nearest neighbouring atoms is
called nearest neighbour distance. It will be 2r if r is the

radius of the atom.

uo



Atomic radius (r): Atomic radius 'r' is defined as

half the distance between nearest neighbours in a crystal of

pure element.

Atomic packing factor: The fraction of the

occupied by atoms in a unit cell 1is called atomic

space

packing

factor (APF); or simply packing factor, i.e. it is the ratio

of the volume of the atoms occupying the unit cell

volume of the unit cell relating to that structure.

Cubic (simple) structure

Coordination no. = 6
No. of atoms/unit cell =1
Nearest neighbour distance 2r = a

Lattice parameter a = 2r

No. of lattice poinés =1
Volume of all atoms v = 1 X 4/37rr3
Volume of unit cell V = ad = (2r)3
Packing fraction (atomic)
Volume of atoms v
" el es undel el A0
4 3 4 3 i
T -
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AC zaiqa’ =28

Fet =@ HAF)
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(Lv)7: 3a

3 o= WY 27: av3

Ve 2

Coordinazion no. 8; 2r = a /3 /2
Lattice constant a = 4r//3

tumber of atoms/unit cell = 2

7 = Volume of atems in unis cell = 2 x (4/3)7rr3
2 .
Volume of un_: ce2ll Vv = a“

APT = 68% eg. metallic crystals

Similarly for a face centred cubic.
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CHAPTER
SUPERCONDUCTIVITY

Superconductors, materials that offer no resistance to the flow of
electricity, are one of the last great frontiers of scientific discovery.
Super-conductivity has been observed in certain metals, alloys and
ceramics. Not only have the limits of superconductivity not yet been
reached, but also the theories that are ustd to explain superconductor
behaviour seem to be constantly under review. The exotic phenomenon
of superconductivity was first observed in mercury by the Dutch
Physicist Kammerlingh Onnes of University of Leiden in the year 1911.
When he cooled it to the temperature of liquid helium, 4 degrees
Kelvin, its resistance suddenly disappeared. The Kelvin scale of
temperature represents the “absolute” scale of temperature. The sudden
transition to a state of no resistance was not confined to the pure
metal but occurred even if the mercury was quite impure‘. The new state
at which the electrical properties became quite unlike those previously

‘

known he called the “superconducting state”.

Transition Temperature

The temperature at which a superconductor loses resistance is
called its superconducting transition temperature or critical temperature
Tc. This is different for different materials and is a characteristic of

the given material or compound. In general the transition temperature

Uy
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is not very sensitive to small amounts of impurities, but the
superconductivity of a few metals such as iridium, molybdenum, which
in the pure states have very low transition temperatures, may be
destroved by the presence of minute quantities of magnetic imi)uritics.
Such elements hence exhibit superconductivity only if they are pure.
Substances with regular lattice can only become shperconductors.
Imperfections in the lattice can render superconductivity impossible for
substances with imperfect lattice have a finite resistance even at very
low temperatures close to absolute zero. Ferromagnetics are not
superconductors.
Critical field and Current Density

Superconductivity will disappear if the temperature of the
specimen is raised above its transition temperature or if a sufficiently

strong magnetic field or current density is made to flow through the



superconductor. The applied field necessary to restore the normal
resistivity is called the critical field B.. Furthermore, superconductivity
vanishes if the current flowing through the specimen exceeds a certain-
limit called the critical current I.. Both B, and I. depend on temperature
and on each other. Experimentally it is found th.at the critical magnetic

field, at zero current depends on temperature as follows.

8',=8,:;_f7)’]

\ 7c

where B, is the critical field at 0°K. Thus the field has its maximum

value B, at T = 0°K.
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Effects of Magnetic Flalel .
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The critical field B. also depends on the material. We find that

‘these materials are superconductors only for'values of T and B below
their respective curves and are normal conductors for values of T and B
above these curves.

Magnetic Properties

The magnetic properties of superconductors are as rema;kable as
their ":lectrical properties. The ideal magnetic behaviour of
superconductors falls into two classes. T'ype [ and type II. Below the
critical temperature and for B < B, the material is perfect]y.diamagnetic
i.e. the field does not penetrate the superconductor. This behaviour

illustrated in the figure below is called the Meissner Effect.
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Meissyier Effect -
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As can be seen from the figure that when the speci‘men becomes
superconducting the field is concentrated at the sides of the specimen,
but not at the top or bottom. When 'this happens the specimen must
exist as a mixture of the normal-and superconducting states called the

intermediate state. Consequently such specimens are either super-

conducting (if B < B.) or normal if B > B..
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Type 11 superconductors behave differently. For applied fields

below Bey (called the lower critical field), the materia] is diamagnetic
o .
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field is completely excluded, At B, the field begins to penetrate the

specimen and the penetration increases until Be (called the upper
critical field). At this field the magnetization‘ vanishes and the
specimen becomes normal. The magnetization of a type Il
superconductor vanishes gradually as the field is increased, rather than
suddenly as in type I superconductors. Type I superconductors are also
called Soft Superconductors, while type 1II are called hard
superconductors.
Penetration Depth and thin films

The applied field does not suddenly drop to zero at the surface of
a Type I superconductor, rather it decays exponentially. As a
consequence, the field is fairly large over a distance from the surface.

The penetration depth, A, ranges from 300 to 5000 A depending on the

material.
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In the above figure is depicted the penetration of the magnetic
field into a bulk specimen and into a thin film whose thickness is less
than the penetration depth. In ordinary specimens whose dimensions

are much larger than 5000 A, the major fraction of the volume is not

penetrated by the field.

Persistent Currents

If a superconductor is in the form of a ring a current can be
induccd" ‘in it by electromagnetic induction. The resistivity of a
superconductor can be measured by observing the induced current as a
function of time. If the material is in the normal state, the current
damps out quickly because of the resistance of the ring. Bui if the ring
has zero resistance, the current once set up, flows indefinitely without
decrease in value. In a typical experiment, a lead ring could carry an
induced current of several hundred amperes for over a year without any
change. Such currents are called *persistent currents’. Physicists
found that the upper limit for the resistivity of a superconducting lead
ring was about 10°* Qm. The fact that this is about 10"'7 as large as

ws
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the value at room temperature does indeed justify taking p = O for the

superconducting state.

Thermal Properties

Thermal properties such as specific heat capacity and thermal
conductivity of a substance change abruptly, when it passes over into

the superconducting state.
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According to the thermodynamic theory of superconductivity, the
superconducting and normal states are two phases of a substance, each
being converted into the other at definite values of the state variables
the temperature T and the magnetic field‘ intensity B. The conversion of
a superconductor to the normal state by the action of a magnetic field
i.e. at T < T, is a first order phase transition. The same convention in
the absence of a rﬁagnetic field is a seond order phase transition.
Causes of Superconductivity
Though a number of a theories were proposed, the first widely-accepted
theoretical understanding of superconducti\;ity was advanced in 1957 by
Ameican physicists John Bardeen, Leon Cooper and John Schreeffer.
Their themes of superconductivity became known as BCS theory which

fetched them a Nobel Prize in 1972. They used the idea advanced by
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Cooper (1956) that pairs of electrons could condense into a lower
energy phase provided that there was some attraction, however weak,
between them. Accordingly, they were able to show that such an
attraction does exist between elec.tron pairs due to electron-phonon
interactions. Phonon is a quantum of acoustic energy. According to the
BCS theory the electrons responsible for superconductivity are coupled
together in pairs called Cooper pairs. These electrons have opposite
spins and equal and opposite momenta. The attractive force between the
electrons of a pair extends over a relatively long distance of the order
of 10"* c¢m, called the distance of correlation.

The binding energy, 2A, between the two electrons is temperature
dependent and becomes zero if the temperature approaches T.. At
absolute zero, all electrons are paired. For T > T > 0 some electroas
are paired and others are excited. For T > T, there are no electron
pairs. The- excited electrons behave normally in every respect. The
rpaired electrons are responsible for superconductivity. Since there are
electron pairs for T < T, the material is a superconductor for T < T..

The mathematically complex BCS theory was successful in
explaining superconductivity at temperatures close to absolute zero for
elements and simple alloys. However, at higher temperatures and with
different superconductor systems, the BCS theory has subsequently
become inadequate to fully explain how superconductivity is occurring.

Another significant theoretical advancement came in 1962 when
Brian D Josephson, a graduate student at Cambridge University,

predicted that electrical current would flow between two
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superconducting materials - even when they are separated by a non-
superconductor or insulator. His prediction was later confirmed and
won him a share of the 1973 Nobel Prize in Physics. This tunneling
phenomenon is today known as the “Josephson Effect”.

High Temperature Superconductors

The year 1986 saw a breakthrough in the discovery made in the
field of superconductivity. Alex Miller and Gec;rg Bednorz, created a
brittle ceramic compound that superconducted at the highest
temperature then known 30K. What made this discovery remarkable
was that ceramics are normally insulators. They don’t conduct
electricity well at all.

Researchers had not therefore considered them as possible high
temperature superconductor candidates. The Lauthanum Bariem, Copper
and Oxygen compound that Miller and Bordnoiz synthesised, behaved in
a way which was not yet understood. Tiny amount of this
superconducting Eopper oxide were found to be actually super-
conducting at 58K, due to a small amount of lead having been added as
a calibration standard-making the discovery more noteworthy. Muller
and Berdnoz’srdiscovery led to a lot of activity in the field of
superconductivity. In an attempt to cook up ceramics of every
imaginable combination leading to higher and higher T.s by substituting
Yttrium for Lanthanum an incredible 92 T, was achieved today referred
to as YBCO. This temperature is warmer than liquid nitrogen
temperature which‘ is a commonly available coolant.  Additional

milestones have been achieved eversince by using exotic and often toxic



elements in the base perovskite ceramic. The latest world record T¢ of
138 K is held by a molecule of Mercury, Thallium, Barium, Calcium,
Copper and Oxygen, created in 1995. Under extremé pressure its T¢ can
be coaxed up even higher — approximately 25 to 30 degrees more at
300,000 atmospheres.

Though a lot of advancements in superconductor T.s have been
achieved in recent years, other discoveries (?f equal importance have
been made. Researchers in 1997 discovered that at a temperature very
near absolute zero an alloy of gold and indium was both a
“superconductor and a natural magnei. Conventional wisdom held that a
material with such properties could not exist! Recent years have also
seen the discovery of the first high-temp superconductor tl.m[ does NOT
contain any copper and the discovery of the first plastic

superconductor!

-

Fullerenes also called buckyballs exist on a molecular level when
60 carbon atoms join in a closed sphere. When doped with more alkali
metals the fullerene becomes a “fulleric;e" and will often superconduct.
Fullerenes like ceramic superconductors are a fairly recent discovery.
They are technically a part of the larger family of orga-nic conductors.
Organic conductor family includes : molecular salts, polymers and pure
carbon systems. The molecular salts within this family are large organic
molecules that exhibit superconductive properties at very low
temperatures. They are also therefore referred to as molecular

superconductors. About 50 organic superconductors have been found

with T.s ranging from 0.4 K to 12 K (at ambient pressure). Since these



Tcs are in the range of type I superconductors, engineers have yet to
find a practical application for them. Their unusual properties have
made them the focus of intense research. These propertie-s include giant
magneto resistance, rapid oscillations; quantum hall effect. Organic
superconductors are composed of an electron donor (the planar organic
molecule) and an electron acceptor (a non-organic anion). A few
examples of organic superconductors are:

(TMTSF), ClIO,
[Tetramethyltetra seleniafulvene + acceptor]

(BETS).GaCls
[boro(ethylenedioxy)tetrathiafulvene + acceptor]

‘Borocarbides’ are another system of superconductors,. which also
contain ferromagnetic transition metals like iron cobalt or nickel
disprove the fact that they cannot form superconductors. Boron and
Carbon act as mitigator to his unwritten rule. In addition, when
combined with elements that have unusual magnetic properties (like
Holmium) some borocarbides exhibit. 'What is known as ‘re-entrant’
behaviour? Below T. where they should remain superconductive, there
is a discordant temperature at which they briefly retreat to-a ‘normal’

non-superconductive state. Most borocarbides contain a rare earth

element. A few of the unique compounds are listed below.

Compound iz
YPd,;B,C 23K
YNi2B,C ISl
HoNi,B,C T S
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Other superconductors are Ruthenates and only one polymer
Polythiophene which has been successfully waxed into the super-
conducting state. Such startling discoveries are forcing scientists to
continually re-examine longstanding theories on superconductivity and
to consider heretofore-unimagined combination of elements.

Uses of Superconductors

Magnetic excitation is an application where superconductors
perform extremely well. Transport vehicles such as trains can be made
to ‘float’ on strong superconducting magnets, virtually eliminating
friction between the train and its tracks. Conventional magnets waste
much of the electrical energy and are also physically much larger than
the superconducting magnets. Use of MAGLEV vehicles however has
not caught up in spite of the technology having been proven. The
world's only MAGLEV train to be used commercially was in
Birmingham, England which of course closed down in 1997 after 11
yvears of dperation.

Superconductors perform a life caring function in the field of
biomagnetism Magnetic Resonance Imaging (MRI). By impinging a
strong superconductor — derived magnetic field into the body, hydrogen
atoms that exist in the body’s water and fat molecules are forced to
accept energy from the magnetic field. They then release this energy at
a frequency that can be detected and displayed by a computer.

SQUID (Supercondu‘cting Quantum Interference Device) is used
in magneto-encelography. SQUID's are capable of sensing a change in

magnetic field upto 100 billion times weaker than the force that moves
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the needle on a compass. With this technology, the body can be probed
to certain depths without the need for the strong magnetic fields
associated with MRIs.

Electric generators with superconducting wire are far more
efficient that conventional generators wound with copper wire. Their
efficiency is 99% and their size is half that of the conventional ones so
that they are lucrative ventures for power utilities.

An idealised application for supercoductors i-s to employ them in
the transmission of commercial power to cities. However, due to the
high cost and impracticality of cooling miles of superconducting wire to
cryogenic temperatures, this has only happened with short test runs.
Most recently this month, workers pulled out nine cables from
underground conducts at a Detroit Power Station, to be replaced by the
first higher temperature superconductor cables in a working power grid.

In the electronic industry, ultra high performance filters are now
being built. Since superconducting wire has near zero resistance, even
at high frequencies, many more filter stages can be employed to achieve
a desired frequency response. This translates into an ability to pass
desired frequencies and block undesirable frequencies in applications
such as cellular telephone systems.

Superconductors have also found widespread applications in the
military. HTSC SQUIDS are being used by the US Navy to detect mines
and submarines. Significantly smaller motors are being built for NAVY

ships using superconducting wire and tape.
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Among emerging technologies ultrasensitive, ultrafast super-
conducting light detectors are being adapted to telescope due to their
ability to detect a single photon of light. Superconductors may even
play a role in Internet communications soon. Internet data traffic is
doubling every 100 days and superconductor technology is being called
upon to meet this super need. ‘

Assuming a linear growth rate it is expected that the world wide
market for superconductor products is to be nearly doubled between
year 2010 and 2020. Should new superconductors with higher transition
temperatures be discovered, growth and development in this excili;lg
field would explode virtually overnight.
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lll. Significant figures

Every physical quantity must have a unit, to tell what was counted, an order of
magnitude and a statement about its reliability, which for the present we can indicate
in a rough way by writing only the correct number of significant figures. The digits
that are certain and one more are called significant figures. For example, in the
statement that the length of the textbook is 27.5 cm, the digits 2 and 7 are certain
and there is uncertainty of 0.1 cm in digit 5 because conventionally a length ranging
from 27.45 to 27.5 is written as 27.5. The reading is known only to the nearest tenth
of a centimeter. It has three significant figures. The error implied in this is 1 partin

275 i-e. O—’Ix 100 = 0.4%.
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The speed of light in vacuum is 2.99792458 x 10° ms™'. There are nine significant
figures. The greater the number of significant figures the greater is the accuracy of
our measurements. In our calculations speed of light can be taken as 3.00 x 10°

ms' (to three significant figures).

Scientific notation power — of — 10 notation

A measured quantity is written in the form m x 10" where 1 <m < 10, and n is
an integer, positive or negative. All digits in ‘m’ are significant.
For example, a measured quantity 0.00780 m is indicated as 7.8 x 10° m (two
significant figures) if the measurer is certain of digit 7 and as 7.80 x 10° m (three

significant figures) if he is certain of digit 8.

Propagation of uncertainty through arithmetic operation

The uncertainty in derived quantities is fixed by uncertainties in the

measurements that are to be combined. Results are not improved by carrying out



simple arithmetic operations to many figures. “No chain is stronger than its weakest
link®. We have an analogous situation with regard to measurements and their use in

calculations. How to detect the weakest link and to judge how weak it is?

Addition and subtraction

An example : 36.34m + 0.0386 m + 4133 m. On examination of these
numbers, we find that 36.34 m is known only to the nearest one-hundredth of a
metre, the other two numbers are known respectively to the nearest one-ten
thousandth and one-thousandth of a metre. Therefore the weakest link is the first
number, its accuracy is 0.01m. Therefore, it is enough if we know the sum to one-
hundredth of a metre. Hence, we follow this step : round off the other numbers to
one-hundredth’s place and add.

The sum =(36.34 + 0.04 + 4.13) m=4051m

The same rule is to be followed in case of subtraction. Note that the

subtraction reduces the number of significant figures.

Multiplication and Division

In this case, the answer will have same significant figures as the factor having
the least significant figures.
SEE0g

(1) For example, density = - -
1542 cmx5.53 cmx2.7¢cm

Here the weakest link is 2.7 cm. The factor 2.7 has the least significant figure
of two. So the density is expressed to two significant figures.
: : 4g 334
The step adopted is, density = ol — R
15.4x5.53x2.7¢cm 230
= 0.1452

=0.15gcm?

(2) Multiplication involving constants such as 2, 1/4 | etc.
Area of a surface is 2.30 x 10?2 m% What is twice its area?
Itis 2 x 2.30 x 10 m? (three, significant figures and not one, since

numbers like 2, ¥4 etc. have unlimited accuracy).

[ 82



(3) Multiplication involving constants like n, G, etc.

The diameter of a wire is 0.57 mm. What is its area of cross-section ?

zD?

The formula 4 = is preferred to A = nir* (why?).

Further 1 = 3.14159265.

The measured quantity has two significant figures. Express m to 3 significant
figures, i.e. one more — to take care of rounding off errors.

3.14x (0.57 x107%)*
= 4 m .

=0.255% 10°m?
=26x 107 m?

Note: These rules are not rigid ones. There are many examples which do not

A

conform exactly.

Advantages :

1. It provides an easy introduction to the existence of uncertainty in
measurements.

2 It helps to avoid misleading numbers and unnecessary calculations when

measured quantities are subjected to arithmetic operations.

Disadvantages

1. Significant figures furnish only a rough estimate of uncertainty or accuracy.

2y There is no single rule for all the four operations.

3 Significant figure omit reference to the accumulation of uncertainty as data are
combined.

For example, the implied error in the final value of density referred to earlier 1.e.

0.01 . .
—0—1—_ x 100 = 7% , whereas, the implied errors in /, b, h and m are 0.1%, 0.2%., 4% and
A

0.03% respectively. The error indicated in the final answer is on the higher side: the
accumulated error (maximum possible error) in this measurement having,

(0.1+0.2+4+0.03)% =~ 4.3%.



[V. Quantities to be measured with greater accuracy in an experiment

When measured quantities are substituted in a formula in order to calculate a
desired physical quantity, the individual errors influence the uncertainty/ error in the
final result. For example, in the simple pendulum experiment, to determine ‘g’ the
acceleration due to gravity, the two measurements made are the length ‘I’ and the
period ‘T". In this, which one of them is to be meaSured to a greater accuracy?
Should we use a vernier calipers to determine the radius of the bob? The length I'
from the point of suspension to the surface of the bob is measured using a metre scale
to an accuracy of one millimeter. By measuring the diameter to an accuracy of 1/10
of a millimeter (the usual L.C. of the vernier caliper) and adding half that value to I,
will not improve the accuracy. (Refer: — addition — significant figures). Therefore, it

is enough to read the main scale of the vernier.

The other quantity T, occurs as squared in the formula for ‘g’. If one commits
an error of X% in T, its contribution to the error in g is 2x%. .
[Note: The error in ‘T’ is reduced by measuring time ‘t’ for a large number of

oscillations say 20. If one is using a stop-clock (L.C. = Is) and t = 40s then

'

= 407; : = (2.00 + 0.05) S. The period is measured to an accuracy of 0.05 S.
. 0.05 - _ e .
Error is x 100 = 2.5%. Its contribution to the error in g is 5.0%]. The error in
0.1

x 100 =0.1% where 100.0 is the length of the pendulum set-up. Hence,

1" is
100.0

the period ‘T has to be measured with greater accuracy].

In general, those quantities which have higher powers (exponents) in a

formula are to be measured with greater care because their contribution to the error in

the final result is (power (or exponent) x error in the quantity).

In the experiment to measure the resistivity of a wire, the quantity to be

measured with less error is the diameter of the wire, rather than the length of the wire.



The resistance unplugged can be considered as a constant for expressing the final

result in terms of significant figures.

In the determination of viscosity of a liquid by the Poiseuille’s method, the

quantity which is to be measured with greater care is the radius of the capillary tube

because it appears in the formula as (radius).

Should we use the physical balance for weighing by the method of oscillation
in the following cases ?
(i) Calorimetry - determination of specific heat
(11) Calorimetry - determination of latent heat of steam/ice.

(ii1) Faraday’s law - determination of e.c.e. of copper.
of electrolysis

Error — Its effect on procedure of an experiment

Suppose that we are to determine ‘g’ using a simple pendulum. One can set

up a pendulum of a given length ‘I’ and measure the period T by,the usual method.

] g 2 !
Substitute these values in the formula g = 47" 7 and calculate ‘g’. The value of

‘g’ so obtained may be higher or lower becduse of the errors that crept in. How can
one proceed to get a better result — errors being ironed out? The procedure should

influence the value of g’ on both sides. That means many sets of readings are to be

. [ .
taken and the average is to be found out. The formula tells us that 7 1s a constant.
So, one can set up pendulum of different lengths and measure the corresponding

L [ . . : .
periods in the usual way. Calculate = in each case and substitute its mean value in

B 3 . ] [
the formula to determine g'. Thatis g = 47~ ( 3) .

, [ : .
The relation = = constant suggests that the graph of T on x-axis and ‘I’ on

2

. . . : [ 2
y-axis is a straight line. Its slope gives the value of [F) and hence g = 4n~ (slope).

12h



The value of g determined this way is a better value as the best-fit line drawn further

2

“irons” out the errors. Note that the formula for g = if ‘I’ is plotted on X-axis

slope

and T? on y-axis (1 - T graph).

Thus, the attempt to reduce the errors, determines the procedure that is
adopted (many sets of readings, graphical analysis and the average of the relation
between the variable quantities in the formula). Also note that we do not calculate ‘g’

in each set and then take the average.

Some aspects to be kept in mind while collecting and recording data

1. The values selected for independent variable must be convenient ones for (i)
plotting, and (ii) calculation. For example, in simple pendulum experiment,
let the lengths be a whole number like | = 60.0 cm and not as 60.2 cm.

2. Among the values of the independent variables, let there be the values which
are multiples of initial value (some times 1.25, 1.50,... etc. f)f the initial
value). eg. | = 90.0 cm, 120.0cm etc. This enables to find out the
proportionality: when one quantity is doubled is the other doubled?

While tabulating, let the independent variables be arranged in an or.der

(U3 ]

(increasing/ decreasing).  This enables the experimenter to see the

proportionality.
4, Let the number of trials be at least five (in case of graphical analysis).
5. Let the unit be written only on top of the tabular column.
6. Let the measured quantities be entered to the required number of decimal

places, in accordance with the least count. E.g. 1= 60.0 cm and not 60 cm
when the least count is 0.1 cmf.

7. While establishing relations, the physical quantities can be measured in any
convenient and arbitrary unit and not necessarily in S.I. units. E.g. (1) When a
body moves with uniform velocity, unit for time can be in terms of distance,
(2) range of the projectile can be a measure of the speed and hence momentum
(if masses of objects are the same).

8. Train #re students to record the measured values in ink in the tabular column.

If wrong, let them cancel it with a neat single stroke.
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V. Data analysis — Graphical method

The data tabulated can be analysed by arithmetic and graphical methods. The

latter is a convenient one because

the comprehension of the relation is easy and quick, and
the graph drawn properly makes the uncertainties to affect on either side —

thus ‘ironing’ out the errors. The value calculated, thus, is a better one.

Mathematically, a graph is a curve or other lin¢ representing relation of the

. . . 2 2
elements in a equation or function (y =mx, y=mx +¢, y =ax’, y =ax + bx" etc).

In data analysis, it is a line or diagram showing how one quantity depends on

or changes with another. The following are the features of importance :

(1) the nature
(1) the intercept
(ii1)  the area under the curve, and

(iv)  the slope

Plotting a graph : Choice of quantities tg be plotted on x and y-axes

We need not follow strictly the congeeé?i-vi»ty — independent variable on x-axis
and dependent variable on y-axis. Let'us take them in such a way that we get
useful quantities in less .number of steps. For example, if we plot the
displacement on y-axis and time on x-axis, the slope gives the mean speed. If
the quantities are interchanged, the reciprocal of the slope gives the mean

speed. In this case, an additional step is involved which could be avoided.

Marking of x- and y-axes

Let x- and y-axes are marked on the edges of the ruled portion itself.
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3.

Selection of scale

The graph plotted must cover as large a portion of the graph sheet as possible.

~ This is done by taking as large a scale as possible. However, while selecting

the scale, convenience has to be looked into. For this, let the scale be
lecm=1, 2, 5,10, 20, 50, 100....etc. units

=0.1, 0.2, 0.5:c0:

=0.01, 0.02, 0.05,..... and so on.
For marking the graduations express the values in scientific notation: m x 10"

where 1 <m < 10.

4. Choice of the origin
(1) When we are interested in the nature of the relationship among the two
quantities the origin has to be (zero, zero). For example, in the simple
\ pendulum experiment, suppose we plot the graph between | and T, taking the
. values over which the measurements are made, the plotted points appear to be
on a straight line. We may draw a wrong conclusion that T is directly
f prop'ortional to l.
!
&
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(i)

(iii)

Exact relation is obtained when we plot the graph with (0,0) as origin. The
graph appears to be a straight line. However, if you extrapolate the graph,
you find the graph cutting time axis at a finite point, corresponding to a
pendulum of zero length.  This is absurd, which means our assumption that
| — T graph is a straight line is wrong. If the students are to determine the

relation, you can instruct them to modify one of the quantities and draw graphs
such as 1 — T% 41 =T etc. Let them try | — T? since squaring is easier than

taking the square root. [In case, you are interested in Ji-T graph, then the
independent variable can be assigned values 49.0, 64.0, 81.0, 100.0 and 121.0

cm]. This graph is a straight line, passing through the origin. Hence T? < 1,

o} i Q- Ji .

Similar cases will be observed in the following experiments. .

(a) oscillations of a liquid column

(b) oscillations of a spring-mass system.

In this case, T - M graph will not pass through the origin. There will be an
intercept on M-axis, which represents the corrections for the oscillating mass
due to the mass of the spring. This value is about one-thirci the mass of the
spring.

If one is interested in the value of she slope alone, then it is enough to
accommodate the range of values measured in each of the axes, taking e;s large
a scale as possible, but a convenient one.

Suppose that the quantity is measured using a precision instrument, say a
traveling microscope of least count 0.001 c¢cm and if the least count (value of
one division in the axis) of the axis on which they are represented is 0.01 c¢m,

then round off the measured values to 1/100™ place (i.e. multiples of L.C on

the axis) and plot.

Drawing a line or curve

Draw a small circle around the plotted points. In case of a straight line, draw
using a transparent scale, a best-fit line, which contains as many points as
possible on the line, and the other points being scattered equally on either side.
If (0,0) is a point (as in the simple pendulum experiment), the best-fit line
must be drawn from it. [n the case of a curve, just do not join the successive
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(i)

(iii)

points by a curve, but draw a ‘free-hand’ smooth curve again with as many
points as possible on the curve and the rest equally scattered on either side of

it. A flexible stick or a tongue cleaner can be used. !

Drawing inference

From the graph, first tell how the line is and then state the relation.

A straight line passing through the origin-s—there is a direct proportionality
between the elements of the graphi.e. y o x. '

[Theoretically if the graph is to pass through the origin and with the
experimental data, it does not exactly pass through the origin, then give an
account for the discrepancy].

We prefer linear graph. When two quantities measured indicate inverse

relationship, then plot one quantity against the reciprocal of the other. For

4 N

example, in Boyle’s law, P = graph. Note P-V graph is a rectangular

\ /

hyperbola.

If the graph is a linear one, but has an intercept, then measure the intercept and

indicate what does that represent. For example, in the temperature coefficient

Rre

(0)0\ vT(‘ﬂ"?b ( oc)

of resistance, the intercept on resistance axis gives the resistance of the wire

at 0° C.
Ri= Roa)t+R,
Slope=a R,

[hl



)

|
o = Slope
R,

slope

- intercept

Determining the slope of the graph

While determining the slope, don’t select the plotted points for the triangle to
be drawn. Instead, go along the graph and identify the two points on the

graph, as far apaft as possible where the graph passes through the intersection

of the x- and y- lines.

’\a,
3n

The slope has to be calculated as the ratio of the values which the lines BC
and AC represent and NOT of their geometrical lengths. Record the values of
BC and AC in terms of appropriate significant numbers, taking L.C on the

axis into account. Identify what quantity does the slope represent.

tan @ = slope = . - ?_’5—:}5
AC R P N

Drawing a tangent to a curve at a given point

o/
AQB&
d

0

>

60

50
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Consider the temperature — time curve in the experiment: Newton’s law of
cooling. We wish to find the rate of cooling at a given temperature t.. One
method is to draw a tangent to the curve and determine its slope. (This gives
the instantaneous rate of cooling). Place a plane mirror strip MM’ across the
curve corresponding to the given point P. Rotate the mirror about this point,
till the portion of the curve in front of the mirror and its image through the
mirror appears continuous. Trace the mirror surface line MM’. Draw a
normal to it at that point or at any point on an extended line MM’. (This
avoids the crowding of line MM’ normal and triangles drawn to determine the

slope for them). Determine the slope, as usual.

Instantaneous velocity at a given instant can be measured by the same method

on displacement — time graph.
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I.C.I.OGIC GATES.

AIM: To construct NAND,NNR,NOT,AND,NR and EX-0R Jogic gates and =tudy
— their characteristics.

INTRODUCTION: The huilding blaocks of modern diﬁital compulerc ars the

logic rircuits. Logic circuits are designed using lagic
gates. the OR,AND and NOT are called the hacsic gates. The NAND and

NOR gates are called universal gates hecause Lhe basir gates cam he
realised from Them. Hence we can realice the acltion of All the gatec
using NAND or NOR logic gates. ICs 7400 and 71402 arce comercially avai-
lable digital ICs with four 2-inpul NAND cgates & four Z-inpul NGR gatlec
respectively. These two IC3 are available as 14-pin Aual-in-line
packages.

FXPERIMENTAL PROCFEDURFE: A) USE 0OF NAND LOGIC IC.

R)

NAND logic: The circuit shown in fig. 1 is asembled. The lwo inputc ta
—————————— the gale are A and B.The oultput of the gate is observed far
variuos inpul condilions ac shown in the Trulh Table 1 and the table

is completed.

AND Jogic: The circuit chown in fig.? is Aaccembled.The oulpul of

e thre gale i35 observed far varinus input eanditions and the
Truth Table 2 i< completed.

OR logic: The circuit shown in fig.3 is ascembled.The oulpul of the
e galte i3 observed and the Truth Table 3 {5 cnmplelad.

NOT logic ¢ The circuit chown in fig. 4 ic Aaccembled. The autpul. of Lhe
————— gale i5 recorded and the Truth Table 4 is cnmpleted.

NOR logic: The circuit chown in fig. S jc accembled. The oulpul af the
——————— galn 135 observed and the Truth Tahle S is cnmpleled.

EX-OR Jngic: The circuil chown in fig. & is acccmbled. The oulput nf the
—————————— logic gate is racordesd and the Truth Tabls & 15 romgplatnd,

{ISE OF NOR 1.0GIC JC:

Circuil connections are made for NOR logic (fig.7),AND loaic (fja.8),
OR logic (£fig.9),NOT logic (fig.10),NAND lngic (fig.11) and EX-NR logic
(fig.12) in that arder. Faor each gate the oulpul ic recorded and the
corresponding Truth Table is cnmpleted.

CSignal bhinary °*1° to A gate meanc connecting the input terminal to Vcc
or +ve terminal of the DC source.Signal °0° maans connenting the gate
terminal to GND or -ve terminal of the DC source. The oulpul of the
gale i3 recorded wilh the help of the ILED.If the LED lightls up the autl-
put is "1°. If it remainc OFF the output ic '0°.For all the circuitec
to function,pin 14 nf the IC is connected ta +5°V and nin 7 ta GND af
the DC cource.d

Fig.1 Truth Table 1

7400-NAND I.0GIC.

Ontput Laval

Input l.aveal

AE ?

A' 3 /y A 'B
& — P >t ) i e k :
- 3 !0 N g !
T i o | :
H 1 H U !
267



Eitgrd

TA00- OR loyticr

! S

_‘ ______ \_ _5___
—-“‘1__)9*
= i Qa 12
Z | - R 5
4 6 10 3
-1
S
Fig.b

7400-£X—-0R legic
-

—

3

[d

Do—iaj

: fo]
EgR 7

7402-NOR logic

H

I
—8

rﬂ}u (

[ »—

264

Truth raslas 2

H Input Lervel H Qutputl Lewvel
i A 5 B : - A.B

H 0 4 a

0 .0 : T

I I I

2 g o

H Input Leve) - Outpul l.avel

i A g B g A + R

e — -— ——— -————
i 0 ; o i
: 0 : 1 '
e 1 . o :
H 1 p H 3

Ingutl Leovel Oultputl level
, A —
G <
0 :
H ! :
Trutlh Table S
Ingutl 'cvel Tulputl | evrel
2] g 5] A A
A S ~8
B 0 H 0 H H
. o} h 1 1 i
h 1 b 0 3 R
H 1 H 1 : i
Truth Tanle &

: Input level - | OQutput l.evel |
! A PR nE-e :
{ 0 ! 0o :
; 0 : 1 ! :
; 1 ' o H
H 1 H 1 H H

Truth table 7

H Input l.evel
H A H B

Qutput Lﬁyeli

.
(A+8)
!0 P00 :
Po0 T B :
P Po '
T A ;




Fig.h Truth Table 8 |
7402-AND logic .
= ' ! Inpul Jevel ! (Outpul [evel !
2 | g ! A HE - A . BR :
—CE' - ls T . , - .
A 10 i 0 i 0 f
3 H 0 5 1 H H
f 1 i 0 i .
g < & q R - '
6 .. ,
Fig.9% Truth Table 9
7402- 0OR logic
————————————— - i Input level i QOutput level !
_ _ ! A ¢ B A+ B :
\ - — —
& %y o T 4 "t I :
g =7 : 1 ! 0 :
3 6 T R :
Fig.10 ' Truth Table 10
7402-NNT logic S S —
’ ' Inoutl Il_evel ! Qutputl l.evel
2 1 h A M A ]
\ i 4
—  o— .- ; :
A T— .- ' :
3 -~
Fig.11 Truth table 11
7402-NAND lo gic
i Input Level i Output lLevel :
A d:z‘ ! ! a ¢ ‘B! '
A.8
g n R B
3 10 13 ¢ 0 t! O 3 :
H 1 H 0 : H
6 -
Fig.12 Truth Table 12
7402-£X-0R logic
3 1 q ¢ i Input Level i Output level !
— ! A ! B A®B !
- ! 0 H 0 ! :
! 0 H 1 H H
H 1 ! o 1 H
! 1 ! 1 ! !
! ! ! H
! 1 ! l
= IC! 1c2 . 265




LOGIC GATES USING SEMICONDUCTOR DEVICES

Aim ¢

To design and study the characteristics of logic gales using
semiconductor devices.

Aoparatus :

A few diodes (BY 127), a few transistors (AC 127), a few resis-—
tors, LEDs, a 5v dc power supply.

Theorv :

Logic gates are fundamental building blocks of a digital computl-
ers. A compulers ability ta solve a problem depends on ils abili-
ty to make decisions as il progresses through the steps in the
problem. Circuils that make decisions are called logic «c:ircuits.
These decisions are of Yes, No variely, thal is of the two-state
tlypes logic circuiltls can be in one of twao positions = ON ar OFF,
HIGH or LOW. Information and logical conditions are reoresentled
by a dc level on a signal line., Logic circuils analyse a combi-
nation of line levels al their inputl and produce a desired oulput
when the 1npul combination 1s correct for tThat particular cir-
curtl. Some of the Logic circuils are OR, AND, NOT, NAND and NOR.
These can be designed using semiconductor devices. The function-—
ing and the output of a logic gale is given by the Trulh table.

Exoerimenlal Procedure @

The following electrical connections are made one aftler another
and the outputl is noted for the various inpul conditions for each
logic. The truth table is then drawn. Signal inputl is represented
in binary form. Signal inpul A is binary 1 when A is connected to
+3V  of the dc source. A is binary O when il is connected ta GND
(-ve of dc source). The oulpul is binary 1 when the LED lights up
and 1t 1s binary O, when LED does not lighls up.

Truth Table 1

OR Logic :
! : - : !
By 127 i Input : Input ! Output !
A ¢ dc level i\ Binary level! Binary |
’——{>f——-- : - : t= -1 level |
i A 1 B : A B : (AR + B) |
i GND | GND | o : !
B .__{>’r___ Leo : : i1 = 5 ;
i GND | 5V : Qo 1 : [
By 127 Pl - ' ' '
= — i3V 1 GND 1 3 (o] : :
- : ' ' ! ' !
HES LV 1 H 1 i il H ‘
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sar T ADLCES AND FULL ADCER  CIRCUILTS.

sign half and full adsfer circuir'ls and study lheir

Je
racter:stzcs.

via

INTRCDUCTICN: A di1g:tal comouler canilains circuirls which can perfors
——————— -—= arithmetilc cgeral:ons lije additlion ,sublraction,aull:
tcalion and division.The basic operaiicnas are addition and sublrac
ds mullipiicatlion 1s repealed acd:t:on and dJd:ivision 1s recealad su:l
clion. Zven sublraclion can be ach:sved 5y using auddars. Hencze the
campuler can be buill us:ng adders anlv far arilhmelic operalians.

The simplest binary adder :s Uhe half adder cacszle of
add:ng Iwg bits al a lime prov:ding & sum oulpul ana a carry oulpul

A

fNecessarv. A half adder can be r2al:sed using NAND logic or alterns
using lhe combinational log:ic of ZX-SR and A&ND gatles. The haif adde
twe :npuils and two oulpuls.

The full accer has 2 i1nouls anue lwo outpuls. Il 1s use:
add three binary dig:ls &l & t:me. The simplest wayv to connecl a fu.

adder c:ircuil is lwo use Iwo half adcers and an OR jgate.
.

EXPERINENTAL PRCCEDURE: The circuil shcwn in fig. 1 is assemslied. For
— ——=—===various ingul condit:ons shown :in the Trulh

the ouloul 1s recorded.ihe Truih Table (%) 1s compoleled. The zcircu:
shown 1n fig.2 1s now assemsled and the acove praocedure is recealed.
The full adder circuil sheown in £:9.3 is assemblea. For Lhe differer
inpul concilions shown 1in Tr.ut.h Else (Z2) the oultout s recorded anc
lable 1s campleled.The resulls are verified by actual binary agdilic
LA or B or C "O" means connec%:n3 “he carresponding pin  ts GND ¢

-ve terminal of the DC source. ~ ar = gr C '"1’means connecting lhe

.

prn lo +IY or +ve lerminzl of the saurce.3
Fig.1 Fig.2
A = sum

i 3 B & CAR.
= v I
. 5

S 1
Trulh Table 1 2 Truth Table 1
5 Input Level | Oulpul Level ! Inpul Level! ! Output Level !
-. A ., B .' Sum 5 i Carryl A H B i Sum {Carry H
' ? ‘(A + B):(a.8) ! : : :(a + B):(a.B) !
H 0 T ! : ! g o ! o0 g : i
A : ! 0. @ 9 ¥ 3 :
e w9 W 1 ! T - ; !
! 3 R ; : ! : 17 1771 : ) : ;
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PARALLEL ADDER AND SUBTRACTOR

ATr
To constlruct and u<ce parallel adder, half subtractor and full
sudrliractor .

AFFARNATUS @

Trainer board with 1C-7486, Adder Sublractlor tlrainer board, 5V dc
power supply, LED indicator.

PARALLEL ADDER

Parallel adders are employed in dijgital comgutlers. In parallel
addition all the binary words to be added are applied o the
inpuls simultaneously. Parallel adders are fastler. 7383 IC 15 a
commarcially available 4-bit parallel adder IC. Two four b1t
binary words can be added at a time with the 7483 IC.

Experimental Procedure 3

The circuit shown in fig.1 is rigged up. The inpuls for circuil
shown in fig.1 are two binary words A4, AS. AZ, A1 and B4, B2,
BZ. R1. Different inpul words are fed and the outlpuls recorded

1n
tatrle 1 and the lruth table is compleled.

SURTRACTORS =

The rul'es of binary sublraction are 0-0 = O, 1-0 = 1, 0-1 = -1

and 1-1 = 0. We refer 0-1 = -1

as being a difference 1 and
porrow of 1.

H~AUE SUBTRACTOR =

LF SUBTRACTOR subtracts lwo binary bils according to the binary
subtraction rules and produces a barrow & a difference. A Half
subtractor can be conslructed using EX-0R, NOT and AND njales as
shown in fig.2. The circuil is assembled and for wvarious 1inputl

conditions the 9outpul 1is recorded and the truth table-2Z 1is
completed.

Futl SUBTRACTOR :

A ful'l subtractor can be constructed using‘two half sublractors.
The circuil as shown in fig.3 1s rigged up. For varigus 1inputl

conditlions the oulput 1is recorded and the truth ‘table-=3 is
completed.

AQ ! Nl \6.__&4
25 2 \'s L
A3z 13 14 G
63_..4, ) V3 G.N- =]
s 5V s 7. [t D
2 o n p— G
&1_'1 Ic, lo A‘
AZ“‘K 74_33 q 4 < 21
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ADOLESCENCE

Need and importance

The term adolescence comes from the Latin word adolescere, meaning
“to grow” or “to grow to maturity”. People of the earlier civilizations considered
the child became an adult when capable of reproduction. Today the term
adolescence has a broader meaning. It includes mental, emotional and

social maturity along with physical maturity.

Psychologically, adolescence is the age when the individual becomes
integrated into the adult society. This integration into adult society has many
affective aspects, more or less linked with puberty. It aiso includes profound

intellectual changes.

The Adolescent Years

It is customary to regard adolescence as beginning when children
become sexually mature and ending when they reach the age of legal
maturity. Research studies have revealed that changes in the individual are
more rapid in the earlier year of adolescence than the latter. The period
adolescence may be divided into two - early (12 - 15 years) and late (16 - 20

years).

Adolescence is an important period

The perod of adolescence is important due to both immediate effects
and long term effects. The immediate effects are the onset of puberty and
accompanying rapid physiological and mental developments. These give rise
to long term effects, like the need for necessary mental adjustments and the
need for establishing new attitudes, values and interests, thereby entering

adulthood normally.



Adolescence is a transition period

It is a passage from one stage of development to another. It means
that what has happened before will leave its mark on what happens now and
in the future. While moving from chiidhood to aduithood, they must “put away
childish things”. There is confusion about the roles the individual is expected

to play. He/She is neither a child nor an adult.

Adolescence is a problem age

In childhood most of their needs and problems are taken care of by
parents and teachers, as a result many adolescents are inexperienced in
coping with problems alone. Secondly, because adolescents want to feel
independent they demand the rignt of coping with their own problems,
rebuffing attempts on the part of parents and teachers to heip them. Very
often, they are unable to solve prociems nct Zue to individual incapacity but
because all their energies are engaged in battling the rapid physiological and

mental changes that are problematic.

Adolescence is a time of search for identity

Throughout late childhood, known as the “gang age”, they conform to
group standards. Gradually in early adolescence, they crave for identity and
are no longer satisfied to be like their peers in every respect, as they were
earlier. One of the ways they try to astablish themselves as individuals in late
adolescence is by using status symbols in the form of owning a vehicle,
clothes and other readily observable material possessions. They hope, in this
way, to attract attention to themseives and to be recognized as individuals

while, at the same time, maintaining their identity with the peer group.

Adolescence is a dreaded age

Many popular beliefs and popular stereotypes have definite evaluative
connotations and. unfortunately, many of them are negative. The beliefs of
adults that teenagers are sloppy, unreliable individuals, inclined towards

destructiveness and anti-sociali behaviour influence the seif-concepts and



attitudes of adolescents towards themselves. This makes their transition
difficult as they are unable to seek help from parents or teachers as all adults

have poor opinion about them.

Adolescence is the threshold of Adulthood

As adolescents approach legal matunty, they are anxious to shed the
stereotype of teenagers and to create the impression that they are near
adults. Dressing and acting like adults, they discover, are not aiways enough.
So, they begin to concentrate on behaviour that is associated with adult status
- smoking, drinking, using drugs and engaging in sex, for example. They

believe that this behaviour will create the image they desire.

DEVELOPMENTAL TASKS OF ADOLESCENCE
Havighurst's Developmental Tasks :

Adolescence

) Achieving new and more mature relations with age-mates of both
sexes.

. Achieving a masculine or faminine social role

. Accepting one's physique and using one’s body effectively.

. Desiring, accepting and achieving socially responsible behaviour.

. Achieving emotional independence from parents and other adulits.

All these tasks are preparing them for adulthood.

PHYSICAL CHANGES

Few adolescents experience body - cathexis or satisfaction with their
bodies. However, they do expenence more dissatisfaction with some part of
their bodies than with other parts. This failure to experience body - cathexis is
one of the causes of unfavourable self-concept and lack of seif-esteem during

adolescence.



Concerns about Physical Changes
. Awareness of social reactions to different body builds, especially of
the endomorphic type leading to obesity.
. Menstruation, in the case of girls. Physical discomfort, cramps,
welght gain, mood swings, depression, etc. '
. Menstruation as “the curse” for girls; as boys do not experience any
such form of physical discomfort, it colours of the attitude of girls

and encourages them to behave as if they are martyrs.

. Acne and other skin eruptions, marring their chances for physicai
attractiveness.
. Physical attractiveness and its role in social relationships with their

peer group and the opposite sex.

Emotionality during Adolescence

Traditionally, adolescence has been thought of as a penod of “storm
and stress” - a time of heightened emotional tension resulting from the
physical and glandular changes that are taking place.  Adolescent
emotionality can be attributed mainly to the fact that boys and girls come
under social pressures and face new conditions for which they received little
or no preparation during chiidhood. Not all adolescents go through a period of
exaggerated storm and stress, but most do so due to the necessity of making
adjustments to new patterns of behaviour and to new social expectations. For
example, problems related to romancing, worry of the future as their schooling

comes to an end.

Emotional Patterns in Adolescence
During early adolescence they are often imitable, excited and explode
easily but as they grow into later adolescence instead of having temper

tantrums they express anger by sulking and refusing to speak.



Emotional Maturity
Indications of emotionality are that boys and girls

. do not ‘blow up' emotionally in the presence of others but wait for a
convenient time and place to let off emotional steam in a socially
acceptable manner.

. assess a situation critically before reacting to it in an emotionally
unthinking manner. |

. are stable in their emotional responses and do not swing from one

mood to another.

SOCIAL CHANGES DURING ADOLESCENCE
Social Adjustments

One of the most difficult developmental tasks of adolescence relates to
social adjustments. These adjustments must be made to members of the
opposite sex in a relationship that never existed before and to aduits outside

the family and school environments.

Increased peer-group influence

Since adolescents spend most of their time outside the home with the
peer group, it is understandable that peers have a greater influence on their
attitudes, speech, interests, appearance and behaviour than the family has.
The peer group is their real world, providing them a stage upon which to try
out themselves. The peer group offers them a world in which he may
socialize in a climate where the values are not set by adults but by others of
his own age. As adolescence progresses peer group influences give place to

close, personal friendships.

New values in selection of friends

Adolescents want as friends those whose interests and values are
similar to theirs, who understand them and make them feel secure, and in
whom they can confide problems and discuss matters they feel they cannot

share with parents or teachers.



Interest in the opposite sex becomes increasingly stronger as

adolescence progresses.

SOME ADOLESCENT INTERESTS

Recreational Interests

. Relaxing

. Games and sports
. Travelling

. Hobbies

o Dancing

. Reading

. Movies

. Radio and Records
. Television

. Davycreaming

Social Interests

e Parties

. Drinking

. Drugs

. Conversation

. Helping others
. World affairs
. Criticism and reform

Personal interests

. Interest in appearance

. Interest in clothes

. interest in achievements
. Interest in independence
° interest in money

Educational Interests

Typically, young adolescents complain about school in generai and
about restrictions, homework, required courses, food in the hostel, the way
the schoof is run and their teachers. The attitudes of older adolescents

towards education are greatly influenced by their vocational interests.



Factors influencing adolescent attitudes towards education
. Peer attitudes - whether they are college oriented or work oriented.
. Parental attitudes - whether parents consider education a stepping
stone to upward social mobility or only a necessity because it is

required by law.

. Grades. which indicate academic success or failure.
. The relevance or practical value of various courses.
. Attitudes towards teachers, administrators, and academic and

disciplinary policies, success in extra-curricular activities.

. Degree of social acceptance among classmates.

Why do adolescents dislike school ?
Adolescents dislike school when
. parents have unrealistically high aspirations for their academic,
social or athletic achievements.
. They find little acceptance among their classmates.

. They mature early and are conspicuously large among classmates.

Vocational Interests

Boys and girls as adolescents are fascinated by the world of work. As
early adolescents they are fanciful about their vocation, but as they near
adulthood they become more realistic and focused. They are eager to earn
money and believe that this is the final scene to the play of attaining
independence. This is the 'exploratory stage’ and are on the look out for

vocational information.

Sex Interest and Sex Behaviour

The first developmental task relating to sex adolescents must master is
forming new and more mature relationships with members of the opposite
sex. Now that they are sexually mature, new interest begins to develop when
sexual maturation is complete, is romantic in nature and is accompanied by a

strong desire to win the approval of members of the opposite sex. Because of

I



their growing interest in sex, adolescent boys and girls seek more and more
information about it. Few adolescents feel they can learn all they want to
know about sex from their parents. Consequently they take advantage of
whatever sources of information are available to them - discussion with
friends, sex books, experimentation through masturbation, petting or

intercourse.

Changing social trends in sexual behaviour

o Broader outlook of parents

o Co-educational institutions

. Role of school counselors

o Importance of providing sex education for adolescents
. Easy availability of information on sex through media

FAMILY RELATIONSHIPS DURING ADOLESCENCE

Deterioration in the relationship between parents and adolescents is
usually due to fault on both sides. The so-called ‘generation-gap’ between
adolescents and their parents is partly the result of radical changes in values
and standards that occur due to a rapidly changing culture and better
educational and social opportunities available to the younger generation.
Thus it is more a ‘cultural gap' rather than ‘generation-gap’ as differences are

not entirely due to chronological age differences.

Common causes of family friction during adolescence

. Standards of Behaviour
Methods of discipline
Relationships with siblings
Feeling victimized
Hypercritical attitudes
Family size

Immature behaviour
Rebellion against relatives
. “Latchkey problems’



ADOLESCENT PERSONALITY

Conditions influencing the Adolescent’s Self-Concept

Age of maturing
Appearance

Sex appropriateness
Names and nicknames
Family relationships
Peers

Creativity

Level of aspiration

HAZARDS OF ADOLESCENCE

Physical hazards

Mortality
Suicide
Physical defects

Psychological hazards

Poor foundations

Late maturing
Prolonged illness

Role change
Prolonged dependency
Social discrimination
Sexual rejection
Family relationship

Common danger signals of Adolescent maladjustments

Irresponsibility - shown in neglect of studies in favour of fun and
social approval.

Overly aggressive - cocksure attitude

Feeling of insecurity - which cause the adolescent to conform to
group standards in a slavishly conventional manner.

Feeling of martyrdom

Excessive daydreaming

Regression to earlier levels of behaviour



Use of defense mechanisms such as rationalization, projection,

fantasizing and displacement.

INTELLECTUAL DEVELOPMENT IN ADOLESCENCE

Transition from concrete operational thought to formal operations -
hypothesizing, analytical thought process. inductive thought
process, accommodate new experiences, concept mapping.

More abstract, liberal and knowledgeable

Trying to understand purpose, need, meaning, able to think
abstractly decline in authoritarian views, increase in political
knowledge.

Engaged in establishing a personal value system - emulate

behaviour, modeling, critical about contradictory values.

ROLE OF THE TEACHER AND EDUCATIONAL INSTITUTION IN THE
DEVELOPMENT OF ADOLESCENTS

As a teacher

aid in the adolescent’s search for identity

provide for sufficient career information and vocational guidance

be patient with the mood swings of adolescents

try to be friendly with them as one of them to gain popularity

be trustworthy to win their confidence

provide a positive picture of the world of work.

make them feel that everyone has gone through this penod
including yourself

do not label them

provide for a counsellor who is easily approachable

be more appreciative of their uniqueness

provide for courses that will help them know about their physical
self

provide for sex education

10



do not be authoritative unnecessarily, democratic ways of approach
are more appreciated.

help students make short-term goals if they are underachievers.
recognize their worth and respect them.

do not make gender differences in your class transaction.

be patient with disruptive behaviour

dialogue is appreciated to come to concensus

allow boys and giris to interact in the class

offer guidance to students who find it difficuit to get along with
others.

help them accept their physical body and use it effectively

guide them in achieving correct sex-roles

help them to become emotionally independent

provide positive and realistic views of marriage and family life
develop skills and concepts necessary for civic competence in order
to beccme prospective voters

channelise their energies in achieving satisfaction (cathexis) in
extra curmicular activities and service programs.

teach them to develop skills for problem solving.

help them to develop positive attitudes in life.

help them abstain from eve-teasing and gender-abuse.

motivate them to raise their level of aspiration

aid in developing their interests, talents and hobbies

educate them about hazardous status symbols like rash dnving,
pre-marital sex, drugs, alcohol and smoking.

counsel to improve family relations of the adolescent

help them to make a realistic assessment of their strengths and
weaknesses

help to develop a positive self-esteem

be a good role-model yourself.

11



SIGNIFICANCE CF VALUE EDUCATION

The problem of value education of the young Is assuming Increasing
prominence In educational discussions during recent times. Parents, teachers
and soclety at large have been concerned about values and value education
cf ehildren, Naticnal oolieyen Educdtion (NPEY 1085
Educaticn is expectad to play a2 major role in premoting national develiopment
in all its ramifications. At the same time, it should bring harmonious
development of all the faculties towards adequate preparation for life. The
resent situation in India demands a system of education, which, apart from
strengthening national unity, must strengthen social solidarty through

meaningful and constructive value education.

The worldwide resurgence of interest In value education has been
explained as the natural response of the modem industrialized societies to the

serious erosion of moral values in all aspects of life and the crisis of values

It is how commonplace to say that sweeping political, economic and
sociai changes have overtaken human civilization during the past few
centuries and these have been largely responsibie for the predicament of
modern man. The faclors such as personal greed, meanness, selfishness,
indifierence to others' interests and laziness also have brought about large-
scale corruption in aimost all spheres of life — personai and pubiic, economic
and poiiticai, moral and religious. We can achieve a better moral standard in
our democratic way of nationali life if we become more industrialized and thus
overcome mass poverty and the general feeling of insecurity which gives rise

to greed.

¥



We are witnessing a tremendous value crisis throughout the world
loday. A lackadaisical attitude towards value and its institutions is ubiquitous
everywhere arcund the globe. As the vitallly of human belief In values Is
dying out in every land, the younger generation has started to pooh-pooh the
unique religious epics of antiquity and religious institutions, giving room for
corrosion of gegliness and erosion of spiritual and moral values. As a result,
the mind of man has been laciniated and divided info small fractions and

fragments which makes the value content of human life a diminishing factor in
modem times.

The reappearance of barbaric qualities of selfishness, clashes and
conflagration and other destructive forces which are buming the society, give
clear indication of the degenerating process of human society. Now, there is
an urgent need for a great effort to revive and reform the values of human life

and to rejuvenate the foundation of the new clvilizatlon.

Concerted efforts and continuous dependence on good books and
institutions will give students sterling and inspiring qualilies of concentration,
infinite love, justice, honesly, purity, selfishness, wis_dom, faithfulness,
humility, forgiveness, mercy, trustworthiness, respect for others, obedience,
sincerity and a host of other virtues which are sine qua non to build the
equipment of life. This should be the central theme of value education.
Whatever be the cause of the present value crisis, there is no gain — saying
the fact that the weakening of moral values in our social life is creating serious

social and ethicai conflicts. It is this changing context — the declining moral

standards in persopal and public fife on the ene hand. and the nalisnal
ideological comnmitment to the values of democracy, socialism, secularism
and modernization on the other — that constituted the driving force behind the

recommendations stressing the importance of vaiue education in educational

institutions.



While there Is general dissatisfaction with the fall in moral standards of
both young and the old and disenchantment with the disregard to moral
values witnessed in personal and public life, there has been no concerted
attempt on the part of the society to address itseif squarely to the problem of
value education. Unfortunately, education is becoming day by day more or
less materialistic and the value traditicns are being slowly given up. A
modern Indian is being educated mainly with the bread and butter aim of
educaticn; as a result most of our graduates run after mcney, power and

comforts, without caring for any type of value.

The degeneration in the present day life, the demoralization of public
and private life, the utter disregard for values, etc. are all traceable due to the

fact that moral, religious and spiritual education has not been given due place

in our educational system.

The Education Commission of 1964-66 says that *a serious defect in
the school curriculum is the absence of provision for educalion in saocial,
moral and spiritual values™. In the life of the majorily cf Indians, religion is a
great motivating force and is inlimately bound up with the formation of

character and the inculcation of ethical values.

A national system of education that is related to life, needs and
inspiration of the people cannot afford to ignore this purposeful force. Value
crisis of the present day life is baffling the minds of educators and the
educands as well. The effect of the value crisis on present day life is

witnessed in the following :

» The democratic ideology that has been accepted by our country is vet to
be actualized in the form of social and economic democracy as to realize

democratic values guaranteed by the Constitution of india.



e The individual is becoming a prey to the contradictory values and Is
being converted as a consequence into an extreme radical, a
reactionary, a skeptic or cynic.

o« The present Indian educational system is reflecting more or less
borrowed ideoclogies and philosophies and the natlonal values are
relegated to the back.

e The leacher-educators and teachers are not being clearly oriented to
the national values and ideas, ideal and ideclogies that they have to
inculcate in the students. Hence, they are not in a position to play their
role as value educators.

¢ The student community is drowned in neck-deep poverty, ignorance
and unhealthy surroundings. Hence, they are not in a position to
comprehend the real values of our contemporary India.

e Qur curriculum does not reflect human vaiues and the value system,
hence our schools and colleges have become examination centers and

not value centers.

The problem with value education, it appears. is that while everybody is
convinced of its importance, it Is not clear as to what it precisely means and
what it involves. In our educational reconstruction, the problem of an
integrated perspective on values is pivotal, for its solution alone can provide
organic unity for all the multifarious actlvities of a school or college currlculum
programme. An Integrated educatlon can provide for integrated growth of
personallty and Integrated educatlon ls not possible without Integration of

values.

In value education, as In any other areas of educatlon, what Is asked of

the teacher is a total commitment to the develobment of rational autoenemy in

both thought and action.

It should be noted that the most important aspect of value educaticn

consists not in unwilling adherence to a sct of rulcs and regulations but In the



bullding and strengthening of positive sentiments for people and Ideals. Value .
education should prepare individuals for participation in social life and
acceptance of soclal rules. What is more important in value education is that
schools should provide a healthy climate fer sharing responsibilities,

cocmmunity life and relationships.

The new National Curriculum Framework for School Education (NCFCE)
prepared by NCERT gives uppermost importance to Value Education in

chools. NCERT has been contributing richly to the area of Value Education

[72]

by way of organizing inservice education coursss for key level perscns,
preparation of instructional materials, etc. The RIE, Myscre under the
Coordinatorship of Dr Prahallada has brought out a 636 page material titled
"TREASURE TRCVE OF VALUES" which consists of Anecdotes, Fables,
Stories, Legends, 8iographies and Foik Tales related to values which will be

of great use at primary stage.

Also, 115 page Package on Value Education has been brought out by
RIEM consisting of importance of Value Education, approaches to Value
Education, Lesson Planning in Value Education. The package will be useful

for the teachers for the inculcation of values at primary school stage.

Regional Nodal Centre on Value Education at RIEM

The NCERT, New Delhi has been identified by the MHRD (Department
of Education). Government of India as the nodal center for strengthening
value education in the country at school level. Subsequently, a Nalional
Resource Centre for Value Education (NRCVE) has been set up in order to
plan and implement programmes on value oriented education. NCERT, New
Delhi has launched a National Programme for Strengthening Value Education.
This programme has been visualized as a national level initiative to sensitize
parents, teachers, teacher educators, educational administrators, policy

makers, community agencies etc. about the need for promotion of value




orlented education. The focus of the programme Is on generating awareness,
material development, teachers training, development of scheoi programmes,
promotion of research and Innovatlons In the area of education of human
values and development of a framework of value educatlon for the school
system.

In this context, a Regional Modal Centre (RNC) has been set up at the
RIE, Myscre from September 2002 which will be respensible for linkages
networking, monitoring and follow up etc. at the State, District and grassroot
level for implementation of value education programmes. The Centre will take
up the responsibility of organizing National Consultation and Regional
Workshop on Value Education with focus on strategies of awareness
- generation, material development and teacher's training. The RNC comprises
of representatives drawn from SCERTs, IASEs, CTes, DIETs, NGOs, School
Boards, Bureau of Textbooks and eminent professicnals/educationists from

fhe southern states.

Dr N N Prahaltada
Reader in Education
Renional Institita of
Educsation (NCERT)
Mysore 570 006



CHAPTER 28
EVALUATION

C. GURUMURTHY

All our educational programmes emerge out of aims and objectives
set out in the curriculum. The learning experiences provided to the pupils
are directed towards realising these objectives. The teacher wishes to bring
about a change in behaviour in the pupil in a desired direction. If after the
instruction the student exhibits such changes in behaviour, then the
objective is said to be realised.

A casual observation by the teacher in the normal setting of a school
may not help him to judge whether the objective are realised or not. A
svstematic procedure in a controlled environment is necessary to arrive at
the above judgement. Hence objective based evaluation forms an integral
part of insiruction. The results of evaluation is made use of to improve
teacher’s own instruction and thereby pupil’s learning.

Thus evaluation, teaching and learning are interdepcndent on each

other.

Evaluation

Teaching Learning



What is Evaluation ?

Before arriving at an acceptable definition of evaluation let us
examine the meaning of the terms "value' and ‘valuation’. By value we
mean, price, worthiness, procures, estimation, set of principles, habits,
customs, character, etc. Valuation, means estimating the performance of the
learner in certain situations and marking on the basis of predetermined set
standards.

Evaluation could then be defined as valuation plus judging the
worthiness of learning outcomes. It involves a systematic process and
identification of objectives in advance.

Purposes and Functions

Evaluation can be made use of for varied purposes.

e to adapt instruction to the differing needs of individuals.

e to identify the hardspots of a pupil in a given subject and suggest
suitable remedies.

e for selection like within the school for higher education and outside by
the employer.

e to offer personal guidance for scholastic career, plgccment, soiv
immediate problems of pupils, etc.

In short we can say that it is important for diagnosis. prediction,

selection, grading and offering guidance.



Categories

The various categories of evaluation are
e pmpose - specific category
¢ msde - specific category
e pmcess - specific category

Evaluation is usually done through tests and examinations. An
objeaive based test contains various types of test items. What then is an
item?

An item is referred to as a learning activity presented in the form of a
spectiication of a task to the tester.
Featwres of an item

An item
» isbased on a learning content/learning activity

e prsents the learner with a task

expects a response from a learner

¢ exgects the response to undergo process of evaluation

Mechanics of an item

(i) The task that an item specifies should in the process of learner-response
to it. demand and reflect only those specific aspects or skills or bits of
lexrning that are being listed.

(ii) I[sh_ould specify precisely

e what the learner is to do



e the conditions under which it is to be done and
e to what level (standard to be accomplished)

(ii1) The medium used to present the task specification should be such that
there may not be any gap in its communication to the tester.

[tems can be of different categories and formats.

Ttem categories

Category 1

(1) supply type

(ii) open-ended

(iii) subjective items

Category 2

(i) selection type

(ii) closed end

(iii) objective type

Item formats

Selection type

1. Constant alternative

True-False

Yes-No

Agree-Disagree

Right-Wrong

Modified True, False



Agree/Disagree/Don’t know
Always/Never/Something
2. Multiple choice
Simple selection type
Multiple selection type
Reason-Assertion type/Multiple facet type
Sequencing type/Rearrangement type
Matching type
Linked type
Negative multiple choice type
Analogy tvpe
Complex multiple choice type
3. Supply type
Simple questions
Completion type
Short-answer type
Long-answer type
Problem-solving questions
Standardisation of a test
It is important to standardise a list before using it. A number of steps
invoived in the process. They are

1. Preparation of a blue print

P od



1i. Test construction
iii. Pilot study
iv. [tem analysis
Preparation of a blue print is necessarv in order to decide the extent

of the content to be tested, the object:ves on which the test will be based
and the type of items. It helps the teacher Zecide the weightage to be given
to each of these aspects (refer sampie -iuz print). Keeping the blue-print in

view the test is later constructed.

During the pilot study the test czn be administered to a selected
population of students. Item anaiysis may ¢ done and suitably modified

berfore standardising the same.

Item Analysis

Iten analvsis refers to the procass 2f :xamining students response to
each test item. We use the facilitative v2.:2 and discriminative index while

deciding about whether the items are tc =2 r2:ained. modified or rejected.

(a) Facilitative Value
This indicates the difficulty level of 22ch item and is given by
R

FV = ---x !
v

(@}
(@]

R = Total number of right responses in o011 ine groups.
N = Total number of students in both the grouds.

Note: Both the groups mean High Ab:litx Group (HAG) and Low Ability

Group (LAG).



Discriminative Index
This indicates the extent to which the question discriminates a higher
scorer from a low scorer in the same test.
N(HAG) - N(LAG)
1) [ IR RS o
n
N(HAG) = Total number of right responses in (HAG)
N(LAG) = Total number of right responses in (LAG)
n = Total number of students in either group (HAG)/(LAG)
Interpretation
After determining the facilitative value and discriminative index, they
can be used to draw up a table which indicates the range of scores, what it

implies and what should be done with the item as shown below.

Facilitative Value

From To What it means What 1s to be done with the item
0 255 The item is too difficult Modify the item
23 YIS The item is within the | Retain the item

suitable range of facility

75 100 | The item is too easy Reject the item

Discriminative Value

From To What it means What is to be done with the item

-1.00 | +0.20 | HAG is not doing better | Modify

than LAG
+0.20 | +0.80 | Item is satisfactory Retain
+0.80 | +1.00 | Item is very good Retain




The standardised test item performs its function effectively and the
standardised test discriminates between good and poor learners. [t aiso
helps a teacher to choose a suitable technique of teaching for the classroom
:caching;learning, depending on the learners abilities. Further facilitative
value provides a basis for comparison and can aiso help in defining and
maintaining standards in schools. The discriminative indices help identify
topics to be addressed to all learners and topics to which learners of lower

ability are to be registered.



Strategies for Increasing Positive Student Behaviours

Guidelines for Effective Praise
One of the most powertul strategies is providing praise for appropriate behavior. The planning

of how and when to use praise rests with the teacher.

1. Define the appropriate behaviour while giving praise.
Praise should be specific for the positive behaviour that the student displays. This means any

comments about behaviour should focus on what,the student did right. The praise should
include exactly what part of the student's behaviour is acceptable.

Situation: The teacher would like to see seatwork done quietly.
Example: "That is great that you did your seat work so quietly today."
Non-example: "You didn't disturb others today."

2. Praise should be given immediately.

The sooner an approving comment is made about appropriate behaviour, the more likely the
student wiil repeat the desired behaviour.

3. The statements used as praise should vary.
[ndividual statements that one uses should be varied. When students hear the same praise

statement used over and over, it looses its value for the student.

4. Praise should not be given continuously or without reason.
[f praise is given too frequently or without stating what the student is doing that is "good", then
praise looses its value to the student.

L

5. Be sincere with your praise.
Students will notice if you do not mean what you say. Nonverbal cues like facial expressions

and posture will alert the students that your praise is not sincere. The praise will not be
effective if the student perceives that it is not sincere. Smiles communicate that the praise

given is genuine.

6. Be consistent when praising the target.
It is important to be consistent with the behaviours that you praise. Students leam more

quickly when they are always praised for desirable behaviours. Consistency between teachers
is important in order to avoid confusion about behavioural expectations.

7. Praise should be developmentally appropriate.

Statements to younger or developmentally delayed students should be in language that is at
their level so theyv clearly understand what behaviour is seen as appropriate. However, if older
students perceive they are being "talked down to”, it is likely that the praise will be discounted.
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Why Praise Works
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Praise is readily available as reinforcement for positive behaviours.

Praise can be administered immediately after the desired behaviour.

Praise can be used over and over again if praise statements are varied.

Praise may be used in combination with other strategies to increase behaviours.

Praise can be tailored to a variety of behaviours by being specific about the activitv

Praise works if the relationship between the student and the person i~ ..-ine praise is a
positive refationship.

Why Punishb—. .. voes Not Work

“uushment 1s a less effeetive mer: . of dealjng with unacceptable student behavior.
Punishment gives auem#ian !0 t*.c wrong behavior. When the teacher gives artention to
inappropriate behaviours. &_guently the benavior increases. The student may repeat the
behavior just to get zticntion. For some students, attention of any kind is desirable.
Punishment can damage the student's relanionship with the teacher. If a student is punished
for behaviour that is unacceptabie, he or she may become uncooperative at other times.
The strudent may not try or work for the teacher when requested to do so.

A student's seif-esteem can suffer if the only attention from teachers is in the form of
punishment. The negative feslings that come from only expeniencing punishment can
result in an amtirede thar he or she can do sothing right. With the use of punishment, there
is not an opportunity for the student to be recognized for the behavior that is acceptabie.
Punishment can discourage both unaccegptable and acceptable behaviors. [f a student is
frequently met with negative responses tor behaviour, the student may decrease both
positive and negative behaviors. If positive behaviors decrease, the student will not have
the opportunity to learn or practice acceptable behaviours. Punishment does not encourage

a student :o0 take social risks.

Non Verbal Social Approval used to Increase Positive Behaviors

Praise is one form of social approval., Other social means of communicating that the

behavior is appropriate may include nods, smiles or a "thumbs up” sign. Where developmentally
appropriate, a pat on the back or a "high five” can be used to signal the student that their behavior
is appropriate. Just as with praise, these other forms of social approval should be given as soon as
possible after the positive behavior is observed.

Rules and Instructions as a Means of Increasing Positive Behaviors
Rules and instructions can help the student increase positive behaviors in a number of ways.

1.

Rules and instructions can provide a guideline for what behaviours are appropriate.
Students may not know what is expected of them. Learning what positive behaviours are
can help speed up the identification of acceptable behaviours.

Giving clearly stated instructions or having rules displaved enhances communicarion about

expected behaviour.
Rules and instructions can be used effectively with praise or other strategies to increase

positive behaviours.
Restating the rules or instructions just prior to an activity will remind or cue the student

about the behaviour that is expected.



Example: It is the first day of school and you have playground duty for 5th and 6th graders. Yot
and the teachers arrange a time to meet with the students in their classrooms to go over the schoo!

rules on playground behavior.

Modeling
For some students an explanation of desirable behaviors is not enough. Demonstration is another

way of making expectations clear.
Example: The students you are working with become unacceptably loud. You start talking to them
in a very low voice. This would demonstrate to them what voice level you want them to use.

Build a Positive Relationship with the Student
Working to establish a relationship with students is an important strategy in effective behavior

management. Investing time to get to know students is a good first step in establishing a positive
relationship with them. A positve relationship sets the groundwork for all the other strategies.
Students are more likely to listen and respond to rules, requests and reinforcement if they know
their interactions with the teacher will be positive. Ways to be positive include:

1. Demonstrating to students their importance (i.e., by leaming their names, actively listening

to them, remembering things said by them.) -

Praising continuation of appropriate behaviours.
Showing interest in helping students.
Explaining the reasons for having rules.

5. Encouraging students to participate in activities.
Students respond better to adults who take a personal interest in them. Personai knowledge of each
student is one way to strengthen and improve these relationships. It.provides the opportunity to
model interpersonal behaviors.

SRR

Please Remember
« Behaviour Management should be viewed as an opportunity for teaching and not as an
opportunity for punishment.
o Consider the impact on the student’s best interests.
e Avoid embarrassing students.
e Suggestions should be in the form of constructive criticism.
» Constructive criticism should occur in private.
« Never engage in a power struggle. Strive for win/win.
» Thank students when they are trying to improve.
e Do not touch a student who is upset.
o Keep other teachers/ the H.M. informed.
e Documentation should be objective and free of emotion.

Encouraging Participation
» Integrate Discussion Into Your Teaching
» Respond to Student Questions
> Help Students Prepare for Discussion
1. Explain the purpose of discussion
2. Create an appropriate physical serting for discussion
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Identify discussion questions/issues in advance
Use an assignment as a basis for discussion
Begin with common experiences

Divide the class into smaller groups

Prompt discussion through the use of key phrases
Try brainstorming techniques

Sustain and Focus Discussion

Encourage heated debates

Intercede if the discussion breaks down

Keep notes during discussion :

Assign students responsibility for summarizing major poinis

Get and Use Feedback
Increase your eye contact with students
Ask students if they understand what you are saving
Call on students to paraphrase or to summarize
Begin your lesson with a series of questions
Ask questions during teaching
Give students problems to solve during class time
Reserve the last 10) minutes of class for questions
Give frequent assignments
Give frequent quizes
. Ask students 1o define, associate or apply concepls
. Periodically borrow students’ lecrure notes .
. Encourage students to form study groups

‘

ssroom Management Techniques

ned Ignoring

:rimes the most effective way to deal with student misbehaviour is to ignore it.

1 to Ignore Behavior:
When the inappropriate behaviour is unintentional or not likely to reoccur.

When the goal of misbehaviour is to gain teacher attention.
When you want a behaviour to decrease.
Do not intervene when there is nothing you can do.

n to Intervene:

When there is physical danger or harm to vou, others or the child.
When a student disrupts the classroom.

When there are violations of classroom rules or school policy.
When there is interference with learning.



5. When the inappropriate behaviour will spread to other students.

Providing Cues to Students .
An important aspect of behaviour management is developing ways to communicate with students

that provide reminders that support your expectations. It's simply a way to let the student know
that you want their attention, or you're aware of the behaviour, and that you want it changed.
These cues can also be used to reinforce positive behaviour patterns as well (i.e., reminders to
continue the quality of interaction during an activity). These techniques may be non-verbal
including eye contact, physical gestures (i.e., raising your hand in silence), tapping or snapping of
your fingers, coughing or clearing vour throat, facial expressions (i.e., smile), or body postures
(i.e., tilting your head). Ore caution, avoid doing things that may embarrass students.

Proximity Control
A fancy term, but you've probably used the technique quite frequently. You're aware how effective

it is to stand near a student who is experiencing difficuity. Simply moving around the classroom
can assist students in staying on task because of your "proximity” to them. This works well
because the students know you're aware of what's going on, and allows the classroom teacher to
continue without interrupting the lesson or the flow of the activity. As a caution, it's important not
to reinforce the inappropriate behaviour or call attention to the student.

Ways to Increase Student Metivation
Motivation is a key to academic success for most students. There are a number of ways to increase

the motivational level of students.
1. Relate the material to their life experience’s, in other words, make it relevant to them

personaily, thereby sumulating their interest.

2. Demonstrate an active interest in that child.
3. Demonstrate an active interest in the child's work or the activity.
4. Use lots of praise both verbally and nonverbally.

The Use of Humor

We're all aware of how a light, funny or amusing comment or statement can often decrease
tension, or frustration and afterward allows everyone to feel a bit more comforable.

Of all the techniques discussed here, humor can be the most prone to misuse and is not
easy to master. especially if it's directed toward a particular child or group of children. We've ail
heard the expression "laugh with, not at children”. Even the practice of laughing at one's own
actions can sometimes be troublesome. particularly if it's negauvely directed. Don't use sarcasm
and don't belitle students. Be careful, because what you think is funny may not be funny to the

student invoived.
Humor can also be used constructively to decrease levels of anxiety and thereby increase students’

academic perform.

Helping Students Through Tough Spots
All students eventuaily will come across a certain task, assignment or situation that causes

them difficuity. Many will request assistance from teachers, staff or peers when approprate.
Others will simply stop working ail together and not know what to do next. At these times, rouble



can occur. We need to get them back on track. You can be most helpful in getting the student back
on task by:

Doing (or solving) the problem with the student.

Reviewing the directions.

Providing another example or demonstrating.

Supplying them the correct answer as a model.

B

Appeal to Student Values
Otten you can appeal to students' values when intervening in problem situations. Their desire

is to be liked by others, to do the right thing, to be treated with respect, etc. You might:

1. Appeal to the relationship between yourself and the student.

2. Appeal to the natural consequences of a specific behaviour. (i.e., "I know you're frustrated,
but if you break vour pencil, then you'll have to replace it with your own money." )

3. Appeal to a student's need to be liked. (i.e., "Your friends may be disappointed with vou if
you continue to boss them around and interrupt them when they're speaking.”)

4. Appeal to the student's self-respect. (i.e., "I know you'll be very upset with yourself by

doing this.")

Removal of Nuisance [tems
It is difficuit for teachers to compete with certain objects, either found at school or brought

from home (i.e., rubber bands, combs, etc.). Often times in order to gain students' undivided
attention, you may be required to deal with these types of competing items. Often, however, the
removal of such belongings will only lead to further conflict. One way to avoid such conflict is to
simply state the choices:

1. You can either put it away immediately; or
2. I will put it away until the end of the day.

e

However, by taking a strong interest in the object and then politely asking to see and handle it.
Once it is in your possession, you have the option of returning it, with a firm request that it
disappear for the rest of the school day, week or year, or to keep it, with a promise to return it at
the end of the day and/or week. This technique is most effective if you have established a

relationship with the student.

Matenals adapted from: Baidwin J.D. and Baldwinn J.I. (1986). Behavior principais in everyday life ( 2nd Ediuon),
Engle Wood Cliffs, New Jersey: Prentice Hall. and Martin. G. and Pear. J. (1992). Behavior Modificaton: What it is
and how to do it. Engle Wood Cliffs, New Jersey: Prentice Hall.



EXPERIMENT NO.1

COLLISION IN ONE-DIMENSION

Set up Draw the diagram and label the parts

Adjustments

, e
Vg 7 W

R S 777%777“\

1) Adjust the height of the set screw so that its tip is at the same level as the ramp and
aiso along the same line as the groove on the ramp.
i) Adjust the distance between the edge of the ramp and centre of the set screw to be

1.5D where D is the diameter of any hard sphere.

Observation

Keep the target sphere T on the set screw. Place the bullet sphere B at a suitable

location (25cm) of the ramp with the help of a small scale held vertically. Release the

bullet B.



Record vour Obse: vation

Answer the foilowing question:

I. What is momentum (represent by p ) ?
2. What type of physical quantity it is ?

. What physical quantities are to be measured 1o calculate momentum ?

(9]

+. Whart are iransterred to sphere T by sphere B duning the coilision. What happens 1o

the bullet sphere after collision?

. What is the initial momentum of sphere B. sphere T and or the svstem before collision?

tn

. What is the final momentum of sphere B. sphere T or the svsiem after collision?

(o)

How do vou measure the momentum of sphere B. before collision and sphere T
arter collision ? Stop watch s not given.
What observed and measurable physical quanuty can be considered as a measure

of momenwum? (Hint: Horizontally projected body).
What 1s range R basically a measure of ?

What other quanuty it can represent assuming masses of spneres B and T as
same. Similarly. what does R~ represent?

Measurement

Place a carbon paper with carbon side up and place over it a tracing paper. Fix

them to the drawing board.



Step 1

Release the bullet sphere B from a suitable position (25crﬁ) on the ramp. Note the
position where target sphere exists the tracing paper. Relexse the sphere from the same
point several times and note the distribution of points on the tracing paper.

To what degree is the velocity of the target sphere. arter collision always same ?

A

Step 2

Bring down the set screw so that when sphere B is reieased from the same point as
in step 1 moves down with out hitting the set screw.

Get the trace for several releases.

To what degree is the initial velocity always the same?

Mark the point "O" corresponding to the tip of the piumb line. _

Draw momentum vectors OT and OB. Compare them.

Calculate R"B and R°T. Compare them.

"



Step 3

Repeat. by reloading the bullet sphere from two other positions.
Step 4

Tabulate vour measurements

Conclusions:

1) Momentum

1) Kinetic Energy

Step 3

Discussion:

1. Offer explanation for discrepancies. if any

2. Sources of error and Methods to eliminate/minimize

Reference: PSSC Text. Lab guide and Teacher's guide.



EXPERIMENT NO. 2

GALILEO'S EXPERIMENT

Set up: Keep the grooved track (about 2.35m long) on a horizontal surface. Place the given
smooth ball on it. Lift one end of the track till the ball slides off. Lift a little bit up and
fix. (Give reason for this initial adjustment). Make sure that the track does not sag under

its own weight. Provide suitable supports to ensure that the track is straight and inclined

to the hornzontal.

Step 1: Observation

Release the given smooth polished steel ball about lcm in diameter from one end
marked as starting point. Watch its motion (Judge the pitch of the sound)> what do you
guess about the speed of the ball with respect to (a) time of travel and (b) distance
travelled ? What type of motion is it ? Write down your guesses.

Step II: Guesses
Step IIl: How is acceleration defined ? Can we use this definition for our investigation?
Give reason. A more convenient relation is needed. It could be worked out

mathematicaily. Assuming the motion to be of uniform acceleration, we can derive the



equation connecting distance travelled with time [vour guess (2! above in step 1]. What is

that expression? Suppose we set the initial velocity to te zero. then

] S a
S=--at" or — = - =cpnsant
-~ [: ]

Here. we have a definition Zor a uniformlly acczieratec motion. more suitabie for practical
work. Distance-square of iime grapn is a straight line. [s this Z2rfinition more convenient
for practical investigation 7 Why?
Step I'V : Experimentation
a) Designing and Collection of Data

From the starmung point. mark off distance S = 1.00mm. 1.23m. 1.50m. 1.75m.
2.00m and 2.30m (Mark vour own tabulation). Measurs the tims :as average of best three
readings. out of about five! :zken to travel each distance. Tabuiate.
b) Analysis of Data Collected and Drawing Conclusion:

Draw S-t* gragh and zonclude. What does the sicpe of the graph indicate? What is
the acceleration for this inciizaton?
Step V: Further Questions and Investigation:
1) Draw S-t graph. What coss this indicate?

i) State the relation betwe=r speed and distanca travellsd in [vour guess (b) in Stegl] the

case of a uniformly zzcelerated motion. Why is speed as a function of distance
travelled not suiable for :zvestigation?

i1) List further investigations that one can underiake with this set up!
iv) Considering the forces acng on the sphere. calcuiate the acceieration ?

Ref: Project Physics Harvard.



EXPERIMENT 3
Diffraction due to single slit

Aim : To study the profiie of 2 di==cton panern using single slit and laser beam.

& o

Materials Required: He-Ne iaser scurce, singie siit Taveiling microscope, measuring tape, drawing
board, drawing paper, pins, grecz soeet

Method of Approach

When light of waveiengtz » undergoes diffracton at a singie slit of width 'd’, the angie of
diffracton 6 is given by dsin@ = =~ In this experiment we determine the wavelength A using this
equaton.

Keep the drawing board oz ~hich a graph sheet is fixed 5 m away from the He-Ne source.
Place a siit wiuc 1s wide opea az z convenient distance from the source. Align ail the three taking
care to see that you do not dirsczix see the laser beam with your naked eve. Adjust the siit width
unal a good diffraction pamern is ctzined on the drawing board. Trace the prodiie (pattern) on the
grapn shest.

-
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Experiments

central max mimina ger max

d

Measure the distance berwesn the

| . ) o . . .

I | O drawing boarc and the slit D. Mark

= Q ' Q | the cenmes of the ceamal maxima
1

! ' 3 . .
’ and the other maxima on the graph

)
\

R S N .
. ' sheer. Measure the distance x,
4 Xy 3 berweesn cezmai maxima and first

minima on either side of the pattern.

At the first minimum dsin® = A since 6 is small dsinf =

—_

dtanf = A.
But z
a e
- a z. . 0
tanB = — - = A
D D

From this we can caiculate A. To —=asure 'd’ the slit width use a waveiling microscope. Repeat this
for 2nd and 3rd orders if possibie 2nd calcuiate A in each case.

Study what haprens to the panterz if "d’ is varied. Tabulate your readings.

SiNo d | n | X | A
! d, | 1 | X, |
i 2 l Xa !
2 d, [ 1 | X |
, . 2 I Xs |

Try regeating the experiment for ZiSarent values of D while kesping slit width "d’ a constant.

Questions What should be the orcer of the waveiength as compared to the siit width so that 6 is
measuraple. [n what way do inter==rence and diffracton bands differ?

Further study Find out whar ~appens to the diffraction pattern when the aumber is two or
multiple in numeer.



Experizents

EXPERIMENT NO .4
OSCILLATIONS OF A LIQUID COLUMN

Aim (a) Determinarion of g’ by study of the oscillatons of a liguid column
Materials Required Long U tube diam. 2 ¢m, scale, stop watch, scale, adhesive =pe
Method of Approach

The acceleraton due to gravity 'g’ is determined by considering the simple harmonic moton of a
liquid column. Using the equation

T 22 E.
T = ki g
uzsesm
o Po—
: =

- -
fot A where L is the total leagth of the water coiumn
o _ in the tube and g is the acceleration due to gravity.
W—___’: .

_—m‘, S e

ﬁ”’-”-
L

A known length of the liquid column is takea in the mbe as indicated in the figure above.
Depress the water level in one side by blowing air so that the column oscillates. Measure the time
for ten osciiladons of the coiumn a number of dmes. Repeat the experiment with different lezgths
of the liquid column by changing L in steps of 20 cms at least. Tabulate as shown telow.

SLNo | Length of water | vL No. Of Time Tize
column L oscilladons | 1 - 2 period

L

Plot a graph of T vs vL and caiculate "g’.



Exrerimentcs

Aim (T) Smcy of damped osciilatons
Materials Required Same as above

Tor one vaiuz of L of the liquid column. note the maximum dispiacement or the warer level
on 2itt2r side of the equiliorium position for four or fdve succeassive osciilations.
Plot 2 graph of maximum displacemeznt vs tme zetod T.

Questions
Does =2 maximum displacement remain the sama?
What is the locus or the successive ampiirudes on one sida?

(S
If the maximum dispiacement is different in the successive osciiiaticn. why is it so?

Give some exampies of other systems wilch exaicit this behaviour.



Experiments

EXPERIMENT NO.2
NEWTON'S O LAW

Aim Study of the reiationship berwesn acceleraton "2’ and unbaianced force *F’ for a constant

mass.

Materials Required Two dynarzic carts, puileys, scale pan. thread, weight box, stop watch.

o o
(1ri o
00 '
. S=1m i
— | -
Method of Approach

For a body of mass m moving with a constant acceieration under the acton of a constant

force F

S=%arifu=0
s being the distance travelled in dme t.

The appararus is arranged 2s shown in the diagram. The cart is frst loaded with weights (say
about 100g). Give a gentle push ‘o the cart and observe the motion. Transfer a few small weights
from the cart to the scale pan such that the motion of the cart is uniform (as judged by your sight).
Transter 20 gm weight from the cart to the scaie pan and note the time reguired by the cart to tavel
Im. Repear the experiment for the same force (weight of the pan + weight in the pan). Find the
average time t and calculate g using it. Repeat the experiment for different vaiues of F.

Mass of cart =

Mass on cart =
Mass of the scale pan + mass in the scale pan = m,

Mass of the system =



Time takea to cover I m Average(n) a=1g=

Questions

What does m, measure ?

Plot a graph ofg., vs . What do vou infer?

When the cart was moving with uniform spesd was there no force acting on the system? £ vour
answer is ves, give reasorns.

Drzw the free body diagram of (1) cart, (2) scale pan (with weghts in it} for the foilowing situzgen
(2) constant velocity, (b) constant acceleraton

How wiil vou find out the mass of an unknown object using this set up?

ty



EXPERIMENT NO. 6

ANALYSIS OF MOTION BY TICKER TAPE TIMER

To analyse the motion of a body what information do we need ?

2. Tape-Timer is a device used to mark the positions of a body at equal intervais of ume.
3. Fasten a tape to a moving body, your hand or an acceleration cart and pass the tape
through the tape guide (under carbon paper - if white tape is used) so that the tape
moves under the vibrator.
4. Examine the separation between the successive dots what can you say about the
motion of your hand/the moving body ?
5. Estimate the number of dots and select a convenient time interval such that vou have
about ten observations (unit of time = say 10/15/20, etc. dots).
6. Use a stick-tape and fix the tape you have drawn on the table. Choose an origin and
mark off units of time, as 1, 2, 3, etc.
7. Measure the distances of each mark from the chosen origin (i.e. position) and
tabulate.
Position So S S» Sy erc.
Time 0 2 <] etc
Time t Position Average veiocity Average acceierauon
(unit of time) Scm Sa - Sn.; cmv/unit of time cmy/(unit of ume)”
0 ' So=0 S1-Sg=V; = Va-Vy=a =
I | Sy = S2-S§;=Va2= Vi-Vy=a,=
2 { S. = S3-8:=Vs3=
3 , S;=




Analysis 1

Draw the s-t graph and conclude.
Analysis 2

What does the distance between the successive marks (S; - Sp), (Sa - Sy), etc.
represent ? What other physical quantity does this represent ? What is its unit ?
Analysis 3

What is instantaneous velocity ? How is it defined on a s-t graph ? Determine its
values for any five instants of time and draw the v-t graph. Infer.
Analysis 4

Using the v-t graph draw the a-t graph and infer. (Define @i - t graph. How is it
defined on the Viy - t graph).
Further Investigation
(1) Given v-t graph, how do you obtain (a-t) and (s-t) graphs ?

(11) Given a-t graph, how do you obtain (v-t) and (s-t) graphs ?
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EXPERIMENT NO. 7
BREWSTER’S LAW

Aim  Detzminaron or the reaczve index of the material of the prisz by measuring Brewster's

angie.
Materials Required  Polarisers. spectrometer, prism. reading lens. reading lamp.

A ¢
X Plane poiarised
s’f\ . g
B
-

D

|
Method of Approach

Maie ail the inidal adjusurezts in the specTomerer. Mount the anaivser on the telescope and
rotate it 10 observe the varaton in ictensity. Remove the analyser. Adjust the teiescope 1o receive
refiec:ed rays Tom the surrace of ke prism (mountec on the prism table: incident at an angie 30° as
in the i-d curve experiment. Fix the telescope. Mount the prism and -otate it 1o ger the retflected
lmage at the cToSS Wires.

Mouwzt the anajvser on the tzisscope and rotzate it. Observe the vatiadon in inteasity. Mount
the poiariseron the coilimator. Rozare the analyser and observe the posicon of minimum intensicy.
Note e angie of incidence 84 for the mimtmum intensity positions. Caiculate u from

u=1n by



ZXTeriments

EXPERIMENT NO. €
INDUCCED EMF

Alm  To smdy the emf induced as a funczion of the velocity of the m magne:.
Marerials Required E.M. kit (Rajasthan University), Multimarar,

, S0 cm
=ucm
T T N \

Cail

355N\

U/{\ " s

Method of Approach

- _/nwnvuoj
(
|

S

The exceriment is based on Faraday's law of e.m. induczon. The induced e.m.l is given by
_-d8
e D —
at

The appararus is set up as snown 1n the circuit diagram. The magnet s placed on the circuiar arc and
ailowed to osciilate through the coii Dy reiezsing it through different angies. The 2mr is measured
for mece various angies. Checkifea€,. T"us is done for a givex seming of the masses on the arm.
The time period can pe varied by changing the positons of the masses. For constant 8 measure the

induced emf for different semings of the mass. Checkife e LT.

N L
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EXPERIMENT NO ¢
ENERGY GAP OF A SEMICONDUCTOR

Aim Derarminaton of the 2nergy gap or 2 semiconductor.
Mareriais Required Diode. thermomerter. resistance [&Q (0A79), ammerer (0-100 uA), voitzetar

(0-30V), oii bath, DC (0-20 V) or (0-30 V) source.

Method of Approach
Connect the circuit as shown below.

’ : 1KQ

(0209 = > ,
l

mea

)"""‘
—

g——‘L'—_-
““‘-‘ -
— - ~l

\Water Bath

— ¥
\—/
A

Find out the resistance of the diode at various (emperanures.

Draw a suitzble grach and determine the energy gap of e diode.
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EXPERIMENT NO. 19
LCR-SERIES RESONANCE

@

Aim  Stedy of the Tecuancy response cha:ac:ensucs oI a series resonant circuir

a) Rasopart fregquency (£)) of the circuit.

b) Quaiizy factor (Q) of the cirgwit

c) nduczece (L) orthe coil in tha circuit.

d) Vanadons of pnase difference with frequency.

Materials Reguoired AC source. incuciance 20mk. caracitance fox. resistance box. 100Q2-2000Q.
CRO (deubzie zeam.

| i
I

e S g CRO

sogurce j

AF. o)

Method of Approach
Connescs the cirsuit as shown, Choose an appropriate vaius of C such that the freguency

response study ¢ e mods 2round a resonant Tequency tn 2 particuiar range of the AF source with

a large spread of regtencies.

Questions
How wiil vou study the phase ¢ifference using a double team?

v laa

:“.‘l}



Experiment: Logic Gates

Objective: To verify the truth-table of AND, OR and NOT gates using Boolean logic.
Apparatus: Logic gate set up, connecting leads

Procedure : i) AND gate

T
|
|

Connect the circuit as in Fig 1.

a) Connect the input terminals A and B to the “Set logic input switches”. The
terminal marked +5 is connected to the +5V (Hi) terminal of the regulated
power supply.

b) The terminal Y is connected to the terminal marked '+ in the DVM(digital voit
meter) and its negative is connected to the 0 V of the reguiated power supply .

c) Give various possible inputs for A and B and find the ccrresponding outputs in
the DVM and verify the following truth table.

A B Y=AB

0 O 0 A

w1 2 :iD/"w = A-B
1 0 0 5 /

1 1 1

i) OR gate: Connect the circuit as in Fig. 2.
a) A and B are connected to the “set logic input terminals™.
b) Connect the terminal marked 0 V to + 0 V of DVM and the Y terminal to ‘= of
DVM.



c) Verify the truth table.

A N ’
A B Y=A+B ‘\ N
— N ——"

0 0 0 5] g 4

S A T
0 1 1 = A
1 1 1 _

Ta 2= ‘__cq.;.‘, :\_lr*“-:.:i .
i) NOT gate

Connect the circuit as in Fig 3. Connect the input terminal to either A or B of the
“set logic input switches” connect the '+5 V' marked terminal to +5 V of the regulated

power supply ‘0" V terminal of power supply is connected to ‘- terminal of DVM.

Verify the truth table. 4 S

«
<
Input output e " A - N
A B A v ames P
K \ \'\ ; -
o— Vv L""'—‘.\“\
0 1 \
|
1 0 -
Fia 3

Further scope: Combination of gates such as NAND, NOR can be realized.

Note:
1. 1in the table implies voltage greater than 3.2 V and 0 implies voltage less
than 0.8 V at the output terminals as indicated by DVM.
2. Set logic input switches provide 5 V when in state 1 or high state and 0 V
when in O or low state.
8 Circuit is completed only when the dther terminal is connected to ground.

In the case of set logic input switches the other terminal is grounded within

the circuit board itself.



Experiment : Variation of light intensity with distance

Objective: To investigate the variation of intensity of light with distance using an

LDR (Light Dependent Resistor).

Apparatus: LDR, Source of light (15 W electric bulb) miiliammeter, battery

eliminator, meter scale, convex lens etc.
Circuit: ’—__——/{ o
LDR
o SRR
<<
| < ~——
A (7)) @ I
| ..

\C“‘\L.
~

Part (i) : To study the variation of intensity of light with distance.

Procedure: Connect the circuit as in Fig.(1). Keeping the light source at a distance
of about 1.50 m measure the current in the milliammeter. Move the source toward
LDR and measure the current for different distances say 1.40 m , 1.230 m e
Represent the observation in a grach by plotting the current versus distance.
Interpret the graph. What modified graph is to be plotted to get a straight line ? Plot

and infer the resuit.

Further investigations: Use light of different intensity or use filters to see the effect
of wavelength. Investigate whether the intensity depends on the angle of incidence

of light on LDR.

Part (ii): Place a convex lens in between the LDR and the source such that the
LDR is at the focal length of the lens. Vary the position of the lens and see the

variation in current. Interpret your resuit ? Can you use this to determine the focal

length of a double convex lens ?



Solar Cells

Crystalline silicon with deliberately added impurities is an essential ingredient of
a silicon PV Cell.

In a p-njunction the free electrons in N side see free holes on the P side and
hence rush to fill them in but only near the juncticn in the process the charge
neutrality is disrupted. This forms a barrier to other electrons on the N side to
cross to the P side. In equilibrium we have an electric field separating the two sides
(Fig.1a). Thusa PV Cell has p and n type silicon in contact, between which an

electnc field is set.

The electric field makes the junction to act as a diode, in which electrons can

move only in one direction.

When light ‘HITS' the solar cell, each photon with sufficient energy frees one
electron (and results in a free hole as well). If the freed electron or the hole happens to
wander into the range of electric field of the dicde, the field will send the electron to N
side and the hole to P side. This causes a disrupticn cf electncal neutrality. If we
provide an external current path electrons would flow thrcugh this path to P side to

unite with hole there which the electric field had created (Fig.1 b).

The flow of electrons provide current and the juncion electric field causes a

voltage. With both current and voltage we get power.

Photons
i \
| ———>—;
& &g \
N i ' P ﬁ\uw i |
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It may be useful to note that only about 15% of sunlight's energy is useful for
Solar Cell. This is because light photons have a wide range of energy, some of them
do not have enough energy to form an electron hole pair. Still other photons may have
too much energy than that required, then also the extra energy is lost (unless photon
has twice the required energy to create one more electron hole pair). This speaks of the
quantisation of energy in nature, eg. if the energy of photon is 1.5 times that is needed
for the formation of electron-hole pair, 0.5 part of the energy goes waste as heat. These

two effects alone cause loss of about 70% of radiation energy incident on the cell.

Optimal band gap for Solar Cell

If we choose a material with a low band gap we can make use of more incident
photons. But what we get in the form of extra current, we lcose by having a smalil
Voltage. Balancing these two effects a band gap of 1.4 eV has been found suitable for

a cell made from a single material.

Other requirements:

1. The incident photons have to reach the junction hence one side of the junction
should be left open as window. The other side is covered with a metal (acting as
anode) for good conduction. Sometimes a transparent window of conducting
material is provided over the upper n type silicon which acts as the cathode of

the cell.

2. Silicon being very shiny material the photons that are reflected away by it cannot
be used by the cell. Hence an anti-reflective coating is applied to the window of

the cell.

Finally, the cell is protected by a glass cover plate. In one unit 36 such Cells are
connected in series and parailel combinations and mounted over sturdy frame to

achieve satisfactory levels of voltage and current.
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Fig.2. Basic structure of Silicon PV Cell

These days other materials such as GaAs, CuinSe; , CdTe and amorphous
Silicon are being used in PV Cells. Now even two different kinds of materials (high
band gap cn the window side and low band gap on the base side) are being tried. Such

cells are more efficient and have been identified as multijunction Cells.

The Solar Cells that you see on Calculators and Satellites are photovoltaic (PV)

cells also known as modules.

On a bright sunny day we receive about 1000 W of energy per square meter.
We venture into collecting most of it to power our homes. If it could be done we will
have “Solar revolution’. However, it is limited today to power electrical systems on
satellites and frequently for emergency road signs, remote tracks, on buoys and in

calculators etc.



Identification of Transistor terminals

Trars:stor is a device made from two p-n junctions ccrnected so that we have
eitherg-n=--7-0 =pnp cr n-p+ p-n = npn configuratca. Still it cannct be got
from t¥0 -~ ciode ccnnecizd in the above manner. This is sssentiaily because the
intermediaz 2cped semicsncuctor (also cailed tase) is very thin and lightly ccped.
Also. zase sncuid net draw any cumrent when in circuit (idezily).

When ‘crward biased. however, beth p-n junctions z:.2w flow of cument very
easily t.e.. T2 forward bias resistance benveen emitter z1d base and tetween
colleczr anc case is usually very smail.

The czse is ccmmon (0 toth these juncicns. Hence f rransistor terminais are
to be icentiiza with 2 muitimeter (in Ohm meter mode) basz terminal is that which
shows low rssistance wnen testea with other two terminz.s separately. But in
oppesi@ sciznty the o-n juncions get reverse biased hencs rasistance should be
very laige sstween tase anc any of the two remaining terminals. Fig.1  illusTaies
this et
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When uncuen is in ‘crward bias moce and fixed +ve :arminai of muitimeter
(MM ‘nChmmearer mcge! s ccnnecied to the case then ths Tzansistoris ngn. But
if in ferwarc z:as mece fixes terminal is —ve connected to zse of muitimeter. then
the tramsisicr 5 pnp. (See Fig.2). The ccmmon terminal is zantified as base.
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If transisicr 1Is OK the resisiance between emitier and coilector is ideally
infinite  The resisiance petwean ccllecier and emitter ishowever, ideaily zero when
emitter base juncion is forward biased (transisior is said to be in the state of
ccncuction). (See ~ig.3)
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Thecrancally emitter is heaviiy doped than the ccilecior yet ccnstructicn wise
emitar-base ."cr*.va}c rasistance is a faw Ohms larcer than the tase-<cilecter forwarc
resisianca. 2y measuring the resisiance of the fwo p-n juncicns of fransisicr
seczrately. Wwe can canufy wnich sncuid Se ccllecier ang which stculd be emiter.
(Fig.4)
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21 day Training Programme in Physics for

the PGTs of Navodaya Vidyalayas

2.6.2003 - 22.6.2003

Provisional Time Table

Sundav

Date/Da 9.00 am - 11.30 am - 2.00pm- | 415pm -
Y1 11.00 am 1.00 pm 4.00 pm 5.30pm
2603 Reg'séra“o” . Identification of Lpign\::(i)r:;- Discussion on Lab
Mcnday : Inauguration ; difficult areas RN+MNB | work NRN
8608 | " Problem solving Lab work | Discussion/seminar
Tuesday approach-PRR PRL+RN | SSR
46-03 | MNB | Errors & significant Labwork | Discussion/seminar
Wednesday | figures PRR PRL+RN I NRN
56.03 | i Lab work | Discussion/seminar
Thursday | PRR | N PRL+RN | SSR
| | . Discussion/seminar
6.6.03 | | Lab work |
Friday ABE | A NRN+RN | SR
7.6.03 ! Lab work  Discussion/seminar
Saturday B dikia SSR+PRL | RN
8.6.03 .
Sunday Project Work
8.6.03 . - ) .
Lab work Discussion/seminar
Monday NRN MNB MNEB+PRL RN
10.6.03 Lao work | Discussion/seminar
Tuesday = INEN RN+MNB | PRL
11.6.03 - Lab work | Discussion/seminar
Wednesday e — SSR+RN | MNB
12.6.03 ~—-——-COMPUTER LAB— Lab work | Discussion/seminar
Thursday SSR+PRL+MNB RN+PRL | SSR
13.6.03 Lab work | Discussion/seminar
Friday — Wiwle MNB+MMS | MMS+PRL
14.6.03 Labwork | Discussion/seminar
Saturday CRN - MNB+RN | Library work
15.6.03 | :
Sunday | - Project Work ——-
16.6.03 | | Labwork | Discussion/seminar
Monday | O VDB | MMS+SSR | MNB
17.6.03 | | Lab work | Discussion/seminar
Tuesday | NP Ak NRN+MMS SSR
' 186.03 Labwork | Discussion/seminar
Wednesday | NF URE NRN=MNB | MMS
19.6.03 Popular Talk Lapb work | Discussion/seminar
Thursday | EIRARY PRL-MMS RN
20.6.03
Friday CRN KV Popular Talk
21.6.03 a
Saturday CRN CRN Library Work
226.03 Post Test Discussion Feedback Valedictory session




PRR - P.Ramachandra Rao SSR -  S.S.Raghavan

MAC - M.A.Chandrasekhar PRL - P.R.Lalitha

6. - C.Gurumurthy MNB - M.N.Bapat

CRN - C.R.Natrargj NRN - N.R.Nagaraja Rao
KV - Kalpana.Venugopal VDB : - V.D.Bhat

NNP - N.N. Prahallada MMS - M.M. Sahajwani

Popular Talk (1) Evolution of Stars - Prof. G.T. Narayana Rao

Prcf. K. Shamanna -

(2) Management Skills

R.Narayanan
(Academic Co-crdinator)
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