DEVELOPMENT OF QUESTION BANK IN CHEMISTRY AT HIGHER SECONDARY LEVEL

REPORT

Dr. G.R.Prakash Academic Coordinator

Regional Institute Of Education, Mysore 570 006 (National Council Of Educational Research and Training)

DEVELOPMENT OF QUESTION BANK IN CHEMISTRY AT HIGHER SECONDARY LEVEL

RESOURCE TEAM

External Experts:

Dr. K.N.Tantry Dr.A.S.Janardhan Dr.K.C.Srinivasa Murthy

RIEM Faculty:

Dr. V.Kesavan Dr. G.T.Bhandage Dr. B.S.Raghavendra Dr.(Mrs.) M.S.Srimathi Dr.G.R.Prakash

PREFACE

Education is known to bring about behavioural modification. In similar wider sense, evaluation includes assessment of all such behavioural outcomes that are a result of teaching learning process. However, an examination have too many questions that call for a mere 'Recall' or 'Recognition' of certain facts, principles, etc. There is a dearth of questions that test achievement of higher level objectives, at least in our question papers.

So, when there was a request from the junior college lecturers and southern region for the development of question bank in Chemistry, our Institute took up this task. The emphasis here has been a developing more questions to test understanding, application and skill. The items are not exhaustive but certainly diversified. I sincerely thank all my esteemed colleagues for their invaluable work. My special thanks are due to Dr. K.N. Tantry and Dr. A.S. Janardhan for giving directions and untiring support to us.


I thank our Principal for providing us all the help and facilities. My thanks to Mr. Venkatesh for his help in preparing this report.

> Dr. G.R. PRAKASH Academic Coordinator

25th June 1999 Mysore

Inaugural session

Participants and Resource Persons of the Workshop

CONTENTS

	PAGE NIO
	PAGE NO.
INTRODUCTION	1
PLAN OF ACTION	2
CONCEPT OF EVALUATION	3
CHAPTERS	
Atomic structure	9
Chemical bonding	27
Periodic classification	49
 d-Block elements 	66
Chemical energitics	87
Chemical equilibrium	106
Chemical kinetics	122
Organic Chemistry I	132
Organic Chemistry II	156
SUGGESTIONS:	174

INTRODUCTION

It has been recognised that for meaningful education, the assessment of students must be sensitive to the aims and objectives of curriculum. Examinations are powerful tools to reflect both good and evil in teaching learning process. The public examinations more often encourage memorisation and repetition of factual chemistry and not the understanding and application of concepts.

Both internal assessment and public examinations have a few disadvantages. Assessment that is normally done is norm-referenced which helps in ranking. There is little emphasis on criterion referenced assessment, which is essentially diagnostic and helps in measuring comprehension and skills. However internal assessment is slightly better than public examinations in that it is both prognostic and diagnostic in nature. But the effectiveness depends on the design of the test items questions used in the evaluation. However writing good questions needs a systematic training in evaluation techniques. This workshop was organised in order to fulfill this need of the Junior college lecturers in the region.

PLAN OF ACTION

It was emphasized how a question calling for a simple "recall" of facts could be changed into a question which calls for manipulating the information thus requiring higher order mental abilities. A systematic approach to achieve this was to make a content analysis of specific topics selected from the syllabus and generate major contents from these. All possible types of questions on a given concept were written to provide a variety of behavioural outcomes. In the process the participants recognised that the task of writing questions is not only challenging but also an art in itself. Such creative work gives immense satisfaction for a teacher to carry out evaluation objectively.

For a given concept, all types of possible questions are written corresponding to various objective levels. This would enable the teachers to appreciate the possibility of testing the learning of a given concept in variety of ways. This workshop is only a beginning.

-2-

MEANING OF EVALUATION

From educational view point, evaluation may be defined as a systematic process of determining the extent to which educational objectives are achieved by the pupils.

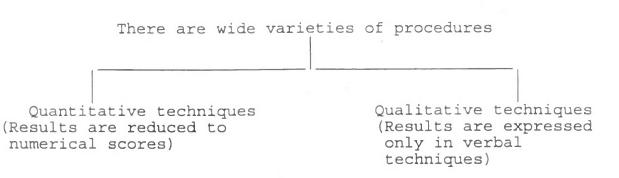
Firstly evaluation implies a systematic process, distinct from casual, uncontrolled observations of pupils.

Secondly, evaluation assumes previously identified educational objectives.

Evaluation is a much more comprehensive term than 'measurement' which is limited to quantitative descriptions of pupils' behaviour. Evaluation includes both qualitative and quantitative descriptions of pupil behaviour with value judgement concerning the desirability of that behaviour. Measurement does not include judgements concerning the value of the behaviour observed.

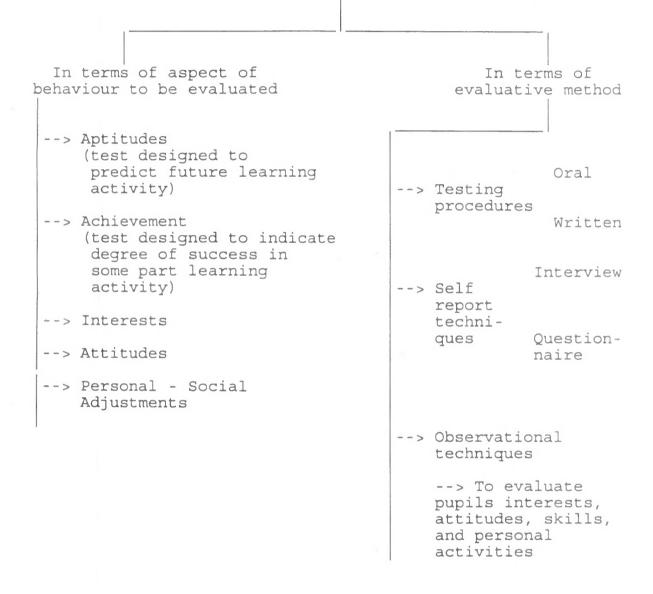
PURPOSE OF EVALUATION

The main purpose of evaluation in a classroom situation is to change pupil behaviour in a desired directions. Thus evaluation becomes an integral part of the teaching-learning situation. The desired directions are educational objectives established by curriculum. Thus evaluation becomes the process of determining the extent to which these objectives are achieved.


Evaluation Teaching Learning

-3-

The interdependence of these three facets of education is clearly recognisable from the following steps.


- Identifying and defining objectives in terms of desired changes in pupil behaviour.
- Planning and directing learning experiences in harmony with the stated educational objectives.
- Determining pupil progress towards the stated educational objectives.
- 4. Using the results of evaluation to improve learning and instruction.

TYPES OF EVALUATION PROCEDURES

-4-

In addition to this broad classification there are two major ways of classification of evaluation procedures.

GENERAL PRINCIPLES OF EVALUATION

- Determining and clarifying what is to be evaluated has priority in evaluation process.
- Evaluation techniques should be selected in terms of purpose to be served.
- Comprehensive evaluation requires a variety of evaluation techniques.
- 4. Proper use of evaluation techniques requires an awareness of their limitations as well as their strengths.
- 5. Evaluation is a means to an end but not an end itself. No evaluation procedure would be used unless it contributes to improved decisions of an instructional, guidance or administrative nature.

RELATING EVALUATION PROCEDURES TO OBJECTIVES

The following sequence of steps summarises this procedure

General Objectives (Goals which direct our teaching)

Specific learning outcomes (Pupils' behaviours are accepted as evidences of attainment of objectives)

Evaluation Techniques (Procedures for obtaining samples of pupil behaviour described in the learning outcomes)

All the procedures used in evaluation program should possess certain common characteristics.

They are of

Validity

Reliability and

Objectivity

CRITERIA OF A GOOD EVALUATION

- Validity : Any good test should measure what it claims to measure.
- 2. Reliability: A good test is one that is reliable, i.e. it gives same rating to a candidate even if he is examined by different examines at different times.
- 3. Objectivity: A test can be considered to be objective if the scoring of the test is not affected by examiner's personal judgement. Thus the opinion, bias or judgement of the examiner can have no influence on the results of objective test.

Other criteria are comprehensive practicability or acceptability.

"Assessment is not merely a part of teaching, it is central to teaching. It is an activity that goes most quickly and directly to the heart of teaching".

Functions of assessment

Two main functions of assessment can be perceived. One is norm referenced in which the main function is to discriminate among students and place them in an order of merit, it is essentially competitive, the results being used for selection purposes like within the school for higher education or outside by an employer. The second is criterion-referenced, it is essentially diagnostic, describing the knowledge or skins which students have attained or not.

STRUCTURE OF THE ATOM

Content analysis

- * Experimental evidences for the presence of fundamental particles in an atom.
- * Nature and properties of fundamental particles.
- * Thomson's model of the atom.
- * Rutherford's model of the atom.
- * Line spectrum of the hydrogen atom.
- * Planck's quantum theory.
- * Bohr's model of the atom.
- * Inadequacies of the Bohr's model.
- * Dual nature of light.
- * Wave nature of electrons.
- * Heisenberg's Uncertainty principle.
- * Quantum mechanical model of the atom.
- * Significance of quantum numbers.
- * Orbitals and their shapes.
- * Electronic configuration of atoms.

STRUCTURE OF ATOM

Concept 1: Atoms are electrical in nature and they are composed of fundamental particles - electrons, protons, and neutrons.

Q. No.	Obj.	Question	Answer
1	K	Given an example of an atom which contain equal number of protons, neutrons and electrons.	He, Ca, Oxygen
2	U	In the case of <u>one</u> among the following conditions the cathode ray cannot be observed. Identify.	
		(a) Very large potential difference between the electrodes.	
		(b) Changing the metal used as the cathode.	(d)
		(c) Changing the gas in the discharge tube.	
		(d) Using a gas at atmospheric pressure.	
3	K	Which of the following statements about cathode rays is not correct ?	
		 (a) Cathode rays cast shadow of an object placed in their path. (b) Cathode rays can rotate a paddle wheel placed in their path. (c) Cathode rays are emanated in all directions from the cathode. (d) Cathode rays are deflected in an electric and magnetic field. 	(c)
4	A	In which of the following cases the e/m of the anode ray particles be the highest ?	
		(a) Oxygen	
		(b) Nitrogen	(c)
		(c) Hydrogen	
		(d) Helium	

-10-

Q. No.	Obj.	Question	Answer
5	υ	The e/m of cathode ray particle is the same irrespective of nature of gas taken in the discharge tube whereas it changes for the anode ray particles. Give reasons.	
6	A	Why can the cathode rays be observed in a discharge tube experiment only at very low pressures ?	
7	U	Isotopes of uranium have the mass numbers 233, 235, 238. Indicate how many neutrons are in excess in the second and third isotopes when compared to the first	
		(a) 2, 5	
		(b) 2,3	
		(c) 3, 2	(a)
		(d) 5, 2	
8	K	The alpha particle emitted by radium in alpha-ray scattering experiment is	
		(a) nucleus of helium	
		(b) nucleus of hydrogen	
		(c) atom of helium	(a)
		(d) atom of hydrogen	
9	K	What are the fundamental particles of an atom ? Describe their properties	
10	U	Which atom does not contain neutron ?	Hydrogen

-11-

Concept 2: Rutherford's model of the atom suggests the arrangement of fundamental particles in an atom.

Q. No.	Obj.	Question	Answer
11	U	Rutherford's alpha-particle scattering experiment eventually led to the conclusion that	(b)
		(a) mass and energy are related.	
		(b) electron occupy space around the nucleus.	
		(c) neutrons are burried deep in the nucleus.	
		(d) electrons move around the nucleus.	
12	U	The Rutherford model need to be rectified because	(c)
		(a) the experimental observations would be true only if gold foil is used.	
		(b) the experiment cannot be performed at all in the case of gaseous state.	
		(c) a charged particle in motion would continuously lose energy.	
		(d) a charged particle in motion would fly away from the nucleus.	
13	K	Rutherford's experiment of alpha- particle scattering showed for the first time that atom has	(c)
		(a) Protons	
		(b) Neutrons	
		(c) Nucleus	
		(d) Electrons	

Q. No.	Obj.	Question	Answer
14	A	Which of the following observations would be expected if the Thomson's model of the atom were correct	(b)
		(a) most alpha-particles would pass through without deflection.	
		(b) most alpha-particles would suffer weak deflection.	
		(c) most alpha-particles would be strongly deflected.	
		(d) only a few of the alpha-particles would be weakly deflected.	
15	K	The diameter of the atom is in the order of	10 ⁻¹⁰ m
16	K	The charge on the alpha-particle is	+2
17	K	Which ratio active substance was used by Rutherford in his alpha-ray scattering experiment	Radium
18	U	List the significant observations in the experiment on scattering of alpha- particles which led Rutherford to conclude that all the positive charge and most of the mass of the atom is concentrated in a tiny nucleus.	

Q. No.	Obj.	Question	Answer
19	U	In Bohr's model of atom, the electron does not fall into the positively charged nucleus because the	(b)
		(a) electrostatic force of attraction is balanced by mechanical forces.	
		(b) quantum rules do not allow it.	
		(c) electron in motion cannot fall into the nucleus.	
		(d) electron is a very light particle.	
20	А	Which of the following transitions will emit highest energy in hydrogen atom	(b)
		(a) $n = 4 > n = 3$	
		(b) $n = 5 > n = 4$	
		(c) $n = 2 > n = 1$	
		(d) $n = 3 > n = 2$	
21	K	In nth energy level the number of orbitals are	(C)
		(a) 2n	
		(b) n	
		(c) n ²	
		(d) n-1	
22	U	Which of the following was not explained by Bohr's theory ?	(b)
		(a) The ionisation energy of hydrogen atom.	
		(b) The atomic spectra of atoms with many electrons.	
		(c) The location of lines in the hydrogen spectrum.	
		(d) The spectra of hydrogen like atoms He ⁺ and Li ⁺² .	

Concept 3: Bohr's model accounts for the line spectrum of hydrogen in terms of Quantum theory.

Q. No.	Obj.	Question	Answer
23	K	The value of Rydberg's constant is	109677.8 cm ⁻¹
24	K	The splitting of spectral lines when the atom is kept in magnetic field is called	
25	K	The maximum number of electrons in any orbit is given by	2n ²
26	K	The further splitting of spectral lines under the influence of eletric field is known as	Stark effect
27	A	Calculate the wavelength of the spectral line when the electron in the hydrogen atom undergoes n(=4)> n(=2) (Rydberg constant = 109678 cm ⁻¹)	486 nm
28	A	Calculate the wavelength of the photon in angstroms that is emitted when an electron in Bohr's orbit $n = 2$ returns to the orbit $n = 1$ in the hydrogen atom (the ionisation energy of the ground state of hydrogen atom is 2.17×10^{-11} ergs per atom.	1220 A
29	U	How does Bohr's model of the atom account for the line spectrum of hydrogen atom ?	

Q. No.	Obj.	Question	Answer
30	A	The wavelength of the green light from a traffic signal is centred at 522 nm. The frequency of this radiation is	(a)
		(a) $5.75 \times 10^{14} \text{ s}^{-1}$	
		(b) $5.22 \times 10^{14} \text{ s}^{-1}$	
		(c) $3.00 \times 10^8 \text{ s}^{-1}$	
		(d) 3.64 x 10 ¹⁴ S ⁻¹	
31	A	The frequency of yellow line in the spectrum of sodium is $5 \times 10^{14} \text{ sec}^{-1}$. The wavelength of this light (in nm) is	(d)
		(a) 1660	
		(b) 400	
		(c) 6×10^5	
		(d) 600	
32	A	A certain radio station broadcasts on a frequency of 900 KHz. what is the wavelength of the electromagnetic radiation broadcast by the radio station $(c = 3 \times 10^8 \text{ ms}^{-1})$	330 mtr
33	К,А	What is meant by the de Broglie wavelength ? Calculate the wavelength of an electron moving with a velocity of 10 ³ ms ⁻¹ . (h = 6.6 x 10 ⁻³⁴ kgm ² s ⁻¹ , mass of electron = 9.1 x 10 ⁻³¹ kg)	0.725x 10 ⁻⁶ m or 7.25x 10 ⁻⁷ m
34	A	Calculate the wavelength of a cricket ball of mass 100 gms moving with a speed of 108 km/hr.	2x10-31 cms ⁻¹
35	K	What is photoelectric effect ? How is the particle nature of light explained by the photoelectric effect ?	
36	K		. Plancks Eminstein

Concept 4: Matter exhibits both particle and wave nature.

Q. No.	Obj.	Question	Answer
37	U	The wave nature of cricket ball is not realised because of its	(b)
		(a) High wavelength	
		(b) Low wavelength	
		(c) Low frequency	
		(d) All the above	
38	K	Define frequency of a wave.	
39	K	Define wave number.	
40	U	why is wave number introduced in addition to frequency ?	
41		What is de Broglie equation ?	= h/mv

Concept 5: The uncertainity principle states that "both the position and momentum of microscopic particles cannot be determined simultaneously with the same degree of certainty", Heisenberg's uncertainty principle.

Q. No.	Obj.	Question	Answer
42	U	Uncertainty principle expresses uncertainty about	(d)
		(a) the energy of an electron in the hydrogen atom.	
		(b) simultaneous knowledge of the energy and position of an electron.	
		(c) simultaneous knowledge of the energy and mass of an electron.	
		(d) none of the above.	
43	U	In the Heisenberg's equation $//x.//p \ge$, $//$ p signifies	(d)
		(a) the momentum of the particle	
		(b) the position of the particle	
		(c) uncertainty in the position	
		(d) uncertainty in the momentum	
44	U	The uncertainty product is neglected for large particles, but it cannot be neglected for an electron because of its	(a)
		(a) small mass and high velocity	
		(b) big mass and low velocity	
		(c) big mass and high velocity	
		(d) small mass and low velocity	
45	K	State Heisenberg's uncertainty principle	
46	A	Calculate the uncertainty in position of an electron if uncertainty in its velocity is $5.7 \times 10^5 \text{ ms}^{-1}$	1.02x 10-10 m
			1

.

Q. No.	Obj.	Question	Answer
47	U	An electron in an atom has the following quantum numbers, $n = 4$, $l = 2$, $m_l = -2$ and $m_s = -1/2$. On the basis of this information, we may conclude that the electron is in a	(c)
		(a) 4s orbital	
		(b) 4p orbital	
		(c) 4d orbital	
		(d) 4f orbital	
48	U	If the principal quantum number is 3, the azimuthal quantum number can have values	(c)
		(a) 1, 2, 3	
		(b) 3, 2, 1, 0, -1, -2, -3	
		(c) 0, 1, 2	
		(d) $+1/2$, $-1/2$	
49	U	How many electrons in an atom can have quantum numbers $n = 3$, $l = 2$, $m = +2$, $s = +1/2$.	(c)
		(a) 5	
		(b) 3	
		(c) 1	
		(d) 9	
50	A	Which set of quantum numbers (n, l, m _l , m _g) would <u>not</u> be possible for a 3d electron ?	(c)
		(a) 3, 2, 0, $+1/2$	
		(b) 3, 2, -1 , $+1/2$	
		(c) $3, 2, 3, -1/2$	
		(d) 3, 2, -2, -1/2	

Concept 6: An electron in an atom is completely described by a set of four quantum numbers.

Q. No.	Obj.	Question	Answer
51	A	Which of the following statements concerning the quantum number is <u>false</u> ?	(b)
		(a) The magnetic quantum number 'm' indicates the possible orientation in a magnetic field.	
		(b) The spin quantum indicates the orientation of the nucleus in a magnetic field.	
52	U	Which of the following sets of quantum numbers is incorrect ?	(b)
		(a) $n = 4$, $l = 0$, $m = 0$, $s = +1/2$	
		(b) $n = 5$, $l = 2$, $m = +3$, $s = -1/2$	
		(c) $n = 3$, $l = 1$, $m = 0$, $s = +1/2$	
		(d) $n = 6$, $l = 5$, $m = +5$, $s = -1/2$	
53	U	Which of the following represents the correct set of the four quantum numbers of a 4d electron ?	(d)
		(a) $n = 4$, $l = 3$, $m = 2$, $s = +1/2$	
		(b) $n = 4$, $l = 1$, $m = 1$, $s = -1/2$	
		(c) $n = 4$, $l = 3$, $m = -2$, $s = +1/2$	
		(d) $n = 4$, $l = 2$, $m = 1$, $s = -1/2$	
54	U	A 2s orbital differs from 2p orbital in	(b)
		(a) Principle quantum number	
		(b) Azimuthal quantum number	
		(c) Magnetic quantum number	
		(d) Spin quantum number	

Q. No.	Obj.	Question	Answer
55	K	An electron in an atom is completely described by	(d)
		(a) Principle quantum number	
		(b) Azimuthal quantum number	
		(c) Spin quantum number	
		(d) A set of four quantum numbers	
56	A	An element has only one electron in its valence shell and the four quantum numbers of that electron are $n = 3$, $l=0$, $m = 0$, $s = +1/2$. Identify the element	(b)
		(a) Li	
		(b) Na	
		(c) K	
		(d) Cs	
57	U	The two electrons occupying the same orbital can be distinguished by	(d)
		(a) Principle quantum number	
		(b) Azimuthal quantum number	
		(c) Magnetic quantum number	
		(d) Spin quantum number	
58	К	For the 'f' electron the azimuthal quantum number is	(d)
		(a) 0	
		(b) 1	
		(c) 2	
		(d) 3	
59	K	Explain the significance of the four quantum numbers.	

Q. No.	Obj.	Question	Answer
60	U	The quantum numbers for the 12th electron of Magnesium is	n l m s 3 0 0 -1/2
61	K	For the 'f' electron, the azimuthal quantum number is	(b)
		(a) 0	
		(b) 1	
		(c) 2	
		(d) 3	
62	K	The principle quantum number signify	(a)
		(a) size and energy of orbit	
		(b) shape of the orbital	
		(c) orientation of orbital	
		(d) direction of the electron	

Q. No.	Obj.	Question	Answer
63	U	In the electronic configuration given below which rule is violated.	(c)
		N:7:	
		(a) Aufbau's principle	
		(b) Pauli's exclusion principle	
		(c) Hund's rule	
		(d) All the above	
64	A	Atomic number of sulphur is 16. In the ground state of the sulphide ion s^{-2} , the electronic configuration is	(c)
		(a) 1s ² 2s ² 2p ⁶ 3s ² 3p ²	
		(b) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	
		(c) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶	
		(d) $1s^2 2s^2 2p^6 3s^2 3p^4 4s^2$	
65	U	$2p_{\mathbf{X}}$ orbital differs from $3p_{\mathbf{X}}$ orbital in	(d)
		(a) shpae	
		(b) orientation	
		(c) direction	
		(d) energies	
66	K,U		
		is 1s ² 2s ² 2p ⁶ 3s ² 3p ¹	
		(a) Identify the element	Al
		(b) Write the quantum numbers associated with 3p electron of this element.	n 1 m s 3 1 0 1

Concept 7: The distribution of electrons of the atom into various orbitals is governed by a set of rules.

Q. No.	Obj.	Question	Answer
67	S	Draw the shapes of 2s and 2p orbitals. Indicate the nodal planes.	
68	K,S	Define an orbital write the shapes and orientation of the d-orbitals.	
69	U	$1s^2 2s^2 2p' 2p' 2p'$ is the electronic x y z configuration of	(c)
		(a) carbon in the ground state	
		(b) carbon in the excited state	
		(c) nitrogen in ground state	
		(d) nitrogen in excited state	
70	U	The total number of p-electrons in phosphorous atom are	(d)
		(a) 2	
		(b) 4	
		(C) 6	
		(d) 9	
71	K	Which among the following orbital is non-directional	(a)
		(a) s	
		(b) p	
		(c) d	
		(d) f	

-24-

Q. No.	Obj.	Question	Answer
72		Match the following equations given in column 'B' with the name of the scientists given in column 'A'	
		A B	
		1. Einstein a. E = $h\hat{v}$	b
		2. Planck b. $E = mc^2$	a
		3. de Broglie c. $/ x. / p \ge (h/2\pi)$	b
		4. Heisenberg d. $\lambda = h/(mv)$	С
		e. \dot{v} = c/ λ	
73		Match the following constants given in column 'A' with the physical constants given in column 'B'.	
		A B	
		1. Planck's constant a. 6.023 x 10^{23}	C
		2. Rydberg constant b. 0.529A	b
		3. Velocity of light c. 6.627 x 10 ⁻²⁷ erg sec	e e
		4. Avagadro number d. 109677.8 cm ⁻¹	a
		5. Radius of first e. 2.99 x 10 ¹⁰ orbit of hydrogen cms/sec	b
		f. 10 ⁻¹³ cms	
74		Match the following units give in colu 'B' with the corresponding physical constants in column 'A'.	רוחו
		A B	
		1. Planck's constant a. m ⁻¹	е
		2. Rydberg's constant b. ms ⁻¹	a
		3. Frequency c. m	d
		4. Wavelength d. s ⁻¹	С
		5. Velocity of light e. Js	a
		5. J	

Q. No.	Obj.	Questi	on	Answer
75		Match the scientis their contribution	ts in column 'A' with in column 'B'	
		A	В	
		1. Rutherford	a. Quantum theory	С
		2. Niels Bohr	b. Uncertainty principle	d
		3. Heisenberg	c. Nucleus	b
		4. De Broglie	d. Stationary wave	e
			e. Matter waves	

-26-

CHEMICAL BONDING

Content analysis

- * Meaning of chemical bonding
- * Theories of chemical bonding
- * Electro theory of valency
- * A: Ionic bond

Lattice energy, crystal structure, Born-Haber cycle Properties of ionic compounds - Fajan's rule

B: Co-valent bond

Polar and non-polar covalent compounds with examples Properties of covalent compounds

* Valency bond theory

and bonds

Formation of molecules with examples

- Limitations of valency bond theory
- * Theory of hybridisdation Explanation of shapes of molecules
- * Valency shell electron pair repulsion theory
- * Co-ordinate covalent bond Properties of coordinate covalent compounds
- * Hydrogen bond and types of hydrogen bonding
- * Consequence of hydrogen bonding
- * Bond angle, bond length, bond energy, dipole moment and resonance

-27-

		atoms to acquire stability. Elements which have electronic configurat other than inert gases will have the tend acquire this for stability.	
Q. No.	Obj.	Question	Answers
1	K	Inert gases do not actively participate in chemical reactions because they have	(b)
		(a) unstable electronic configuration	
		(b) stable electronic configuration	
		(c) electrons in p-sub shell	
		(d) exist in gaseous state	
2	U	Spontaneous chemical reactions occurs	(b)
		(a) with the gain in energy	
		(b) with the loss of energy	
		(c) without any change energy	
		(d) with a loss or gain of energy	
3	A	If two bonded atoms are brought nearer then the optimum distance of their chemical bond through	(b)
		(a) the bond becomes strong	
		(b) the bond becomes weak	
		(c) there will be no change in the strength of the bond	
		(d) it may become strong or weak	
4	U	The compound which does not give precipitate with a solution of silver nitrate. Why ?	
		(a) Carbon tetrachloride	
		(b) Hydrogen chloride	
		(c) Ammonium chloride	
		(d) Calcium chloride	

Concept 1: Chemical bond is the force of attraction between atoms to acquire stability.

Concept	2:	Atoms attain inert gas configuration by the
		complete transfer of one or more electrons from
		the valence shell of one atom to the valence
		shell of the other atom - Ionic bond.

Q. No.	Obj.	Question	Answers
5	K	Ionic bond is formed due to	(a)
		(a) complete transfer of one or more electrons	
		(b) sharing of electrons	
		(c) losing of electrons	
		(d) all the above	
6	U	Ionic compounds generally have high melting point because,	(a)
		(a) they are held together by strong electrostatic forces in solid state	
		(b) they are held by weak Vander Waals forces of attraction	
		(c) they are in solid state	
		(d) they are soluble in polar solvents	
7	U	Which among the following compound has the strongest electrovalent bond ?	(d)
		(a) LiF	
		(b) NaF	
		(c) RbF	
		(d) CsF	
8	U	Identify the compound which has the strongest electrovalent bond ?	(a)
		(a) NaF	
		(b) NaCl	
		(c) NaBr	
		(d) NaI	

Q. No.	Cbj.	Question	Answers
9	K	A strong ionic bond is formed between	large, small
10		Define hydration energy	
11		The second ionisation energy of sodium is much higher than first ionisation energy. While in the case of magnesium the second ionisatino enegy is not much higher than first one. Why ?	

٦,

Con	cept 3	 Atoms attain inert gas configuration by the electrons. a. A covalent bond is formed by mutual sh electrons between two atoms in their v shells. b. If the shared pair of electrons belong one atom, then it is called as co-ordi co-valent bond. 	aring of alence s to
Q. No.	Obj.	Question	Answers
12	U	HCl is a co-valent compound, yet it is soluble in water. This is because	(c)
		(a) water is polar	
		(b) water is non-polar	
		(c) HCl is polar	
		(d) HCl is non-polar	
13	A	If z-1, z and z+1 are the atomic numbers of A, B and C respectively and z is an inert gas, the type of bond formed between A and C is and the type of bond formed between A and A is	ionic, co- valent
14	U	Which of the following exhibits co-valency ?	(a)
		(a) LiCl	
		(b) NaCl	
		(c) KCl	
		(d) RbCl	
15	U	Which among the following has maximum co-valent character ?	(d)
		(a) NaF	
		(b) NaCl	
		(c) NaBr	
		(d) NaI	

Q. No.	Obj.	Question	Answers
16	U	Purely co-valent bonding is possible between	(b)
		(a) two unlike electronegative atoms	
		(b) two like electronegative atoms	
		(c) an electronegative and an electro- positive atom	
		(d) two electropositive atoms	
17	U	Which of the following compounds cannot form a co-ordinate covalent bond	(a)
		(a) PH ₃	
		(b) H ₂ S	
		(c) CCl ₄	
		(d) Cl ₂ 0	
18	K&U	What are the different types of bonds present in ammonium chloride ? Explain.	

Concept 4: The mixing of the atomic orbitals of the sa atom with almost equal energy to form equal number of identical orbitals is known as hybridisation.			
Q. No.	Obj.	Question	Answers
19	K	The four C-H bonds in methane are equally strong and symmetrically disposed in space. This can be explained by	(b)
		(a) VSEPR theory	
		(b) Hybridisation	
		(c) Fajan's rule	
		(d) None of the above	
20	U	Nitrogen in ammonia undergoes hybridisation	(c)
		(a) sp	
		(b) sp ²	
		(c) sp ³	
		(d) sp ³ d	
21	U	Beryllium in beryllium chloride undergoes hybridisation	(b)
		(a) sp ³ d	
		(b) sp	
		(c) sp ²	
		(d) sp ³	
22	K	The molecule which has tetrahedralshape is	(a)
		(a) ethane	
		(b) ethylene	
		(c) acetylene	
		(d) all the above	

-33-

Q. No.	Obj.	Question	Answers
23	U	The hybridisation present in oxygen atom of hydrogen peroxide	(c)
		(a) sp	
		(b) sp^2	
		(c) sp^3	
		(d) sp ³ d	
24	U	The structure of NH^+ ion is $\frac{4}{4}$	(a)
		(a) tetrahedral	
		(b) pyramidal	
		(c) planar triangular	
		(d) trigonal pyramidal	
25	U	Which among the following compound, all the carbon atoms do not have the same type of hybridisation	(d)
		(a) Benzene	
		(b) 1,3 Butadiene	
		(c) Ethylene	
		(d) Propdiene	
26	U	$CH_2=C=CH_2$ type of hybridisation on the second carbon atom is	(a)
		(a) sp	
		(b) sp ²	
		(c) sp ³	
		(d) sp ³ d	
27	K	The shape of the molecule which contains dsp ³ hybridisation is	Tri- gonal
		The shape of the molecule which contains three bonded and one non-bonded pair of electrons.	bi- pyram

Q. No.	Obj.	Question	Answers
28	K	BCl ₃ contains type of hybridisation.	tri- gonal
		(a) sp	pyramic
		(b) sp^2	
		(c) sp ³	
		(d) sp ³ d	
29	U	The hybridisation present in oxygen atom of water molecule is	sp ²
		(a) sp	
		(b) sp^2	
		(c) sp ³	
		(d) sp ³ d	
30	U	The hybridisation present in oxygen atom of water molecule is	sp ³
31	U	The hybridisation present in Boron in diborane is	sp ³
32	K	Define hybridisation	
33	K	Explain the structure of carbon dioxide	
34	K	Explain the structure and bonding in ethylene.	
35	U	Explain the structure and bonding in acetylene with the help of hybridisa-tion.	
36	K	Explain the following hybridisation with an example	
		(a) sp ³ d	
		(b) sp^3d^2	
37	K	Explain the following hybridisation with an example	
		(a) sp	α.
		(b) sp ²	
		(c) sp ³	

١

Q. No.	Obj.	Question	Answers
38	K	Explain the bonding in methane with the help of hybridisation.	
39	U	Which among the following molecules is trigonal bipyramidal ?	(C)
		(a) BeCl ₂	
		(b) BeF ₃	
		(c) PCl ₅	
		(d) H ₂ O	
40	U	Identify the linear molecule from the following	(a)
		(a) BeCl ₂	
		(b) H ₂ O	
		(c) H ₂ S	
		(d) Na ₂ S	

Concept 5: Valence bond theory gives the concept of over- lapping of atomic orbitals. The - bond is form by the headon overlapping of pure or hybrid orbitals.	
The π bond is formed by the lateral or side will overlapping of pure atomic orbitals after the formation of $-$ bond.	3e

Q. No.	Obj.	Question	Answers
41	A	Which among the following is not covered by valence bond theory ?	(d)
		(a) A chemical bond will form due to the overlaping of atomic orbitals.	
		(b) Pauli's exclusion principle and Hund's rule are applicable.	
		(c) Greater the extent of overlapping stronger the bond.	
		(d) The repulsion between two non- bonded pairs is more than the repulsion between the bonded pairs.	
42	U	Which of the following contains bonding	(c)
		(a) CH ₄	
		(b) C ₂ H ₆	
		(c) C ₂ H ₄	
		(d) C ₃ H ₈	
43	U	Which among the following contains only bonds	(a)
		(a) Ethane	
		(b) Ethylene	
		(c) Acetylene	
		(d) Benzene	

Q. No.	Obj.	Question	Answers
44	U	Which of the following theory does not explain the bond angle of ammonia ?	(c)
		(a) Hybridisation theory	
		(b) Valence bond theory	
		(c) Electronic theory of valency	
		(d) Valence shell electron pair repulsion theory	
45	K	Acetylene contains $_$ and $_$ $\overline{\pi}$ bonds	3 œ, 3 TT
46	U	←p-p bond is more than T p-p bond	Stronge
47	U	In acetylene molecules there were	(a)
		(a) 3 $-$ bonds and 2 π bonds	
		(b) 5 $\overline{}$ bonds and 1 π bonds	
		(c) 2 \bullet bonds and 3 Π bonds	
		(d) 2 σ bonds and 2 Π bonds	
48	S	Give the orbital and electron data representation for bonding in the following molecules.	
		(a) HCl	
		(b) Cl ₂	
		(c) 0 ₂	
		(d) N ₂	
49	S	Draw the orbital overlapping in acetylene molecule and mention its shape.	

		election pairs.	
Q. No.	Obj.	Question	Answers
50	A	Bond angle in ammonia is less than in menthane due to	(a)
		(a) lone pair-bond pair electrons repulsion.	
		(b) bond pair-bond pair electrons repulsion.	
		(c) lone pair-long pair electrons repulsion.	
		(d) All the above.	
51	A	The bond angle in water is less than in ammonia because of	(c)
		(a) lone pair-bond pair electrons repulsion.	
		(b) bond pair-bond pair electrons repulsion.	
		(c) lone pair-long pair electrons repulsion.	
		(d) All the above.	
52	A	The bond angle in ammonia is less than in methane. Why ?	
53	A	The bond angle in water is less than in ammonia. Why ?	
54	U	How will you predict the shapes of the following molecules by the application of VSEPR theory ?	
		(a) BeCl ₂	
		(b) BF ₃	
		(c) NH ₃	
		(d) CH4	

Concept 6: VSEPR theory explains the structural deviations due to repulsion between bonded and non-bonded electron pairs.

concept 7: Hydrogen bond is the weak electrostatic attractive between the hydrogen and most electronegative atom of the same or the and molecule.			
Q. No.	Obj.	Question	Answers
55	K	Hydogen bond is the electrostatic force between the	(b)
		(a) hydrogen and hydrogen atom.	
		(b) hydrogen atom and more electro- negative atom	
		(c) hydrogen atom and more electro- negative atom	
		(d) between more electronegative and more electropositive atom.	
56	U	Hydrogen bond is not found in	(d)
		(a) ammonia	
		(b) water	
		(c) hydrogen fluoride	
		(d) hydrogen chloride	
57	U	Hydrogen halide containing hydrogen bond is	(a)
		(a) HF	
		(b) HCl	
		(c) HBr	
		(d) HI	
58	K	The hydrogen bond formed between two atoms of the same molecule is	Intra mole- cular hydrog bond
59	U	Salicylaldehyde is an example for type of hydrogen bonding.	Intra mole- cular hydrog bond

Concept 7: Hydrogen bond is the weak electrostatic

Q. No.	Obj.	Question	Answers
60	U	is responsible for high boiling point of water in liquid state.	Hydrogen bonding
61	U	Identify the molecule in which inter- molecular hydrogen bond is present.	(d)
		(a) Salicylaldehyde	
		(b) Salicylic acid	
		(c) O-Nitrophenol	
		(d) Ethanol	
62	U	Which molecule has intramolecular hydrogen bonding ?	(d)
		(a) Phenol	
		(b) Acetic acid	
		(c) Acetaldehyde	
		(d) O-Nitrophenol	

Q. No.	Obj.	Question	Answers
63	K	The product of distance between the charged ions and their magnitude of charge is	(b)
		(a) Coulombic forces	
		(b) Dipole moment	
		(c) Band energy	
		(d) Binding energy	
64	U	The compound whose dipole moment is not zero is	(d)
		(a) CCl ₄	
		(b) BCl ₃	
		(c) BeCl ₂	
		(d) HCl	
65	K	The units for dipole moment are	(a)
		(a) esu cm	
		(b) gm cm	
		(c) cms ⁻¹	
		(d) erg sec	
66	A	From the given data find the molecule whose dipole moment is not zero.	(b)
		(1) H-Cl (a) 1 and 2	
		(2) O-H (b) 1, 2 and 3	
		H (c) 4 and 5	
		(3) N (d) 1, 2 and 5	
		н н н	
		(4) F F	
		B	
		F	

Concept 8: Dipole moment is the product of distance between the charged ions and their magnitude of charge.

Q. No.	Obj.	Question	Answers
67	A	Find the molecule which has zero dipole moment.	(c)
		(a) H ₂ O	
		(b) H ₂ S	
		(c) CO ₂	
		(d) NH ₃	
68	U	Which among the following is not a linear molecule ?	(c)
		(a) CO ₂	
		(b) C ₂ H ₂	
		(c) H ₂ S	
		(d) BeCl ₂	
69	K	Define dipole moment.	
70	K	What are the units of dipole moment ?	Debye units

Concept 9: Lattice energy is the amount of energy released when one mole of ionic crystal is formed from the constituent ions in the gaseous state.

Q. No.	Obj.	Question	Answers
71	K	The shape of sodium chloride crystal is	Face centere cubic lattice
72	K	The co-ordination number of sodium in sodium chloride crystal is	six
73	U	The co-ordination number of cesium in cecium chloride is	eight
74	K	The energy required to convert solid sodium into gaseous state is	subbli mation energy
75	K	Born-Habar cycle is the application of	Hess law
75	K	Sodium chloride crystal is the systemic arrangement of	(b)
		(a) NaCl molecules	
		(b) Na ⁺ and Cl ⁻ ions	
		(c) Na and Cl atoms	
		(d) Na atom and Cl ₂ molecules	
77	K	Define Lattice energy	
78	K	What is unit cell ?	
79	K	Define subblimation energy.	

Q. No.	Obj.	Question	Answers
80	U	Which among the following will have the maximum carbon-carbon bond energy ?	(c)
		(a) Ethane	
		(b) Ethylene	
		(c) Acetylene	
		(d) Benzene	
81	K	The bond energies of four C-H bonds in methane are	(b)
		(a) equal	
		(b) unequal	
		(c) equal for two C-H bonds only	
		(d) equal for three C-H bonds only	
82	K	Benzene is more stable because	(c)
		(a) it contains 🕶 bonds	
		(b) it contains π bonds	
		(c) it is a resonance hybrid	
		(d) it is cyclic	
83	U	The carbon-carbon bond length is maximum in	(d)
		(a) H ₃ C-CH ₃	
		(b) $H_2C=CH_2$	
		(c) HC≡CH	
		(d) Benzene	ł.

Concept 10: Molecules are characterised by bond length, bond angle, bond energies and resonance structures.

Q. No.	Obj.	Question	Answer
84	U	Which among the following mol will have more bond energy ?	ecules (b)
		(a) F ₂	
		(b) Cl ₂	
		(c) Br ₂	
		(d) I ₂	
85	U	The O-H bond length in the formolecules I. H_2O_1 , II. H_2O_2 , I	
		(a) equal in all I, II and II	.I
		(b) equal only in I and II	
		(c) equal only in II and III	
		(d) different for all the the	ree
86	K	Define bond energy.	
87	K	What is resonance hybrid ?	
88	U	Why acetylene is more stable ethylene ?	than
89	U	Match the type of chemical bo column A with the appropriate under column B	ond under e examples
		A	3
		1. Ionic bond a. Nitroge	en c
		2. Polar b. Water covalent bond	е
		3. Non-polar c. Sodium covalent bond	chloride a
		4. Hydrogen d. Ammoni bond	um ion b
		5. Co-ordinate e. Hydrog covalent bond f. Sodium	en chloride d

Q. No.	Obj.	Que	stion	Answers
90	U	Match the type of column A with the column B.	hybridisation in examples given under	
		А	В	
		1. sp hybridi- sation	a. Methane	е
		2. sp ² hybridi- sation	b. Sulphurhexa chloride	С
		3. sp ³ hybridi- sation	c. Ethylene	a
		4. sp ³ d hybridi- sation	d. Phosphorus trichloride	f
		5. sp ³ d ² hybridi-	e. Acetylene	b
		sation	f. Phosphorus penta chloride	
91	U	Match the compound with the type of o column A	s under column B orbital overlaps in	
		A	В	
		1. s-s overlapping	a. Ethylene	f
		2. s-p overlapping	b. Acetylene	е
		3. p-p overlapping	c. Ethane	d
		4. sp-sp overlappi	ng d. Chlorine	b
		5. sp ² -sp ² overlap	ping e. Hydrogen chloride	a
			f. Hydrogen	-

Q. No.	Obj.	Qu	lestion	Answers
92	K		ngles under column B iate compounds under	
		A	В	
		1. Methane	a. 180 ⁰	C
		2. Ethylene	b. 104.5 ⁰	е
		3. Acetylene	c. 109 ⁰ 28'	a
		4. Water	d. 92 ⁰	b
		5. Ammonia	e. 120 ⁰	f
			f. 107 ⁰	
93	K	Match the shapes column A with the		
		A	В	
		1. Methane	a. Linear	b
		2. Beryllium chloride	b. Tetrahedron	a
		3. Boron trifluoride	c. Trigonal pyramid	d
		4. Water	d. Trigonal planar	е
		5. Ammonia	e. 'V' shaped	С
			f. Trigonal bipyramid	

.

PERIODIC CLASSIFICATION

Content analysis

- * Historical development of classification of elements -Lothar Meyer and Mendeleev.
- * Long form of the periodic table.
- * Periodic properties-Atomic radius, ionic radius, ionisation energy, electron affinity and electronegativity.
- * Trends in properties along a period and down the group.

Concept 1: Observation of periodicity in arrangement according to atomic size - Lothar Meyer

Q. No.	Obj.	Question	Answer
1	K	Lothar Meyer's observation of periodicity was based on the relation- ship between physical properties and	(a)
		(a) atomic masses	
		(b) atomic numbers	
		(c) electronic configuration	
		(d) atomic volume	
2	K	The law of triads is applicable to the following set	(a)
		(a) Cl, Br, I	
		(b) H, O, N	
		(c) Se, Te, As	
		(d) C, N, O	

Q. No.	Obj.	Question	Answer
3	K	In the Mendeleev periodic table elements are arranged according to their	(a)
		(a) increasing atomic mass	
		(b) decreasing atomic mass	
		(c) increasing atomic number	
		(d) increasing atomic size	

Concept 2: Observation of periodicity in arrangement according to atomic weight -Mendeleev.

?•

Concept 3: Arrangement of elements in the increasing order of their atomic numbers show periodicity in their electronic configurations - Long form of periodic table.

Q. No.	Cbj.	Question	Answer
4	X	In the long form of the periodic table the elements are arranged in the ascending order of their	(b)
		(a) atomic mass	
		(b) atomic number	
		(c) atomic mass	
		(d) atomic volume	
5	K	Elements in the same vertical group of the periodic table have same	(c)
		(a) number of electrons	
		(b) atomic number	
		(c) number of valency electron	
		(d) electronic configuration	
6	U	Elements with atomic number 20 is placed in which period of the periodic table	(c)
		(a) 4	
		(b) 3	
		(c) 2	
		(d) 1	
7	K	Elements having outermost electronic configuration ns ² np ⁶ are called	(a)
		(a) noble gases	
		(b) alkali metals	
		(c) alkaline earth metals	
		(d) halogens	

Q. No.	Obj.	Question	Answer
8	K	The elements of a group in the periodic table have the same number of in the valency shell.	Elec- trons
9	K	State modern periodic law	
10	K	What is meant by periodic classifica- tion ?	
11	K	What is the basis for the classifica- tion of the elements in the long form of the periodic table ?	
12	K	is the liquid non-metal in the periodic table.	Bromine

Q. No.	Obj.	Question	Answer
13	K	Which of the following does not reflect the periodicity of the element ?	(d)
		(a) atomic size	
		(b) electronegativity	1
		(c) ionisation potential	
		(d) neutron-proton ratio	
14	U	Which of the following electronic configurations has lowest ionisation energy ?	(c)
		(a) 1s ² 2s ² 2p ⁶ 3s ¹	
		(b) $1s^22s^22p^5$	
		(c) 1s ² 2s ² 2p ⁶ 3s ² 3p ¹	
		(d) $1s^22s^2$	
15	U	Which of the following properties always increases along a period in moving from left to right	(d)
		(a) ionisation energy	
		(b) electron affinity	
		(c) atomic size	
		(d) nuclear charge	
16	U	The largest number of unpaired electrons is present in	(a)
		(a) nitrogen	
		(b) oxygen	
		(c) fluorine	
		(d) sulphide ion	

Concept 4: Periodicity in properties of elements can be

Q. No.	Obj.	Question	Answer
17	K	Match the terms given in column A with those given in column B	
		A B	
		1. Electronc a. Paulings scale affinity	С
		2. Ionisation b. Atomic radius energy	d.
		3. Electro- c. Exothermic negativity	a
		4. Covalent d. Endothermic bond length	b
18	U	Oxygen molecule has paramagnetism because it has electrons.	Unpai- red
19	K	When a neutral atom is converted into an ion its atomic number	Remains same
20	K	What is meant by periodicity ?	

Q. No.	Cbj.	Question	Answer
21	U	Which of the following sets of the element has the strongest tendency to form positive ions in the gaseous state ?	(a)
		(a) Li, Na, K	
		(b) Be, Mg, Ca	
		(c) F, Cl, Br	
		(d) O, S, Se	
22	K	Which of the following statement is incorrect ?	(d)
		(a) Group I elements are called alkali metals	
		(b) Group II metals are found in free state	
		(c) Metallic character increases on moving down a group	
		(d) p-block elements are non-metals	
23	K	Which of the following represents the electronic configuration of the most electropositive element.	(b)
		(a) [He] 2s ¹	
		(b) [Xe] 6s ¹	
		(c) [He] 2s ²	
		(d) [Xe] 6s ²	
24	K	If the electronic configuration is $1s^22s^22p^63s^2$. It is a	(a)
		(a) metal	
		(b) non-metal	
		(c) metalloid	
		(d) noble gas	

Concept 5: Classification of elements into different blocks in the long form of the periodic table.

Q. No.	Obj.	Question	Answer
25	U	The elements with atomic numbers 2, 10, 18, 36, 54 and 86 are all	(a)
		(a) noble gases	
		(b) light metals	
		(c) halogens	
		(d) rare earths	
26	K	How are elements classified based on electronic configuration ?	
27	U	Write the electronic configuration of an element with atomic number 12. Predict the block, group and period to which the element belongs.	
28	U	Explain why there are eight elements in the second period ?	
29	U	Atomic numbers of the some elements are given below which of them belongs to the same group of the periodic table.	
		Z = 21, 30, 39, 48	

i

		environment.	
Q. No.	Obj.	Question	Answer
30	U	Which of the following sets of ions are iso electronic ?	(b)
		(a) Mg ²⁺ , Ba ²⁺	
		(b) Ca ²⁺ , S ²⁻	
		(c) Na ⁺ Al ⁺	
		(d) F ⁻ O ⁻	
31	U	Identify the set in which the elements are in the increasing order of their size.	(c)
		(a) I, Br, Cl	
		(b) Na, Mg, C	
		(c) Li, Na, K	
		(d) C, N, O	
32	U	How are ionic radii of Na ⁺ and F ⁻ determined by Pauling method ?	
33	K	The bond length between two identical atoms changes with and of bonds	Number, Nature
34	U	C ⁴⁻ , N ³⁻ , Na ⁺ , Al ³⁺ In these iso- electronic series size with in nuclear charge.	decreases increase
35	K	Mg^{2+} , Na ⁺ and Ne are known as	Isoelec tronic
36	U	Calculate the atomic radius of carbon given that C-C covalent bond length is 0.154 nm.	
37	K	State slater rule	

Concept 6: Atomic radius is a measure of the effective size of atom. It has a different value in different environment.

Q. No.	Obj.	Question	Answer
51	U	Contrary to the expectations, oxygen has lower ionisation energy than nitrogen. Why ?	
52	U	Arrange the following in the increasing order of their ionisation energy. Na, Li, Rb, K	Rb <k< Na<li< td=""></li<></k<
53	U	Why are the ionisation energies of oxygen and sulphur less than that of nitrogen and phosphorus ?	
54	U	Why is the first ionisation energy less than that of subsequent ionisation energies ?	
55	U	The reason for the sudden drop in the ionisation energy values of Na from Ne.	(C)
		(a) Atomic size of Na is larger than Ne.	
		(b) Added electron is added into the new level.	
		(c) Both (a) and (b) are correct	
		(d) Neither (a) nor (b) is correct.	

Q. Obj. Ouestion Answer No. 56 Which of the following represents the Κ (a) correct order of electron affinity ? (a) F > Cl > Br > I(b) C < N < O < F(c) N < C < O < F(d) C > Si > P > N57 Which of the following has zero value of (d)Κ electron affinity ? (a) Na (b) F (c) Mq (d) Ne 58 U Electron affinity of nitrogen is zero while oxygen has substantial value of electron affinity. Why ? 59 U Adding an electron to a neutral gaseous atom is exothermic while addition of second electron is endothermic. Explain. Define electron affinity. 60 Κ I<Br< 61 K Arrange the following in the increasing order of their electron affinities F<C1 F, Cl, Br, I 62 Κ What are the factors affecting electron affinity of an atom ? 63 IJ The first electron affinity of oxygen atom has positive values whereas the second electron affinity has negative value. Why ? Why has fluorine less electron affinity 64 U than chlorine ?

Concept 8: Electron affinity is the energy released when an electron is added to a neutral gaseous atom.

Q. No.	Obj.	Question	Answer
65	K	Which of the following is most electro- negative ?	(C)
		(a) Be	
		(b) Al	
		(c) C	
		(d) Ga	
66	K	Select the most electronegative element among the following.	(b)
		(a) Al	
		(b) S	
		(c) Si	
		(d) P	
67	K	Which of the following is a relative property ?	(b)
		(a) electron affinity	
		(b) electronegativity	
		(c) ionisation energy	
		(d) atomic size	
68	K	Define electronegativity.	

Concept 9: Electronegativity is the measure of the ability

Q. No.	Obj.	Question	Answer
69	K	The size of the following species follows the order	(a)
		(a) I ⁻ > Br ⁻ > Cl ⁻ > F ⁻	
		(b) F ⁻ > Cl ⁻ > Br ⁻ > I ⁻	
		(c) Cl ⁻ > F ⁻ > Br ⁻ > I ⁻	
		(d) $Br^- > Cl^- > I^- > F^-$	
70	К	Explain the trend of atomic radius along a period and in a group.	
71	U	How does atomic size of elements in the same group vary ? Give reasons for the variation in size.	
72	U	Arrange the elements C, N, O, F in the increasing order of their size.	F<0< N <c< td=""></c<>

Concept 10: The general trend in atomic size decreases along a period and increases down the group.

Concept 11: The general trend in ionisation energy is electron affinity and electronegativity increases along a peiod and decreases down a group.					
Q. No.	Obj.	Question	Answer		
73	K	Electron affinity of atoms decreases from top to bottom in a group because			
		(a) atomic size increases			
		(b) nuclear charge increases			
		(c) shielding effect decreases			
		(d) effective nuclear charge decreases			
74	U	How does electronegativity vary from left to right in a period ? and give reasons.			

• • •

Q. No.	Cbj.	Question	Answer
75	K	Which among the following electronic configurations screening effects is more ?	(b)
		(a) 1s ² 2s ² 2p ⁶	
		(b) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰	
		(c) 1s ² 2s ¹	
		(d) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹	
76	K	The order of screening effect of orbital electron is	(b)
		(a) d > f > s > p	
		(b) $f > d > p > s$	
		(c) s > d > p > f	
		(d) s > p > d > f	
77	U	The increase in the number of shells, the screening effect.	incre- ases
78	U	The electronegativity values of A, B, C are 1, 2.1, 4 respectively. The nature of bond A-C and B-C are	(c)
		(a) covalent and ionic	
		(b) ionic and ionic	
		(c) ionic and covalent	
		(d) covalent and covalent	
79	K	The electronegativity of an element according to Mullikan's scale is	IE+EA 2

×.

Concept 12: Shielding effect is the screening of valence electrons by the intervening electrons present in the inner shells from nuclear attractions.

Q. No.	Obj.	Question	Answer
80	K	Arrange the following compounds in the decreasing order of ionic character. HCl, HBr, HF, HI	HF>HCl >HBr> HI
81	U	Classify the following as ionic compounds and covalent compounds CsF , NaCl, CCl_4 , CH_4 , CaF_2	CsF,NaCl CaF ₂ -Ioni CCl ₄ ,CH ₄ -Covalent
82	K	Define the term electronegativity. Give two example.	
83	U	How could the electronegativity value be used to predict the ionic character ?	

d-block elements

Content Analysis

- * Definition of d-block and transition elements.
- * Electronic configuration of d-block elements.
- * General trends in properties of d-block elements.
- * Characteristics properties of transition elements.
- * Formation of complex compounds.
- * Werner's theory.
- * Nomenclature of coordination compounds.
- * Geometry of some complex compounds.
- * Preparation and properties of some selected compounds of transition elements.
- * Metallurgy of some transition elements.

		elements.	
Q. No.	Obj.	Question	Answer
1	K	What is a transition element ? Give examples.	
2	K	Which one of the following is not a true transition element	Zn
		(a) Mn	
		(b) Cr	
		(c) Zn	
		(d) Sc	
3	K	Which one of the following represents the electronic configuration of d-block elements.	
		(a) $(n-1)d^{1-9}ns^2$	
		(b) $nd^{1-9} (n+1)s^2$	
		(c) $(n-1)d^{1-10}ns^{1-2}$	
		(d) All the above	
4	A	Write the electronic configurations of copper and chromium.	
5	A	Why have the third series of transition elements almost the same size, when compared to II series of transition elements ?	
6	K	Zn, Cd, Hg are d-block elements but not	
7	K	What is the general electronic configuration d-block elements ?	
8	K	Name any two characteristic properties of d-block elements.	

Concept 1: The atoms in which electrons are being filled in the inner d-orbitals are known as d-block elements.

Q. No.	Obj.	Question	Answer
9	K	The first transition series include	(b)
		(a) Ythium-cadmium	
		(b) Scandium-Zinc	
		(c) Lanthanum-Mercury	
		(d) Scandium-Argon	
10	К	The d-block elements include the following	(a)
		(a) 3-12 groups	
		(b) 1-10 groups	
		(c) 1-2 groups	
		(d) 13-18 groups	
11	K	The atomic number of the given element is 29. Identity the name, group and the colour of its salts.	
12	U	Which of the following group is not regarded as transition element	(C)
		(a) Fe, Ru, Os	
		(b) Cu, Ag, Au	
		(c) Zn, Cd, Hg	
		(d) Ti, Zn, Hf	

Concept 2: The atoms/ions with partially filled d-orbital are known as transition elements.

Q. No.	Obj.	Question	Answer
13	K	The electronic configuration of three successive transition elements are	
		[Ar] $3d'4s^2$, [Ar] $3d^24s^2$, [Ar] $3d^34s^2$ Write the configuration of the next element.	
14	U	Cu has the configuration of [Ar]3d ¹⁰ 4s'. Even then it is considered as a transition metal. Explain	
15	U	The configuration of Mn is [Ar] 3d ⁵ 4s ² The configuration of Mn ⁺ will be	
16	υ	Half-filled d-orbital is possessed by (a) Fe ²⁺ (b) Sc ³⁺ (c) Mn ²⁺ (d) Cr ³⁺	(C)
17	K	d-block elements are hard metals because they have high and low	

	ionisation energy and oxidation states ar explained on the basis of their electroni configuration.	
Obj.	Question	Answer
K	The atomic radius decreases as we move from Cr to Cu. Explain.	
U	The ionic size does not vary along a period with the increase of atomic number in d-block elements. Why ?	
U	The atomic radii of the d-block elements of a given I transition series generally with increase in atomic number.	decrease
U	Why transition elements have varible oxidation states ?	
K	What is periodic variation of atomic radii along the period and down the grcup ?	
U	Manganese does not exist in the oxidation state of	(c)
	(a) +2	
	(b) +3	
	(c) +5	
	(d) +7	
U	Which are the following is a stable pair of ion,	(c)
	(a) Fe^{+3}/Mn^{+3}	
	(b) Fe^{+2}/Mn^{+2}	
	(c) Fe^{+3}/Mn^{+2}	
	(d) Fe^{+2}/Mn^{+3}	

-70-

٠

Q. No.	Obj.	Question	Answer
25	K	Name the transition metal that shows maximum oxidation state.	
26	K	Atomic radii of I transition series along the same period,	(b)
		(a) Increases	
		(d) decreases	
		(c) first increases then decreases	
		(d) first decreases then increases	
27	U	The maximum oxidation number is exhibited by	(C)
		(a) Mn	
		(b) Cr	
		(c) Os	
		(d) Zn	
28	U	Decrease in radius is small as we move from Cr to Cu because	(a)
		(a) The effective nuclear charge increases slightly	
		(b) The effective nuclear charge increases leargely	
		(c) The effective nuclear charge decreases slightly	
		(d) The effective nuclear charge decreases largely.	
29	K	Which of the following metals having zero oxidation state.	(b)
		(a) K_4 [Fe(CN) ₆]	
		(b) [Ni(CO) ₄] [Ni(CO) ₄]	
		(c) $[Co(NH_3)_6]Cl_3$	
		(d) $[Cu(NH_3)_4]So_4$	

Concept 4: Transition elements are more prone to form coordination compounds due to the availability of vacant d-orbitals.

Q. No.	Obj.	Question	Answer
30	к	What is co-ordination number ?	
31	U	What is the oxidation number of Ni in $[Ni(CO)_4]$?	
32	U	What are the factors favourable for the formation of complexes ?	
33	K	Co-ordination number is,	(d)
		(a) effective atomic number	
		(b) primary valency	
		(c) number of elements attached to the central metal ion	
		(d) number of chemical bonds formed between the central atom and ligard	
34	U	Most stable complex ions are formed with metallic ions having	(b)
		(a) larger size and high nuclear charge	
		(b) small size and high nuclear charge	
		(c) larger size and small nuclear charge	
		(d) small size and small nuclear charge	

Q. Obj. No.	Question	Answer
35 U	Write the equation for the dissociation of $[Co(NH_3)_6]Cl_3$ in water ?	[Co(NH ₃) ==== [Co(NH ₃)
		+ 3C1-
36 U	The number of moles of AgCl precipitated when excess of AgNO ₃ is mixed with one mole of $[Co(NH_3)_4Cl_2]Cl$ is	One
37 S	Calculate the effective atomic number of metal ion in K_3 [Fe(CN) $_6$]	
38 A	How many ions are produced by $[Co(NH_3)_6]Cl_3$	Two
39 U	The number of moles of AgCl precipitated when excess AgNO ₃ is mixed with one mole of $[Co(NH_3)_4Cl_2]Cl$ is	(b)
	(a) 0	
	(b) 1	
	(c) 2	
	(d) 3	
40 U	AgCl is soluble in	(d)
	(a) aqua regia	
	(b) H ₂ SO ₄	
	(c) HCl	
	(d) NH ₄ OH	
41 K	$FeSO_4$ (NH ₄) ₂ SO ₄ .6H ₂ O is an example of	(b)
	(a) simple salt	
	(b) double salt	
	(c) complex compound	
	(d) co-ordination compound	

Concept 5: A co-ordination compound is one in which a central metal ion/atom is linked to a group of atoms/ions (ligands) through co-ordination bonds.

Q. No.	Obj.	Question	Answer
42	U	Zn ²⁺ dissolves in excess of NaOH due to the formatino of	(b)
		(a) [Zn(OH) ₂]	
		(b) Na ₂ [Zn(OH) ₄]	
		(c) Na ₂ [Zn(OH) ₂]	
		(d) [Zn(OH) ₄]	
43	K	What is monodentate ligand ? Give two examples.	CN⁻, CO
44	S	Calculate the charge on the metal ions in the following complexes	
		(a) $Fe[(CN)_6]^{3-}$	
		(b) $[Cu(NH_3)_4]^{2+}$	
		(c) [Fe(CN) ₆] ^{$4-$}	

1

		co-ordination number.	
Q. No.	Obj.	Question	Answer
45	K	In which of the following compounds the metal has zero oxidation state ?	(a)
		(a) [Fe(CO) ₅]	
		(b) K_4 [Fe(CN) ₆]	
		(c) [Fe(SCN) ₃]	
		(d) $Fe_4 [Fe(CN)_6]_3$	
46	K	What is co-ordination number ?	
47	U	A Ni ²⁺ ion is bonded to two molecules of ethylenediamine. This shows that the ligand is	bi- dentate
48	K	Co-ordination number is	(d)
		(a) effective atomic number	
		(b) primary valency	
		(c) number of elements attached to the central metal ion	
		(d) Number of chemical bonds formed between the central atom/ion and ligands.	
49	K	A metal with co-ordination number 4 will be found in and hybridization.	dsp ² , sp ³

Concept 6: The number of ligands attached to the central metal ion in a co-ordination compound is the co-ordination number.

Concept	7:	There	are	specific	ways	in	which	C0-
		ordinat	tion	compounds	s are	rep	present	ed.

Q. No.	Obj.	Question	Answer
50	К	The correct formula for potassium ferricyanide is	(c)
		(a) K_4 [Fe(CN) ₆]	
		(b) $K[Fe(CN)_6]$	
		(c) K_3 [Fe(CN) ₆]	
		(d) K_2 [Fe(CN) ₆]	
51	U	Which of the following Werner theory does not explain	(c)
		(a) Dual nature of anion	
		(b) Oxidation state of central metal ion	
		(c) Size of the central metal atom/ion	
		(d) Co-ordination number.	
52	S	The oxidation state of the inner and outer sphere of Fe in Fe_4 [Fe(CN) ₆] ₃ respectively	(d)
		(a) 2 and 4	
		(b) 3 and 2	
		(c) 4 and 3	
		(d) 2 and 3	

Q. No.	Obj.	Question	Answer
53	K	The IUPAC name of K_4 [Fe(CN) ₆] is	(C)
		(a) potassium hexacyanoferrate(II)	
		(b) potassium cyanide	
		(c) potassium hexacyanoferrate	
		(d) prussian blue	
54	K	Give the IUPAC name and structure of $[Cu(NH_3)_4]SO_4$	
55	U	Find out the co-ordination number of metal ion in the following complexes.	
		(a) $[Co(NH_3)_6]Cl_3$	
		(b) [Cu(NH ₃) ₄]SO ₄	
		(c) K_3 [Fe(CN) ₆]	

Concept 8: A set of rules given the naming of coordination compounds

		transition metal	compounds	
Q. No.	Obj.	Ques	tion	Answer
56	U	Why is Sc ³⁺ colo	urless ?	
57	K	Explain the natu coloured ions.	re of formation of	
58	K	Match the follow column A with th column B	ing metal ions in e colour in the	
		А	В	
		1. Zn ²⁺	a. Pink	
		2. Cr ³⁺	b. Yellow	
		3. Mn ²⁺	c. Green	
		4. Fe ²⁺	d. Colourless	
		5. Fe ³⁺	e. Green	
			f. Violet	
			g. Blue	
59	K	The colour of th due to the prese	e transition metal is nce of	(c)
		(a) vacant d-orb	pital	
		(b) presence of	paired electrons	
		(c) partially fi	lled d-orbitals	
		(d) partially fi	lled p-orbitals	
60	U	Why is titanium		
61	K	Mention any thre their colours.		
62	К		ement has completely als will its ion show ?	

Concept 9: The case of electron transition from one energy state to another generally imparts colour to the transition metal compounds

Q. No.	Obj.	Question	Answer
63	U	Acidified potassium dichromate solution when reduced using Mohr's salt solution the orange colour changes to gree due to the formation of	(b)
		(a) Cr ⁺⁷	
		(b) Cr ⁺³	
		(c) Cr ⁺⁶	
		(d) Cr+2	
64	K	Which gives blue colour with ammonia solution	(b)
		(a) Mn ⁺²	
		(b) Cu ⁺²	
		(c) Cr ⁺²	
		(d) Ni+2	
65	U	Which of the following is colourless ?	(c)
		(a) Mn ⁺⁷	
		(b) Cr ⁺³	
		(c) Zn+2	
		(d) Fe ⁺²	
66	U	The ion which shows colour due to the absorption of light	Visible
67	U	Cu ⁺² ion absorbs orange colour so it appears in colour	Blue
68	U	Copper sulphate dissolves in ammonia solution giving deep blue colour due to the formation of	(b)
		(a) $[Cu(NH_3)_2]SO_4$	
		(b) [Cu (NH ₃) ₄] SO ₄	
		(c) CuSO ₄ 5H ₂ O	
		(d) $[Cu(NH_3)_2(H_2O)_2]SO_4$	

Q. No.	Obj.	Question	Answer
69	U	A transition metal'X'has a configuration [Ar]3d ⁴ in its +3 oxidation state. The atomic number of 'X' is (a) 25 (b) 26 (c) 22 (d) 19	(a)

Concept 10: The magnetic properties of co-ordination compounds are explained on the basis of electronic configuration of central metal ions.

Q. No.	Obj.	Question	Answer
70	K	What is paramagnetism ? Which elements exhibit paramagnetism ?	
71	А	Which metals of d-block elements could be magnetized ?	
72	U	What type of magnetic property is shown by Cu ⁺ ion ?	
73	U	In which of the following the maximum magnetic behaviour is observed ?	(c)
		(a) 2 upaired electron	
		(b) 3 unpaired electron	
		(c) 5 unpaierd electron	
		(d) 1 electron	
74	K	Differentiate between para-, dia- and ferromagnetism.	
75	U	If the number of unpaired electrons are more property will be more.	Magnetic
76	K	Paramagnetism is shown by d-block elements due to	(c)
		(a) paired electrons	
		(b) electrons in the valence shell	
		(c) unpaired electrons	
		(d) vacant d-orbitals	

Concept 11: Geometry of coordination compounds can be explained using VSEPR theory.

Q. No.	Obj.	Question		Answer
77	U	The hybridisation that with co-ordination num		(c)
		(a) sp ³		
		(b) sp ²		
		(c) sp^3d^2		
		(d) sp ³ d		
78	U	dsp ² hybridization wou formation of compounds.	ld result in the _ shape of	(a)
		(a) square planar		
		(b) tetrahedral		
		(c) octahedral		
		(d) trigonal		
79	U	Match the following hy A to to the geometrics		
		A	В	
		1. sp a. Te	trahedral	
		2. sp ² b. Oc	tahydral	
		3. sp ³ c. Li	near	
		4. d^2sp^3 d. Tr	igonal	
		5. sp^3d^2 e. Sq	uare planar	
		f. Tr	igonal bypyramidal	

the second

-82-

Q. No.	Obj.	Question	Answer
80	U	What property of tungsten makes it possible for use in light bulbs ?	High melting point
81	A	Antirust paint contains	(c)
		(a) ZnO	
		(b) MnO	
		(c) Cu ₂ 0	
		(d) Cr ₂ O ₃	
82	K	Blue print paper having a coating of	(b)
		(a) sodium nitroprusside	
		(b) a mixture of potassium ferri cyanide and ammonium ferricitrate	
		(c) Prussian blue	
		(d) Turubull's blue	
83	K	Indicate any two ions formed when carnalite is dissolved in water.	K+,Mg ²⁺
84	K	In the preparation of vanaspathi is used as a catalyst.	Ni
85	K	An alloy containing Cu-Zn is known as	
		(a) Monel metal	
		(b) Constantine	
		(c) Bronze	
		(d) German silver	

Concept 12: Elements of d-block and their coordination compounds have many useful applications.

Q. No.	Obj.	Question	Answer
86	U	An alloy of is used in fountain pen nib tips	(C)
		(a) Pt-Ag	
		(b) Pt-Au	
		(c) Pt-Ir	
		(d) Pt-Cu	
87	K	Stainless steel is an alloy of	
88	U	Which of the following is a false statement	(b)
		(a) Rusting of Fe can be prevented by acidic water	
		(b) Rusting of Fe is electro chemical process	
		(c) Rusting of Fe takes place in moist air	
		(d) Rusting of Fe produces hydrated Fe_2O_3 .	
89	K	Which of the following is Quick silver ?	(d)
		(a) Cr	
		(b) Ni	
		(c) Ag	
		(d) Hg	
90	К	Name the composition of German silver and give its use.	
91	K	Which metal is the galvanizer of iron	(c)
		(a) Mn	
		(b) C	
		(c) Zn	
		(d) Al	1

-84-

Q. No.	Obj.	Question	Answer
92	2	Stainless steel contains	(C)
		(a) Cr + W	
		(b) Mg + Al	
		(c) Cr + Ni	
		(d) Cr + Co	
93	K	Impurities present in spelter	(a)
		(a) Pb, Fe, Cd, As	
		(b) Pb, Fe, Cd	
		(c) Pb, Fe	
		(d) Fe, Cd	
94	IJ	compounds are used in dyeing as pigments and in tanning of leather.	Cr
95	U	is called Philospher's wool. Which compound of Cr is used in calico printing ?	ZnO K ₂ Cr ₂ O ₇
96	K	What is the commercial name of copper sulphate ?	Blue vitriol
97	A	What is Bordeaux mixture ? and give its use.	CuSO ₄ + lime
98	U	Silver nitrate is called as	Lunar caustic
99	U	Mercuric chloride is known as	Calomel

Q. No.	Obj.	Question	Answer
100	K	What are non-stoichiometric compounds ?	
101	U	What are interstitial compounds ? Give two examples.	
102	U	Compounds with indefinite structure and proportions are known as	

Concept 13: d-block elements form inner stitial compounds.

CHEMICAL ENERGETICS

Content Analysis

- * Energy changes in chemical reactions potential and kinetic energies.
- * Definition of system, surroundings, heat, work and state functions.
- * Law of conservation of energy internal energy and enthalpy change.
- * Thermochemical equations and illustration of Hess's law.
- * Heats of reaction: Enthalpy of formation, combustion solution - dilution - hydration - fusion - vapourisation, sublimation and neutralisation.
- * Determination and application of heat of reaction (By using Bomb calorimetric and Dewar flask).

-87-

		accompanied with energy changes.	
Q. No.	Obj.	Question	Answer
1	K	The combustion of petrol converts heat energy into in an automobile.	(c)
		(a) electrical energy	
		(b) kinetic energy	
		(c) mechanical energy	
		(d) potential energy	
2	K	The form of kinetic energy of water falling from a dam is utilised for the generation of	(d)
		(a) mechanical energy	
		(b) chemical energy	
		(c) solar energy	
		(d) electrical energy	
3	U	Interconversion of energy is based on the	(d)
		(a) law of mass action	
		(b) law of chemical combination	
		(c) Hess's law of heat of summation	
		(d) law of conservation of energy	
4	U	A substance possesses potential energy and kinetic energy of 2 Cals and 20 Joules respectively. Calculate the total internal energy of the substance in Joules.	28.4 KJ

Concept 1: All changes (physical and chemical) are accompanied with energy changes.

			1
Q. No.	Obj.	Question	Answer
5	K	The energy possessed by a system due to the movement of molecules is called	Transi- tional energy
6	К	The energy possessed by the system due the rotation of the molecules is called	Rota- tional energy
7	K	What are the components of internal energy of a system ?	Transi- tional rota- tional, vibra- tional, Coulo- mbic & inter- action energy
8	U	What are the changes in internal energy of a system if it,	
		(a) absorbs 100 cal of heat and does 200 J of work ?	
		(b) looses 155 cal of heat and does 236 J of work ?	
9	U	The internal energy of an object can be increased by doing a mechanical work on it. Explain.	

Concept 2: Energy is stored in the form of bonds and in the form of molecular motions (translational, rotational, vibrational) - Internal Energy.

			k
Q. No.	Cbj.	Question	Answer
10	K	Which of the following expression represents the enthalpy of a system ?	(b)
		(a) $H = E - PV$	
		(b) H = E + PV	
		(c) H = nRt - E	
		(d) $H = E - nRT$	
11	K	Enthalpy change refers to	(C)
		(a) energy change at constant volume	
		(b) energy stored in the system	
		(c) energy change at constant pressure	
		(d) energy lowering in the system	
12	U	In which of the following reactions $//H$ is more than that of $//E$?	(c)
		(a) $N_{2(g)} + 3H_{2(g)}> 2NH_{3(g)}$	
		(b) $N_{2(g)} + O_{2(g)}> 2NO(g)$	
		(c) PCl _{5(g)} > PCl _(g) + Cl _{2(g)}	
		(d) $4CO_{(g)} + 7H_{2(g)} > C_{3}H_{8(g)} + 3H_{2}O_{(1)}$	
13	U	If the energy of the products is less than enegy of the reactant, the reaction is	(a)
		(a) exothermic	
		(b) endothermic	
		(c) not possible	
		(d) always spontaneous	

Concept 3: Energy change at constant pressure process is called enthalpy.

Q. No.	Obj.	Question	Answer
14	U	Why most of the exothermic reactions are spontaneous in nature ?	
15	K	Give some examples of exo and endo- thermic reactions.	
16	U	Derive the relationship between $/ \$ H and $/ \$ E.	/\H=/\E +/\nRT
17	A	The enthalpy change $//H$ for the reaction	/ H = / E +/\nRT
18	υ	$N_{2(g)} + 3H_{2(g)}> 2NH_{3(g)}$ is -92.38 KJ at 298 K. What is $/$ E at 298K. Given the bond dissociation energies per mole of $H_2 = 436.8$ KJ C=C = 609 KJ C - C = 336 KJ Calculate enthalpy change of following reaction	=-90.88 KJ
19		$C_2H_4 + H_2> C_2H_6$ The heat capacity of a gas at constant volume is always greater than at constant pressure. Justify.	
			1

Concept	4:	System	is	th	at	part	of	the	universe	on	which
		observat describe							emaining	part	is
							-	_			

Q. No.	Obj.	Question	Answer
20	K	Differentiate a system from its surroundings with some example.	
21	U	A system without a mechanical link with the surroundings cannot do any work. Justify.	

-

com	jept j	can neither be created nor destroyed and total of the energy remains constant in a changes.	the sum
Q. No.	Obj.	Question	Answer
22	U	200 Joules of heat supplied to the system and 0.2 KJ of work was done by the system. The internal energy of the system thus	(d)
		(a) increases	
		(b) remains the same	
		(c) decreases	
		(d) zero	
23	K	State the law of conservation of energy.	

Concept 5: Law of conservation of energy states that energy

 Q. Obj.
 Question
 Answer

 No.
 24
 K
 The energy transferance also occurs in the form of ______ on the surroundings done
 Work done

 25
 The transference of energy does not take place in the form of ______
 (d)

Concept 6: Heat and work are the methods of energy transfer between system and surroundings .

		cake place in the form of	
		(a) heat	
		(b) work	
		(c) electrical energy	
		(d) mass	
26	K	The work done by a gas on expansion is given by	P∐V

-94-

Concept 7: Thermodynamic state is described by observable properties of the system like P, T, V, E, etc.

Q. No.	Obj.	Question	Answer
27	U	Which one of the following is an example of intensive property ?	(c)
		(a) Enthalpy	
		(b) Mass	
		(c) Temperature	
		(d) Volume	
28	U	Which one of the following is an example of extensive property ?	(a)
		(a) Volume	
		(b) Density	
		(c) Viscosity	
		(d) Melting point of a solid	
29	U	Explain the difference between extensive and intensive property with an example.	

com	cpt o	followed during a change are called state functions, while path functions depend on path followed.	
Q. No.	Obj.	Question	Answer
30	U	State function is the property which depends on	(C)
		(a) the physical state	
		(b) the path followed	
		(c) the initial and final state of the system	
		(d) the past history of the system	
31		Which of the following term does not represent the state function ?	(d)
		(a) Pressure	
		(b) Volume	
		(c) Temperature	
		(d) Heat	
32	U	q and w are not state functions but (q-w) is a state function. Justify.	

Concept 8: Properties which are independant of the path

-96-

Q. No.	Obj.	Question	Answer
33	U	Which one of the following is a thermo- chemical equation ?	(a)
		(a) $CH_4(g) + 2O_2(g) > CO_2(g) + 2H_2O(1)$	
		<u>/\</u> H = -801.59 KJ	
		(b) $2H_2(g) + 2O_2(g) > 2H_2O(1)$	
		/H = 2 x -286 KJ	
		(c) $CH_4(g) + 2O_2(g) > CO_2(g) + 2H_2O(1)$	
		$\underline{/}H = -801.59 \text{ KJ}$	
		(d) $2H_2(g) + O_2(g)> 2H_2O(g)$	
		/H = -242.7 KJ	
34	U	Write a thermochemical equation for the combustion of methane.	$CH_4 + 2O_2$ -> $CO_2 +$ $2H_2O +$ Heat
35	К	What are rules of writing thermochemical equations ?	
36		Out of the following which is not applicable to thermochemical equation ?	(d)
		(a) It indicates reactants and products physical states.	
		(b) It indicates whether exo or endothermic.	
		(c) It indicates the allotrope of the reactant (if it present).	
		(d) It indicates whether the reaction takes place or not.	

Concept 9: Thermochemical equation is characterised by set of rules and it represents the energy change in a given type of reaction.

5

Q. No.	Obj.	Question	Answer
37	K	The standard enthalpty of formation of elemental gases like O_2 , N_2 , H_2 at 1 atm at 298 K is taken as	(c)
		(a) positive	
		(b) negative	
		(c) zero	
		(d) unity	
38	K	The standard state of carbon is	(d)
		(a) coal	
		(b) diamond	
		(c) coke	
		(d) graphite	
39	K	The standard state of H_2O is	(d)
		(a) water vapour	
		(b) steam	
		(c) ice	
		(d) liquid	

Concept 10: Standard state of each element and compound is

Cond	cept 1	1: The enthalpy change that accompanies the formation of a compound in its standard s from its elements in their standard state called enthalpy of formation.	state
Q. No.	Obj.	Question	Answer
40	U	The enthalpy of formation $ethylene(C_2H_4)$ and $ethane(C_2H_6)$ are 52.5 KJ and -85 KJ respectively the enthalpy of the reaction is	(d)
		$C_2H_4 + H_2> C_2H_6$ (g) (g) (g)	
		(a) -32.5 KJ	
		(b) +32.5 KJ	
		(c) -137.5 KJ	
		(d) +137.5 KJ	
41	U	For the reaction	
		$H_2 + I_2 + 6.2$ KCal> 2HI. The heat of (g) (g) (g) (g) (g) formation of HI (g) is	
		(a) +3.1 KCal	
		(b) -3.1 KCal	
		(c) +6.2 KCal	
		(d) -6.2 KCal	
42	U	Given	
		$\begin{array}{ccc} C & + O_2 & > CO_2 \\ (graphite) & (g) & (g) \end{array}$	
		<u>/</u> H = -393.5 KJ	
		$2H_2 + O_2> 2H_2O$ (g) (g) (l)	
		<u>/</u> H = -571.6 KJ	
		$CH_4 + 2O_2> CO_2 + 2H_2O$ (g) (g) (g) (l)	
		<u>/\</u> H = -890 KJ	

Q. No.	Obj.	Question	Answer
		The heat of formation of CH_4 (g) is	
		(a) 1855 KJ	
		(b) 1068.5 KJ	
		(c) -712.3 KJ	
		(d) -74.7 KJ	
43	U	The standard enthalpy of summation of ethanol C_{2H_5} -OH is -277.7 KJ/mole and heat of vapourisation of ethanol is 43.5 KJ mol ⁻¹ . Therefore the enthalpy of formation C_{2H_5} OH (g) is	
		(a) 234.2 KJ	
		(b) -234.2 KJ	
		(c) 321.2 KJ	
		(d) -321.2 KJ	
44	U	Find out the heat of formation of HCl from the given equation	
		$H_2 + Cl_2> 2HCl$ /\H = -132 KCal (g) (g) (g)	
45	A	What is the $//H$ for the reaction	
		$2H_2 + 0> 2H_2O$ and energies for (g) (g) (g)	
		E_{H-H} , $E_{O=O}$, E_{O-H} are 105, 120, 110 KCal mol ⁻¹ respectively.	
46		C (g) + O ₂ (g)> CO ₂ (g). The enthalpy of formation of CO ₂ is -394 KJ/mole. What will be $/$ E of the reaction at constant volume.	
47		Calculate the enthalpy of formation of benzene from the following data. The enthalpy of combustion of benzene is -3273 KJ. The enthalpy of formation of CO ₂ and H ₂ O are -394 KJ and -286 KJ respectively.	

-100-

overall process is the sum of the enthalpy changes for individual steps in the process - an evidence for conservation of energy principle. Q. Obj. Question Answer No. 48 U Calculate the enthalpy of oxidation of 163 KJ methanol to formaldehyde and water. The enthalpies of formation of CH₃OH (1), HCHO (1) and H_2O (1) are -239 KJ, -116 KJ and -286 KJ respectively. Heat of combustion of C₆H₆ is -3264.6 49 U 1632.3 mol⁻¹. The heat energy of formation KJ evolved when 39 gm of benzene was burnt in open container is (a) 816.5 KJ (b) 1632.3 KJ (c) 6528.2 KJ (d) 2448.45 KJ 50 Substance A can be transformed to the U product D by selecting either path I, II or III. The energy liberated at each stage is shown by the arrow. 9 Pathing D Pathing D Var UK 15 Will there be any change in the total energy of the system by following either path I, II or III. Explain with the reason.

-101-

Concept 12: Hess's law states that enthalpy change in an

Concept 13: Hess's law can be illustrated by applying to various types of reaction.

Q.	Cbj.	Question	Answer
51	U	Heat of neutralisation is higher value in which one of the following reaction ?	(c)
		(a) acetic acid is neutralised by NaOH	
		(b) HNO_3 is neutralised by NH_4OH	
		(c) HCl is neutralised by NaOH	
		(d) acetic acid is neutralised by $\rm NH_4OH$	
52	U	When 1.2 g of graphite is burnt in oxygen 39.5 KJs heat is liberated. The enthalpy of combustion of graphite is	(b)
		(a) -39.5 KJ	
		(b) -395 KJ	
		(c) 39.5 KJ	
		(d) -395 KJ	
53	U	The heat of neutralisation of KOH and HNO_3 is -57.3 KJ. The heat released when 0.5 M KOH is mixed with 0.25 M of HNO_3 is	
		(a) 57.3 KJ	
		(b) 28.5 KJ	
		(c) 14.25 KJ	
		(d) 7.15 KJ	
54	U	(a) State Hess's law of summation.	
		(b) Calculate the enthalpy of hydration of anhydrous copper sulphate to hydrated copper sulphate from the given data, the enthalpies of solution of anhydrous, and hydrated copper sulphate are -78.2 KJ and -11.7 KJ respectively.	

Q. No.	Obj.	Question	Answer
55	U	For the decomposition of MgCO ₃ by the reaction	
		$MgCO_3$ (s)> MgO (s) + CO_2 (g)	
		//H = 109.2 KJ at 900K and 1 atm pressure. If molar volume of MgCO ₃ is 0.028 litre and that of MgO is 0.01 litre, calculate the $//E$ of the above reaction.	
56		The heat of formation of $CO_2(g)$ is -394 KJ/mol and that of H_2O (l) is -286 KJ mol ⁻¹ . The heat of combustion of $C_5H_{12}(l)+8O_2(g)$ > 5 $CO_2(g)$ + $6H_2O(l)$	
		is -3534 KJ mol ⁻¹ . Calculate the heat of formation of C_5H_{12} (1).	
57	U	Heat changes in the reaction H ₂ O (l)> H ₂ O (g) is known as	.(a)
		(a) latent heat of vapour	
		(b) latent heat of liquid	
		(c) heat of solution	
		(d) heat of formation	
58		The heat of neutralisation of any acid with any base is	(b)
		(a) the same if either the acid or base is weak.	
		(b) the same if both acid and base are strong.	
		(c) more if either the acid or base is weak or both are weak.	
		(d) less either an acid or base weak or both are weak.	

-104-

Q. No.	Obj.	Question	Answer
59	K	Describe the determination of enthalpy of combustion of a compound using Bomb calorimeter.	
60	K	Define the following terms	
		(a) enthalpy of fusion	
		(b) enthalpy of sublimation	
		(c) enthalpy of solution	
		(d) enthalpy of transition	
61	U	$S(R) + O_2(g)> SO_2(g)$	-2.4 KJ
		<u>/\</u> H = -297.5 KJ	
		$S(M) + O_2(g) > SO_2(g)$	
		<u>/\</u> H = -299.9 KJ	
		From the above reactions heat of reaction S (M) $>$ S (R) is	
		(a) -2.4 KJ	
		(b) 2.4 KJ	
		(c) -597.4 KJ	
		(d) 597.4 KJ	
62	U	Calculate the amount of heat required for the ionisation of acetic acid from the following reaction.	300 Cal
		NaOH (aq) + HCl (aq)> NaCl (aq) + H ₂ O (1)	
		<u>/\</u> H = -13.7 KCal	
		NaOH (aq) + CH ₃ COOH (aq)>	
		$CH_3COONa (aq) + H_2O (1)$	
		$\underline{/}H = -13.4$ KCal	
63	U	When 1 mole of sulphuric acid is neutralised with a strong base $/ H = -57.4 \text{ KJ}, / HfH_2O = -286.9 \text{ KJ}$ and $/ HFH^+ = 0$. Use these data to find / Hf(OH).	

1

Q. No.	Obj.	Question	Answer
64	U	Describe the determination of enthalpy of neutralisation of a strong acid by strong base using Dewar flask.	
65	U	The enthalpy of neutralisation of any strong acid with strong base is always a constant. Why ?	
66	U	The enthalpy of neutralisation of weak acid and weak base is less than that of strong acid and strong base. Why ?	
67	U	The enthalpy of fusion of H_2O is +6.02 KJ and enthalpy of vapourisation of water is 40.5 KJ. What is the enthalpy of the reaction H_2O (s)> H_2O (g) ?	
68	U	Given the heat of neutralisation of a strog acid and strong base is -57 KJ/mol Find out the energy released when 0.5N, 200 ml of HCl is neutralised by 0.5N of 200 ml of NaOH.	

CHEMICAL EQUILIBRIUM

Content Analysis

- * Reversible reactions
- * Equilibrium state
- * Equilibrium systems
- * Law of mass action
- * Equilibrium constant and related problems
- * Le-Chatelier's principle

-106-

). 10.	Obj.	Question	Answers	
L	K	What are reversible chemical reactions ? Give example ?		
2	А	In which of the following cases is the process reversible ?		
		(a) Thermal dissociation of NH ₄ Cl in an open vessel		
		(b) Decomposition of CaCO ₃ in a closed system containing solid KOH		
		(c) Saturated solution of ${\rm I}_2$ in water containing some solid ${\rm I}_2$		
		(d) Wet filter paper spread on a glass plate		
	U	The condition for equilibrium is	(a)	
		<pre>(a) rate of forward reaction = rateof reverse reaction</pre>		
		(b) rate constant of forward reaction = rate constant of backward reaction		
		(c) concentration of product = concentration of reactant		
		(d) concentration of product > concentration of reactant		
	A	In a reversible reaction k_f is the rate constant for the forward reaction and k_b is the rate constant for the backward reaction, the ratio of k_f/k_b is called		
	U	$CaCO_3 = caO + CO_2$ when the reaction is carried in a lime kiln, it proceeds to completion because	(d)	
		(a) CaO and CO ₂ do not combine		
		(b) CaO is much more stable than CaCO3		
		(c) The temperature in the kiln is very high		
		(d) CO ₂ escapes		

Concept 1: Reactions which proceed in both directions are called reversible reactions.

-107-

_oncept 2: Reversible reactions reach a state of equilibrium.

.0.	Obj.	Question	Answers
0	K	50 ml of water is kept in a closed bottle at 30° C. Even after several hours, the volume of H ₂ O was found to be the same because	(d)
		(a) water evaporates at 100°C only.	
		(b) in a closed vessel no evaporation can take place.	
		(c) evaporation is independent of the volume of the container.	
		(d) evaporation and condensation are reversible processes.	
	K	$NO_2 + CO = NO + CO_2$ (Brown) (Colourless) In the above reacation at equilibrium the brown colour of NO_2 .	(с)
		(a) Completely disappears	
		(b) Brown colour remains the same	
		(c) Brown colour fades	
		(d) Brown colour intensifies	
	К	What are revesible reactions ? Give one example. A chemical reaction is said to have reached equilibrium when	
		(a) equal amounts of reactants and products formed.	
		(b) reactants are completely converted to products.	
		(c) the rate of forward reaction is equal to the rate of backward reaction.	
		(d) the concentration of the reactants and products are the same.	
	U	How do we know that a system has reached equilibrium ? Illustrate with an example.	

Q. No.	Obj.	Question	Answers
10	K	Write the equilibrium constant expressions for the following.	
		$ \begin{array}{c} H_2 O \\ (1) \end{array} \overline{\varsigma} = = \stackrel{\searrow}{=} \begin{array}{c} H^+ \\ (aq) \end{array} + \begin{array}{c} O H^- \\ (aq) \end{array} $	
		$Zn + 2Ag^{+} \overline{\varsigma} == \frac{\lambda}{2n^{2}} Zn^{2} + 2Ag$ (s) (aq) (aq) (s)	
11	U	Arrange the following equilibrium in the increasing order of their reaction in the forward direction.	
		$N_2O_4 = 2NO_2 K = 0.87$ (g) (g) (g)	
		2HI $\overline{\varsigma} = = {=} {H_2} + I_2 K = 0.018$ (g) (g) (g)	
		Ag + 2NH ₃ $==$ Ag(NH ₃) + K = 1.7 x 10 ⁷ (aq) (aq) (aq) 2	
		AgCl $\overline{\varsigma} = = \stackrel{>}{=} Ag^+ + Cl^- K = 1.7 \times 10^{-10}$ (s) (aq) (aq)	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
12	U	K_c for H_2 + I_2 \overrightarrow{F} == 2HI is 55.5 at (g) (g) (g) 700 K. How many moles of H_2 will be present at equilibrium if the experiment is started with one mole each of H_2 and I_2 in a one litre vessel.	
13	K	A saturated solution of iodine in water is prepared by using radioactive iodine. A crystal of ordinary iodine is dipped into the above. Which of the following observations indicates that the equilibrium is dynamic.	
		(a) Colour of the solution deepens.	
		(b) Colour of the solution fades.	
		(c) The radioactivity of the solution decreases.	
		(d) The radioactivity of the solution remains as before.	

Concept 3: Chemical equilibrium is dynamic.

Concept 3: The equilibrium systems may be homogeneous or heterogeneous.

Q. No.	Obj.	Question	Answers
14	K	What is homogeneous chemical equili- brium ? Give an example.	
15	K	What is heterogeneous chemical equilibrium ? Give an example.	
16	K	Classify the following into homogeneous and heterogeneous equilibrium systems.	
		(a) $NH_4Cl = NH_3 + HCl$ (s) (g) (g)	
		(b) $N_2 + 3H_2 \equiv 2NH_3$ (g) (g) (g)	
		(c) $AgNO_3 + NaCl == AgCl + NaNO_3$ (aq) (aq) (s) (aq)	
		(d) $\operatorname{Br}_{2} + \operatorname{H}_{2} \circ \overline{\zeta} == {\rightarrow} \operatorname{Br}_{2}$ (1) (aq)	
		(e) NaOH + Cl ₂ $\overline{\zeta} == \frac{\lambda}{2}$ NaCl + NaOCl (aq) (aq) (aq) (aq)	
		(f) NO + CO ₂ $\overline{\varsigma} = = \stackrel{\land}{=} NO_2$ + CO (g) (g) (g) (g) (g)	
17	U		
		$3Fe + 4H_2O = E Fe_3O_4 + 4H_2$ is an (s) (g) (s) (g) example of	
		(a) homogeneous equilibrium.	
		(b) heterogeneous equilibrium.	
		(c) hydrolysis.	
		(d) hydrogenation.	

Q. No.	Obj.	Question	Answers
18	K	State the law of mass action.	
19	K	Define equilibrium constant.	
20	U	What is meant by active mass ?	
21	U	For the reaction	(a)
		$PCl_5 == PCl_3 + Cl_2$	
		K_p and K_c are related as	
		(a) $K_p = K_c(RT)$	
		(b) $K_p = K_c (RT)^2$	
		(c) $K_p = K_c (RT)^{-1}$	
		(d) $K_p = K_c (RT)^{-2}$	
22	A	What is the expression for the equilibrium constant K_C for the reaction aA + bB $\overline{\varsigma} == \stackrel{>}{=} cC + dD$	
23	K	The equilibrium constant for the reaction A + 2B $\overline{\varsigma} = = 2$ C is	(d)
		(a) [C] K = [A] [B]	
		(b) [C] K = [A] [2B]	
		(c) [C] $K = \frac{[A]}{[B]^{1/2}}$	
		(d) [C] K =	

Concept 4: Law of mass action relates the rates of chemical reactions to the active masses of the reactants.

).	Obj.	Question	Answers
1	U	In which of the following cases is $K_p = K_c$	
		(a) $PCl_5 = 2 PCl_3 + Cl_2$ (g) (g) (g)	
		(b) $2KClO_3 = \frac{1}{\sqrt{2}} 2KCl + 3O_2$ (s) (s) (g)	
		(c) $N_2 + 3H_2 = 2NH_3$ (g) (g) (g)	
		(d) $H_2 + Cl_2 = 2HCl$ (g) (g) $\overline{\zeta} = 2HCl$ (g)	
õ	U	From among the following identify the reactions where k_p < k_c .	
		(a) $H_2 + I_2 = 2HI$ (g) (g) $\overline{\varsigma} = 2HI$ (g)	
		(b) $2NH_3 = = \sum_{(g)}^{2NH_3} N_2 + 3H_2$ (g) (g) (g)	
		(c) $2H_2 + O_2 = 2H_2O$ (g) (g) (g) (g)	
		(d) $\operatorname{NH}_4Cl_{\overline{\nabla}} = = \stackrel{>}{=} \operatorname{NH}_3 + \operatorname{HCl}_{(g)}$	

-113-

Concept 5: Deriving equilibrium constants.

Q. No.	Obj.	Question	Answers
26	K	For a better equilibrium the equilibrium constant is found to be 1.0. What can be inferred from this ?	
27	U	A + 2B $\overline{\varsigma} == \stackrel{>}{=} C$ + 2D for this reaction (g) (g) (g) (g)	
		derive the equilibrium constants ${\bf k}_{\rm p}$ and ${\bf k}_{\rm C}.$	
28	K	$H_2 + I_2 = 2HI$, Derive k_p and k_c for (g) (g) (g) this homogeneous gaseous equilibria.	
29	А	The value of $k_{\rm C}$ for the equilibrium	
		$\begin{array}{rcl} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	
30	S	The value of equilibrium constant for the formation of PCl_5 at $250^{\circ}C$ is found to be 20. What is the equilibrium constant for the dissociation of PCl_5 at the same temperature.	
31	U	Write the chemical equation for the expression	
		$K_{C} = \frac{[x]^{3} [y]^{2}}{[A]^{2} [B]}$	
32	S	$N_2 + 3H_2 = 2NH_3$, it was found at equilibrium at 300°C, the mixture contained 0.25 mol dm ⁻³ of N ₂ , 0.15 mol dm ⁻³ of H ₂ and 0.09 mol dm ⁻³ of NH ₃ . Calculate the equilibrium constant.	

Q. No.	Obj.	Question	Answers
33	K	Equilibrium constant for the reaction $2NO + Cl_2 = = = 2NOCl$ is correctly given (g) (g) (g) by the expression	(b)
		(a) [2NOC1] K =	
		(b) $[NOC1]^2$ K =	
		(c) $[NOC1]^2$ $K = \frac{1}{[NO]^2 [C1_2]^2}$	
		(d) $[NOC1]^2$ $K = \frac{1}{[NO]^2 + [C1_2]}$	
34	A	Two litres of solution of acetic acid contains 15 g of acetic acid. What is the active mass ?	
35	U	In which one of the following reaction the pressure has no effect.	(d)
		(a) $PCl_5 \equiv PCl_3 + Cl_2$ (g) (g) (g)	
		(b) $N_2 + 3H_2 = 2NH_3$ (g) (g) (g) (g)	
		(c) $2SO_2 + O_2 = 2SO_3$ (g) (g) (g) (g)	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
36	U	For the reversible reaction	(c)
		2A $\overline{\varsigma} == \stackrel{>}{=} B + C$ at 30 ^o C, if the (g) (g) (g) concentration of the reactant is doubled then the equilibrium constant value	
		 (a) doubled (b) halved (c) remains the same (d) increases four times 	

-114-

Q. No.	Obj.	Question	Answers
37	A	K _C for the reaction	
		$NH_3 = = = 1/2 N_2 + 3/2 H_2$	
		of K at 298 K for the reaction	
		$N_2 + 3H_2 = 2NH_3$	
38	U	Which one of the following has no effect on the equilibrium	
		$H_2 + I_2 = 2HI$	
		(a) Addition of iodine	
		(b) Increase of pressure	
		(c) Addition of more amount of H_2	
		(d) Removal of HI	
39	K	A catalyst	
		(a) increases the concentration of products in an equilibrium state.	
		(b) increases the value of equilibrium constant.	
		(c) increases the concentration of reactants.	
		(d) decreases the time to reach equilibrium.	
40	K	Which among the following are the favouable conditions for the formation of ammonia ?	
		$N_2 + 3H_2 = 2NH_3 / H = -224 KCal$	
		(a) Low temperature high pressure	
		(b) Low temperature low pressure	
		(c) High temperature high pressure	
		(d) High temperature low pressure	

Concept 7: The effects of pressure, temperature and concentration on equilibrium system - Le Chatelier's principle.

^۲ ۰.	Obj.	Question	Answers
л 1,	U	The effect of increasing the pressure on the following equilibrium	(d)
		2A + 3B = 3C + 2D (g) (g) (g) (g)	
		(a) favours forward reaction	
		(b) favours backward reaction	
		(c) affects both the reactions equally	
		(d) does not favour both the reaction.	
2	K	Consider the equilibrium	(a)
		$N_2 + 3H_2 \in == 2NH_3$ when we add H_2 gas (g) (g) (g)	
		to the above system at equilibrium, it favours	
		(a) forward reaction	
		(b) backward reaction	
		(c) both the reactions	
		(d) none of the above.	
3		In the case of the reaction	(a)
		$2SO_2 + O_2 = = 2SO_3 + 44$ KCal	
		an increase in temperature will	
		(a) decrease the yield of SO ₃	
		(b) increases the yield of SO ₃	
		(c) have no effect on the equilibrium constant	
		(d) have no effect till an optimum concentration	

Q. No.	Obj.	Question	Answers
44	U	In which of the following reactions will the yield of products will increase when the pressure is increased ?	(b)
		(a) $2HI_{\overline{\chi}} = = \stackrel{1}{=} \begin{array}{c} H_2 + I_2 \\ (g) & (g) \end{array}$ (g)	
		(b) $2SO_2 + O_2 = 2SO_3$ (g) (g) (g) (g)	
		(c) $H_2O + CO \in H_2 + CO_2$ (g) (g) (g) (g)	
		(d) $H_2 + Br_2 = 2HBr$ (g) (g) (g) (g)	
45	K	A catalyst when added to a system at equilibrium	
		(a) increases the rate of backward reaction.	
		(b) decreases the rate of the forward reaction.	
		(c) increases the rates of both the reaction equally.	
		(d) decreases rates of both the reactions.	
46	U	When the reaction	(c)
		$CaCO_3 \in CaO + CO_2$ is carried out in	
		an open vessel CaCO3 undergoes complete decomposition. The reason for this is	
		(a) CO_2 is more stable than $CaCO_3$.	
		(b) the temperature increases.	
		(c) CO_2 escapes into the atmosphere.	
		(d) no reaction is possible between CaO and CO_2 .	×

). O Io.)bj.	Question	Answers
.7	U	Pick out the appropriate statement	(a)
		$N_2 + O_2 = 2N0$ /\H = +43.2 KCals (g) (g) (g) Increase in the yield of NO is brought about by	
		(a) increase of temperature	
		(b) increase of total pressure	
		(c) decrease of pressure	
		(d) decrease in temperature	
8	U	A chemical equilibrium is said to have been established when	(c)
		(a) no more reaction takesplace.	
		(b) concentration of reactants and products are equal.	
		(c) velocities of opposing reactions become equal to each other.	
		(d) the reaction has gone to completion in the forward direction.	
9	A	A mixture of 1.24×10^{-2} mol of H_2 and 2.46×10^{-2} mol of iodine was heated to 457.6° C until equilibrium was reached. If the equilibrium constant is 48.7. Calculate the number of moles of HI present at equilibrium.	
50	A	5.2 moles of PCl ₅ are heated in a closed vessel of capacity 2 litres. When equilibrium is attained, PCl ₅ is 40% dissociated. Calculate the equilibrium constant.	
- 1	2		
51	A	For the following reaction taking place at 400°C,	
		$2H_2O + 2Cl_2 = 4HCl + O_2$ (g) (g) (g) (g) K_p was found to be 0.035 when partial pressures were measured in atmospheric units. Calculate k_c .	

Q. No.	Obj.	Question	* Answers
52	A	In a study of the reaction in the gaseous phase A + 2B = 2C + D, A and B are mixed in a reaction vessel and kept at 25°C. The initial concentration of B is 1.5 times the initial concentration of A. After the equilibrium has been established, the equilibrium concentra- tion of A and D were equal. Calculate the equilibrium constant at 25°C.	
53	U	In the equilibrium	
		$\begin{array}{rl} PCl_3 + Cl_2 \ensure relation = & PCl_5 \\ (g) & (g) & (g) \end{array}$ at a temperature T, the volume of the system is increased. At the same time Cl_2 is added to the system so as to maintain the partial pressure of chlorine constant. Then,	
		(a) more PCl ₅ is formed	
		(b) more PCl ₃ is formed	
		(c) partial pressures of all the chemical species remain unchanged.	
		(d) quantities of PCl ₃ and PCl ₅ are unchanged.	
54	U	For each of the following equilibria predict qualitatively the effect of increasing the total pressure upon the percentage of the products present under equilibrium.	
		(a) $2SO_3 = 2SO_2 + O_2$ (g) (g) (g) (g)	
		(b) 2HI $\overline{\xi} = = \stackrel{\searrow}{=} \begin{array}{c} H_2 + I_2 \\ (g) & (g) \end{array}$ (g)	
		(c) $2NO_2 = \frac{1}{\sqrt{g}} N_2O_4$ $//H = Negative$ (g) (g)	
		(d) CO + $H_2O = \stackrel{=}{=} CO_2 + H_2$ (g) (g) (g) (g)	
		In cases (a) and (b) predict also the effect of a decrease in temperature.	

	Obj.	Question	Answers
5	U	The following are various conditions under which hydrogen gas and iodine vapour are allowed to react at 400 ⁰ C. In which case the reaction will be fastest?	(d)
		(a) 1 mole of H_2 + 1/2 mole of I_2 in a litre	
		(b) 1 mole of H_2 + 2 moles of I_2 in a litre	
		(c) 2 moles of H ₂ + 1 mole of I ₂ in a litre	
		(d) 2 moles of H_2 + 2 moles of I_2 in a litre	
		400°C	
5	A	In the reaction $H_2 + I_2 = 2HI$, (g) (g) which of the following pairs of conditions results in the same rate of reaction.	(b)
		(a) (a) and (d)	
		(b) (b) and (c)	
		(c) (a) and (c)	
		(d) (d) and (c)	
7	U	Consider the following equilibrium	(b)
		$ \begin{array}{c} N_2 + O_2 \\ (g) & (g) \end{array} \overline{\nabla} = = \begin{array}{c} 2NO \\ (g) \end{array} $	
		Under a certain set of conditions, it was found that there was 20% of NO at equilibrium. If the reaction had been started with NO alone the percentage of NO at equilibrium under the same conditions would be	
		(a) 10	
		(b) 20	
		(c) 40	
		(d) 60	

Q. Obj. No.	Question	Answers
58	Which of the following reactions go farthest in the forward direction ?	
	(a) $CH_3COOH = E CH_3COO^- + H^+ K=1.8 \times 10^{-5}$	
	(b) $H^+ + HS^- = H_2S$ $K = 1.0 \times 10^7$	
	(c) CdS $\overline{\nabla} = = \sum_{k=1}^{k} Cd^{k+1} + S^{2-1} K = 7.1 \times 10^{-28}$	
	(d) $H_2O = = H^+ + OH^-$ K = 1.0 x 10 ⁻¹⁴	

CHEMICAL KINETICS

Content Analysis

* Homogeneous and Heterogeneous reactions

* Rates of reactions

* Factors influencing reaction rates

* Catalysts

Q. No.	Obj.	Question	Answers
1	K	What are homogeneous reactions ? Give examples.	
2	K	What are heterogeneous reactions ? Give examples.	
3	K	Classify the following reactinos as homogeneous and heterogeneous.	
		(a) $H_2 + Cl_2> 2HCl$ (g) (g) (g) (g)	
		(b) HCl + NaOH> NaCl + H ₂ O (aq) (aq) (aq)	
		(c) $C + O_2 \longrightarrow CO_2$ (s) (g) (g)	
		(d) $CaCO_3 + 2HCl> CaCl_2 + CO_2$ (s) (aq) (aq) (g)	
		+ H ₂ O (1)	
		(e) NH_4HS > NH_3 + H_2S (s) (g) (g)	
4	K	Define active mass.	
5	U	How active mass of ideal gases are expressed ?	
6	U	What is the active mass of 80 gms of oxygen in 500 ml flask ?	5 moles/litre
7	U	Define reaction rate or rate of reaction.	
8	U	Write the reaction rate of aA + bB> cC + dD	
9	K	What is the unit of rate of reaction ?	

Concept 1: Chemical reactions can be homogeneous or heterogeneous.

The active mass of 64 gms of HI in a two 10 U litre flask is ____

Κ What is rate law ? 11

Define rate constant. K 12

Ŧ

Obj.	Question		Answers
13 K	Define order of reaction.		
14	Match the following reactio column A with their orders column B.		
	A B		
	1. 2HI> H ₂ + I ₂	a. Pseudo- first order reaction	d
	2. 2H ₂ O ₂ >	b. Zero	d
	$2H_2O + O_2$	order reaction	
	3. K ₂ S ₂ O ₈ + 2KI>	c. Third	e
	$2K_2SO_4 + I_2$	order reaction	
	4. 2NO + O ₂ > 2NO ₂	d. First order reaction	С
	Inver- tase		
	5. $C_{12}H_{22}O_{11} + H_2O>$ $C_6H_{12}P_6 + C_6H_{12}O_6$	e. Second order reaction	a
		f. Pseudo- second order reaction	
5 K	What is meant by moleculari reaction ?	ty of	
6 U	What are the differences be and molecularity of reaction		

Q. No.	Obj.	Question	Answers
17	U	Which among the following statements is incorrect ?	(d)
		 (a) Molecularity of the reaction can be understood while looking its stoichiometric equation 	
		(b) Order of the reaction can be known through the experiment	
		(c) Molecularity of a reaction will be always a integer	
		(d) Order of the reaction will be always an integer	
18	K	Derive the expression for the rate constant of first order reaction.	2.303 a K=xlcg t a-x
19	K	Equation for rate constant of a first order reaction is	sec ⁻¹
20	U	What is the unit of rate constant of first order reaction ?	
21	U	Pickup the unit for rate constant of first order reaction.	(b)
		(a) sec	
		(b) sec ⁻¹	
		(c) mole sec ⁻¹	
22	K	(d) mole litre ⁻¹ sec ⁻¹ Define half life period.	
23	U	Write the equation which corelates rate constant and half life period of first order reaction.	0.693 t _{1/2} = K

Q. No.	Obj.	Question	Answers
24	U	Pickout the incorrect statement	(c)
		Rate of the first order reaction	
		(a) depends upon temperature	
		(b) independent upon initial concentra- tion of reactants	
		(c) depends upon initial concentration of reactants	
		(d) depends upon catalyst	
25	K	Give an example for fractional order reaction.	Formation of HBr for H ₂ &Br ₂
26	U	Give an example each for uni and bimolecular reactions.	
27	U	Which line in this graph indicates the change in concentration of reactants ?	
		Con ce- ntinition A	
28	U	All radioactive transformation are order reactions.	First order
29	U	The half life period of a first order reaction is 1600 sec at 300 K. Calculate its rate constant at the same temperature.	4.33x10 ⁻⁴ s ⁻¹
30	U	Rate constant of a first order reaction is 2.5 x 10^{-2} sec ⁻¹ . Calculate the time taken for completion of 40% of reaction.	Negative
31	U	Plot of log(a-x) against time for first order reaction has slope.	Negative
32	K	What are pseudo first order reactions ? Give two examples.	
33	U	Explain how rate constant of pseudo first order reaction is determined experimentally.	

-126-

Q. Nc.	Obj.	Question	Answers
34	K	Rate of reaction and temperature are proportional to each other.	Directly
35	U	Write Arrhenium equation which relates rate constant of a reaction with temperature.	K=Ae ^{-Ea} /RT
36	K	Unit for activation energy is	J mole ⁻¹
37	K	Define threshold energy.	
38	K	What is meant by effective collision ?	
39	K	What is meant by energy of activation ?	
10	K	Rate of reaction and energy of activation are proportional to each other.	Inversely
41	K	List the factors which are effecting rate of reaction.	
42	U	Why the rate of reaction increases with increase in concentration of reactants ?	
43	U	Ferrous sulphate reduces acidified KMnO ₄ readily, whereas oxalic acid slowly. Indicate the factor involved in this reaction.	

Concept 3: Rate of reaction will be influenced by several factors.

у.	Obj.	Question	Answers
4	K	Why ionic reactions are faster than molecular reactions ?	
5	U	Pick out the faster reaction from the following.	(a)
		(a) Reaction of aq. BaCl ₂ with sulphuric acid	
		(b) Alkylation reaction of benzene	
		(c) Reaction of ethyl alcohol with sulphuric acid	
		(d) Sulphonation of benzene	
6	U	H_2 + I_2 > 2HI. In this reaction rate of formation of HI is twice the rate of disappearance of H_2 or I_2 , why ?	
17	U	Calculate the rate constant at 590 K for the following first order reaction ?	1.925x10 ⁻⁴ s ⁻
		SO_2Cl_2 > SO_2 + Cl_2 , time for half reaction is 60 mts.	
8	U	The velocity constant for the decomposition of N_2O_5 is 6.2×10^{-4} sec ⁻¹ . What is the half life period of the reaction ?	t _{1/2} =1118 sec
9	U	The following data were reported for the decomposition of N_2O on gold at 990 $^{\rm OC}$	
		Time in min - 30 65 120	
		Percentage of - 32 57 78 decomposition	
		Show that the reaction is first order and calculate the velocity constant.	

Q. No.	Obj.	Question	Answers	
50	U	With which of the following zinc reacts fastly to liberate hydrogen gas ?	(b)	
		(a) Decimolar HCl		
		(b) Molar HCl		
		(c) Milli molar HCl		
		(d) 0.5 Molar HCl		
51	U	Why increase in temperature increases rate of reaction ?		
52	U	Why smaller chips of wood burn very rapidly than log of wood of the same weight ?		

0.	Obj.	Question		Answers
;3	U	Match the following.		
		А	В	
		MnO ₂ 2KClO ₃ > 2KCl + 3O ₂	Homogenous catalysis	
		Glycerol 2H ₂ O ₂ > 2H ₂ O + O ₂	Positive catalysis	
		NO (g) $2SO_2 + O_2> 2SO_3$ (g) (g) (g)	Heterogeneous catalysis	
		$\begin{array}{cccc} & & & & & & & \\ \text{Fe (s)} & & & & & \\ \text{N}_2 & + & 3\text{H}_2 &> & 2\text{NH}_3 & & \\ \text{(g)} & & & & \text{(g)} & & & & \\ \end{array}$	Negative catalysis	
54	U	In what way catalyst affec reaction at constant tempe		
	E	nergy	B in the absence of catalyst B in the pre sence of catalyst	
		Reaction coordin		
55	U	Why finely divided nickel effective catalyst than a nickel ?		
6	K	What are the characteristi catalyst ?	cs of a	

:oncept 6: Catalyst effect the rate of reaction in different ways.

). 10.	Obj.	Question	Answers
57	U	A catalyst at the end of the reaction	(b)
		 (a) may undergo chemical change (b) may undergo physical change (c) may undergo mass change (d) may undergo both physical and chemical change 	
58	U	Find out which of the following statement is incorrect ?	(b)
		(a) Catalyst initiates reaction	
		(b) Catalyst alters the energy barrier level	
		(c) Catalyst increases to rate of reaction	
		(d) Catalyst decreases the rate of reaction	
59	U	Pick out the correct statement. Concentration of catalyst affect rate of reaction in the case of	
		 (a) homogeneous reaction (b) heterogeneous reaction (c) positive catalysis (d) negative catalysis 	
50	U	In homogeneous catalysis intermediate compound decomposes at rate than reactants.	faster
61	K	Explain adsorption theory of catalysis with suitable examples.	
62	K	What is promoter of a catalyst ? Give an example.	
63	K	What are catalytic poisons ?	
64	U	How do catalytic poisons retard the rate of reaction ?	
65	U	Give the application of catalysts in industries.	

ORGANIC CHEMISTRY-I

Content analysis

- * Classification of organic compounds
 - Aliphatic, alicyclic, aromatic and heterocyclic compounds.
- * Homologous series
- * Nomenclature of organic compounds.
 - IUPAC and common names.
- * IUPAC rules of nomenclature of organic compounds.
- * Isomerism in organic compounds
 - Chain, position, functional.
- * Sterioisomerism in organic compounds.
 - Geometrical and optical isomerism.

-132-

ISOMERISM

Concept 1: A set of compuonds having the same functional group and similar chemical characteristics differing from each other in their molecular formulae by C-CH₂ group.

Q. No.	Obj.	Question	Answer
1	K	What are homologous series ? Give an example. Write their important characteristics.	
Cond	cept 2	& 3: Compounds having the same molecular but different structural formulae are isomers. Compounds having the same structural : but different special arrangements are stereoisomers.	called formulae
Q. No.	Obj.	Question	Answer
2	K	Define isomerism	
3	U	Mention different types of isomerism exhbited by organic compounds. Give one example for each.	
4	U	Write down all the isomers represented by the molecular formula C ₄ H ₈ O.	
5	U	In what way structural isomers differ from stereoisomers ? Give examples	In spacial arrange ment of atoms o
			group
6	U	Write the possible chain isomers for the compounds having molecular formula $\rm C_{5}H_{10}$.	
7	A	Write the strutures of two open chain compounds, two alicyclic compound and two heterocyclic compounds for molcular formula C ₆ H ₈ O	

4

•

Q. No.	Obj.	Question	Answer
8	K	Two couples A and B are isomers. They differ not only in their physical properteis but also in their chemical properties. Therefore they are	(b)
		(a) chain isomers	
		(b) functional isomers	
		(c) stereoisomers	
		(d) position isomers	
9	U	The correct statement about HOCH ₂ CH(OH)CHO include that it	(a)
		(a) is a functional isomer of2-hydroxy propanoic acid	
		(b) is an isomers of 3-hydroxy-2- propanoic acid	
		(c) can exhibit geometrical isomerism	
		(d) has the same empirical formula of glycerol	
10	U	Which of the following compounds displays geometrical isomerism.	(c)
		(a) CH ₂ =CHBr	
		(b) CH ₂ =CBr ₂	
		(c) Cl-CH=CHBr	
		(d) $Br_2C=CCl_2$	
11	U	Acetic acid and methyl formate represent	(C)
		(a) chain isomerism	
		(b) position isomerism	
		(c) functional isomerism	
		(d) geometrical isomers	

-134-

Q. No.	Obj.	Question	Answer
12	U	Ethanol is the functional isomers	(c)
		(a) Methanol	
		(b) Acetaldehyde	
		(c) Dimethyl ether	
		(d) Formic acid	
13	U	Acetone is a functional isomer of	(c)
		(a) propanol	
		(b) propanone	
		(c) propanal	
		(d) Proponoic acid	
14	U	The compound CH ₃ -CH-CH ₂ -COOH OH	(b)
		is functional group isomer of	
		(a) OHC-CH ₂ -CH ₂ COOH	
		(b) HO-CH ₂ -C-CH ₂ -CH ₂ OH	
		0	
		(c) CH ₃ -CH ₂ -CH-COOH OH	
		(d) $HO-CH_2-CH_2-CH_2-COOH$	

Q. No.	Obj.	Question	Answer
compounds.		Given below are the pairs of some compounds. Indicate the specific type of isomerism they exhibit.	
		(a) 1-butene and 2-butene a. Positi	onal
		(b) propenol and prepanone b. Functi	onal
		(c) aceti acid and methyl c. Functi formate	onal
		(d) test butylchloride and d. Chain 2-chlorobutane	
		(e) allylalcohol of acetone e. Functi	onal
16	A	Write a pair of position isomers and functional group isomers for the molecular formula $C_4H_8O_2$.	
17	A	Which of the structures given below represents the tautomer of the compound CH ₃ -C-CH ₂ -CH ₂ CH ₃	(b)
		(a) $CH_3 - CH_2 - C - CH_2 - CH_3$	
		(b) CH ₃ -C=CH-CH ₂ -CH ₃ OH	
		(c) CH ₃ -CH-CH=CH-CH ₃ OH	
		(d) $HC-CH_2-CH_2-CH_2-CH_3$	
18	K	In what ways do tautomers of a compound differ from each other ?	
19	A	The optical isomers of a compound rotate the plane polarized light in two opposite directions. In what ways are they dissimilar to each other ?	

-136-

Q. No.	Obj.	Question	Answer
1	U	Assign IUPAC names for the following compounds	
		(a) $(CH_3)_3C-CH(CH_3)-CH_3$	2,2,3-Trimethyl butane
		(b) CH ₃ -CH ₂ -CH-CH-CH ₂ CH ₃ CH ₃ Cl	3-Chloro-4-methyl hexane
		CH3	
		(c) CH ₃ -C=C-CH-CH ₂ OH	2-Methyl-3-pent- 1-OL
		(d) CH ₂ =CH-CH=CH ₂	1,3-Butadiene
		(e) CH ₃ -CH(OH)-CH ₂ COOH	3-Hydroxybutanoic acid
		(f) CH ₃ -CH(OH)-CH ₂ -C-CH ₃ 0	4-Hydroxy,-2- Pentanone
		(g) CH ₃ -CH-CH(OH)-CH ₃ Cl	3-Chloro-2- butanol
		(h) $CH_3 - C - CH_2 - CH_2OH$	4-Hydroxy-2- butanone
		(i) CH ₂ =CH-CH ₂ -CH ₂ OH	3-Chloro-3- butenol
		(j) CH ₃ -CH-CH-CH-CH(OH)-CH ₃ CH ₃ CH ₃ CH ₂ CH ₃	3-Ethyl-4,5- dimethyl hexan- 2-OL
		(k) $CH_2 = C - CH = CH_2$	But-1-en-3-yne
		0	

Concept 4: A set of rules govern the nomenclature of organic compounds - IUPAC.

-137-

Q. No.	Obj.	Question	Answer
		(1) CH ₃ -CH ₂ -CH ₂ -C-NH ₂	Butanamide
		(m) CH ₃ -CH-CH ₂ -CH-CH ₃ CHO CH ₂ CH ₃	2,4-Dimethyl hexanal
		(n) CH ₃ -C-CH ₂ -C-OCH ₃ 0 0	Methyl-3- ketobutanoate
		(0) COOH COOH	Ethan dioic acid
		(p) CHO CHO	Ethan dial
2	U	Write structural formulae following	for the
		(a) 2-Chloro-3-bromo butano	one
		(b) 2-Butanone	
		(c) Ethandial	
		(d) Hepta-1,5-dien-3-ol	
		(e) 2,2,4,4-tetramethylpent	tane
		(f) Methyl-2-chloro butanoa	ate
		(g) 3-methylbutanol	
		(h) 3-methyl-2-butenal	
		(i) Ethandioic acid	
		(f) 3-oxopentanal	

Q. No.	Obj.	Question	Answer
3	U	The IUPAC name of the compound	
		CH ₃	
		CH ₃ -C-CH=CH ₂ is	
		(a) 2,2-dimethyl-3-butene	
		(b) 3,3-Dimethyl-1-butene	
		(c) 3,3,3-Trimethyl-1-propene	
		(d) 2,2,3-Trimethyl-2-propene	
4	U	The IUPAC name of the compound	
		$CH_3 - CH - CH_2 - CH - CH_2 CHO$ OH Br	
		(a) 3-Bromo-5-Hydroxyhexanal	
		(b) 4-Bromo-2-Hydroxyhexanal	
		(c) 4-Bromo-6-oxo-2-hexanal	
		(d) 4-Bromo-5-oxo-2-pentanol	
5	U	The IUPAC name of HOOC-COOH is	
		(a) Dioic acid	
		(b) Oxalic acid	
		(c) Ethandioic acid	
		(d) Carboxymethanoic acid	

Q. No.	Obj.	Ques	tion		Answer
6	U T	he IUPAC name o	f the comp	ound	
	C	ОН СІ H ₃ -CH-CH ₂ -CH-C-(0	OCH3		
	(a) 4-chloro-2-h	ydroxyhexa	noate	
	(b) Methyl-2-chlo pentanoate	oro-4-hydr	oxy-	
	(c) Methyl-2-hyd pentanoate	roxy-4-chl	oro-	
	(d) 4-chloro-2-h pentanone	ydroxy-5-m	ethoxy-	
7	U I	UPAC name of th	e compound	HOCH2CH2OH is	(c)
	(a) Glycol			
	(b) 1,2-dihydrox	y ethane		
	(c) Ethane-1,2-D	iol		
	(d) Ethylene gly	col		
8	A M	atch the follow	ing		
	IUPA	C names	Stru	ctural formula	
(a)	3-Hydrox	ypentanal	1. CH ₃ -C	OCH2Cl-CH2 CH3	
(b)	3,3-Dime acid	thylbutanoic		н ₂ -Сн (Он) -Сн ₂ С н ₃	CHO
(c)	3-chloro	-2-pentanone	3. CH ₃ -C 	5	
(d)	2,2-3,3, hexane	tetra methyl	4. CH ₃ -C	CH3 CH3 H2-CH2-CC-C	
				ĊH ₃ ĊH ₃	3

Q. No.	Obj.		Quest	ion			Answer
					CH ₃		
(e)	2,3-Dir	nethyl-	1-butene	5. CH	$_2 = C - CH -$	CH ₃	
				6. OH	C-CH ₂ -CH	2-CH2-O-CH3	
9	A	column	the common n (A) with th column (B)				
			A		В		
		(a) Ac	etic acid	1.	Propano	ne	
		(b) Fo	rmaldehyde	2.	Ethandi	al	
		(c) Ac	etone	3.	Ethanoi	c acid	
		(d) Gl	yoxal	4.	Methana	1	
		(e) Gl	ycerol	5.	Butandi	oic acid	
		(f) Su	ccinic acid	6.	Ethyl e	thanoate	
		(g) Di	ethylether	7.	Ethyoxy	rethane	
		(h) Et	yl acetate	8.	1,2,3-p	propantrial	
				9.	Ethandi	oic acid	
				10	. Propan	ndioic acid	
10	K		ge the follo increasing ties.				
		-OH, -	-COOH, -NH ₂ ,	-СНО,	C=0, =	=, ≘, C≣N	
11	A	naming rule.	below is a y in each ca Identify th ct the nomen	se vic e rule	lets an violate	IUPAC	
		(a) 4-	-bromo-5-Hex	anone			
		(b) Ca	arboxymethan	noic ac	id		
		(c) 3-	-carboxy-1-b	outanol	*		
		(d) 4·	-propylhexan	nal			
12	K	Write	IUPAC nomen	nclatur	rules		-

¢

oncept	1: Hydrocarbons are classified into aliphatic, aromatic.
-	Further aliphatic compounds are classified into saturated
	and unsaturated.

2.).	Obj.	Question	Answers
	K	The general formula of alkanes is	(b)
		(a) C _n H _{2n}	
		(b) C _n H _{2n+2}	
		(c) C _n H _{2n-2}	
		(d) C_nH_{2n+4}	
-	U	Classify the following into aliphatic, alycyclic and aromatic hydrocarbons.	
		(a) C ₄ H ₁₀	
		(b) C ₃ H ₆	
		(c) C ₅ H ₈	
		(d) Cyclobutane	
		(e) Anthrascene	
3	A	Alkenes have the same molecular formula of cycloalkanes. The property that distinguish the alkenes from cycloalkanes is	(b)
		(a) cyclo alkanes decolourise bromine without evolution of HBr	
		(b) cyclo alkanes decolourise bromine with evolution of HBr	
		(c) Cyclo alkanes decolourise dil. alk. KMnO ₄	
		(d) Cyclo alkanes undergo polymerisation	

-142-

Concept 2: Hydrocarbon can be named according to IUPAC system. The shapes of hydrocarbons can be predicted on the basis of hybridisation utilised by the carbon atoms.

Q. No.	Obj.	Question	Answers
4	K	The type of hybridisation utilised by carbons in alkanes is	(c)
		(a) sp	
		(b) sp ²	
		(c) sp ³	
		(d) both sp^3 and sp^2	
5	K	sp hybridised carbon is present in	(c)
		(a) alkenes	
		(b) cycloalkanes	
		(c) alkynes	
		(d) benzene	
6	K	The number of - bonds presents in propene is	(b)
		(a) 10	
		(d) 9	
		(C) 8	
		(d) 2	
7	K	The number of 🕶 bonds present in pent- 3-yne-1-ene is	(c)
		(a) 1	
		(b) 2	
		(c) 3	
		(d) 4	

0.	Obj.	Question	Answers
	K	The major component of Marsh gas is	(a)
		(a) methane	
		(b) ethane	
		(c) ethylene	
		(d) acetylene	
ł	U	A hydrocarbon contains three $\mathbb T$ bonds. Which of the following is a correct statement in the case.	(d)
		The compound contain	(a)
		(a) two double bonds	
		(b) one double bond and one triple bonds	
		(c) two triple bonds	
		(d) one double bond and two triple bonds	
0	U	Bonds present in ethyene are	(a)
		(a) 3 - , 2 TT	
		(b) 4 5 , 17	
		(c) 2 °, 3 T	
		(d) $1^{-}, 4\pi$	
1	U	The number of sp^2 hybridised carbon atoms present in the compound $CH_2=CH-CH=C=CH-CH_3$ is	(b)
		(a) 5	
		(b) 4	
		(C) 3	
		(d) 2	

Q. No.	Obj.	Question	Answers
12	U	Give IUPAC names of the following compounds	
		(a) $CH_3-CH-CH_2-CH_2-CH_2-CH_2-CH_2-CH_3$ $ $ $ CH_3 CH_3 CH_3$	
		CH ₃ (b) CH ₃ .CH.CH ₂ .CH ₂ .CH ₂ .CH ₂ .CH ₂ .CH ₃	
		(c) $CH_3-CH-CH=CCH-CH_3$ $ $ $ $ $ CH_3 CH_2 CH_3 CH_3$	
		(d) CH ₃ -CH=CH-CH=CH-CH-CH ₃ CH ₃	
		(e) H_{2} (f) a_2N H_{3} No_2 T No_2	
.3	U	The carbon atoms in 1,2-Butadiene are	(d)
		(a) sp hybridised	
		(b) sp ² hybridised	
		(c) sp and sp^2 hybridised	
		(d) sp, sp^2 and sp^3 hybridised	

-145-

 \mathbb{Z}^{2}

0 1	Obj.	Question	Answers
- -	U	Write the possible chain isomers for the hydrocarbon having the molecular formula C_5H_{12} .	
	U	One of the position isomer of the compounds has the structure $CH_2=CH-CH=CH-CH_3$. What are its other position isomers ?	
τo	K	An aliphatic hydrocarbon forms structural isomers if the minimum number of carbon atoms is	(d)
		(a) 1	
		(b) 2	
		(c) 3	
		(d) 4	
± 7	U	Which type of isomerism is not observed in alkanes ?	(c)
		(a) Chain	
		(b) Geometrical	
		(c) Metamerism	
		(d) Position	

C ncept 3: Hydrocarbons exhibit both position, chain and stereo isomerism

1

-146-

-147-

2. No.	Obj.	Question	' Answers
18	A	A mixture of C_2H_5I and C_3H_7I is subjected to Klurtz synthesis. Pick up the compound which cannot be formed in this reaction ?	(b)
		(a) Butane	
		(b) Propane	
		(c) Pentane	
		(d) Hexane	
19	U	Ethylene is prepared by heating ethyl bromide with	(d)
		(a) $NH_4OH + AgNO_3$	
		(b) $H_2SO_4 + KMnO_4$	
		(c) Conc. H ₂ SO ₄	
		(d) $C_2H_5OH + KOH$	
20	U	Which of the following compounds cannot be converted into butane by catalytic reduction ?	(d)
		(a) $CH_2 = CH - CH = CH_2$	
		(b) CH ₃ -CH=CH-CH ₃	
		(c) $CH_2 = CH - C = CH$	
		(d) $CH_2=C=CH_2$ CH_3	
21	U	The sodium salt of which of the carboxylic acid is used for the preparation of propane by decarboxyla- tion ?	(c)
		(a) Ethanoic acid	
		(b) Propanoic acid	
		(c) Butanoic acid	
		(d) Pentanoic acid	

Concept 4: Varieties of methosd can be used to prepare hydrocarbons

Q. No.	Obj.	Question	Answers
22	U	What is the hydrocarbon obtained by electrolysis of potassium salt of propanoic acid ?	
23	U	Which of the following reactions will not be suitable for the preparation of butane ?	(b)
		(a) Electrolysis of potassium acetate	
		(b) Decarboxylation of sodium acetate	
		(c) Catalytic reduction of 1,3-Butadiene	
		(d) Reduction of 1-chlorobutane	
24	A	Mg/Ether HCHO CH ₃ CH ₂ Cl> A> B Hydrolysis	
		Conc. H ₂ SO ₄ Ozonalysis > C> D + E (-H ₂ O)	
		Write equations for the conversions A to B, B to C and C to D+E. Find out compounds A, B, C, D and E.	
25	A	Why cannot water be used as solvent for Klurtz reaction ?	
26	U	How is C_2H_4 converted into butane ?	
27	U	Why dehydration of primary alcohols cannot be carried out with dilute H ₂ SO ₄ of normal temperature ?	
28	A	Compound 'A' is prepared by dehydro- halogenation of an alkyl halide. The same compound 'A' is also prepared from alkyne by reduction. Alkyne gives benzene on polymerisation. Find out 'A'.	
29	U	1,2-Dichlorobutane gives ethylacetylene, whereas 1,3-dichlorobutane does not,why?	

1

Q. No.	Obj.	Question	Answers
30		Complete the following reactions	
	K	(a) Zn/HCl C ₆ H ₆	Phenol (C ₆ H ₅ OH)
	K	(b) C ₆ H ₆ + Anhydrous AlCl ₃	CH3C1
	K	Anhydrous (c) C ₆ H ₆ + CH ₃ COCl> AlCl ₃	
31	U	A mixture of ethyl iodide and methyl iodide in dry ether is treated with sodium metal. What are the possible alkanes that can be obtained ?	

Concept 5: (a) Hydrocarbons are characterised by a set of properties. (b) Electrophiles are electron deficient species and unsaturated hydrocarbons undergo electrophilic addition reactions. (c) Ozoanalysis helps to identify the position of a double bond in an organic compound.

No.	Obj.	Question	Answers
-2	K	The distance between two adjacent carbon atoms is largest in	(a)
		(a) Ethane	
		(b) Ethene	
		(c) Ethyne	
		(d) Benzene	
73	K	Which among the following compounds decolourises alk. KMnO ₄ solution ?	(a)
		(a) 2-Hexene	
		(b) 2-Methyl Hexane	
		(c) Hexane	
		(d) Neopentane	
34	U	Oragnometallic compound among the following is	
		(a) sodium carbonate	
		(b) sodium ethoxide	
		(c) sodamide	
		(d) sodium acetylide	
35	U	Why do branched alkanes have lower boiling point, than the corresponding straight chain alkanes ?	
36		Predict the products	
	U	(a) CH ₃ -CH=CH ₂ + HI>	
	U	Peroxide (b) CH ₃ -CH=CH ₂ + HI>	

Q. No.	Obj.		Question		Answers
37	U	CH ₃ OH gives on decarbos C_2H_6 is obs	compound 'A' on the pleasant smelling solution of its solution of its solution. Find out of the reactions.	ng compound Ddium salt	
38	A	the addtion	-CH ₂ -CH ₂ Cl is not n reaction of HCl ence of peroxide 3	on propene	
39	U		e product of the mean Br_2/H_2O 3-CH=CH ₂		
40	U	moles of me analysis g	A' on ozoanalysis ethanol and 'B' or ives methanol and ne compounds A and	n ozo- propanone.	
41	U		'A' gives 1,2-dihy n with Bayer's rea nd 'A'.	_	
42	A		aliphatic hydrocan the following dat		
		Compound	Br ₂ /H ₂ O bromine water	Ammonical silver nitrate	
		A	No reaction	No reaction	
		В	Decolourises	No reaction	
		С	Decolourises	Gives white precipitate	
43	U	an aldehyd	A and B are alkyn e and 'B' gives a What is the diff and B ?	ketone on	
44	K		y does ethyne dif nes on ozoanalysi		

-151-

Q. No.	Obj.	Question	Answers
45	A	Why are terminal alkynes acidic ?	
46	U	How can be terminal and non-terminal alkynes differentiated ?	
47	U	There are two alkynes A and B. 'A' liberates hydrogen on reaction with metallic sodium, but 'B' does't. What is the difference ?	
48	K	Decreasing order of reactivity of propane, propene and propyne is	(b)
		(a) propane > propene > propyne	
		(b) propene > propyne > propane	
		(c) propene > propane > propyne	
		(d) propyne > propane > propene	
49	U	A gas on passing through ammonical cuprous chloride solution does not give any precipitate, but decolourises alkaline KMnO ₄ . The gas is	(d)
		(a) C ₂ H ₆	
		(b) C ₂ H ₄	
		(c) C ₂ H ₂	
50	U	(d) C ₃ H ₈ The one having highest BP is	(d)
		(a) n-pentane	
		(b) 2-methyl butane	
		(c) 2,2-dimethyl propane	
		(d) n-hexane	

Q. No.	Obj.	Question	Answers	
51	U	During ozoanalysis the compound that gives only propanal is	(a)	
		(a) 3-hexene		
		(b) hexene-1		
		(c) propylene		
		(d) 2-hexene		
52	А	How methane and ethane are inter converted ?		
53	U	How can you distinguish ethene from ethyne ?		
54	A	Find out A, B and C in the following reaction.		
		Br_2/CCl_4 Alc. KOH CH ₃ -CH=CH ₂ > A> B		
		Br ₂ > C		
55	U	Which among the following undergoes reaction with Tollen's reagent ?	(c)	
		(a) $CH_2 = CH_2$		
		(b) $CH_3 - C = C - CH_3$		
		(c) $CH_3 - CH_2 - C \equiv CH$		
		(d) CH ₃ -CH=CH-CH ₃		
56	U	Ozoanalysis of 2-methyl-2-butene yields		
		(a) acetaldehyde		
		(b) acetone		
		(c) both acetaldehyde and acetone		
		(d) 2 moles of acetaldehyde		

>ncept 6: The stability of benzene and its derivatives can be explained on the basis of resonance and molecular orbital theory.

Q.).	Obj.	Question	Answers
7	U	Write about resonance structures of benzene.	
3	K	Resonance structures differ only in the position of their	electrons
÷	U	How does benzene differ from alkenes in its reaction with $\rm KMnO_4$ and HX ?	
)	K	The carbons in benzene are hybridised.	sp ²
_ 1	K	The number of σ and π bonds in benzene are	12 - & 3 TT
- 2	U	Eventhough benzene and hexane differ in their degree of saturation, how do they resemble in the reaction with bromine.	Both undergo substitution reaction
-3	U	What is delocalisation of electrons ? Explain with suitable examples.	
-4	S	Account for the Kekule forms of structure of benzene based on electron delocalisation.	

-154-

-155-

Concept 7: Electrophilic substitution is characteristic property of benzene and its derivatives.

Q. No.	Obj.	Question	Answers
65	U	Why does benzene undergo electrophilic substitution ?	
66	U	How is benzene converted into aceto phenone ?	
67	U	What happens when benzene is treated wtih chlorine in presence of FeCl ₃ ?	Chlorobenzene is formed
68	U	What is the product formed when benzene is heated with a mixture of conc. HNO_3 and H_2SO_4 at a temperature above $60^{\circ}C$?	m-dinitro- benzene
69	U	Predict the product in the reaction of benzene with fuming sulphuric acid.	m-benzene disulphonic acid
70	U	How benzophenone can be obtained from benzene ?	By reaction with C ₆ H ₅ COCl
71	U	What is the product formed in the alkylation of benzene ?	Alkyl benzene

ORGANIC CHEMISTRY-II

Content Analysis

- * Classification of organic compounds containing nitrogen into amines and nitro compounds.
- * Nomenclature and isomerism in nitro compounds.
- * General methods of preparation of nitro compounds.
- * General properties of nitro compounds.
- * Electrophillic substitution in aromatic nitro compounds.
- * Classification and nomenclature of aliphatic and aromatic amines.
- * General methods of preparation of aliphatic and aromatic amines.
- * Genearl properties of aliphatic and aromatic amines.
- * Electrophillic substitution in aromatic amines.
- * Distinction between aliphatic and aromatic amines.
- * Uses of organic compounds containing nitrogen.

-156-

Q. No.	Obj.	Question	Answers
1	K	Which is an example for aliphatic amine ?	(d)
		(a) C ₆ H ₅ N ₂ Cl	
		(b) CH ₃ NO ₂	
		(c) CH ₃ CONH ₂	
		(d) CH ₃ NH ₂	
2	K	Compounds containing -NO ₂ group are called	(a)
		(a) nitro	
		(b) amine	
		(c) nitrile	
		(d) acid amide	
3	K	Pickout the aromatic nitrogen compounds	(c)
		(a) CH ₃ CN	
		(b) CH ₃ CONH ₂	
		(c) C ₆ H ₅ NH ₂	
		(d) CH ₃ NH ₂	

· · · · ·

Concept 1: Organic compounds containing nitrogen can be classified into several groups.

Q. 10.	Obj.	Question	Answers
ł	K	The structure of 2-nitropropane is	(d)
		(a) CH ₃ NO ₂	
		(b) CH ₃ CH ₂ NO ₂	
		(c) CH ₃ CH ₂ CH ₂ NO ₂	
		(d) CH ₃ -CH-CH ₃ NO ₂	
5	K	CH ₃	(a)
		The IUPAC name $CH_3 - C - CH_3$ is $ $ NO ₂	
		(a) 2-methyl-2-nitropropane	
		(b) 2-nitro-2-methyl propane	
		(c) 1-nitrobutane	
		(d) nitroisobutane	
6	U	IUPAC name of isopentylamines is	(b)
		(a) 1-amino-2-methyl butane	
		(b) 2-amino-3-methyl butane	
		(c) 1-amino butane	
		(d) 2-amino pentane	

Concept 2: IUPAC system is followed to name nitrogen containing compounds.

-158-

Q. No.	Obj.	Question	Answers
7	K	CH ₃ -CH-CH ₃ IUPAC name of this compound NH ₂ is	(a)
8	K	 (a) 2-aminopropane (b) 1-aminopropane (c) 1-amino-2-methyl propane (d) aminoethane The IUPAC name of benzylamine is (a) phenylmethyl amine (b) phenylaminomethane (c) phenylamine (d) amiline 	(b)

Q. No.	Obj.	Question	Answers
9	K	Pick out the primary amine from the following compound.	(a)
		(a) isobutyl amine	
		(b) methylethyl amine	
		(c) dimethyl amine	
		(d) trimethyl amine	
10	K	Identify the tertiary nitro compounds	(c)
		(a) 1-nitrobutane	
		(b) 2-nitrobutane	
		(c) 2-methyl-2-nitropropane	
		(d) 2-methyl-1-nitropropane	
11	K	Classify the aliphatic nitro and amine compounds with an example.	

Concept 3: Aliphatic nitrocompounds and amines are classified into primary, secondary and tertiary.

Q. No.	Obj.	Question	Answers
12	K	CH ₃ -CH ₂ -CH ₂ -CH ₂ -NO ₂ , CH ₃ -CH-CH ₂ -NO ₂ CH ₃	
		The type of isomerism exhibited by the set of compounds.	(c)
		(a) functional isomerism	
		(b) chain isomerism	
		(c) positional isomerism	
		(d) tautomerism	
13	К	Nitro compounds containing alpha- hydrogen can exhibit	Tautomerism
14	K	Which of the following set of compounds exhibit functional isomerism.	(b)
		(a) Primary and secondary nitro compounds	
		(b) Nitromethane and methylnitrite	
		(c) 1-nitropropane + 2-nitropropane	
		(d) 1-nitrobutane + 1-nitro-2-methyl propane	
15		Explain the different isomerism in nitro compounds with examples.	

Concept 4: Organic compounds containing nitrogen exhibit different kinds of isomerism.

-161-

2.	Obj.	Question	Answers
5	K	Nitromethane and methyl nitrite are separated by	Fractional distillation
7	K	673 K CH ₄ +> CH ₃ NO ₂ + H ₂ O	HNO ₃
_ 3	K	673 K $C_2H_6 + HNO_3> C_2H_5NO_2 + H_2O$	
		This reaction is known as	()
		(a) direct nitration	
		(b) direct halogenation	
		(c) deydrogenation	
		(d) hydrolysis	
9	K	The nitration mixture used for the preparation of nitrobenzene from benzene is	Conc. $HNO_3 + Conc. H_2SO_4$

Q. No.	Obj.	Question	Answers
20	K	When nitroalkanes are reduced in acidic medium, the compound obtained is	(a)
		(a) primary amine	
		(b) secondary amine	
		(c) tertiary amine	
		(d) quarternary ammonium salts	
21	K	The compound obtained when nito-methane is readily halogenated in the alpha- position with chlorine in alkaline medium is	(b)
		(a) nitrolic acid	
		(b) chloropicrin	
		(c) methylamine	
		(d) methylhydroxylamine	
22	K	The medium which converts nitro methane to methyl hydroxylamine is	(b)
		(a) Sn/HCl	
		(b) Zn/NH ₄ Cl	
		(c) NaOH	
		(d) HONO	
23	K	What type of reaction will nitro alkane undergo with aldehydes and ketones ?	(d)
		(a) Reduction	
		(b) Halogenation	1
		(c) Hydrolysis	
		(d) Condensation	4

Concept 6: Organic nitro compounds are characterised by set of chemical properties.

2. No.	Obj.	Question	Answers	
24	K	When reduced with tin and hydrochloric acid or lithium aluminium hydride, nitrobenzene gives	Aniline	
25	U	Zn/NH ₄ Cl 2[H] C ₆ H ₅ NO ₂ > A> B -H ₂ O		
		Identify A and B	(a)	
		(a) Nitrosobenzene and phenylhydroxyl amine		
		(b) Paminophenol and aniline		
		(c) Anilin and m-chlorobenzene		
		(d) m-chlorobenzene and p-aminophenol		

. Obj. o.	Question	Answers
6 U	In Hoffmann reaction, if acetamide is used the primary amine obtained is	(a)
	(a) methylamine	
	(b) butylamine	
	(c) ethylamine	
	(d) propylamine	
7 K	By heating alkyl halide with alcoholic ammonia in a sealed tube, the compound obtained is	(C)
	(a) primaryamine	
	(b) secondamine	
	(c) mixture of amine	
	(d) tertiaryamine	
9 K	X R-CONH ₂ > RCH_2NH_2 + H_2O Identify the 'X'	(a)
	(a) Sn/HCl	
	(b) Br ₂ /NaOH	
	(c) LIAlH ₄	
	(d) Zn/NH ₄ Cl	
0 K	The starting material in Gabriel- phthalimide synthesis is	

Concept 7: Several methods are available for the preparation of amine compounds.

× ·	Obj.	Question	Answers
	K	LiAlH ₄ C_6H_5-CN > ? Identify the [H]	(a)
		compound obtained.	
		(a) Benzylamine	
		(b) Aniline	
		(c) Benzenediazonium chlorine	
		(d) Diphenylamine	
5 ∠	K	When chlorobenzene is treated with ammonia at high temperature under pressure in presence of copper salts, the compound obtained is	(d)
		(a) Benzylamine	
		(b) Aniline	
		(c) Benzenediazonium chloride	
		(d) Diphenylamine	

-166-

Q. No.	Obj.	Question	Answers
33	K	Amines have higher boiling points than alkanes of same molecular weight, it is due to	(b)
		(a) the presence of non-polar amino group	
		(b) the presence of polar amino group	
		(c) the presence diazonium chloride group	
		(d) the presence of amino group	
34	U	CH ₃ -NH ₂ , NH ₃ , C ₆ H ₅ -NH ₂ , CH ₃ -NH-CH ₃	C ₆ H ₅ NH ₂ <nh<sub>3<</nh<sub>
		Write their increasing order of their basic nature.	CH ₃ -NH ₂ <(CH ₃) ₂ NH
35		Explain why amines are known as Lewis bases.	
36	K	Which of the following compound does not react with acid chloride.	(c)
		(a) p-amine	
		(b) s-amine	
		(c) t-amine	
		(d) NH ₃	
37		Give one test to identify primary amines ?	
38	K	In carbylamine reaction, the formation foul smelling is due to	(a)
		(a) alkyl isocyanide	
		(b) alkyl thiocyanide	
		(c) alkyl cyanide	
		(d) alkyl isocyanate	

Concept 8: Organic amines are characterised by set of chemical properties.

0.	Obj.	. Question	
9	K	The reagents used with primary amine in mustard oil reaction is	(a)
		(a) CS ₂ and HgCl ₂	
		(b) CS_2 and Hg_2Cl_2	
		(c) CS ₂	
		(d) HgCl ₂	
0	K	Primary amines form derivative with diethyl oxalate at room temperature.	Solid
1	K	$C_6H_5-NH_2$ + NaNO ₂ + HCl> $C_6H_5N_2Cl$ + 2H ₂ O	(d)
		The reaction is	
		(a) carbyl amine reaction	
		(b) diazotisation	
		(c) Sandmeyer's reaction	
		(d) Gattermann's reaction	
2	K	NaOH $C_6H_5-NH_2 + C_6H_5-CO-Cl>$	(a)
		C ₆ H ₅ -NH-CO-C ₆ H ₅	
		This reaction is known as	
		(a) Schotten-Baumann reaction	
		(b) Friedel-Craft's reaction	
		(c) Gattermann's reaction	
		(d) Hoffmann's reaction	

. 0] 0.	bj.	Question	Answers	
3	K	To differentiate the aniline and ethyl amine, using which of the following reagent.	(c)	
		(a) alkylhalide		
		(b) nitrous acid		
		(c) metallic sodium		
		(d) chloroform and alkali		
4	K	Aniline on oxidation with acidified $K_2Cr_2O_7$ gives	(a)	
		(a) p-benzoquinone		
		(b) benzoic acid		
		(c) cyclohexanol		
		(d) phthalic acid		
:5	K	Which of the compound is the Schiffbuse obtained when aniline condenses with aromatic aldehyde ?	(b)	
		(a) $C_6H_5 - N = N - C_6H_5$		
		(b) $C_6H_5-N=CH-C_6H_5$		
		(c) C_6H_5 -NH-NH- C_6H_5		
		(d) C ₆ H ₅ -NH-OH		
16	K	The amino group of aniline is protected by acetylation before oxidation. Explain why ?		
17	K	When benzene diazonium chloride is boiled with water, it gives	(b)	
		(a) Anisole		
		(b) Phenol		
		(c) Carboxylic aacid		
		(d) Benzene	1	

()).	Obj.	Question	Answers	
_ J	U	$\begin{array}{cccc} & & & H_2O\\ C_6H_5-N_2Cl & & & A & &> & B\\ & aquions & & dil.\\ & & cupowde & & HCl \end{array}$	(a)	
		Identify A and B.		
		(a) phenylcyanide and benzoic acid		
		(b) chlorobenzene and aniline		
3		(c) phenylhydrazine and diazoamino- benzene		
		(d) chlorobenzene and phenol		
9	K	Reaction between benzene diazonium chloride and phenol to form p-hydroxy azo benzene. It is an example of	(d)	
		(a) diazotization		
		(b) coupling reaction		
		(c) nitration		
		(d) hydrolysis		
0	U	Compound A, C_6H_7N gievs foul smell with chloroform and alkali. A on diazotisation gives B. B with methanol form C with molecular formula C_7H_8O . Identify A, B, C and Explain.	A=Aniline B=Benzene diazonium chloride C=Anisole	

-170-

Concept 9: Aromatic nitrogen containing compounds follow general mechanism of electrophilic substitution.

51 52	U	Explain the mechanism of nitration of	
52		nitrobenzene.	
	U	Explain the mechanism of halogenation of aniline.	
53	K	The electrophile produced by the reaction of conc. HNO_3 and conc. H_2SO_4 is (a) NO_2 (b) NH_4 (c) Cl ⁺	(a)
54	K	<pre>+ (d) SO₃H In sulphonation of nitrobenzene with fuming H₂SO₄, the electrophile is attached to position in the benzene ring. (a) ortho (b) ortho and para (c) para</pre>	(d)
55	K	(d) meta The sulphonation of aniline with fuming	p-amino benzene

).	Obj.		Question		Answers
5	K	Complete t products	he reaction and nam	ne the	
		a. $(0)^{\rm NH_2}$	Br ₂ > H ₂ O		
		b. NH ₂	CH ₃ COCl Con 	nc. HNO_3 nc. H_2SO_4	
		NO ₂	Cl ₂ FeCl ₃		
		d. $(0)^{NO_2}$	Fuming > H ₂ SO ₄		
, 7	U	substituti	he mechanism of ele on of nitrobenzene onc. H ₂ SO ₄ .		

>ncept 10:Depending on the nature of nitrogen containing functional
 group in the aromatic system the incoming electrophilic
 directed to the different position of the ring.

-172-

Q. No.	Obj.	Question	Answers
58	K	is used intermediate in the production of explosives and detergents.	Nitro methane
59		is used as a mild and cheap perfume in soaps and shoe polishes.	Nitro benzene
60		and amines are used as inhibitors of corrosion of iron.	di and tri amyl amines
61		andare usd as starting materials for the preparation insecticides and pharmaceuticals.	methylamine and dimethylamine of
62		Sulphanilic acid is an important drug intermediate in the manufacture of drugs.	Sulpha
63		is used as solvent in rubber industry.	Aniline

Concept 11: Nitro and amino compounds have variety of synthetic uses in chemical industry.

-173-

SUGGESTIONS

The workshop was successful in training the participants to write questions at understanding, application levels. Eventhough it is not exhaustive, there has been an attempt to make it comprehensive and objective. A variety of ways a concept can be tested (learnt/taught) is shown. Many more can be added, given more time. However the objective of the workshop was not to have a huge collection of questions to serve as a ready reckoner for preparing question papers. It was an attempt to provide the experience of writing different types and levels of questions, with the hope that the teachers will design their own questions on the same lines. This report therefore is intended to develop the art of writing questions with greater objectivity, reliability and validity.

-174 -

-175-

SCHEDULE OF WORKSHOP ON DEVELOPMENT OF QUESTION BANK IN CHEMISTRY AT HIGHER SECONDARY LEVEL OF SOUTHERN REGION (14th June 1999 to 25th June 1999)

Date	9 am to 12 pm	1 pm to 2.30 pm	2.30 pm to 4 pm
14-06-1999	Registration and Inauguration	Interaction/ Discussion	Concept of Evaluation
15-06-1999	Plan of action	Group work Content analysis (I cycle)	Group work Concepts idcntification
16-06-1999	Group work	Group work	Presentation and discussion
17-06-1999	Group work	Group work	Presentation and discussion
18-06-1999	Group work	Group work	Presentation and discussion
19-06-1999	Group work Content analysis (I I cycle)	Group work Concepts identification	Presentation and discussion
20-06-1999	Compute	er session	Library work
21-06-1999	Group work	Group work	Presentation and discussion
22-06-1999	Group work	Group work	Presentation and discussion
23-06-1999	Group work	Group work	Presentation and discussion
24-06-1999	Blue print pr	eparation and question	paper setting
25-06-1999	Presentation	and discussion	Valedictory

(Dr.G.R.Prakash) Academic Co-ordinator

LIST OF PARTICIPANTS

- B. Rama Rao Jr. Lecturer in Chemistry Govt. Jr. College Pendurthi Visakhapatnam Andhra Pradesh
- 2. S.V.V. Satyanarayana Jr. Lecturer in Chemistry Govt. Jr. College Nakkapalli Visakhapatnam District Andhra Pradesh
- 3. S. Swamy Jr. Lecturer in Chemistry Govt. Jr. College (Boys) Mahabubnagar Andhra Pradesh
- 4. M. Murali Mohan Raju Jr. Lecturer in Chemistry Govt. Jr. College Tadpatri Anantapur District Andhra Pradesh
- 5. Dr. K. Krishna Rao Jr. Lecturer in Chemistry SBS Govt. Jr. College Sattupally Khammam District-507 303 Andhra Pradesh
- 6. N. Venugopal P.G. Teacher Govt. Hr. Sec. School West Mambalam Ashoknagar post Chennai-83 Tamil Nadu
- 7. Mrs. V. Venmathi P.G. Asst. (Chemistry) Govt. Model Higher Secondary School for girls Triplicane, Chennai-600 005 Tamil Nadu

- 8. Smt. P. Kalaiselvi P.G. Asst. Govt. Hr. Sec. School Polambakkam Kancheepuram District Tamil Nadu
- 9. Mrs. S. Nallini P.G. Teacher (selection grade) Govt. Hr. Sec. School Arumbakkam Chennai-600 106 Tamil Nadu
- 10. R. Ramachandran
 P.G. Teacher
 Govt. Boys' Hr. Sec. School
 Ponneri-601 204
 Tiruvellore District
 Tamil Nadu
- 11. R. Sekar
 P.G. Teacher (selection grade)
 Govt. Boys' Hr. Sec. School
 Nandhivaram-603 202
 Guduvanchery
 Chengalpattu District
 Tamil Nadu
- 12. T.M. Nehru
 P.G. Teacher
 Dr. Radhakrishnan
 Govt. Hr. Sc. School
 Tiruttani-631 209
 Tamil Nadu
- 13. V. Sundari
 P.G. Teacher
 Govt. Girls Hr. Sec. School
 Chromepet
 Chennai-44
 Tamil Nadu